Optimal Feedback in Contests

George Georgiadis (Northwestern Kellogg)

with

Jeff Ely • Sina Moghadas Khorasani • Luis Rayo

Model (1/4): Players & Timing

- Players: A principal and $n \ge 2$ agents
- At t = 0, the principal designs a contest comprising
 - i. a termination rule τ ,
 - ii. a rule for allocating a \$1 prize, and
 - iii. a feedback policy.
- At every t > 0, each agent
 - · receives a message per the feedback policy, and
 - chooses effort $a_{i,t} \in [0,1]$
- ullet The contest ends at au and prize is awarded according to allocation rule

Model (2/4): Agents' Output & "Who observes what"

- Each agent's output takes the form of a Poisson "breakthrough":
 - During (t, t + dt) agent i "succeeds" with probability $a_{i,t}dt$
 - Each agent can succeed at most once
 - Denote $x_{i,t} = 1$ if agent i has succeeded by t, and $x_{i,t} = 0$ otherwise

• Who observes what:

- Principal observes successes but not efforts
- Each agent observes his effort but not successes
- Denote by p_{i,t} agent i's belief at t that he has succeeded
 - Note: Effort is worthwhile for an agent only if he hasn't yet succeeded

Model (3/4): Principal's Choice Variables

- A termination rule τ is a stopping time w.r.t $\mathbf{x}_t = \{x_{1,t}, \dots x_{n,t}\}_{s \le t}$
 - e.g., if $\tau = \inf \{t : x_{i,t} = 1 \text{ some } i\}$, contest ends upon first success
- A prize allocation rule $\mathbf{q} \in [0,1]^n$ specifies the probability each agent wins the prize as function of \mathbf{x}_{τ} ; *i.e.*, each agent's time of success
 - e.g., if $q_i(\mathbf{x}_{\tau}) = \mathbb{I}_{\{x_{i,t} \geq x_{j,t} \ \forall j,t\}}$, first agent to succeed wins prize w.p 1
- A **feedback policy** \mathcal{M} specifies the message sent to each agent at every t as a function of \mathbf{x}_t and past messages
 - e.g., if $m_{i,t} = x_{i,t} \ \forall i, t$, ea. agent is told whether he has succeeded
 - Alternatives: Random feedback, feedback about others' successes, feedback about feedback, etc

Model (4/4): Payoffs

Given a contest, each agent's expected utility is

$$u_{i,t} = \max_{a_i \in [0,1]} \mathbb{E} \left[q_i(\mathbf{x}_{\tau}) - \int_t^{\tau} c a_{i,s} ds \right]$$

- First term: Probability agent i wins the prize
- Second term: Cost of effort where $c \in (1/n, 1)$
- BNE: Each agent chooses effort optimally anticipating rivals' efforts
- ullet Principal chooses a contest $\{ au, \mathbf{q}, \mathcal{M}\}$ and effort recommendations to

$$\max_{\tau, \mathbf{q}, \mathcal{M}, \mathbf{a}} \mathbb{E} \left[\sum_{i=1}^{n} \int_{0}^{\tau} a_{i,t} dt \right]$$
s.t. $a_{i,t}$ is IC for all i, t .

A Motivating Example

- Consider a manager who uses a promotion, acting as the prize, to motivate a group of employees
- Each agent must clear some "bar" to be eligible for promotion
 - This "bar" is represented by a success in the model (hence agents can succeed only once)
- Agents don't definitively know whether they have cleared said "bar", but the principal can disclose this (or other) information
- Manager cares about aggregate effort (not clearing the bar per-se)
- Question: How to design contest to get the most effort for \$1 prize?

Remarks

- No discounting.
 - Model is equivalent to one in which players discount time at some rate,
 and the value of the prize appreciates at the same rate
- ii. Agents don't observe their own successes.
 - Goal is to give the principal full control of the agents' information
 - In optimal contest, each agent is fully appraised of his own success;
 i.e., main result would be unchanged if agents observed own successes
- iii. Constant hazard rate of success.
 - Success during (t, t + dt) depends only on effort during this interval
 - Extension: Arrival rate of success increases with past efforts

Outline of Results

Proposition 1: Optimal contest without feedback

- No messages permitted and contest ends at some deterministic T
- Egalitarian allocation rule is optimal: Each agent who succeeds by T
 wins the prize with equal probability

Outline of Results

Proposition 2: Optimal contest *with* feedback

- Cyclical structure:
 - ullet Initially, principal sets provisional deadline \mathcal{T}^*
 - If one or more agents succeed by T^* , contest ends at T^*
 - Otherwise, the deadline is extended to $t = 2T^*$
 - If no agent succeeds by $2T^*$, deadline extended until $3T^*$. And so on.
- When contest ends, prize is awarded according to egalitarian rule.
 - i.e., every agent who succeeded wins prize with equal probability
- Agents are fully appraised of their own success. They are informed about their rivals' successes at $T^*, 2T^*, ...$
 - i.e., if deadline is extended, then no one has succeeded yet
- This contest achieves the *first-best payoff* for the principal

Outline of Results

Proposition 3: Optimal contest with increasing hazard rate

- Effort today makes success tomorrow more likely
- Similar structure, except that each provisional deadline has a stochastic duration

No-feedback Contests

- First, we restrict attention to contests without feedback
 - No message transmission permitted (i.e., no direct feedback)
 - Principal chooses a deterministic deadline T (i.e., no indirect feedback)
- Fix a contest and for each agent, define reward function

$$R_{i,t} = \mathbb{E}\left[q_i(\mathbf{x}_{\tau}) \mid dx_{i,t} = 1\right]$$

i.e., agent's expected reward conditional on succeeding at t

• The agent's payoff can thus be expressed as

$$u_{i,t} = \max_{a_{i,s} \in [0,1]} \int_{t}^{T} (1 - p_{i,s}) a_{i,s} R_{i,s} - ca_{i,s} ds$$

- During (t, t + dt), succeeds w.p $(1 p_{i,t})a_{i,t}dt$, in which case earns $R_{i,t}$,
- and he incurs cost cai.tdt

Agents' Problem

• Fix an arbitrary deadline T and reward function $R_{i,t}$. Agent solves

$$u_{i,0} = \max_{a_{i,t} \in [0,1]} \int_0^T \left[(1 - p_{i,t}) R_{i,t} - c \right] a_{i,t} dt$$
s.t. $\dot{p}_{i,t} = (1 - p_{i,t}) a_{i,t}$ with $p_{i,0} = 0$

- On the constraint:
 - Evolution equation for $p_{i,t}$ follows from Bayes' rule
 - Captures fact that effort today lowers future probability of success
- Std. optimal control problem: Use Pontryagin's maximum principle

Agents' Problem: Incentive Compatibility

• Today's talk: Restrict attention to contests with $a_{i,t} = 1$ for all [0, T]

Lemma 1.

- ullet Consider no-feedback contest w. deadline T and reward function $R_{i,t}$
- Effort $a_{i,t} = 1$ is incentive compatible for all $t \in [0, T]$ if and only if

$$\underbrace{e^{-t}R_{i,t}}_{MB \text{ at } t} \ge \underbrace{c}_{\text{direct } MC} + \underbrace{\int_{t}^{T} e^{-s}R_{i,s}ds}_{\text{strategic } MC} \text{ for all } t.$$

- 1st term: Success arrives at rate e^{-t} , and reward is $R_{i,t}$
- 2nd term: (Direct) marginal cost of effort
- 3rd term: Success today eliminates possibility of success in the future

No-feedback Contest: Principal's Problem

Optimal no-feedback contest solves the following problem:

$$\max_{T,\mathbf{q}} n \int_{0}^{T} 1 dt$$
s.t. $e^{-t} R_{i,t} \ge c + \int_{t}^{T} e^{-s} R_{i,s} ds \ \forall i, t$

$$T \ge 0, \ \mathbf{q} \text{ is a feasible prize allocation rule}$$

where
$$R_{i,t} = \mathbb{E}\left[q_i(\mathbf{x}_{\tau}) \mid d\mathbf{x}_{i,t} = 1\right]$$
.

- The principal chooses
 - a terminal date T, and
 - a prize allocation rule q

to maximize aggregate effort s.t IC constraint.

• Restriction to symmetric contests with max. effort shown to be wolog

Optimal No-feedback Contest

Definition 1: Egalitarian prize allocation rule (EGA)

$$\mathbf{q}_{i}^{ega}(\mathbf{x}_{T}) = \frac{x_{i,T}}{\sum_{j} x_{j,T}}$$

- i.e., every agent who succeeds wins the prize with equal probability
- Definition 2: \widehat{T} is the unique solution of $1 e^{-n\widehat{T}} = nc(e^{\widehat{T}} 1)$
 - Given EGA & no feedback, this is longest max. effort is IC

Proposition 1.

- The optimal no-feedback contest has deadline \widehat{T} and egalitarian prize allocation rule \mathbf{q}^{ega} .
- In equilibrium, each agent exerts maximum effort for all $t \in [0, \widehat{T}]$.

Optimal No-feedback Contest: Heuristic Derivation (1/3)

- Observation #1: $R_{i,t} = ce^T$ satisfies IC with equality for all t
 - Time-invariant & symmetric $R_{i,t}$ corresponds to EGA allocation rule
- Observation #2:
 - ullet Recall $R_{i,t}$ is prob. agent wins prize conditional on succeeding at t
 - Given $R_{i,t}$, agent i wins the prize with probability $\int_0^T e^{-t} R_{i,t} dt$. So

$$\sum_{i} \int_{0}^{T} e^{-t} R_{i,t} dt \leq \underbrace{1 - e^{-nT}}_{\text{Pr\{prize is awarded\}}}$$
 Pr{at least one agent succeeds}

• In other words, increasing $e^{-t}R_{i,t}$ entails an opportunity cost, and so the principal wants to minimize $e^{-t}R_{i,t}$ subject to satisfying IC.

Optimal No-feedback Contest: Heuristic Derivation (2/3)

• Consider alternative contest with $e^{-t}\widetilde{R}_{i,t} > e^{-t}R_{i,t}$ on some interval

- Egalitarian contest: IC at t' requires that $e^{-t'}R_{i,t'} \ge c + 1$
- Alternative contest: IC at t' requires that $e^{-t'}\widetilde{R}_{i,t'} \geq c + 1 + 2$
- Thus $e^{-t}\widetilde{R}_{i,t} > e^{-t}R_{i,t}$ for all t < t'; i.e., $\widetilde{R}_{i,t}$ is more expensive

Optimal No-feedback Contest: Heuristic Derivation (3/3)

- Thus, any non-egalitarian contest with deadline T can be replaced by EGA contest with same deadline that is cheaper for principal
 - Cheaper \Rightarrow Can extend deadline and still satisfy IC for all t
- ullet It remains to pin down the optimal deadline $\widehat{\mathcal{T}}$
 - Fix a T. Given the egalitarian allocation rule,

$$Pr \{agent i wins prize\} = \int_0^T e^{-t} R_{i,t}^{ega} dt = \frac{1 - e^{-nT}}{n}$$

- Since $R_{i,t}^{ega}$ is time-invariant, we have $R_{i,t}^{ega} = [1-e^{-nT}]/[n(1-e^{-T})]$
- By def. \widehat{T} is largest deadline for which $R_{i,t}^{ega} \ge e^T c$; i.e., max effort IC

Optimality of Egalitarian Contest: Intuition (1/2)

- As an alternative, take "winner-takes-all" contest with deadline T
 i.e., at T, the prize is awarded to the first agent who succeeded
- Assuming max. effort is IC on [0, T], we have reward functions $R_{i,t}^{wta} = e^{-(n-1)t}$

i.e., if agent i succeeds at t, he is the first to do so w.p. $e^{-(n-1)t}$

• Notice that $e^{-t}R_{i,t}^{wta} > e^{-t}R_{i,t}^{ega}$; i.e., WTA is more expensive than EGA

Optimality of Egalitarian Contest: Intuition (2/2)

- The problem is that the WTA contest frontloads incentives too much
 - IC is slack for all t < T; i.e., incentives excessively strong early on
- In contrast, EGA (maximally) backloads incentives s.t IC binds $\forall t$

Key Lemma: Sufficient Condition for Optimality

Next, we consider contests with an arbitrary feedback policy

Lemma 2:

A contest is guaranteed to be optimal if in equilibrium:

- *i*. The prize is awarded with probability 1; *i.e.*, $\sum_i \mathbb{E}[q_i(\mathbf{x}_{\tau})] = 1$
- ii. Each agent earns zero rents; i.e., $u_{i,0} = 0$ for all i
 - The principal's object can be rewritten as

$$\mathbb{E}\left[\sum_{i=1}^{n} \int_{0}^{\tau} a_{i,t} dt\right] = \frac{1}{c} \left[\sum_{i} \mathbb{E}\left[q_{i}(\mathbf{x}_{\tau})\right] - \sum_{i} u_{i,0}\right]$$

$$\Pr{\text{prize awarded}} \leq 1 \quad \text{rents} \geq 0$$

• If a contest attains those bounds, it must be optimal (and first-best)

Step 1: Constructing a Zero-Rent Contest (1/2)

We can write each agent's payoff as

$$u_{i,t} = \max_{a_{i,s} \in [0,1]} \int_{t}^{\tau} [(1-p_{i,s})R_{i,s} - c]a_{i,s}ds$$

For a contest to concede no rents to the agents,

$$(1-p_{i,t})R_{i,t}=c$$
 for all i,t

- Claim: Whenever $a_{i,t} > 0$, such a contest must have $p_{i,t} = 0$
 - Suppose there is an interval on which $\dot{p}_{i,t} > 0$ and $(1 p_{i,t})R_{i,t} = c$
 - Agent can pause effort during first half of interval so $p_{i,t}^{private} < p_{i,t}^{eqm}$
 - Then $(1 p_{i,t}^{private})R_{i,t} > c$, so agent can earn rents during second half
- Thus feedback policy must keep agents appraised of own success
 - Define the feedback policy $\mathcal{M}^{pronto} = \{m_{i,t} = x_{i,t} \text{ for all } i,t\}$

Step 2: Constructing a Zero-Rent Contest (2/2)

• Since $p_{i,t} = 0$ until each agent succeeds, contest must have

$$R_{i,t} = c$$
 for all i, t

- For $R_{i,t}$ to be time-invariant & symmetric, alloc. rule must be EGA
- Suppose prize is awarded according to EGA rule at some fixed T
- My reward conditional on succeeding at t, $R_{i,t}$, depends on how many rivals I expect to succeed by T
 - This number $N_T \sim Binom(n-1, 1-e^{-T})$, and

$$R_{i,t}^{ega} = \mathbb{E}\left[\frac{1}{1 + N_T}\right]$$

- If $T \simeq 0$, no rivals will succeed a.s, so $R_{i,t}^{ega} \simeq 1$
- As $T \to \infty$, all n-1 of my rivals will succeed a.s, so $R_{i,t}^{ega} \to 1/n$
- There is a unique T^* such that $R_{i,t}^{ega} = c$

Step 3: Towards an Optimal Contest

- Consider the contest with:
 - i. Deterministic deadline T*
 - ii. Egalitarian allocation rule
 - iii. Feedback policy \mathcal{M}^{pronto}
- By construction,
 - $R_{i,t}^{ega} = c$ so ea agent exerts max. effort until he succeeds and $u_{i,t} = 0$
 - But the prize is awarded with probability $\sum_i \mathbb{E}\left[q_i(\mathbf{x}_{ au})\right] = 1 e^{-nT^*} < 1$
 - i.e., this contest satisfies part (ii) of Lemma 2, but **not** part (i)
- Next, we amend this contest such that $\sum_i \mathbb{E}[q_i(\mathbf{x}_{\tau})] = 1$
 - By Lemma 2, such contest will be optimal.

Step 3: Cyclical Structure

• Consider the (cyclical) termination rule:

$$au^* = \inf \left\{ t : t = kT^* , k \in \mathbb{N} \text{ and } \sum_i x_{i,t} \ge 1 \right\}$$

- This contest comprises "cycles" of length T*, and is terminated at the end of the first cycle in which one or more agents have succeeded
- Within each cycle, $R_{i,t}^{ega} = c$ by construction, so maximum effort is IC, and each agent's instantaneous payoff is 0. Thus, $u_{i,t} = 0$ for all t.
- Since the contest doesn't end until at least one agent succeeds, the prize is awarded with probability 1.
 - i.e., the contest satisfies conditions of Lemma 2, and is hence optimal

Optimal Contest (with Feedback)

Proposition 2.

- The following contest is optimal:
 - i'. termination rule $\tau^* = \inf\{t : t = kT^*, k \in \mathbb{N} \text{ and } \sum_i x_{i,t} \ge 1\}$,
 - ii. egalitarian prize allocation rule, and
 - iii. feedback policy \mathcal{M}^{pronto}
- In equilibrium, each agent exerts max. effort until he succeeds
- Intuition for cyclical structure:
 - If rivals exert max. effort during [0, T], my expected reward conditional on succeeding \$\psi\$ T (because I will have to share prize with more rivals)
 - By construction, T^* is critical value such that $R_{i,t} = c$
 - Cycles inform agents noone has succeeded, "resetting" incentives

The Value of (optimal) Feedback

- Optimal feedback is most valuable when
 - Marginal costs c are small or large; *i.e.*, close to 1/n or 1, or
 - Number of agents n is small

Increasing Hazard Rate

- So far, we have assumed constant (unit) hazard rate of success
 - i.e., agent succeeds during (t, t + dt) with probability $a_{i,t}dt$
- Suppose instead that success arrives at rate $\lambda_{i,t}a_{i,t}$, and

$$\dot{\lambda}_{i,t} = f(\lambda_{i,t})a_{i,t}dt$$

for some function $f(\cdot)$ and $\lambda_{i,0} = \underline{\lambda}$.

- I. Case $f(\lambda) < 0$: Effort today makes future success *less* likely
 - e.g., Halac et al. (2017): "good news Poisson experimentation"
- II. Case $f(\lambda) > 0$: Effort today makes future success *more* likely
 - Optimal contest has similar features & properties as in base model:
 it awards the prize with probability 1 and extracts all rents

Building Blocks

- Assume: $f(\lambda) \ge 0$ and satisfies $\lambda_{i,t} \in (c,nc)$
 - Suffices to assume $\underline{\lambda} > c$ and $f(\overline{\lambda}) = 0$ for some $\overline{\lambda} \in (\underline{\lambda}, nc)$
- Let λ_t^* solve $\dot{\lambda}_{i,t} = f(\lambda_{i,t})$ subject to $\lambda_{i,t} = \underline{\lambda}$
 - This is the trajectory of $\lambda_{i,t}$ if agent exerts max. effort
- ullet By an earlier argument, feedback policy \mathcal{M}^{pronto} to extract all rents
- For max. effort to be IC and rents to be 0, we must have

$$\lambda_t^* R_{i,t} = c$$
 for all i, t

- Because λ_t* increases in t, R_{i,t} must decrease in t
 i.e., incentives should be frontloaded since "earlier" success is "tougher"
- Suffices to find prize allocation and termination rules s.t $R_{i,t}$ = c/λ_t^*

Optimal Contest

Proposition 3.

- There exists an optimal contest from the following class:
 - **①** Cyclical stochastic structure: Each cycle ends with rate $\gamma(t, \lambda_t)$
 - At the end of each cycle, if a success has occurred, contest ends and prize is awarded according to EGA; otherwise, a new cycle starts
 - ullet Feedback policy \mathcal{M}^{pronto} ; i.e., agents appraised of own success
- In equilibrium, each agent exerts max. effort until he succeeds
- i.e., similar structure to before, except cycles have stochastic length
- If $\gamma = \infty$, contest is "winner-takes-all"
- If $\gamma = 0$ for t < T and $\gamma = \infty$ for $t \ge T$, the contest is egalitarian
- By choosing function $\gamma(t, \lambda_t)$, can fine-tune degree of frontloading

Related Literature

- Static tournaments / contests:
 - Lazear & Rosen ('81), Green & Stokey ('83), Nalebuff & Stiglitz ('83)
 - Optimal prize allocation: Moldovanu & Sela ('01), Drugov & Ryvkin ('18, '19), Olszewski and Siegel ('20)
 - "Turning down the heat": Fang et al. ('18) and Letina et al. ('20)
- Dynamic contests:
 - Taylor ('95), Benkert & Letina ('20)
 - Tugs of war: Moscarini & Smith ('11), Cao ('14)
- Feedback in contests:
 - "Reveal intermediate progress?": Yildirim ('05), Lizzeri et al. ('05), Aoyagi ('10), Ederer ('10), Goltsman & Mukherjee ('19)
 - Contests for experimentation: Halac et al. ('17)

Discussion

- Contest design with endogenous feedback
 - Cyclical structure
 - Egalitarian prize allocation rule (maximally backloads incentives)
 - Each agent is always appraised of own success, but is informed of rivals' successes periodically
- Future work
 - Continuous effort
 - Decreasing hazard rate
 - Continuous output / more general production functions
 - Asymmetric agents