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Correlation with Forwarding

Chun-Ting Chen∗

In this paper, I consider three-player complete information games
augmented with pre-play communication. Players can privately com-
municate with others, but not through a mediator. I implement cor-
related equilibria by allowing players to authenticate their messages
and forward the authenticated messages during communication. Au-
thenticated messages, such as letters with signatures, cannot be forged
but sent or received by players. With authenticated messages, I show
that if a game G has an α as a point in the convex hull of Nash equi-
librium, then any correlated equilibrium distribution in G, which
has rational coefficients and gives each player a strictly higher payoff
than what α does, can be implemented via a pre-play communica-
tion. The proposed communication protocol does not require per-
fect public recording, as has been used in Bárány (1992), and does
not publicly expose players’ private messages at any stage during com-
munication.
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1 Introduction

Suppose that there are three players, namely, Int (Intermediator), S (Sender),
and R (Receiver), communicating with one another through writing letters.
There are two ways for Int to send S’s messages to R: (1) writing letters with-
out authentication or (2) forwarding letters with S’s authentication. In the
first form, Int can privately rewrite S’s messages and then send the rewritten
message to R. Contrary to the first form, in the second form, Int cannot
rewrite the messages without S’s authentication; therefore, Int can only for-
ward S’s letters to R. The first form can be interpreted as the cheap talk,
whereas the second form, forwarding, is an added feature in this paper so
that players can identify the origin of a message.

If players can communicate using forwarding, this paper examines whether
the correlated equilibrium distribution (c.e.d.) of a game can be generated by
an augmented pre-play communication procedure. The notion of correla-
tion equilibrium (Aumann, 1974) is plausible since, in equilibrium, players
have enforced themselves to act according to a c.e.d. When this c.e.d. as-
signs probability 0 to some outcomes that degrade players’ welfare, players’
welfare could be better off than Nash equilibrium. Nevertheless, a media-
tor, not a player herself, is well known to inhabit the notion of correlated
equilibrium to enforce players’ behaviors. Without a mediator, we may ask
whether players can enforce themselves so that their outcomes can still be
generated via a c.e.d.

Without a mediator, pioneering works have proposed different pre-play
communication protocols to implement c.e.d. by cheap talk. Those pro-
tocols vary with each other regarding deviation-detection procedures and
punishment schema. Notably, when the number of players is less than or
equal to four, a procedure in their protocols seems indispensable — publicly
exposing all previous messages. Bárány (1992) has four players. There, the
way to detect unilateral deviation is by letting each player receive the same
messages from two different players. After a deviation has been detected,
the public revealing procedure — a procedure that publicly reveals all players’
previous private messages — is activated. Every player then knows who has
deviated and goes to the punishment phase. When there were less than four
players, in Ben-Porath (1998), the public revealing procedure is randomly
activated no matter whether a deviation has occurred. After this procedure
is activated, players go to the punishment phase if deviations are detected;
otherwise, they redo the protocol. Gerardi (2004) has five or more players
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and used the majority rules to detect deviations. Each player receives the
same messages sent from three different players, and therefore, the unilateral
deviation can be identified. Since only unilateral deviation is considered,
no punishment schema is needed in Gerardi (2004). For two-player com-
plete information games, it is impossible to implement c.e.d., as shown in
Ben-Porath (1998).

Using forwarding, in three-player complete information games with fi-
nite actions, this paper removes the public revealing procedure. It allows
players to detect unilateral deviation without exposing players’ private mes-
sages at any stage in the pre-play communication. Seeing public revealing
as powerful is not hard. Such a procedure is powerful because it not only
reveals all private messages, but also exposes all private messages publicly.
Only the convex hull of Nash equilibrium can be implemented after this
kind of deviation-detection procedure. Contrary to the public revealing
procedure, the deviation-detection procedure proposed in this paper is a
zero-knowledge proof. It is: conditional on each player’s private message
relevant to his action, information regarding other players’ private messages
is the same as that induced by a c.e.d. even after the deviation-detection
procedure. To put it differently, in the terminology of computer science,
the essence of this paper is a zero-knowledge proof to correlate actions for
three-player games.

To replace the public revealing procedure, forwarding is used in my pro-
tocol. Intuitively, since players’ messages can be authenticated, the forward-
ing enforces Int to deliver S’s true message to R. This aspect of forward-
ing is like to “record” players’ messages. However, if Int indeed records
S’s messages, then Int can manipulate S’s messages by sending recorded S’s
messages. Messages circulated by forwarding have to be “identified” well
to qualify themselves. Moreover, if all messages guiding players’ actions
are circulated by forwarding, since forwarding already involves three play-
ers, players’ actions will become publicly known. Hence, private messages
between two players are indispensable in implementing c.e.d. outside the
convex hull of Nash equilibrium. Since private messages are indispensable,
to detect deviations, messages circulated must be well “encoded” so that they
can be detected if deviations occur.

Although the encoding rule in this paper is technical, the protocol itself
is based on a simple fact: the joint distribution is the marginal distribution
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multiplying the conditional distribution.1 Recall what a mediator does in
a c.e.d., q . This mediator recommends ai to each player i while letting
i ’s conditional distribution conditional on ai over others’ actions a−i be
q(a−i | ai ). The above idea suggests that if a protocol can implement q,
then this protocol will let ai be chosen with probability q(ai ) and let a−i be
chosen with probability q(a−i | ai ). The remaining question is to ensure
that i can only observe the messages that guide i to act ai . Based on these
ideas, in Section 3.1, Example 1 gives a protocol that implements a c.e.d.
for a three-player game in which there is a player who has only one action.
In Section 3.2, Example 2 shows a protocol with its deviation-detection
procedure if players have two actions. The case for finite actions can be
proved and shown in Appendix A.

Following is the positive result obtained by this paper. Suppose a finite
game G has three players and has an α as a point in the convex hull of Nash
equilibrium. Then, for any c.e.d. q in G, which has rational number coeffi-
cients and gives all players higher expected payoff than what α does, this q
can be realized as a Nash equilibrium in a finite-period pre-play communi-
cation extension ext (G) of G, in which forwarding is applied.

This paper is organized as follows. I describe my model in Section 2. I
state my main result and depict my communication protocol by two exam-
ples in Section 3. In Section 4, I relate my paper to the current literature and
compare the required assumptions in implementing correlated equilibria for
future extensions. The proofs for my main result are all in Appendix A.

2 Model

For a set X , the cardinality of X is denoted by |X |, and the set of probability
distributions over X is denoted by 1X .

G is a three-player game in the strategic form. Let I = {1, 2, 3} be the
set of players. For each i ∈ I , Ai is i ’s set of actions with generic element ai .
The set of action profiles is denoted by A = ×i∈I Ai with generic element a.
For each i , let ui : ×i∈I Ai → R be i ’s payoff function. A randomized action
for i is an element in 4Ai and is denoted by σi . Denote σ ∈ ×i∈I 4Ai as a
randomized action profile. For convenience, also denote a−i as an element

1This multiplication of marginal probability and conditional probability argument is the

main ingredient in implementing correlated equilibrium for two-player games, as in Ben-

Porath (1998) or Dodis, Halevi, and Rabin (2000).
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in × j 6=i A j and denote σ−i as an element in × j 6=i4A j .

Definition 2.1. (Nash equilibrium) σ = (σi )i∈I is a Nash equilibrium (NE
henceforth) if and only if

ui (σi , σ−i ) ≥ ui
(
σ ′

i , σ−i
)
,

for all i and for all σ ′

i ∈ 4Ai .

Definition 2.2. (Correlated equilibrium) q ∈ 4A is a correlated equilib-
rium distribution if and only if, for all i , for all ai , for all a′

i ,∑
a−i

q
(
a−i

∣∣ai
)

ui (ai , a−i ) ≥

∑
a−i

q
(
a−i

∣∣ai
)

ui
(
a′

i , a−i
)
,

where q(a−i |ai ) is the conditional distribution of a−i conditional on ai .

I then consider an extension ext (G) of G such that it allows finite stages
of communication before G is played. In these communication stages, play-
ers can send or receive costless messages. The question is whether play-
ers can enforce themselves to act according to q in G after the pre-play
communication phase in ext (G). I assume players can use forwarding in
pre-communication to answer this question. Forwarding allows players to
forward messages by assuming that the messages are encoded by players’ au-
thentication, such as their signatures.

Forwarding Without cost, each player i can send messages with his own
authentication. Furthermore, j can pass i ’s authenticated messages to k; k
can verify i ’s authentication, and j cannot forge i ’s authentication.

3 Result

In this section, I state my main result and illustrate my pre-play communi-
cation protocol using two examples. In Example 1, I consider a straightfor-
ward case also discussed by Bárány (1992) in which there is a player who
has only one action. In this case, Bárány (1992) has shown that there is a
c.e.d. that cannot be implemented by the pre-play communication so that
deviations can be detected with probability 1. I will however show that such
c.e.d. can be implemented by a pre-play communication with forwarding
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so that deviations can be detected with probability 1. In Example 2, I con-
sider a case in which each player has two actions. In this case, the c.e.d. can
be implemented in finite steps in which deviations are detected with high
probability. Appendix A shows the proof of my main result and the protocol
for general cases. I first state my main result as follows.

Theorem 1. Let G be a three-player game in which α is a point in the
convex hull of NE. For any c.e.d. in G that has rational number coefficients
and gives all players strictly higher expected payoffs than what α does, if
players can communicate with forwarding, then there exists an ext (G) such
that this c.e.d. can be realized as a NE in ext (G).

proof. In Appendix A.

I begin to show the main idea in my protocols using two examples.
In the remainder of this paper, the term jointly refers to jointly-controlled
lottery (j.c.l. henceforth) (Aumann and Maschler, 1995). The j.c.l. is a
procedure to generate a targeting distribution by two or more players, in
which unilateral deviation cannot change the distribution that is meant to
be generated. The j.c.l. procedure will publicly inform an outcome drawn
from the targeting distribution to players.

3.1 Example 1 — forwarding

I first consider a straightforward example discussed in Bárány (1992) to see
how forwarding helps players correlate actions. Let G be a three-player game
so that A1 = {N , S} ({“north”,“south”}), A2 = {E, W } ({“east”,“west”}),
and A3 = {0} with payoff matrix

W E
N (6,6,0.1) (2,7,0)
S (7,2,0) (0,0,5)

in which Player i ’s payoff is indicated by the i th element in a payoff vector.2

We may consider a c.e.d. q that gives a higher welfare than all points in the
convex hull of NE do. This q assigns probabilities over action profiles such
that

q(N , W, 0) = q(N , E, 0) = q(S, W, 0) =
1

3
.

2My example is a modified version of Bárány (1992). The original example can be repre-

sented by
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Denote q(a1) as the marginal distribution of a1 ∈ A1; denote q(a2|a1) as
the conditional distribution of a2 ∈ A2 given a1.3

To implement q via pre-play communication, we should first notice
that Player 1 and Player 2 cannot communicate only by themselves. This is
because q is outside the convex hull of NE. If Player 1 and Player 2’s actions
were solely contingent on the messages communicating between them, only
the points in the convex hull of NE in G can be implemented, since they
publicly know these messages.

In other words, Player 3 must be able to privately send messages to
Player 1 and Player 2 to induce them to play q. However, Player 3 is not
incentivized to do so. After all, he only can get the payoff of 1/30 from
q, while deviating from q would get him a better payoff. Furthermore, it
is nontrivial to detect Player 3’s deviation. In fact, his deviation cannot be
detected with probability 1 (as shown by Bárány (1992)). To see this, note
that q assigns positive probabilities on (N , E, 0) and (S, W, 0). Thus, there
is a pair of Player 3’s messages, one of which, say m32, privately sent to Player
2 to induce Player 2 to play E , and one of which, say m31, privately sent to
Player 1 to induce Player 1 to play S. However, (S, E, 0) gives Player 3 the
highest payoff. Therefore Player 3 can send this pair of messages without
being detected with probability 1 to induce Player 1 and Player 2 to play
(S, E, 0), which gives Player 3 a higher payoff than that from q .

A pre-play communication should prevent Player 3 inducing E if he in-
duces S. My protocol use forwarding to accomplish so. The key here is that,
instead of freely sending private messages to Player 1 and Player 2, Player 3
correlates Player 1 and Player 2’s actions by forwarding Player 1’s messages
to Player 2. First, let Player 1 and Player 3 conduct a j.c.l. in choosing Player

W E
N (6,6,0) (2,7,0)

S (7,2,0) (0,0,5)

in which Player 3 gets a strictly positive payoff only at the action profile (S, E, 0). There

exists, nevertheless, no point in the convex hull of NE in the original example that gives each

player a strictly less expected payoff than q does. My example has a point α in the convex

hull (α(S, W, 0) = α(N , E, 0) = 1/2) to give each player a strictly less expected payoff

than q does.
3The c.e.d. q yields a payoff (5, 5, 1/30) with the corresponding welfare (301/30). The

NE payoffs are (7, 2, 0), (2, 7, 0), and [4(2/3), 4(2/3), (54/90)] with corresponding welfare

9, 9, and (894/90).
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1’s action a1 according to q(a1). Then, contingent on a1, Player 1 sends a
set of authenticated messages to Player 3, distributed as q(a2|a1) and meant
to induce Player 2’s action a2. Afterward, Player 3 privately forwards one
of these authenticated messages to Player 2, determining Player 2’s action.
Using forwarding, Player 2 can verify Player 1’s authentication, and Player
3 cannot forge it. Thus, the probability that (a1, a2) = (S, E) is 0 since
q(E |S) = 0. Furthermore, since q(a1, a2) = q(a1) · q(a2|a1), if Player 1
acts a1 and Player 2 acts a2, then q is being generated.

In other words, the presence of Player 3 is a “virtual urn”. Continent
on Player 1’s action, Player 1 can send different messages that induce Player
2’s actions to Player 3 while letting Player 2 draw a message from Player
3 so that (1) Player 1 does not know which message has been drawn, and
(2) Player 2 does not know the distribution of messages. Player 1 must not
know which message has been drawn; otherwise, Player 1 will know Player
2’s action. Player 2 must not know the distribution of messages held by
Player 3. Otherwise, Player 2 will be able to infer Player 1’s action. In the
absence of Player 3, such an urn does not exist. However, since Player 3
is a player instead of an urn, Player 3 might have incentives to change the
distribution of the received messages sent by Player 1. The authentication
issued by Player 1 is meant to deter Player 3’s manipulation.4

As follows, I show my protocol — F protocol (Forwarding protocol) —
for this example.5

F protocol

4It is also crucial to enforce Player 1 to send the distribution q(a2|a1) according to q(a1)

instead of sending some other distribution. Since Player 3 is a player, Player 3 can monitor

whether Player 1 has sent the legitimate distribution of messages.
5 My result still holds in the case that Player 3 can forge Player 1’s authentication but

it can be detected by Player 2 with a probability very close to 1. The punishment schema

will still be triggered if forging is detected. In computer science, authentication can be

accomplished by digital signature. For a cheap talk implementation, one can consider the

following scenario. Whenever Player 1 asks Player 3 to send a message, say the number “1”,

to Player 2, he also asks Player 3 to send it with its authentication code, say “apple”. It will

be very hard for Player 3 to send the number “2” instead without being caught if he has no

idea about number “2”s authentication code. As long as Player 1 and Player 2 can privately

decide the authentication code for each number, Player 3’s manipulation can be detected

with arbitrarily high probability.
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1. STEP 0 We first prepare random variables that are used to generate
the intended distribution of messages in STEP 2 and STEP 3. Let
Y = {ȳ, ¯̄y} be an arbitrary set with two elements. Player 1 and Player
3 jointly and uniformly choose a permutation π : Y → Y . Indepen-
dently from π , Player 2 and Player 3 jointly and uniformly choose a
number y ∈ Y . All random variables are chosen via j.c.l.

2. STEP 1 Player 1’s action is determined in this step. To do so, Player
1 and Player 3 jointly and randomly choose an element a1 ∈ A1

according to q(a1).

3. STEP 2 Contingent on a1 and given the chosen π , Player 1 sends a
list of authenticated messages (authenticated by Player 1) to Player 3:
if a1 = N , Player 1 sends ([m]π(ȳ), [m]π( ¯̄y)) = ([W, π(ȳ)], [E, π

( ¯̄y)]); otherwise, he sends ([m]π(ȳ), [m]π( ¯̄y)) = ([W, π(ȳ)], [W, π

( ¯̄y)]).

4. STEP 3 This step determines Player 2’s action. Given the chosen y,
Player 3 forwards the message [m]y to Player 2. ([m]y is the message
authenticated by Player 1, of which the last element is y.)

Player 2’s action is the first element of [m]y .

5. STEP 4 The protocol ends. Player 1 and Player 2 play their recom-
mended actions chosen in STEP 1 and STEP 3, and Player 3 plays
action 0.

If players follow the protocol, it is straightforward to check that Player
1 and Player 2’s actions, as well as their information regarding each other’s
actions, are induced by q. In STEP 1, Player 1’s action is chosen according
to q(a1). In STEP 3, when Player 3 forwards Player 1’s messages to Player
2, Player 1 does not know which message specified by y has been chosen.
This is because Player 1 does not know the chosen y, Player 1 does not
know Player 2’s action. Meanwhile, Player 1’s prescribed messages sent to
Player 3 are distributed as q(a2|a1). Therefore, in STEP 3, Player 2’s action
is induced by q(a2|a1). Finally, since a1 and π are chosen by Player 1 and
Player 3, Player 2 does not know Player 1’s action.

Players’ deviations in the protocol can be detected with probability 1.
In STEP 2, Player 3 is able to monitor whether Player 1 has sent the pre-
scribed messages to him since a1 is jointly chosen by Player 1 and Player 3.
Furthermore, in STEP 3, Player 2 is able to verify whether Player 3 has sent
the correct authenticated messages in which y is on the last element.



438 Chun-Ting Chen

To provide players the right incentives to follow the protocol, the deviation-
detection procedure and the punishment schema for this example are below.

• Deviation-detection procedure (DD1): If Player i ’s deviation is de-
tected by Player j , both Player i (the player who deviates) and Player
j (the player who detects it) send the message STOP to all other
players, and then all players go to the punishment schema; otherwise,
both of them send the message OK to all other players.

• Punishment schema: Let α be the point in the convex hull of NE
such that

α(N , E, 0) = α(S, W, 0) = 1/2.

Players first publicly perform a j.c.l. that generates α.6 Players then
play (N , E, 0) or (S, W, 0) according to α.

Since α gives a strictly lower payoff to every player than q does, players
will not deviate from the protocol.

A downside of this protocol is that Player 3 will know Player 1 and
Player 2’s actions. Nevertheless, Player 3 has only one action in this example,
and therefore his action in G still follows q . The next section discusses the
general cases when Player 3 has multiple actions. The current protocol will
be modified so that players’ actions are not exposed to any other player, and
deviations can be deterred with a probability larger than 1/2.

3.2 Example 2 — randomized-forwarding and deviation-detection

In this section, consider the game in which A1 = {N , S}, A2 = {E, W },
and A3 = {0, 1}. Let q be the c.e.d. that assigns equal probabilities over the
action profiles such that

q(N , W, 0) = q(N , E, 0) = q(N , E, 1) = q(S, W, 0) =
1

4
.

Assume that there is an α in the convex hull of NE so that α gives each
player a strictly lower expected payoff than q does.

6As in Gerardi (2004), we can arbitrarily assign two players, say Player 1 and Player 2, to

publicly perform a j.c.l. that generates α. That is, Players 3 is a witness in this j.c.l. process

and informed about the outcome.
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In this example, if Player 1 and Player 2’s actions are exposed to Player
3 during pre-play communication, Player 3 would not follow the recom-
mended actions generated by the protocol. Suppose the action profile (a1, a2,

a3) = (N , E, 0) is being generated by the protocol. Player 3 would deviate
from playing a3 = 0 since, according to q , playing 1 is his best response
given that (a1, a2) = (N , E).

Using forwarding, we have a better protocol than Example 1 so that
Player 1 and Player 2’s actions are not exposed to Player 3. Consider the fol-
lowing procedure with T steps. In each step, contingent on some a1 ∈ A1,
Player 1 authenticates a message [a2, y] and sends it to Player 3, where
a2 ∈ A2 and y is an arbitrary number that indexes this message. Afterwards,
Player 3 forwards this authenticated message to Player 2. Due to forward-
ing, Player 3 cannot manipulate [a2, y] contingent on a1. After T steps,
Player 2 should get a list of ([a1

2, y1
], · · · , [aT

2 , yT
]) contingent on Player

1’s list (a1
1, · · · , aT

1 ). Afterwards, Player 1 and Player 2 jointly and uni-
formly choose a t∗

∈ {1, · · · , T } without being known by Player 3. Player
3 would not know the chosen pair (at∗

1 , [at∗
2 , yt∗

]) since he does not know
t∗, even if he has known (a1

1, · · · , aT
1 ) as well as ([a1

2, y1
], · · · , [aT

2 , yT
]).

To generate Player 3’s action, we can modify the above procedure so that
Player 2 gets a list in the form of ([a1

2, a1
3, y1

], · · · , [at
2, at

3, yt
], · · · [aT

2 , aT
3 ,

yT
]) in which the second element of a message, at

3 ∈ A3, determines Player
3’s action. After that, Player 1 and Player 2 jointly and uniformly choose a
t∗

∈ {1, · · · , T }, and then Player 2 reports the chosen at∗
3 to Player 3. For

our purpose, as an instance, contingent on Player 1’s list

l1 = (N , N , N , S), (1)

we can let Player 2 get the list of

l2 =
([

W, 0, y1
]
,
[
E, 0, y2

]
,
[
E, 1, y3

]
,
[
W, 0, y4

])
, (2)

so that whenever t∗
∈ {1, 2, 3, 4} is uniformly chosen by Player 1 and Player

2, players’ actions are correlated according to q provided that Player i plays
at∗

i .
The above procedure has generated q when players do not deviate. How-

ever, Player i ’s belief over others’ actions is not the same as q(a−i |ai ). (For
instance, Player 2 would know Player 1’s action since he knows the order of
Player 1’s list.) As follows, Section 3.2.1 assumes players are honest (no de-
viation) and illustrates a protocol that prevents this situation. Section 3.2.2
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incorporates the deviation-detection procedure to deter deviations with a
probability no less than 1/2 when players might deviate.

3.2.1 Honest Players

In this section, I suppose that players would not deviate. Players, however,
would be able to conceive the others’ actions during the protocol. I modify
the above procedure so that every Player i ’s belief over others’ actions is the
same as q(a−i |ai ).

We first see how to prevent Player 2 knowing Player 1’s action. To fix
the idea, let the original lists be l1 for Player 1 and l2 for Player 2. We can
let Player 1 reorder his own list and, at the same time, randomly choose the
indices of authenticated messages. To be precise, if Player 1 reorders his list
l1 = (N , N , N , S) to l ′1 = (S, N , N , N ) and indexes the sequence of his
authenticated messages by (y1, y2, y3, y4), then Player 2 will get the list of

l2 =
([

W, 0, y1
]
,
[
E, 0, y2

]
,
[
E, 1, y3

]
,
[
W, 0, y4

])
,

but contingent on
l ′1 = (S, N , N , N ),

instead of l1 = (N , N , N , S). Player 2 would not know Player 1’s action
since he does not know Player 1’s reordering and indexing.

Next, we can prevent Player 1 from knowing Player 2 and Player 3’s
actions. Player 3 will reorder Player 2’s list. To fix the idea, let the orig-
inal lists be l ′1 for Player 1 and l2 for Player 2. At each step, instead of
sending an authenticated message, Player 1 sends a set of authenticated mes-
sages to Player 3. More precisely, at each step when Player 1’s action is S,
Player 1 will send the set of messages {[W, 0, y1

]} to Player 3; and contin-
gent on N , Player 1 will send {[E, 0, y2

], [E, 1, y3
], [W, 0, y4

]}. At each
step, Player 3 forwards one of Player 1’s authenticated messages to Player 2
ordered by Player 3’s own ordering over Player 1’s messages. Precisely speak-
ing, if Player 3 orders {[E, 0, y2

], [E, 1, y3
], [W, 0, y4

]} (contingent on N )
to ([W, 0, y4

], [E, 0, y2
], [E, 1, y3

]), then contingent on Player 1’s list,

l ′1 = (S, N , N , N ),

Player 2 will get the list of

l ′2 =
([

W, 0, y1
]
,
[
W, 0, y4

]
,
[
E, 0, y2

]
,
[
E, 1, y3

])
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by Player 3’s ordering. Thus, Player 1 would not know Player 2 and Player
3’s actions since Player 2’s list has been reordered.

Furthermore, we can prevent Player 2 from knowing Player 3’s action.
Player 1’s authenticated messages will “rotate” Player 3’s actions on Player
2’s list. That is, if a3 ∈ A3 is Player 3’s recommended action, it will be
uniformly rotated to some a′

3 ∈ A3 on Player 2’s list. To accomplish so,
Player 1’s list is extended to be in the form of ((at

1, r t))t , where r t
∈ {0, 1}

indicates the rotation of Player 3’s recommended action. To fix the idea in
our context, let the original lists be l ′1 for Player 1 and l ′2 to Player 2. Player
1’s list is extended to be

l ′′1 =
((

at
1, r t))

t

= ((S, 0), (N , 0), (N , 0), (N , 0), (S, 1), (N , 1),

(N , 1), (N , 1)),

and contingent on l ′′1 , Player 2’s original list, l ′2, is extended to be in the form
of ([at

2, at
3, yt

])t so that

l ′′2 =
([

at
2, at

3, yt])
t

=
([

W, 0, y1
]
,
[
W, 0, y2

]
,
[
E, 0, y3

]
,
[
E, 1, y4

]
,
[
W, 1, y5

]
,[

W, 1, y6
]
,
[
E, 1, y7

]
,
[
E, 0, y8

])
.

That is, for each message in l ′′2 , the second element, at
3, represents Player 3’s

rotated action such that Player 3’s action will be determined to be

at∗
3 + r t∗(mod2)

for some chosen t∗. Player 1 and Player 2 then choose t∗
∈ {1, · · · , 8}, and

then report r t∗ and at∗
3 to Player 3 respectively. Player 2 would not know

Player 3’s action, since he does not know the rotation r t∗ and since Player
3’s action is uniformly rotated.

Finally, Player 3 does not know Player 1 and Player 2’s actions, since he
only knows about at∗

3 and r t∗ and since t∗ is privately chosen by Player 1
and Player 2.

The following RF protocol (Randomized-Forwarding protocol) summa-
rizes the above ideas (in Step 0.1 and Step 0.2 as follows). To begin with,
I list the messages that will be authenticated by Player 1 for this protocol in
Figure 1.
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Figure 1: An example of Player 1’s 8 authenticated messages in RF protocol

RF Protocol

1. Step 0.1: Player 1 prepares the authenticated messages. Each message
has its own index randomly chosen by Player 1. Let T = {1, · · · , 8}

be the set of steps and let Y = T be the set of indices. Let R = {0, 1}

with generic element r . An example of these messages with their
indices is listed in Figure 1. A box in Figure 1 has the form of

(a1, r)

[m]y

in which a1 ∈ A1, r ∈ R, and [m]y is the message in the form
of [a2, a3, y] so that a2 ∈ A2, a3 ∈ A3, and y is the index of this
message. If [m]y is intended to be contingent on (a1, r), then [m]y

and (a1, r) are within the same box.

2. Step 0.2: We prepare some random variables meant to prevent play-
ers’ actions from being exposed to one another. These random vari-
ables will be used in Step 1. First, Player 1 and Player 3 jointly and
uniformly choose a bijection (a permutation)

φ : T → Y.

Let
χ : Y → A1 × R

be the mapping such that, for each y ∈ Y , the authenticated message
[a2, a3, y] is contingent on χ(y). Notice that φ and χ will induce a
mapping

χφ : T → A1 × R.

Restricted by χφ, Player 3 uniformly chooses a bijection (a permuta-
tion)

π : T → Y
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so that
χπ(t) = χφ(t)

for each t ∈ T .

3. Step 1: Player 1 and Player 2 get their lists of messages in this step.
There are |T | steps. For each t-step, t ∈ T , Player 1 authenticates the
set of messages contingent on f (t |φ) to Player 3. After that, Player 3
forwards the message [m]π(t) to Player 2.

After |T | steps, Player 1 should get a list of

l∗1 = (χφ(t))t ;

Player 2 gets a list of

l∗2 = ([a2, a3, π(t)])t .

4. Step 2: Player 1 and Player 2 get their recommended actions in this
step. Player 1 and Player 2 jointly and uniformly choose a t∗

∈ T .
Player 1 knows

χφ
(
t∗

)
=

(
at∗

1 , r t∗
)

;

Player 2 knows

[m]yt∗ =

[
at∗

2 , at∗
3 , yt∗

]
.

5. Step 3: Player 3 gets his recommended action in this step. Player 2
reports at∗

3 to Player 3, and Player 1 reports r t∗ to Player 3.

6. Step 4: The protocol ends. Players’ recommended actions are deter-
mined by:

• Player 1’s recommended action is at∗
1 .

• Player 2’s recommended action is at∗
2 .

• Player 3’s recommended action is at∗
3 + r t∗(mod2).

3.2.2 Deviation-Detection

There are two kinds of deviations that might occur in Step 3 in the RF
protocol. The first one is that Player 2 might deviate from reporting at∗

3 ∈

A3 to Player 3. The second is that Player 1 might deviate from reporting
r t∗

∈ {0, 1} to Player 3. In this section, I show how deviations can be
deterred during communication.
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The idea in tackling the first kind is a natural analog of a daily example:
whenever a terminal user needs to log in to a server, she needs to enter her
ID and passcode. It realizes in our context by adding a “tag” for every Player
3’s rotated action on Player 2’s list. For every a3 ∈ A3 on Player 2’s list, a
tagging is a permutation

θ(·|a3) : U → U,

where U is an arbitrary set of numbers with generic element u. Given this
tagging, on every message on Player 2’s list and for every a3 ∈ A3, a number
θ(u|a3) is attached. Whenever Player 2 needs to report a3 — the ID, he
also needs to report θ(u|a3) — the passcode. Player 2 knows the number
of θ(u|a3) but not θ(·|a3) and u. Provided that Player 1 and Player 3 know
θ(·|a3) and u for every a3 ∈ A3, if Player 2 deviates to report a′

3 instead of
a3, then Player 2 might be also wrong in reporting the number of θ(u|a′

3).
Therefore, Player 2’s deviation can be detected by Player 3 with a probability
of 1 − 1/|U |.

To prevent Player 1 misreporting r 6= r t∗ is more involved. Let us
examine an example first. Suppose that the RF protocol (in Step 1) has
generated

l∗1 =
((

at
1, r t))

t

= ((N , 0), (N , 0), (N , 0), (S, 0), (N , 1), (N , 1), (N , 1), (S, 1))

to Player 1 and

l∗2 =
([

at
2, at

3, yt])
t

=
([

W, 0, y1
]
,
[
E, 0, y2

]
,
[
E, 1, y3

]
,
[
W, 0, y4

]
,
[
W, 1, y5

]
,[

E, 1, y6
]
,
[
E, 0, y7

]
,
[
W, 1, y8

])
to Player 2. After t∗

∈ {1, · · · , 8} is chosen, Player 1 should report r = r t∗

to Player 3. Since Player 2 knows t∗ while Player 3 knows l∗1 , a straight-
forward way to detect Player 1’s deviation by reporting r 6= r t∗ is to allow
Player 3 to ask Player 2 whether t∗ is in the set of

T (r) =
{
t ∈ T |r t

= r
}

by reporting T (r) to Player 2. Apparently, t∗
∈ T (r) if and only if r = r t∗ .

Therefore, Player 1’s deviation can be detected with probability 1 this way.
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Table 1:

r = 0 r = 1

v = v̄ t ∈ {1, 2, 3, 4} t ∈ {5, 6, 7, 8}

v = ¯̄v t ∈ {9, 10, 11, 12} t ∈ {13, 14, 15, 16}

However, if Player 1 indeed reports r = r t∗ truthfully, Player 2 will
be able to infer r from T (r), since T (r) is dependent on r .7 Note that
Player 2 also knows at∗

3 . Player 2 will then know Player 3’s recommended
action, which is at∗

3 + r t∗(mod2). The question boils down to finding a
way to hide the information about r t∗ but still be able to detect Player 1’s
deviation.

To accomplish so, let us duplicate Player 1 and Player 2’s lists so that the
lists become

l
′′′

1 =
(
l∗1 , l∗1

)
for Player 1 and

l
′′′

2 =
(
l∗2 , l∗2

)
for Player 2. Note that the length of l

′′′

1 is 16. We can index the copies of
l∗1 by its order in l

′′′

1 . Let v ∈ {v̄, ¯̄v} be such an index: if t∗ is chosen from
the first copy of l

′′′

1 (i.e. t∗
∈ {1, · · · , 8}), then v = v̄; if it is chosen from

the second (i.e. t∗
∈ {9, · · · , 16}), then v = ¯̄v. In other words, the set of

steps, {1, · · · , 16}, can be partitioned into a 2-by-2 table by r ∈ {0, 1} and
v ∈ {v̄, ¯̄v} according to l

′′′

1 as shown by Table 1.
To ease the exposition, let us first denote the entry in Table 1 by T (r, v)

for each (r, v) ∈ {0, 1} × {v̄, ¯̄v}. Now suppose t∗
= 3 is chosen. To hide

Player 3’s information about r t∗ , consider the following procedure. Suppose
that Player 1 reports (r ′, v′) = (r t∗, v̄) (since t∗

∈ {1, · · · , 8}) to Player 3.

7To see this, suppose that t∗ = 3. If Player 1 reports truthfully, then we have T (r t∗) =

{1, 2, 3, 4}. Given T (r t∗) and Player 2’s list l∗2 , Player 2 knows that, for some at∗
1 and r t∗ ,

Player 2’s action and Player 3’s rotated action can be only chosen from the list

l̄ =

([
W, 0, y1

]
,
[

E, 0, y2
]
,
[

E, 1, y3
]
,
[
W, 0, y4

])
.

Since Player 3’s recommended action is 0 if Player 2’s action is W (according to q), Player 2

knows that r t∗ must be equal to 0. Otherwise, there is no suitable r so that Player 3’s roated

actions are in l̄.
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Afterwards, Player 3 randomly chooses a ṽ ∈ {v̄, ¯̄v} with equal probability
for the r that is not equal to r ′. Let us say ṽ = ¯̄v. Player 3 then reports the
set T (v̄, ṽ) to Player 2, where

T (v̄, ṽ) ≡ T
(

r = r t∗, v = v̄
)

∪ T
(

r 6= r t∗, v = ṽ
)

= T (0, v̄) ∪ T (1, ¯̄v)

= {1, 2, 3, 4, 13, 14, 15, 16}.

Since the set T (v̄, ṽ) does not depend on the specific value of r , Player 2
cannot infer r from T (v̄, ṽ).

I claim that Player 1’s deviation by reporting (r ′, v′) 6= (r t∗, v̄) can
be detected with probability at least 1/2. To see this, notice that if Player
1 reports truthfully, then T (v̄, ṽ) must include t∗ by the construction of
T (v̄, ṽ). Furthermore, according to Table 1, since Player 2 knows t∗, the
only successful deviation for Player 1 without being detected is when Player
1 reports r ′

= 1 and Player 3 chooses ṽ = v̄. Since Player 3 randomly
chooses ṽ between v̄ and ¯̄v, Player 1’s deviation can be detected with prob-
ability at least 1/2.

The following RF+DD protocol incorporates the above deviation-detection
procedure into the RF protocol. To begin with, I list the messages that will
be authenticated by Player 1 in this protocol in Figure 2.8

RF+DD Protocol

1. Step 0.0: We first prepare the permutation θ that will be used to
detect deviations. Let U = {ū, ¯̄u} with generic element u. Player 1
and Player 3 jointly and uniformly choose a permutation

θ (·|a3) : U → U

for each a3 ∈ A3.

2. Step 0.1: Player 1 prepares the authenticated messages indexed by
numbers. Let T = {1, · · · , 32} be the set of steps and let Y = T
be the set of indices. Let R = {0, 1} and V = {v̄, ¯̄v} with generic

8My result still holds in the case that Player 3 can forge Player 1’s authentication but it

can be detected by Player 2 with a probability very close to 1. The punishment schema will

still be triggered if forging is detected. Authentication can be achieved by digital signature.

For a cheap talk implementation, readers are referred to Footnote 5.
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Figure 2: An example of Player 1’s 32 authenticated messages in RF+DD
protocol

element r and v respectively. An example of these messages are listed
in Figure 2. (Comparing to RF protocol, there are additional copies
of authenticated messages for each u ∈ U and v ∈ V .)

A box in Figure 2 has the form of

(a1, r, u, v)

[m]y
...

[m]y′

in which a1 ∈ A1, r ∈ R, u ∈ U , v ∈ V , and [m]y is the message
in the form of [a2, a3, θ(u|a3), y] so that a2 ∈ A2, a3 ∈ A3, and y
is the index of this message. If [m]y is intended to be contingent on
(a1, r, u, v), then [m]y and (a1, r, u, v) are within the same box.

3. Step 0.2: This step is the same as Step 0.2 in RF protocol in which
the permutations φ, π are chosen, and the mapping χ is determined.
The only difference from Step 0.2 in RF protocol is the codomain of
χ . Now, the codomain of χ is A1 × R × U × V .
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4. Step 1: The procedure in this step is the same as Step 1 in RF proto-
col.

5. Step 2: The procedure in this step is the same as Step 2 in RF protocol
except for that, now, Player 1 knows

χφ
(
t∗

)
=

(
at∗

1 , r t∗, ut∗, vt∗
)

;

Player 2 knows

[m]yt∗ =

[
at∗

2 , at∗
3 , θ

(
ut∗

|at∗
3

)
, yt∗

]
.

6. Step 3 The procedure in this step is the same as Step 3 in RF protocol
except for that after t∗ is chosen, Player 2 reports

m23
=

(
at∗

3 , θ
(

ut∗
|at∗

3

))
to Player 3; Player 1 reports

m13
=

(
r t∗, ut∗, vt∗

)
to Player 3.

7. Deviation-Detection (Step 4) This step is the deviation-detection
procedure. Two kinds of deviations might be made in Step 3: Player
1 misreports m13 or Player 2 misreports m23.

Suppose Player 2 reports (a′

3, u′) 6= m23. This deviation is detected if
u′

6= θ(ut∗
|a′

3).

Next, suppose Player 1 reports (r ′, u′, v′) 6= m13. First, define

T (r, u, v) ≡ {t ∈ T |χφ(t) = (a1, r, u, v) for some a1}.

Player 3 randomly chooses an element ṽ ∈ V with probability 1/2.
Player 3 constructs the set T (u′, v′, ṽ) so that

T
(
u′, v′, ṽ

)
≡ T

(
r ′, u′, v′

)
∪ T

(
r 6= r ′, u′, ṽ

)
,

and reports it to Player 2. Since Player 2 knows t∗, whenever t∗
6∈

T (u′, v′, ṽ), Player 1’s deviation is detected.
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If Player i ’s deviation is detected by Player j in the above steps, both
Player i (the player who deviates) and Player j (the player who detects
it) send the message STOP to all other players, and then all players go
to the punishment scheme; otherwise, both of them send the message
OK to all other players.

8. Step 5 The protocol ends. Players’ recommended actions are deter-
mined as follows.

• Player 1’s recommended action is at∗
1 .

• Player 2’s recommended action is at∗
2 .

• Player 3’s recommended action is at∗
3 + r t∗(mod2).

Now I can show that players’ unilateral deviations can be detected with
a probability of no less than 1/2.

Proposition 3.1. In the above RF+DD protocol, players’ unilateral devia-
tions can be detected with a probability no less than 1/2.

proof. Step 0.0, Step 0.1, Step 0.2, and Step 2 are using j.c.l., and therefore
players’ deviations do not affect the distribution of permutations or elements
intended to be generated in these steps. Deviations in Step 1 will be detected
with probability 1 since, in which, players use forwarding in transacting
authenticated messages. I then check the possible deviations in Step 3.

I begin with Player 1’s deviations in Step 3. Suppose that Player 1 re-
ports (r ′, u′, v′) 6= (r t∗, ut∗, vt∗). Then the probability of t∗

∈ T (u′, v′, ṽ)

is 0 if u′
6= ut∗ by the construction of T (u′, v′, ṽ). Furthermore, by the

construction of T (u′, v′, ṽ), the only successful deviation for Player 1 with-
out being detected is when u′

= ut∗ , r ′
6= r t∗ and ṽ = vt∗ . Since Player

3 uniformly chooses ṽ from {v̄, ¯̄v}, this deviation can be detected with a
probability no less than 1/2.

I then check Player 2’s deviation in Step 3. Suppose that Player 2 follows
the protocol, Player 2 should report m23

= (at∗
3 , θ(ut∗

|at∗
3 )) to Player 3.

If Player 2 reports (a′, u′) 6= m23 instead, then Player 3 will detect this
deviation if (a′, u′) 6= (a′, θ(ut∗

|a′)). Since θ(·|a′) is uniformly chosen
without being known by Player 2, there is a probability of 1 − 1/|U | = 1/2
so that u′

6= θ(ut∗
|a′). Thus, this deviation can be detected with probability

1/2.
In summary, players’ unilateral deviations can be detected with a proba-

bility no less than 1/2.
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I have to check further whether players’ conditional probabilities con-
ditional on their recommended actions over the others’ is the same as that
induced by q . The proof is straightforward but technical since the deviation-
detection procedure in Step 4 might leak information to players so that they
can infer other players’ recommended actions. The proof for Theorem 1
shows that this is not the case. Hence, I have the following proposition for
Example 2.

Proposition 3.2. After the RF+DD protocol ends, if players has not yet
received STOP, every player i ’s conditional probability conditional on his
own recommended action ai over others’ recommended actions a−i is the
same as that induced by q .

proof. In the Appendix.

4 Conclusion

The underlying question meant to be answered is whether the c.e.d. in a
three-player game G can be implemented as a NE of a game ext (G). This
paper shows a positive result through the assumption that forwarding is pos-
sible. The benefit of forwarding is that the information regarding players’
recommended actions is not exposed after the deviation-detection proce-
dure. Players have the right incentive to play G according to q . It is in
sharp contrast to using the public exposing procedure in Bárány (1992) or
Ben-Porath (1998).

In the literature, for three or more players, Forges (1990), Gerardi (2004)
and Ben-Porath (2003) use pre-play communication to implement commu-
nication equilibrium.9 Gerardi (2004) uses majority rule for five players,
and therefore no punishment schema is required. For three or four play-
ers, Forges (1990) assumes the existence of a correlation device; Ben-Porath
(1998) and Ben-Porath (2003) do not assume a correlation device before-
hand but use a public exposing procedure to prevent deviations.10 Heller
(2010) and Heller, Solan, and Tomala (2012) employ the technique in mul-
tiparty computation in computer science to implement correlated equilib-
rium or communication equilibrium. Multiparty computation is a protocol

9The notion of correlated equilibrium is extended to communication equilibrium for

Bayesian games. Also, see Forges (1986) or Myerson (2004).
10Also, see Forges (2009).
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to compute a multi-dimensional function so that players can only know
the outputs projected to their own dimensions without knowing others’.11

Their papers employ a public exposing procedure, as in Ben-Porath (1998),
to detect deviations in the communication stage and require possibly infinite
periods. My paper proposes forwarding to implement correlated equilibrium
in finite periods. For a survey, further see Forges (2009).

Implementing correlation equilibrium or communication equilibrium
is unattainable through cheap talk for two-player games, as shown in Ben-
Porath (1998) or Vijay Krishna (2007). Nevertheless, it is possible if ad-
ditional assumptions are added. Lehrer (1996), Lehrer and Sorin (1997),
Gossner and Vieille (2001) and Vida and Āzacis (2013) consider an ad-
ditional “mediated-talk” device. A mediated-talk device is a mediator that
receives private inputs from players and sends public outputs. Lehrer and
Sorin (1997) show that implementing correlated equilibrium can be accom-
plished in one-step pre-play communication through mediated-talk. Goss-
ner and Vieille (2001) restrict the inputs or outputs to be 0 or 1 but gets the
negative result. Vida and Āzacis (2013) also restrict the inputs or outputs
to be 0 or 1 but further assumes that the mediated-talk can record players’
private inputs and get the positive result. Ben-Porath (1998) implements
correlated equilibrium by physical device “urns”. One player can input pri-
vate information, such as colored balls, to the urn, while the other can draw
a ball from the urn without seeing the distribution of colors. Adopting a
public exposing procedure, Ben-Porath (1998) implements correlated equi-
librium in two-player cases.

Using cryptography, Dodis, Halevi, and Rabin (2000) (also see Urbano
and Vila (2002) and Teague (2008)) attempt to implement correlated equi-
libria in two-player games, in which one player plays the role of a sender
and the other as the role of a receiver. The sender encrypts and sends the ac-
tion profiles to the receiver to choose an action profile to create correlation.
Due to encryption, the sender’s action is hidden from the receiver. In con-
trast, my protocol adds the third player to correlate players’ actions. Using
forwarding, the protocol is made to prevent one player’s actions from being
known by one another.

We may wonder if forwarding can replace the cryptography used in
Dodis, Halevi, and Rabin (2000) or the urns used in Ben-Porath (1998) for
two-player games. However, forwarding involves three players; therefore,

11See also Shamir (1979) and Ben-Or and Wigderson (1988) for multiparty computation.
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forwarding is inapplicable in a two-player case. If there are only two players,
forwarding is equivalent to cheap talk; therefore, implementing correlated
equilibria is impossible. The difference between forwarding and the cryp-
tography used in Dodis, Halevi, and Rabin (2000) or the urns is whether the
content itself has been encrypted. In Dodis, Halevi, and Rabin (2000), the
content of a message has been encrypted. By contrast, forwarding strength-
ens the ability to identify the origin of messages but not encrypt the content
itself. Therefore, the power of forwarding is in the middle between urns and
cheap talk.

Appendix

A.1 Proof for Theorem 1

The proof is constructive, and its essence is the same as that in Section 3.2.
To begin with, I show my protocol in Section A.1.1, which is the same as
the RF+DD protocol in Section 3.2. Then I check the deviation-detection
probability in Section A.1.2, and check the conditional probabilities gener-
ated by the protocol in Section A.1.3.

For convenience, let us keep the following notations:

1. Ai = {1, · · · , |Ai |} be i ’s action set with generic element ai for i =

1, 2, 3.

2. q is the targeting c.e.d. meant to be implemented. q(ai ) is the
marginal probability of ai ; q(a−i |ai ) is the conditional probability
at a−i conditional on ai .

3. R = A3 with generic element r . (R is just a copy of A3 but with
different interpretation: r ∈ R is a rotation to rotate a3 ∈ A3 so that
r + a3(mod|A3|) is an element in A3).

4. U = {1, · · · , |U |} with generic element u. U is used in the deviation-
detection procedure.

5. V = {1, · · · , |V |} with generic element v. V is used in the deviation-
detection procedure.

6. T = {1, · · · , |T |} with generic element t . T is the set of steps used
in Step 1 in my protocol.

7. Y = T with generic element y. (Y is just a copy of T but interpreted
as the index set; y ∈ Y is an index for Player 1 to index his authenti-
cated messages. |Y | is the total number of authenticated messages).
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A.1.1 The protocol

We first determine |Y |. Since q has rational coefficients, it can be repre-
sented by its coefficients, i.e. q = (q(a))a , in which each fraction has been
reduced. Let lcmq be the least common multiple of the denominators of q .
The total number of authenticated messages |Y | is determined by

|Y | = lcmq · |R| · |U | · |V |.

I begin to show my protocol.

• Step 0.0: We first prepare the permutation θ that will be used to
detect deviations. Player 1 and Player 3 jointly and uniformly choose
a permutation

θ (·|a3) : U → U

for each a3 ∈ A3,.

• Step 0.1: Player 1 prepares his authenticated messages. An arbitrary
authenticated message is in the form of

[a2, a3, u, y] ,

where a2 ∈ A2, a3 ∈ A3, u ∈ U, y ∈ Y . Player 1 randomly and
uniformly chooses y from Y so that each authenticated message has a
distinct y. Let us call y the index of a message and denote [m]y as the
message indexed by y.

Let M(a1, r, u, v) be the set of authenticated messages contingent on
a1 ∈ A1, r ∈ R, u ∈ U, v ∈ V . Let (M(a1, r, u, v))(a1,r,u,v) be a
partition of Player 1’s authenticated messages such that:

1. The fraction of

|M (a1, r, u, v) |

|Y |/(|R| · |U | · |V |)
= q (a1) ,

for every a1 ∈ A1, r ∈ R, u ∈ U, v ∈ V .
2. The fraction of∣∣{[ā2, ā3, ū, ȳ] ∈ M (a1, r, u, v)

∣∣ā2 = a2, ā3 + r ≡ a3 (mod |A3|)
}∣∣

|M (a1, r, u, v)|

= q
(
a2, a3

∣∣a1

)
,

for every a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, r ∈ R, u ∈ U, v ∈ V .
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3. For every authenticated message [ā2, ā3, ū, ȳ], if

[ā2, ā3, ū, ȳ] ∈ M (a1, r, u, v)

then

ū = θ
(
u
∣∣a3

)
,

for every a1 ∈ A1, r ∈ R, u ∈ U, v ∈ V .

Notice that, from the above construction, for every r, u, v,∣∣{[ā2, ā3, ū, ȳ] ∈ M (a1, r, u, v)
∣∣ā2 = a2, ā3 + r ≡ a3 (mod |A3|)

}∣∣
|Y |/(|R| · |U | · |V |)

= q (a1, a2, a3) ,

for every a1, a2 and a3.

• Step 0.2: We prepare some random variables that will be used in Step
1. First, Player 1 and Player 3 jointly and uniformly choose a bijection
(a permutation)

φ : T → Y.

Let χ be the mapping

χ : Y → A1 × R × U × V

such that [a2, a3, θ(u|a3), y] is in the set of M(χ(y)) for each y ∈ Y .
Notice that φ and χ will induce a mapping

χφ : T → A1 × R × U × V .

Restricted by χφ, Player 3 then uniformly choose a bijection (a per-
mutation)

π : T → Y

such that

χπ(t) = χφ(t),

for all t ∈ T .
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• Step 1: Player 1 and Player 2 get their lists of messages in this step.
There are |T | steps. For each t-step, t ∈ T , Player 1 sends the set
of authenticated messages M(χφ) to Player 3. After that, Player 3
forwards the message [m]π(t) to Player 2. ([m]π(t) is Player 1’s au-
thenticated message indexed by π(t).)

After |T | steps, Player 1 should get a list of

l∗1 = (χφ(t))t ;

Player 2 gets a list of

l∗2 =
([

a2, a3, θ
(
u
∣∣a3

)
, π(t)

])
t .

• Step 2: Player 1 and Player 2 get their recommended actions in this
step. Player 1 and Player 2 jointly and uniformly choose a t∗

∈ T .
Player 1 knows

χφ
(
t∗

)
=

(
at∗

1 , r t∗, ut∗, vt∗
)

;

Player 2 knows

[m]yt∗ =

[
at∗

2 , at∗
3 , θ

(
ut∗

∣∣at∗
3

)
, yt∗

]
.

• Step 3 Player 3 gets his recommended action in this step. Player 2
reports

m23
=

(
at∗

3 , θ
(

ut∗
∣∣at∗

3

))
to Player 3; Player 1 reports

m13
=

(
r t∗, ut∗, vt∗

)
to Player 3.

• Deviation-Detection (Step 4) This step is the deviation-detection
procedure. Two kinds of deviations might be made in Step 3: Player
1 misreports m13 or Player 2 misreports m23.

1. Suppose Player 2 reports (a′

3, u′), which might be different from
m23. This deviation is detected if u′

6= θ(ut∗
|a′

3).
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2. Next, suppose Player 1 reports (r ′, u′, v′), which might be dif-
ferent from m13. First, define

T (r, u, v) ≡ {t ∈ T |χφ(t) = (a1, r, u, v) for some a1} .

Player 3 randomly chooses an element ṽ ∈ V with probability
1/|V |. Player 3 then constructs the set T (u′, v′, ṽ) defined by

T
(
u′, v′, ṽ

)
≡ T

(
r ′, u′, v′

)
∪ T

(
r 6= r ′, u′, ṽ

)
(3)

where
T

(
r 6= r ′, u′, v′

)
=

⋃
r 6=r ′

T
(
r, u′, v′

)
.

Player 3 then reports T (u′, v′, ṽ) to Player 2. Since Player 2
knows t∗, whenever t∗

6∈ T (u′, v′, ṽ), Player 1’s deviation is
detected.

If Player i ’s deviation is detected by Player j in the above steps, both
Player i (the player who deviates) and Player j (the player who detects
it) send the message STOP to all other players; otherwise, both of
them send the message OK to all other players.

• Step 5 The protocol ends. Players’ recommended actions are deter-
mined as follows.

– Player 1’s recommended action is at∗
1 .

– Player 2’s recommended action is at∗
2 .

– Player 3’s recommended action is at∗
3 + r t∗(mod|A3|).

I proceed to prove Theorem 1.

A.1.2 Deviation Detection

In the following lemma, I show that the unilateral deviation can be detected
with a probability larger than or equal to min{1 − 1/|U |, 1 − 1/|V |}. The
proof is the same as the proof for Proposition 3.1.

Lemma A.1. The unilateral deviation can be detected with a probability
larger than or equal to min{1 − 1/|U |, 1 − 1/|V |}.

proof. The proof is the same as the proof for Proposition 3.1 except for now
U and V can be made arbitrarily large.
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A.1.3 Conditional Probabilities

In the next three subsections, I will show that if players are on the equilib-
rium path, every player’s conditional probability over other players’ recom-
mended actions conditional on his own recommended action is the same as
that induced by q .

In Step 5, Player 1 has observed (at∗
1 , r t∗, ut∗, vt∗); Player 2 has ob-

served an authenticated message [m]y∗ = [at∗
2 , at∗

3 , θ(ut∗
|at∗

3 ), yt∗
] and a

subset of steps T (ut∗, vt∗, ṽ) from Player 3; and Player 3 has observed at∗
3

and (r t∗, ut∗, vt∗). Let

Pr
(

at∗, r t∗, ut∗, vt∗, at∗
2 , at∗

3 , θ
(

ut∗
∣∣∣at∗

3

)
, yt∗, T

(
ut∗, vt∗, ṽ

))
be the joint probability of these random variables generated by the protocol.

To begin with, recall that Player 1’s recommended action is at∗
1 , Player

2’s is at∗
2 , and Player 3’s is at∗

3 + r t∗(mod|A3|). I first check Player 2’s con-
ditional probability, and then Player 1’s and then Player 3’s.

Player 2’s conditional probabilities over players’ recommended actions

Lemma A.2. On the equilibrium path, the conditional probability over
Player 1 and Player 3’s recommended action profile (a1, a3) conditional on
Player 2’s recommended action a2 is q(a1, a3|a2).

proof. Recall that Player 2 has observed [m]yt∗ = [at∗
2 , at∗

3 , θ(ut∗
|at∗

3 ), yt∗
]

and T (ut∗, vt∗, ṽ). On the equilibrium path, by definition of T (ut∗, vt∗, ṽ)

(in (3)),

T
(

ut∗, vt∗, ṽ
)

≡ T
(

r t∗, ut∗, vt∗
)

∪ T
(

r 6= r t∗, ut∗, ṽ
)

, (4)

where

T
(

r 6= r t∗, ut∗, ṽ
)

=

⋃
r 6=r t∗

T
(

r, ut∗, ṽ
)

.

From T (ut∗, vt∗, ṽ), Player 2 knows that [m]yt∗ is either chosen from M(a1,

r t∗, ut∗, vt∗) for some a1 or M(a1, r ′, ut∗, ṽ) for some a1 and some r ′
6= r t∗ .

Further recall that the authenticated messages are randomly and uniformly
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indexed. Thus, [m]yt∗ can be only chosen from the set M , where

M =

⋃
a′

1∈A1

⋃
(r ′,v′)∈R×V

{[
ā2, ā3, θ

(
ut∗

∣∣∣ā3

)
, ȳ

]
∈ M

(
a′

1, r ′, ut∗, v′

)∣∣∣ā2 = at∗
2 , ā3 = at∗

3

}
,

in which

R × V =

{(
r t∗, vt∗

)}
∪

((
R \

{
r t∗

})
× {ṽ}

)
.

Since (M(a1, r, u, v))(a1,r,u,v) is a partition of authenticated messages,
the total number of messages in M is

|M | =

∑
a′

1∈A1

∑
(r ′,v′)∈R×V

{[
ā2, ā3, θ

(
ut∗

∣∣∣ā3

)
, ȳ

]
∈ M

(
a′

1, r ′, ut∗, v′

)∣∣∣ā2 = at∗
2 , ā3 = at∗

3

}
.

By Step 5 in the protocol, recall that Player 2’s recommended action
is at∗

2 , while Player 1’s is at∗
1 and Player 3’s is at∗

3 + r t∗(mod|A3|). Thus,
conditional on Player 2’s recommended action, the conditional probability
over Player 1 and Player 3’s recommended action profile (at∗

1 , at∗
3 +r t∗( mod

|A3|)) is just

Pr
(

at∗
1 , at∗

3 + r t∗ (
mod

∣∣A3

∣∣) ∣∣∣at∗
2 , at∗

3 , θ
(

ut∗
∣∣∣at∗

3

)
,

yt∗, T
(

ut∗, vt∗, ṽ
))

(5)

=

∣∣∣{[
ā2, ā3, θ

(
ut∗

∣∣∣ā3

)
, ȳ

]
∈ M

(
at∗

1 , r t∗, ut∗, vt∗
)∣∣∣ā2 = at∗

2 , ā3 = at∗
3

}∣∣∣∣∣M∣∣
(6)

=

∣∣∣{[
ā2, ā3, ū, ȳ

]
∈ M

(
at∗

1 , r t∗, ut∗, vt∗
)∣∣∣ā2 = at∗

2 , ā3 = at∗
3

}∣∣∣∣∣M∣∣ (7)

=

q
(

at∗
1 , at∗

2 , at∗
3 + r t∗

(
mod

∣∣A3

∣∣) )
q
(

at∗
2

) (8)

= q
(

at∗
1 , at∗

3 + r t∗ (
mod

∣∣A3

∣∣) ∣∣∣at∗
2

)
. (9)

The proof is done.
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Player 1’s conditional probabilities over players’ recommended actions

Lemma A.3. On the equilibrium path, the conditional probability over
Player 2 and Player 3’s recommended action profile (a2, a3) conditional on
Player 1’s recommended action a1 is q(a2, a3|a1).

proof. Player 1 has observed (at∗
1 , r t∗, ut∗, vt∗). Therefore,

Pr
(

at∗
2 , at∗

3 + r t∗ (
mod

∣∣A3

∣∣) ∣∣∣at∗
1 , r t∗, ut∗, vt∗

)
(10)

=

{∣∣∣{[
ā2, ā3, θ

(
ut∗

∣∣∣ā3

)
, ȳ

]
∈ M

(
at∗

1 , r t∗, ut∗, vt∗
)∣∣∣ā2

= at∗
2 , ā3 = at∗

3

}∣∣∣}/{∣∣∣M(
at∗

1 , r t∗, ut∗, vt∗
)∣∣∣} (11)

= q
(

at∗
2 , at∗

3 + r t∗ (
mod

∣∣A3

∣∣) ∣∣∣at∗
1

)
. (12)

Player 3’s conditional probabilities over players’ recommended actions

Lemma A.4. On the equilibrium path, the conditional probability over
Player 1 and Player 2’s recommended action profile (a1, a2) conditional on
Player 3’s recommended action a3 is q(a1, a2|a3).

proof. Player 3 has observed at∗
3 and (r t∗, ut∗, vt∗). Therefore,

Pr
(

at∗
1 , at∗

2

∣∣∣at∗
3 , r t∗, ut∗, vt∗

)
(13)

=

{∣∣∣{[
at∗

2 , ā3, θ
(

ut∗
∣∣∣ā3

)
, ȳ

]
∈ M

(
at∗

1 , r t∗, ut∗, vt∗
)∣∣∣

ā3 = at∗
3

}∣∣∣}/{ ∑
a′

1∈A1

∣∣∣{[
at∗

2 , ā3, θ
(

ut∗
∣∣∣ā3

)
, ȳ

]
∈ M

(
a′

1, r t∗, ut∗, vt∗
)∣∣∣ā3 = at∗

3

}∣∣∣} (14)

= q
(

at∗
1 , at∗

2

∣∣∣at∗
3 + r t∗ (

mod
∣∣A3

∣∣) )
. (15)

A.1.4 Summary

Now I can prove Theorem 1. Denote α as a point in the convex hull of NE
in G. Let q be a c.e.d. in G, which has rational coefficients and gives each
player a strictly higher payoff than α does.
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If q is a point in the convex hull of NE, all players play q after the
protocol the following way. Let Player 1 and Player 2 publicly perform a
j.c.l. that generates q . Afterwards, players play q .

If q is outside the convex hull of NE, there is a ηi such that ui (q) >

ηi ui (α) + (1 − ηi )ui (β), where ui (q), ui (α), ui (β) are respectively player
i ’s expected payoff in q , in α, and the maximum expected payoff. Then take

η∗
= arg max

i :ui (q)>ui (α)
{ηi |ui (q) > ηi ui (α) + (1 − ηi ) ui (β)} ,

and V and U so that

min{1 − 1/|U |, 1 − 1/|V |} = η∗.

If there is no deviation, players play their recommended actions generated
by the protocol. If deviations are detected, players play α after the protocol
the following way. Let Player 1 and Player 2 publicly perform a j.c.l. that
generates α. Players then play the NE according to α. Players’ deviations are
then deterred by the construction of U and V .

If players are on the equilibrium path, each player’s conditional prob-
ability conditional on his recommended action over others’ is the same as
that induced by q as shown by Lemma A.2, Lemma A.3, and Lemma A.4. I
have proved Theorem 1.
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關聯性與訊息轉傳

陳俊廷

台北大學經濟系

我考慮三人完全資訊賽局的賽前溝通。 賽前溝通可以讓玩家們在賽局開始前,與

其他玩家互相傳遞私有訊息。 當玩家可以轉傳訊息並驗證訊息時,我證明關聯性

均衡可以被賽前溝通實現。 可驗證的訊息, 比如簽了名的信件, 可以被傳遞但不

能被偽造。 當訊息可以被驗證時,我證明: 如果一個賽局具有在其 Nash 均衡凸包

上的點 α,那麼, 對於任何一個此賽局的關聯性均衡,若其係數皆為有理數且給予

任何玩家嚴格大於在 α 下的報酬,此關聯性均衡就可以被賽前溝通實現。 此文章

所提出的賽前溝通過程, 不需要可以將訊息完美記錄的物件 (Bárány, 1992), 且在

溝通過程中的任何階段,玩家的私有訊息都不會被公開。

關鍵詞:賽前溝通,關聯性均衡,轉傳

JEL 分類代號: C72, D83


