Heterogeneous Firm, Financial Market Integration and International Risk Sharing

Ming-Jen Chang, Shikuan Chen and Yen-Chen Wu
National DongHwa University
Thursday 22nd November 2018

Department of Economics, National Taiwan University, Taipei
Overview

• International risk sharing – productivity increases in country H, and then the benefits transmit to country F. Both countries may share risk each other while facing a shock.

• International risk sharing can be measured by the relative consumptions, C/C^*, and relative outputs Y/Y^*, or co-movement between consumption C and real exchange rate $(Q = S \times P^*/P)$

• Puzzle – empirical studies usually don’t support this fundamental theory proposed by the international macroeconomist

• Why?
Overview (cont.)

• What were the possible causes? Non-tradable goods sectors by Tesar (1993), financial markets not complete Hamano (2015), price adjustments, Corsetti et al. (2008), ...

• We find that the wealth effects in heterogeneous firms with financial market integration can play a key role to explain the international risk sharing
Overview (cont.)

• In general, we build a **two-country, two-sector DSGE model** to explore international risk sharing

• ** Tradable** sector: Heterogeneous productivity shocks (Ghironi & Melitz, 2005)

• A firm draws an idiosyncratic productivity shock from a given distribution

• **Non-tradable** sector: Firms face homogeneous shocks with identical goods production
Overview (cont.)

• Financial market integration (Hamano, 2015)

• Some alternative cases (Hamano, 2015): Financial autarky, partly financial integration, and fully financial integration

• In the work, two alternatives models: 1) Financial autarky - assets cannot trade across border; 2) fully financial integration - both bonds & shares may trade abroad
Two Theoretical Models

• A benchmark model:
 • Tradable sector only, and financial autarky

• The full model:
 • Tradable and non-tradable sectors: Fully financial integration with different asset adjustment costs
A Benchmark Model

• We build simple framework of two-country dynamic stochastic general equilibrium (DSGE) model.
• One *tradable sector* with *heterogeneous firms*
• Goods are allowed to trade across border
• Financial market *autarky* (neither bonds nor stocks can trade abroad)
A Benchmark Model (cont.)

- **Household** - expected intertemporal utility
- \(E_t \sum_{s=t}^{\infty} \beta^{s-t} U(C_s) \),

 consumption \(C_t \) as: \(U_t = \frac{C_t^{1-\gamma}}{1-\gamma} \),

- Consumption basket is home produced \((C_{H,t})\) and foreign produced \((C_{F,t})\) goods:

 \[
 C_t = \left[(\alpha_H)^{\frac{1}{\phi}} (C_{H,t})^{1-\frac{1}{\phi}} + (1 - \alpha_H)^{\frac{1}{\phi}} (C_{F,t})^{1-\frac{1}{\phi}} \right]^{\frac{1}{1-\phi}}
 \]

 where \(\phi \) the **elasticity of substitution** between H & F produced goods
A Benchmark Model (cont.)

• **A Specific Firm** - the home firm z (Ghironi and Melitz, 2005):

 - To served the **domestic market**
 \[y_{D,t}(z) = Z_{T,t} z l_{D,t}(z) \]

 - To export to the **foreign market**
 \[y_{X,t}(z) = \frac{1}{\tau_{t}} Z_{T,t} z l_{X,t}(z) \]

 where $Z_{T,t}$ the aggregate factor productivity; z specific productivity level; $l(z)$ labor demand; $\tau_{t} (\geq 1)$ **melting-iceberg trade cost**
A Benchmark Model (cont.)

• Firm Average -

• A mass $N_{D,t}$ of firms producing domestically has a distribution of productivity levels by $G(z)$

• $G(z)$ is a Pareto distribution with minimum productivity level z_{min}

$$G(z) = 1 - \left(\frac{z_{min}}{z} \right)^\kappa$$

• Domestically producing firms as $\tilde{z}_D = \left(\frac{\kappa}{\kappa-\theta+1} \right)^{\frac{1}{\theta-1}} z_{min}$
A Benchmark Model (cont.)

• Firm Average (cont.) -

• Exporters:\n\[\tilde{z}_{X,t} = \left(\frac{\kappa}{\kappa - \theta + 1} \right)^{-\frac{1}{\theta - 1}} Z_{X,t} \]

• Average real profits among all firms are given by:
\[\tilde{d}_t = \tilde{d}_{D,t} + \tilde{d}_{X,t} \]

• Average export profits must satisfy:
\[\tilde{d}_{X,t} = \frac{\theta - 1}{\kappa - \theta + 1} w_t f_{X,t} Z_t \]
A Benchmark Model (cont.)

- **Firms’ Entry and Exit** -
- Prospective entrants compute the expected profits \(\{ \tilde{d}_s \}_{s=t+1} \infty \)
- Expected post-entry value:
 \[
 \tilde{v}_t = E_t \left[\sum_{s=t+1}^{\infty} \left[\beta (1 - \delta) \right]^{s-t} \left(\frac{C_s}{C_t} \right)^{-\gamma} \tilde{d}_s \right]
 \]
- The **free-entry condition**:
 \[
 \tilde{v}_t = \frac{w_t}{Z_{T,t}} f_E,
 \]
 where \(f_E \) an entry cost (units of effective labor)
A Benchmark Model (cont.)

• Changes in the Consumption

• Log-linearizing consumption around the symmetric S-S yields

\[\hat{C}_t = (1 - \varphi)S_D(\hat{\rho}_{H,t} - \hat{\rho}_{F,t}) + \left(\hat{N}_{X,t} + \hat{d}_{X,t} \right) \]

• Similar expressions for country F given as follows:

\[\hat{C}^*_t = (1 - \varphi)S_{D,t}(\hat{\rho}_{F,t}^* - \hat{\rho}_{H,t}^*) + \left(\hat{N}_{X,t}^* + \hat{d}_{X,t}^* \right) \]
• **Numerical Solutions of the Benchmark Model**

• The numerically solved with given parameters shown Table 1.

• Figures 1 & 2 show the responses (percent deviations from steady-state) to a permanent 1% increase in the home productivity.
Parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_T</td>
<td>Share of tradeable goods</td>
<td>0.58</td>
</tr>
<tr>
<td>α_H</td>
<td>Share of domestically produced goods</td>
<td>0.85</td>
</tr>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>γ</td>
<td>Constant risk aversion</td>
<td>2</td>
</tr>
<tr>
<td>δ</td>
<td>Death shock</td>
<td>0.025</td>
</tr>
<tr>
<td>θ</td>
<td>Elasticity of substitution among varieties</td>
<td>3.8</td>
</tr>
<tr>
<td>κ</td>
<td>Shape parameter</td>
<td>3.4</td>
</tr>
<tr>
<td>λ</td>
<td>Frisch elasticity of labor supply</td>
<td>2</td>
</tr>
<tr>
<td>φ</td>
<td>Elasticity of substitution between H & F produced goods</td>
<td>2</td>
</tr>
<tr>
<td>ψ</td>
<td>Elasticity of substitution between tradable and non-tradable goods</td>
<td>0.74</td>
</tr>
</tbody>
</table>
A Benchmark Model (cont.)

• First of all we are analyze the effects of technology progress in country A under $\varphi > 1$ in first Figure

• Second figure, the case under $\varphi < 1$, consumption in the home country increase but consumption in the foreign country decrease
Response to Permanent Z_T Shock ($\phi > 1$)
Response to Permanent Z_T Shock ($\varphi < 1$)
The Full Model

• The Firms
• Tradable sector is all the same
• Non-tradable goods firm: $y_{N,t} = Z_{N,t} l_{N,t}$
• where $Z_{N,t}$ the common productivity level to all non-tradable firms that produce in country H
The Full Model (cont.)

• The Financial Market
• Agents can trade not only bonds but also shares domestically and internationally
• However, agents must pay costs to local financial intermediaries when adjusting their asset holdings
The Full Model (cont.)

• The **adjustment cost** is higher when domestic assets are traded in the foreign market, and setup in **budget constraint**

• Adjustment cost for trading **shares**:
\[
\frac{\eta_F}{2} \left(x_{F,t+1}\right)^2 N_{H,t}^* \tilde{\nu}_t^*
\]

• Adjustment cost for trading **bonds**:
\[
\frac{\eta_F}{2} \left(B_{F,t+1}\right)^2
\]
The Full Model (cont.)

- **Households** -

- C_t tradable ($C_{T,t}$) and non-tradable ($C_{N,t}$) goods:

 $$C_t = \left[(\alpha_T)^{1-1} (C_{T,t})^{1-1} + (1 - \alpha_T)^{1-1} (C_{N,t})^{1-1} \right]^{1-1}$$

- Traded goods $C_{T,t}$ is of home produced ($C_{H,t}$) and foreign produced ($C_{F,t}$) goods:

 $$C_{T,t} = \left[(\alpha_H)^{1-1} (C_{H,t})^{1-1} + (1 - \alpha_H)^{1-1} (C_{F,t})^{1-1} \right]^{1-1}$$
The Full Model (cont.)

• **General Equilibrium and Net Foreign Asset** -

• **Labor** demand includes the fixed costs of tradable firm creation and for the production of tradable and non-tradable goods

\[
L_t = N_{E,t} \frac{f_{E,t}}{Z_{T,t}} + N_{D,t} \left(\tilde{l}_{D,t} + \tilde{l}_{X,t} \right) + L_{N,t}
\]

• **Aggregate output** of all firms is given by

\[
Y_t = N_{D,t} \left(\tilde{p}_{D,t} \tilde{y}_{D,t} + Q_t \tilde{p}_{X,t} \tilde{y}_{X,t} \right) + \rho_{N,t} Y_{N,t}
\]
The Full Model (cont.)

• Calibration

• Parameter values similar to Ghironi and Melitz (2005)

• Frisch elasticity of the labor supply (\(\lambda\)) is from Hamano (2015)

• Weights of traded goods, \(\alpha_T\), are chosen by Stockman and Tesar (1995)

• Weights of domestically produced goods in the tradable basket, \(\alpha_H\), are set following Corsetti et al. (2008)
The Full Model (cont.)

• Risk-sharing and Financial Integration

• Following Corsetti et al. (2008), we assume that disturbances to technology follow a trend-stationary $AR(1)$ process:

$$Z' = \xi Z + \mu,$$

$$Z \equiv \{Z_T, Z_T^*, Z_N, Z_N^*\}', \mu \equiv \{\mu_T, \mu_T^*, \mu_N, \mu_N^*\}'$$

has
The Full Model (cont.)

• **Variance-covariance matrix** $V(\mu)$ and ξ is a 4×4 matrix of coefficients describing the autocorrelation properties of the shocks

\[
\xi = \begin{bmatrix}
0.82 & -0.06 & 0.10 & 0.24 \\
-0.06 & 0.82 & 0.24 & 0.10 \\
-0.02 & 0.02 & 0.96 & 0.01 \\
0.02 & -0.02 & 0.01 & 0.96
\end{bmatrix}
\]

• $V(\mu) = \begin{bmatrix}
0.047 & 0.022 & 0.009 & 0.004 \\
0.022 & 0.047 & 0.004 & 0.009 \\
0.009 & 0.004 & 0.009 & -0.011 \\
0.004 & 0.009 & -0.001 & 0.009
\end{bmatrix}$
Response to Permanent Z_T Shock
Response to Permanent Z_N Shock
Sensitivity Analysis: Correlations between H & F consumption

<table>
<thead>
<tr>
<th>Adjusting costs of asset holdings (η)</th>
<th>shape parameter (κ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.06</td>
</tr>
<tr>
<td>0.0025</td>
<td>3.23</td>
</tr>
<tr>
<td></td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>3.57</td>
</tr>
<tr>
<td></td>
<td>3.74</td>
</tr>
<tr>
<td>0.0075</td>
<td>0.71</td>
</tr>
<tr>
<td>0.68</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>0.64</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.68</td>
</tr>
<tr>
<td>0.65</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>0.61</td>
</tr>
<tr>
<td>0.0175</td>
<td>0.67</td>
</tr>
<tr>
<td>0.64</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>0.0225</td>
<td>0.65</td>
</tr>
<tr>
<td>0.62</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
</tr>
</tbody>
</table>
Conclusion

• The study builds a **two-country, two-sector DSGE model** to explore international risk sharing

• The *unique* of the work is to incorporate the **heterogeneous firms**, and **financial market integration** in the theoretical model

• We find that the **elasticity of substitution** between H & F produced goods play a role to interpret the risk sharing
Conclusion (cont.)

• Of importance, the technology shocks on heterogeneous firms can change the risk sharing while financial markets between H & F are integrated

• The causes of the risk sharing increasing is that profits increasing from heterogeneous firm’s positive tech shock

• The wealth effect can spill over from country H to F via stock trading abroad so as to increase the degree of international sharing risk
Thank you