We thank Chris Ackerman, Marios Angeletos, Ben Bernanke, Jonathan Brownrigg, Guy Debelle, Anthony Diercks, Tishara Garg, Ozer Karagedikli, Arvind Krishnamurthy, Yueran Ma, Guillermo Ordonez, Alexi Savov, Jaume Ventura, Annette Vissing-Jorgensen, Christian Wolf, and seminar participants at Bilkent, Bocconi, Chicago, Columbia, CREI, Dallas Fed, Duke, ECB, NBER SI, NYU Stern, Richmond Fed, Stanford GSB, and Yale SOM, for their comments. Alex Carrasco, Jilun Xing, and Elliot Parlin provided excellent research assistance. Caballero and Simsek acknowledge support from the National Science Foundation (NSF) under Grant Numbers SES-1848857 and SES-1455319, respectively. First draft: 10/07/2019. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2020 by Ricardo J. Caballero and Alp Simsek. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Monetary Policy with Opinionated Markets
Ricardo J. Caballero and Alp Simsek
NBER Working Paper No. 27313
June 2020, Revised February 2021
JEL No. E00,E12,E21,E32,E43,E44,G11,G12

ABSTRACT

Central banks (the Fed) and markets (the market) often disagree about the path of interest rates. We develop a model where these different views stem from disagreements between the Fed and the market about future aggregate demand. We then study the implications of these disagreements for monetary policy, the term structure of interest rates, and economic activity. In our model, agents learn from the data but not from each other—they are opinionated. In this context, the market perceives monetary policy “mistakes” and the Fed partially accommodates the market’s view to mitigate the impact of perceived “mistakes” on output and inflation. The Fed plans to implement its own view gradually, as it expects the market to receive more information and move closer to the Fed’s belief. Disagreements about future demand translate into disagreements about future interest rates. Disagreements also provide a microfoundation for monetary policy shocks: after a surprise policy announcement, the market (partially) learns the Fed’s belief and the extent of future “mistaken” interest rate changes. We categorize these shocks into three groups: Fed belief shocks, market reaction shocks, and tantrum shocks. Tantrum shocks are the most damaging, as they arise when the Fed fails to forecast the forward rates’ reaction. These shocks motivate gradualism and communication policies that reveal the Fed’s belief, not to persuade the market (which is opinionated) but to prevent the market from misinterpreting the Fed’s belief. Finally, we also find that disagreements affect inflation and create a policy trade-off between output and inflation stabilization akin to “cost-push” shocks.

Ricardo J. Caballero
Department of Economics, E52-528
MIT
77 Massachusetts Avenue
Cambridge, MA 02139
and NBER
caball@mit.edu

Alp Simsek
Department of Economics, E52-552
MIT
77 Massachusetts Avenue
Cambridge, MA 02139
and NBER
asimsek@mit.edu
1. Introduction

Figure 1 plots the evolution of the Fed funds rate over time (thin black line), along with predicted paths. The dotted lines plot the Fed’s predictions—either the FOMC members’ median dot forecast (the right panel) or the Fed staff’s assumption for the Greenbook (the left panel). The solid lines plot the forward interest rates that reflect the financial market’s predictions. Each color-matched pair of lines plots data from the same FOMC meeting. The figure shows large disagreements between the Fed’s predictions and the forward rates, especially around policy-inflection episodes. Ubide (2015) observes similar disagreements in other countries where central banks publish their expected interest rate paths (e.g., Sweden, Norway, and New Zealand). These disagreements about interest rates are difficult to explain with conventional macroeconomic models. The literature typically focuses on the Fed’s superior information about its policy rule or economic activity (and its willingness to signal this information). However, the right panel of Figure 1 shows that financial markets expect a different interest rate than the Fed even after the FOMC members announce the interest rates they plan to set. In Section 2 we present empirical evidence that suggests this type of confident disagreement is a general feature of financial market participants’ (as well as the FOMC members’) beliefs. There is also plenty of anecdotal evidence that market participants often have their own opinions and do not necessarily think the Fed has better information about the state of the economy.

These disagreements are a source of concern for the Fed, as they suggest that the market might perceive the Fed’s actions as “mistakes.” How do interest rate announcements perceived as “mistakes” affect the term structure of interest rates and economic activity? How should the Fed manage monetary policy in this environment? To address these, and related issues, we build a model in which the market and the Fed have disagreements about future aggregate demand. Our model delivers both positive and normative results: First, we explain the differences in interest rate predictions between the Fed and financial markets. Second, we find that the Fed’s optimal interest rate target partially reflects the market’s view. Third, we provide a

1 There are many adjustments one could make to Figure 1 while preserving its main features. The most significant adjustment is to remove the embedded risk premium from the forward curve. We chose not to do so because there is a wide range of estimates for this premium. The most recent estimates by Fed researchers suggest that this adjustment is of the order of one basis point per month (positive in the pre GFC period and negative after that), which is not nearly enough to eliminate the disagreements (see, e.g., Diercks et al. 2019). Moreover, we also found large disagreements between the Fed’s predictions and the professional forecaster’s consensus (in both the Blue Chip Financial Forecasts and the Survey of Professional Forecasters).

2 To illustrate how opinionated the market can be, consider the FOMC meeting in December 2007—the run-up to the financial crisis—in which the Fed cut interest rates by 25 basis points. The market was expecting a larger interest rate cut, so this was a “hawkish” policy surprise that led to a decline in stock prices. According to media coverage, some market participants were quite pessimistic that deteriorating financial conditions would adversely affect the economy, and they thought the Fed did not realize the scope of the problem. For example, the day after the FOMC meeting the Wall Street Journal wrote: “Some on Wall Street yesterday criticized the Fed’s actions so far as inadequate. ‘From talking to clients and traders, there is in their view no question the Fed has fallen way behind the curve,’ said David Greenlaw, economist at Morgan Stanley. ‘There’s a growing sense the Fed doesn’t get it.’ Markets believe a weakening economy will force the Fed to cut rates even more than they expected before yesterday, Mr. Greenlaw said.”
microfoundation for monetary policy shocks driven by the Fed’s announcements, and analyze the role of communication policy in attenuating these shocks. Finally, we show that disagreements affect inflation and create a policy trade-off between output and inflation stabilization.

Our model is a variant of the canonical New Keynesian model (e.g., [Clarida et al. (1999); Galí (2015)]). Nominal prices are fully sticky in our baseline setup (and partially sticky in an extension). There is a representative household (the market) that makes consumption-saving and labor supply decisions. In each period, the economy is subject to a shock that affects current spending without changing current potential output—we refer to this as an aggregate demand shock. The Fed sets the risk-free interest rate in an attempt to insulate output from aggregate demand shocks. However, the Fed sets the interest rate under uncertainty about aggregate demand for the current period. This assumption implies that the Fed cannot fully stabilize the output gap (output relative to potential). Instead, the Fed ensures the output gap is zero “on average” according to the Fed’s belief.

Our main assumption is that the market and the Fed can have opinionated belief disagreements about the evolution of aggregate demand. In our baseline setup, agents know each others’ beliefs and agree to disagree. Agents also learn over time: they update their beliefs as they observe realizations of aggregate demand. These assumptions provide the central insight of our paper: the market considers interest rate decisions made by the Fed that do not match the market’s belief to be “mistakes” (we occasionally use quotes to remind the reader that these are mistakes under the market’s belief, not under the Fed’s belief or the objective belief). The market’s anticipation of these “mistakes” affects economic activity and shapes the Fed’s optimal interest rate decision.
For example, suppose the Fed becomes more optimistic than the market about a persistent component of aggregate demand. Since the Fed is optimistic about aggregate demand, it raises the interest rate to stabilize the output gap. However, since the market doesn’t share the Fed’s optimism, it considers the interest rate hike to be a “mistake” and expects the output gap to be negative. Moreover, since disagreements are expected to disappear only gradually as agents learn over time, the market expects “mistakenly high” interest rates in future periods as well. The forward interest rates immediately increase and put downward pressure on current economic activity. Therefore, even though the Fed is optimistic about aggregate demand, it does not need to raise the current interest rate by much to stabilize the output gap under its belief.

In equilibrium, the Fed raises the interest rate by a relatively small amount, which—together with the increase in the forward rates—reduces aggregate demand just enough to counteract the increase in the Fed’s optimism. The Fed also expects to continue raising rates over time, since it expects the data to support its view and persuade the market to move closer to its view. When combined with learning, disagreements naturally imply (expected) gradualism in monetary policy implementation.

Our first result formalizes this logic and shows that the Fed’s optimal interest rate reflects a weighted average of the Fed’s belief and the market’s belief. Moreover, the relative weight on the market’s belief is greater when agents are more confident in their initial beliefs, since confidence translates into more persistent disagreements. The observation that the interest rate is a weighted average of agents’ beliefs, together with learning, also explains the observed differences between the market’s and the Fed’s expectation for future interest rates—“the forward curve” and “the dot curve” (see Figure 1). For sufficiently distant horizons, the forward curve reflects the market’s current belief whereas the dot curve reflects the Fed’s current belief. Intuitively, the market thinks the Fed will learn from data and come to the market’s belief, so the market thinks the Fed will set future interest rates that are more closely aligned with the market’s current belief. Conversely, the Fed thinks the market will learn from data and it will be able to set future interest rates reflecting its current belief.

We then provide a microfoundation for textbook monetary policy shocks. These shocks are typically modeled as exogenous, random fluctuations around an interest rate rule. In contrast, we envision monetary policy shocks as times when the market updates its belief about the Fed’s belief about aggregate demand. To capture these shocks, we extend the model to make the market initially uncertain about the Fed’s belief. In this setup, a surprise interest rate announcement informs the market about the Fed’s belief. Since the market is opinionated, the announcement does not change the market’s belief about aggregate demand. Instead, the announcement affects the market’s expectation of “mistaken” interest rate changes. The induced market response affects economic activity in the same manner as textbook shocks—but with important differences and policy implications. We categorize our microfounded monetary policy shocks into three groups: Fed belief shocks, market reaction shocks, and tantrum shocks.

A Fed belief shock corresponds to a situation in which the Fed’s interest rate decision fully
reveals the Fed’s belief to the market. In particular, a surprise interest rate hike implies the Fed has become more optimistic. Since beliefs adjust only gradually, the market anticipates further (“mistaken”) interest rate hikes. Therefore, the shock lifts the forward curve and reduces the market’s expected output gap (and asset prices)—like textbook shocks. However, the shock’s subsequent impact on the output gap is more subtle and depends on whether the Fed’s or the market’s belief is closer to the true data generating process. In fact, if the Fed has the objective belief and sets the interest rate optimally—accommodating the disagreement as in our baseline model—then the shock has no impact on the output gap on average.

A market reaction shock arises when the Fed’s belief has multiple dimensions and is not fully revealed by the interest rate. We focus on scenarios in which a surprise rate hike can result from either short- or long-term optimism. This type of shock affects the equilibrium according to the market’s reaction—whether the market interprets the signal as short or long-term optimism—as opposed to the Fed’s actual belief about its optimism’s horizon. For instance, a reactive market attributes the signal to long-term optimism and responds by raising the forward rates. Facing a reactive market, the Fed needs to act as if it has long-term optimism—raising the interest rate by a small amount as in our baseline setup—even when it only has short-term optimism.

A tantrum shock is similar to the market reaction shock, but in a tantrum shock the Fed fails to forecast correctly how the market will react to its interest rate decision. This is a costlier shock because the interest rate set by the Fed is suboptimal given the market’s reaction. For concreteness, suppose the Fed has become more optimistic about the short term and thinks the (unreactive) market will attribute an interest rate hike to short-term optimism. However, the market is actually reactive. In this setup, anticipating no change in the forward rates, the Fed raises the current interest rate substantially to address its short-term optimism. The market interprets this aggressive hike as a large increase in long-term optimism and the forward rates increase substantially. This unanticipated market reaction depresses current aggregate demand and makes the Fed miss its output target—even under its own belief.

Tantrum shocks have two important implications. First, when the Fed anticipates these shocks, it acts even more gradually than in our baseline setting (where the Fed knows how the market will react to its policy). An optimistic Fed does not hike the interest rate as much as in the baseline to mitigate the tantrum shock that would arise if the market turns out to be reactive. Second, despite the Fed’s more conservative policy stance, these shocks induce the Fed to miss its output gap target more often than in the baseline setting. This motivates Fed communication policies designed to mitigate tantrum shocks. With these shocks, Fed communication can be a highly effective policy tool, not for its persuasive power (since the market is opinionated), but because it reveals the Fed’s actual belief to the market. For example, by announcing the future interest rates it expects to set (“the dot curve”) in addition to the current rate, the Fed can reveal whether it has long or short-term optimism and reduce the chance of tantrum shocks in which the market misinterprets the Fed’s belief.

In the final part of the paper we extend the model to allow for partial price flexibility,
which gives rise to a standard New Keynesian Phillips curve. This extension strengthens our mechanism, in the sense that the Fed accommodates the market’s belief even more than with fully sticky prices. For optimal policy purposes, disagreements closely resemble the cost-push shocks in the textbook New-Keynesian model. Consider the earlier example with an optimistic Fed in which the market expects the Fed to set high interest rates and induce negative output gaps. With partially flexible prices, the market also expects disinflation which, via the Phillips curve, reduces current inflation. The Fed is then forced to set an even lower interest rate than before—closer to the market’s pessimistic belief—to create a positive output gap and fight the disinflationary pressure. In fact, the “divine coincidence” breaks down and the Fed faces a trade-off between stabilizing current inflation and the current output gap.

The rest of the paper is organized as follows. After discussing the related literature, we start in Section 2 by documenting facts about interest rate disagreements among professional forecasters (and among the FOMC members) that motivate our modeling ingredients. Section 3 introduces our general environment, describes the belief structure we focus on, and derives the equilibrium conditions. Section 4 shows how disagreements affect optimal interest rate policy and (together with learning) explain the gap between the forward curve and the dot curve. Section 5 introduces the market’s uncertainty about the Fed’s belief and derives our results about monetary policy shocks. Section 6 analyzes the extension with partial price flexibility. Section 7 provides final remarks. The (online) appendices contain the omitted derivations and proofs as well as the details of our empirical analysis.

Related literature. Our paper has normative and positive components, each related to multiple literatures about monetary policy. The distinctive feature of our model is belief disagreements between the Fed and the market. In particular, the market has its own belief and does not consider the Fed to have superior information about economic activity.

Our policy analysis contributes to a large literature that investigates gradualism in monetary policy: the idea that the Fed tends to adjust interest rates in small steps in the same direction (see, e.g., Woodford (2003); Bernanke (2004); Stein and Sunderam (2018)). Our model features a novel form of expected gradualism. When the Fed becomes more optimistic than the market, it hikes the interest rate by a small amount—partially accommodating the market’s view—but it also expects to continue to hike rates. Importantly, the market does not expect the rate hikes to continue, which might help explain why gradualism has been difficult to detect from the term structure of interest rates (e.g., Rudebusch (2002)). With tantrum shocks, our model features a second, more standard rationale for gradualism (similar to Brainard (1967); Sack (1998)): The Fed adjusts the policy rate conservatively because it is afraid of a large market reaction. However, our model can also generate rapid policy responses with respect to other types of shocks: e.g., an increase in the market’s optimism not matched by the Fed’s optimism (see Remark 1 in Section 4).

Our policy analysis is also related to the growing literature on central bank communication.
The literature documents that central bank transparency has increased in recent years, and that the common forms of communication have made monetary policy shocks more predictable. Our model is consistent with these findings and provides a theoretical rationale for Fed communication. As anticipated by Blinder (1998), the Fed in our setup communicates to let the market know its own belief. This transparency improves the Fed’s ability to predict how the market will react to its actions and to devise appropriate policies. In particular, the Fed can avoid tantrum shocks in which the market misinterprets the Fed’s belief.

More broadly, our normative analysis is part of a large literature that investigates optimal macroeconomic policy without rational expectations (see Woodford (2013) for a review). This literature typically assumes the planner is rational, but agents are boundedly rational due to frictions such as learning (e.g., Evans and Honkapohja (2001); Eusepi and Preston (2011)), level-k thinking (e.g., García-Schmidt and Woodford (2019); Farhi and Werning (2019); Angeletos and Sastry (2018)), or cognitive discounting (Gabaix (forthcoming)). The focus is on designing policies that address or are robust to agents’ bounded rationality. Our approach has two key differences. First, we do not take a stand on who has rational beliefs: in fact, the market thinks it has correct beliefs and the Fed has incorrect beliefs—the opposite of the typical assumption. Second, our agents are not boundedly rational in the usual sense: both the market and the Fed have dogmatic beliefs about exogenous states and understand how those states map into endogenous outcomes. These assumptions lead to a different policy analysis and results. In our setting, the Fed’s main non-standard concern is to mitigate the macroeconomic impact of monetary policy “mistakes” perceived by the market.

Our positive analysis contributes to the large literature that empirically investigates the effects of monetary policy shocks on economic activity (see Ramey (2016) for a recent review). We introduce Fed belief shocks (and variants) as microfounded monetary policy shocks. Our shocks are related to the Fed information effect emphasized in the recent literature (see, e.g., Campbell et al. (2012); Nakamura and Steinsson (2018); Andrade et al. (2019)—the idea that the Fed’s policy announcements might contain information about fundamentals. We highlight an orthogonal effect. In our model, the market does not think policy announcements have information about fundamentals. Instead, the market updates its belief about the Fed’s belief.

A closely related literature assumes agents are also rational but lack common knowledge of each other’s beliefs, and illustrates how the resulting coordination problems can lead to aggregate behavior that resembles some forms of bounded rationality (e.g., Woodford (2001); Angeletos and La’O (2010); Morris and Shin (2014); Angeletos and Lian (2018); Angeletos and Hsu (2018)).
Our analysis generates some of the asset price responses to monetary policy shocks identified by the empirical literature that uses high-frequency event study methods (e.g., Bernanke and Kuttner (2005); Gürkaynak et al. (2005a, b); Hanson and Stein (2015); Goodhead and Kolb (2018)). For instance, Gürkaynak et al. (2005b) find that the forward curve reaction can be summarized by two factors: a policy target factor and a path factor. Our monetary policy shocks can accommodate both factors with appropriate beliefs (see Remark 2 in Section 5).

A strand of the literature documents that the high-frequency “policy surprises” are predictable from information publicly available before the announcement (see, e.g., Miranda-Agrippino (2016); Miranda-Agrippino and Ricco (2018); Cieslak et al. (2018)). In recent work, Sastry (2019); Bauer and Swanson (2020) investigate this puzzle and find that the Fed has reacted to public data about the state of the economy more than the market had anticipated. The evidence further suggests that, at the time of the announcement, the market learns the Fed’s belief (or reaction) and disagrees with it. Instead of adopting the Fed’s belief, the market independently updates its own belief from the same public data—possibly at a different time. These findings are consistent with our key ingredients, disagreements and learning from data.

Our analysis with partial price flexibility is related to the New Keynesian literature on the limits of inflation stabilization policy. In the textbook model, stabilizing inflation also replicates the flexible-price outcomes. This divine coincidence applies for supply shocks as well as demand shocks and implies that the central bank does not face a policy trade-off (e.g., Goodfriend and King (1997); Blanchard and Galí (2007); Galí (2015)). This feature seems counterfactual, which has led the literature to introduce “cost-push” shocks—often motivated by markup fluctuations or wage rigidities—that affect firms’ price setting (the Phillips curve) and create a policy trade-off. We show that disagreements between the Fed and the market (the price setters) create a policy trade-off even without cost-push shocks. Intuitively, perceived policy “mistakes” shift agents’ inflation expectations and affect their price setting as-if there is a cost-push shock.

Our empirical analysis of interest rate disagreements in the next section is related to a literature that uses survey data to document belief distortions about macroeconomic outcomes. Much of the recent literature focuses on whether agents over- or underreact to data (e.g., Coibion and Gorodnichenko (2015); Bordalo et al. (2018); Broer and Kohlias (2018); Angeletos et al. (2020); Ma et al. (2020)). In contrast, we focus on agents’ disagreements (see also Andrade et al. (2016)) and their reaction to each other’s beliefs. We provide evidence for confident disagreement: agents’ relative predictions are persistent over time. We also show that, as in our model, beliefs about the interest rate correlate with beliefs about aggregate demand—proxied by inflation (see also Giacoletti et al. (forthcoming)).

Finally, this paper is related to a large literature that studies the macroeconomic implications of belief disagreements and speculation (see Simsek (2021) for a recent survey). We analyze the disagreements between the Fed and investors, whereas the literature mostly focuses on the disagreements among investors (see, e.g., our previous work, Caballero and Simsek (2020, 2021)).
2. Motivating facts on interest rate disagreements

Our model is built on the observation that disagreements about expected interest rates are driven by *disagreements about expected aggregate demand*. Moreover, we assume *confident disagreement*: agents have dogmatic beliefs and do not think the other agent has superior information. In this section, we present evidence for these modeling ingredients from disagreements among professional forecasters. While our model concerns disagreements *between* the financial markets and the Fed, our empirical analysis focuses on disagreements *among* the financial market forecasters to exploit high quality disaggregated data on beliefs. Our assumption is that the disagreements' traits observed in the cross-section of forecasters should carry over to the disagreements between the markets and the Fed. Although we have significantly less data, we also document similar results for disagreements among the FOMC members (see Appendix D.3 and the discussion at the end of the section).

We measure beliefs from Blue Chip Financial Forecasts (Blue Chip). Blue Chip is a monthly survey of several major financial institutions. Forecasters report predictions about interest rates and other outcomes for up to five quarters ahead. We are interested in the beliefs for the future policy interest rate and for future aggregate demand. We measure the beliefs for the policy interest rate from the predictions for the Fed funds rate (reported as the quarterly average). We proxy the beliefs for aggregate demand from the predictions for the GDP price index (inflation) as well as the real GDP (both reported as the annualized quarterly growth rate). We analyze predictions for the third quarter (beyond the current quarter) but the results are similar for other horizons. Our main sample uses monthly data from January 2001 until February 2020. Appendix D.2 shows the results also hold in our extended sample with quarterly data from 1982 until 2020. Appendix D describes the data sources and variable construction.

Figure 2 illustrates the consensus (average) prediction along with the predictions from two major institutions: Goldman Sachs and Bear Stearns (until its failure in 2008). The panels show that higher interest rate predictions are typically associated with higher aggregate demand predictions (proxied by the GDP price index). In the early 2000s, Goldman Sachs and Bear Stearns were both more pessimistic about aggregate demand and predicted lower interest rates than the consensus. In the mid 2000s, both institutions turned more optimistic about demand and predicted higher interest rates. In the run-up to the financial crisis of 2008, Goldman Sachs became more pessimistic about demand and predicted lower interest rates, whereas Bear Stearns remained optimistic and predicted higher interest rates (until it eventually failed in early 2008). After the crisis, Goldman Sachs remained pessimistic and predicted low interest rates during the zero lower bound and the lift-off episodes (until recent years).

Figure 2 also highlights that relative predictions are quite persistent. This persistence is difficult to reconcile with dispersed information: forecasters see each other’s prediction as well as the consensus prediction (with a delay of one month), and yet they largely stay with their own prediction. This persistence of predictions suggests *confident disagreement*: as in our model,
Figure 2: Select Blue Chip predictions for the Fed funds rate (top panel) and the GDP price index (bottom panel).

Forecasters seem to have *dogmatic beliefs* that they change only gradually.

Table 1 shows that the results illustrated in Figure 2 hold more systematically. The first two columns show that interest rate forecasts correlate with aggregate demand forecasts. The Fed funds rate prediction is positively correlated with both the GDP price index or the real GDP prediction, after controlling for month and forecaster fixed effects. The coefficient for the GDP price index is larger and more significant—this is expected since nominal prices provide a more accurate proxy for aggregate demand than real output (which might also be driven by aggregate supply). The last two columns show that the relative predictions are persistent over time. The interest rate and the GDP price index predictions are both highly correlated with their one-month lags, after controlling for month and forecaster fixed effects. The month fixed effects control for forecasters’ common reaction to all public signals—including the past consensus prediction or the current futures prices. Despite seeing these and other public signals, forecasters largely stay with their own predictions.

In Appendix D.3, we show that the FOMC members’ beliefs share the same traits as the forecasters’ beliefs that we document in this section. We measure the FOMC members’ beliefs from the *individual* predictions in the Survey of Economic Projections (e.g., the individual dots). Due to data availability, we conduct the analysis from 2012 until 2015 and we match the (de-identified) individual predictions across meetings using a noisy matching algorithm (see the appendix for details). Notwithstanding data limitations, we find that the results in Table
Table 1: Correlates of interest rate and inflation predictions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FFR prediction</td>
<td>Inflation pred.</td>
<td>FFR prediction</td>
<td>Inflation pred.</td>
</tr>
<tr>
<td>Inflation (GDP price index) pred.</td>
<td>0.11** (0.02)</td>
<td>0.11** (0.02)</td>
<td>0.04** (0.01)</td>
<td></td>
</tr>
<tr>
<td>Real GDP prediction</td>
<td>0.03+ (0.02)</td>
<td>0.01+ (0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFR prediction last month</td>
<td></td>
<td>0.68** (0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation pred. last month</td>
<td></td>
<td></td>
<td>0.70** (0.03)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time and Forecaster FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R^2 (adjusted, within)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>Forecasters</td>
<td>110</td>
<td>110</td>
<td>107</td>
<td>106</td>
</tr>
<tr>
<td>Months</td>
<td>230</td>
<td>230</td>
<td>229</td>
<td>229</td>
</tr>
<tr>
<td>Observations</td>
<td>10,365</td>
<td>10,363</td>
<td>10,052</td>
<td>10,005</td>
</tr>
</tbody>
</table>

Note: The sample is an unbalanced panel of monthly Blue Chip forecasts between 2001-2020. Predictions are for 3 quarters ahead. FFR is the quarterly average (percent) and the GDP price index and the real GDP are annualized quarterly growth rates (percent). Estimation is via OLS. Standard errors are in parentheses and clustered by forecaster and month. +, *, and ** indicate significance at 0.1, 0.05, and 0.01 levels, respectively.

1 mostly apply also for the FOMC members. Between 2012 and 2015, FOMC members’ interest rate predictions are correlated with their inflation predictions (with much larger coefficients than in Table 1) although not significantly correlated with their real GDP predictions. Moreover, FOMC members’ relative predictions are persistent over time. Similar to the forecasters, FOMC members largely stay with their own predictions despite having access to other members’ predictions as well as a wealth of public information.

We next turn to our theoretical analysis, where we equip the Fed and the market with confident disagreements as we document in this section and investigate the implications for monetary policy and asset prices.

3. Environment, equilibrium, and beliefs

In this section we introduce the model, characterize the equilibrium conditions for our baseline setting, and describe the evolution of beliefs. We also solve for the equilibrium in a benchmark case with common beliefs.

3.1. The model

The model is similar to a textbook New Keynesian model with two distinct features. First, the economy is subject to aggregate demand shocks that move expenditure without changing potential output. Second, and more importantly, the Fed sets the interest rate before observing the aggregate demand shock for the current period. This assumption captures realistic lags in
monetary policy transmission. It also makes the Fed’s belief about demand shocks relevant for optimal monetary policy and allows us to study disagreements between the Fed and financial markets.

Figure 3 illustrates the timeline of events within a period. Each period has three phases. In the first phase, the Fed sets the risk-free interest rate. Then, a shock that determines aggregate demand within the period is realized. Finally, in the last phase, the market chooses optimal allocations, markets clear, and the equilibrium level of output is determined. Throughout, we denote the Fed and the market with the superscript \(i \in \{F, M\} \). We use \(E_t^i [\cdot] \) to denote agent \(i \)'s expectation in period \(t \) before the realization of shocks (in the first phase), and we use \(\overline{E}_t^i [\cdot] \) to denote the corresponding updated beliefs after the realization of shocks (in the last phase).

Preferences and technology. The economy is set in discrete time \(t \in \{0, 1, \ldots\} \). The demand side features a representative household (the market) that maximizes utility in the last phase of each period,

\[
E_t^M \left[\sum_{t=r}^{\infty} \beta^t \left(\log C_t^r - \frac{N_t^{1+\phi}}{1+\phi} \right) \right].
\]

The market observes the current aggregate demand shock (which we describe subsequently) and solves a standard problem that we relegate to Appendix A.

The supply side features a competitive final goods sector and monopolistically competitive intermediate goods firms that produce according to

\[
Y_t = \left(\int_0^1 Y_t(\nu)^{\varepsilon-1} d\nu \right)^{\frac{1}{\varepsilon-1}} \quad \text{and} \quad Y_t(\nu) = A_t N_t(\nu)^{1-\alpha}.
\]

If nominal prices were fully flexible, the equilibrium labor and output would be equal to their potential levels denoted by \(N^* \) and \(Y_t^* = A_t (N^*)^{1-\alpha} \) (see Eq. (4.12) in the appendix).

Nominal rigidities. We assume a fraction of the intermediate good firms have sticky nominal prices. We focus on the standard Calvo setup. In each period a randomly selected fraction of firms reset their nominal prices, whereas the remaining fraction leaves their prices unchanged.
For small aggregate demand shocks, this setup implies aggregate output is determined by aggregate demand, \(Y_t = C_t \).

In Appendix \[A \] we log-linearize the equilibrium around allocations that feature potential (flexible-price) real outcomes and zero nominal inflation. We show that our price setting assumption implies the New-Keynesian Phillips Curve (NKPC),

\[
\pi_t = \kappa \tilde{y}_t + \beta E^M_t [\pi_{t+1}],
\]

where \(\tilde{y}_t = \log \left(\frac{Y_t}{Y^*_t} \right) \) denotes the output gap relative to potential and \(\pi_t = \log \left(\frac{P_t}{P_{t-1}} \right) \) denotes inflation. The coefficient, \(\kappa \), is a price flexibility parameter (see Eq. \[A.21 \] in the appendix).

Aggregate demand shocks. We capture aggregate demand shocks via *news about potential growth*. Formally, log productivity, \(a_t = \log A_t \), follows the process

\[a_{t+1} = a_t + g_t, \]

where \(g_t \) denotes the growth rate of productivity between periods \(t \) and \(t + 1 \), which is realized in period \(t \). In particular, by the time the economy reaches period \(t \), there is no uncertainty about the potential output of the economy in the current period: \(a_t = a_{t-1} + g_{t-1} \) and \(g_{t-1} \) is already determined. However, there is uncertainty about potential growth between this period and the next period, \(g_t \).

In the appendix, we log-linearize the Euler equation for the market to obtain the IS equation,

\[
\tilde{y}_t = - \left(i_t - E^M_t [\pi_{t+1}] - \rho \right) + g_t + E^M_t [\tilde{y}_{t+1}],
\]

where \(i_t - E^M_t [\pi_{t+1}] \) corresponds to the (market-expected) real interest rate and \(\rho = - \log \beta \) is the discount rate. Eq. \[2 \] illustrates that, for a given real interest rate, the equilibrium output gap increases one-to-one with the potential growth rate, \(g_t \), as well as with the expected future output gap. This is why we refer to \(g_t \) as the aggregate demand shock in period \(t \).

Monetary policy. The interest rate is set by the monetary authority (the Fed). Our key friction is that the Fed sets the interest rate at the beginning of the period, before observing the aggregate demand shock for the period. Otherwise, the Fed solves a standard gap-minimization problem. We assume the Fed sets policy without commitment. In each period and state, it takes the future allocations as given and implements the allocation that solves

\[
\min_{i_t, \tilde{y}_t, \pi_t} \frac{1}{2} E^F_t \left[\phi \tilde{y}_t^2 + \pi_t^2 \right],
\]

subject to \[1 \] and \[2 \].
3.2. Baseline equilibrium conditions

Except for Section 6, we focus on the special case with fully sticky prices, $\kappa = 0$. In this case, inflation is zero, $\pi_t = 0$, and the Fed focuses on stabilizing output. In particular, combining problem (3) with Eq. (2), the Fed’s optimality condition implies

$$E^F_t \left[\frac{d\tilde{y}_t}{di_t} \tilde{y}_t \right] = 0, \quad \text{where} \quad \frac{d\tilde{y}_t}{di_t} = -1 + \frac{dE^M_{t+1}[\tilde{y}_{t+1}]}{di_t}. \tag{4}$$

Note that in this expression we substituted the market’s end-of-period expectations in period t with its beginning-of-period expectations in period $t + 1$, $E^M_t[\tilde{y}_{t+1}] = E^M_{t+1}[\tilde{y}_{t+1}]$ (since no new information arrives between the last phase of period t and the first phase of period $t + 1$—see Figure 3). For most of our analysis, we work with belief specifications under which the policy rate has a deterministic impact on the market’s expected future output gap: that is, $\frac{dE^M_{t+1}[\tilde{y}_{t+1}]}{di_t}$ is deterministic. This is either because $E^M_{t+1}[\tilde{y}_{t+1}]$ does not depend on the current interest rate (Section 4); or because it has a (conditionally) constant slope with respect to the current interest rate (Section 5 except for Section 5.4). In these cases, the Fed’s optimality condition simplifies to

$$E^F_t [\tilde{y}_t] = 0. \tag{5}$$

The Fed closes output gaps in expectation and according to its own belief.

We can then combine Eqs. (2) and (5) to solve for the equilibrium interest rate as

$$i_t = \rho + E^F_t [g_t] + E^F_t \left[E^M_{t+1}[\tilde{y}_{t+1}] \right]. \tag{6}$$

The Fed sets a higher interest rate when it expects greater aggregate demand, $E^F_t [g_t]$. More subtly, the Fed also sets a higher interest rate if it expects the market to be more optimistic about the subsequent output gap (higher $E^F_t \left[E^M_{t+1}[\tilde{y}_{t+1}] \right]$). As illustrated by Eq. (2), the market’s optimism about future output increases current output, and the Fed increases the interest rate to offset this effect. This mechanism plays an important role for our results.

Substituting Eq. (6) into Eq. (2), we solve for the equilibrium output gap as

$$\tilde{y}_t = g_t - E^F_t [g_t] + E^M_{t+1}[\tilde{y}_{t+1}] - E^F_t \left[E^M_{t+1}[\tilde{y}_{t+1}] \right]. \tag{7}$$

In equilibrium, the output gap depends on surprises relative to the Fed’s expectations. The first two terms concern surprises to the aggregate demand shock, g_t. When aggregate demand is higher than the Fed expected when it set the interest rate, the output gap is higher. The last two terms concern the Fed’s surprise about the market’s expectation about the output gap in the next period. This second surprise will play no role until Section 5.3 (on tantrum shocks).

Finally, we also characterize risky asset prices along the equilibrium path. We focus on “the market portfolio,” which we define as a financial asset (in zero net supply) whose payoff is equal to output in subsequent periods, $\{Y^{\infty}_{t+1}\}_{t \geq t+1}$. In the appendix, we show that the log (real) price
of this asset satisfies
\[q_t = q^* + a_t + \tilde{y}_t, \tag{8} \]
where \(q^* \) is a constant. Under log-utility, the price of the market portfolio is proportional to output (see Eq. (A.23)). Therefore, the price moves either when productivity changes or when the output gap changes. In subsequent analysis, we focus on characterizing the output gap, \(\tilde{y}_t \), and refer to Eq. (8) to describe the impact on asset prices.

Eqs. (6–8) provide a generally applicable characterization of equilibrium (when prices are fully sticky and \(\frac{dE_{t+1}^{M}(\tilde{y}_{t+1})}{d_{t+1}} \) is deterministic). We next specify the agents’ beliefs.

3.3. Uncertainty and beliefs

Motivated by our empirical analysis in Section 2, we equip agents with confident belief disagreements. For simplicity, we start with a case in which agents disagree about a fully persistent component of aggregate demand. In Section 5, we analyze the case in which agents can (also) disagree about a transitory component.

Formally, we assume aggregate demand follows
\[g_t = g + v_t \quad \text{for each } t, \tag{9} \]
where \(v_t \sim N(0, \Sigma) \) for each \(t \) and independent across \(t \).

The random variable \(v_t \) captures transitory shocks to aggregate demand. These shocks are i.i.d. across periods with a Normal distribution. The term \(g \) is an unknown parameter that captures the persistent component of aggregate demand. It is realized at the beginning of the model but it is not observed by the agents.

Agents have heterogeneous prior beliefs about \(g \). Specifically, at the beginning of period 0, each agent \(j \in \{F, M\} \) believes the persistent component is drawn from a Normal distribution,
\[g \sim N \left(g^0_j, C^{-1}_0 \Sigma \right), \tag{10} \]
where \(g^0_j \) denotes the perceived prior mean and \(C^{-1}_0 \Sigma \) denotes the perceived variance. The key assumption is that the beliefs \(g^0_F \) and \(g^0_M \) may differ. Throughout, agents have dogmatic disagreements in the sense that they do not think the other agent has any information they haven’t already incorporated. Except for Section 5, we assume agents know each other’s beliefs: “they agree to disagree.” The parameter \(C_0 \) is a measure of the agent’s confidence in their initial belief. In the main text, we focus on the case where agents have common confidence. Confidence captures (inversely) how fast agents update their beliefs as they observe new data.\(^5\)

We are agnostic about the source of agents’ dogmatic belief disagreements—our results do not require a specific interpretation. One possibility is that agents recently received news of an

\(^5\)See Appendix C.1 for an extension where agents have heterogeneous confidence.
unusual event (e.g., a financial crisis) that will induce a persistent shock to aggregate demand. Since these events are rare, history does not provide sufficient guidance about how they affect the economy, so it is natural for agents to start with heterogeneous prior beliefs. An alternative possibility is that agents have heterogeneous and possibly misspecified learning models. For instance, suppose agents receive public signals that are informative about aggregate demand (e.g., macroeconomic data releases), but they interpret these signals differently, e.g., the Fed puts more weight on one signal whereas the market puts more weight on another signal. Our results would qualitatively apply under this alternative (behavioral) interpretation. For concreteness, however, we assume agents are “rational” given their heterogeneous initial beliefs.

Bayesian updating of beliefs. The realization of aggregate demand in each period provides the agents with a noisy signal about the persistent component of aggregate demand, \(g_t = g + v_t \). Agents combine this data with their prior beliefs in (10) to form their posterior beliefs according to Bayes’ rule. In Appendix B.1, we show that agent \(j \)'s conditional belief about the persistent component, \(g^j_t = E^j_t [g] \), evolves according to

\[
\begin{align*}
g^j_t &= c_{0,t}g^0_j + (1 - c_{0,t}) \bar{g}_{t-1} = \sum_{t=0}^{t-1} \frac{g^j_t}{t}, \\
&= c_{t-1,t}g^j_{t-1} + (1 - c_{t-1,t}) g_{t-1} \text{ for each } t \geq 1,
\end{align*}
\]

where \(c_{s,t} \) denotes the relative confidence in period \(s \) compared to a later period \(t \),

\[
c_{s,t} = \frac{C_0 + s}{C_0 + t} \text{ for } s \leq t.
\]

Eq. (11) says that the conditional belief is a weighted average of the initial belief, \(g^j_0 \), and the average realization, \(\bar{g}_{t-1} \). The weights are determined by the relative confidence between periods 0 and \(t \). The second line writes the belief as a weighted average of the most recent belief and the most recent realization.

Recall that the equilibrium depends on the agents’ conditional belief about aggregate demand. This belief is the same as the conditional belief of the persistent component, \(E^j_t [g_t] = g^j_t \), since the transitory component has mean zero [cf. (9)]. We establish two additional properties of the conditional beliefs that facilitate the subsequent analysis. The first result describes the evolution of disagreements. The second result describes the higher order beliefs that matter for the equilibrium: in particular, the agents’ expectations at time \(t \) about the conditional beliefs they will have at time \(t + 1 \) [cf. Section 3.2].

Lemma 1. Disagreements evolve according to

\[
g^M_{t+1} - g^F_{t+1} = c_{t,t+1} \left(g^M_t - g^F_t \right) = c_{0,t+1} \left(g^M_0 - g^F_0 \right).
\]
In particular, disagreements are deterministic and they decline over time.

Disagreements decline over time since agents update from the same data [cf. (11)]. Moreover, they decline deterministically because we have assumed agents have common confidence and therefore put the same weight on data (i.e., new realizations of \(g_t \) generate identical belief updates for both agents).

Lemma 2. Consider the mean belief at the beginning of period \(s \) about the conditional mean belief (about aggregate demand) in a subsequent period \(t \geq s \). For each agent \(j \in \{F, M\} \) and \(j' \neq j \), we have

\[
E_s^j \left[g_t^j \right] = g_s^j, \tag{14}
\]

\[
E_s^j \left[g_{t}^{j'} \right] = c_{s,t} g_s^{j'} + (1 - c_{s,t}) g_s^j. \tag{15}
\]

Each agent expects their own conditional belief about aggregate demand in a future period to be the same as their current belief. In contrast, each agent expects the other agent’s conditional belief in a future period to be a weighted average of the other agent’s current belief and its own current belief. The weights depend on the relative confidence, \(c_{s,t} \). Intuitively, each agent expects the other agent to learn from the data and to come toward their own view. The expected speed of learning is decreasing in (the other agent’s) confidence. This implication of learning will be important for our results.

3.4. Benchmark with common beliefs

We end this section by solving for the equilibrium in a benchmark scenario with no disagreement between the Fed and the market. Specifically, suppose \(g_0^F = g_0^M \equiv g_0 \) so that agents have the same conditional belief, \(g_t \), in all periods.

Since agents share the same belief and the Fed sets output gaps to zero in expectation [cf. (5)], Eqs. (6) and (7) imply

\[
i_t = \rho + g_t, \tag{16}
\]

\[
\hat{y}_t = g_t - E_t [g_t] = g_t - g_t. \tag{17}
\]

With common beliefs, the market knows the Fed will, on average, stabilize future output gaps, \(E_{t+1} [\hat{y}_{t+1}] = 0 \). Therefore, there are no perceived “mistakes” and the Fed sets an interest rate that reflects its expected aggregate demand. Naturally, surprises relative to the Fed’s belief shift the output gap.

Next suppose the economy is at the initial period \(0 \), and consider the expected future interest rates according to the market’s and the Fed’s belief, respectively. With a slight abuse of terminology, we refer to the market’s expectations about future interest rates as “the forward curve” and the Fed’s expectations as “the dot curve” (see Figure 1). Using Eq. (16) and Lemma
we obtain

\[E_0^M [i_t] = E_0^F [i_t] = \rho + g_0 \text{ for each } t. \] (18)

With common beliefs, the forward and dot curves are the same and they reflect agents’ current belief about aggregate demand.

4. Disagreements and interest rate policy

We next turn to disagreements. Our first result describes how disagreements affect the optimal interest rate and the expected interest rates.

Proposition 1. Consider our setup with arbitrary initial beliefs, \(g_0^M \) and \(g_0^F \).

(i) The equilibrium interest rate and output gap are given by

\[i_t = \rho + (1 - c_{t,t+1}) g_t^F + c_{t,t+1} g_t^M, \] (19)

\[\hat{y}_t = g_t - g_t^F. \] (20)

The optimal interest rate set by the Fed partly reflects the market’s belief, with a weight that depends on relative confidence, \(c_{t,t+1} \). In the limit of very high initial confidence, the interest rate reflects only the market’s belief, \(\lim_{t \to \infty} i_t = \rho + g_t^M \).

(ii) The forward and dot curves in period 0 are given by

\[E_0^M [i_t] = \rho + g_0^M + c_{0,t+1} (g_0^F - g_0^M), \] (21)

\[E_0^F [i_t] = \rho + g_0^F + c_{0,t+1} (g_0^M - g_0^F). \] (22)

Each curve reflects the corresponding agent’s current belief for aggregate demand, with an adjustment toward the other agent’s belief that declines with the horizon. For sufficiently long horizons, each curve reflects only the corresponding agent’s belief, \(\lim_{t \to \infty} E_0^M [i_t] = \rho + g_0^M \), and the difference reflects the level of current disagreement, \(\lim_{t \to \infty} E_0^M [i_t] - E_0^F [i_t] = g_0^M - g_0^F \).

The first part of Proposition 1 characterizes the equilibrium outcomes. The output is the same as in the benchmark with common beliefs [cf. (17)]. The interest rate is different and depends on a weighted average of the Fed’s and the market’s beliefs about aggregate demand. The Fed cannot set interest rates by focusing only on its own view of aggregate demand—it also needs to take into account the market’s view and the extent of disagreement. Moreover, the more entrenched the disagreements, the more the Fed ignores its own view.

The second part of Proposition 1 shows that, unlike in the benchmark case, the forward and dot curves trace out different expected interest rate paths [cf. (18)]. The forward curve reflects the market’s belief for aggregate demand with an adjustment toward the Fed’s belief—and vice versa for the dot curve. Therefore, belief disagreements about aggregate demand translate into differences between the forward and dot curves.
Sketch of proof. We sketch the proof of the proposition, which is useful for developing intuition. Recall from Lemma [1] that belief disagreements evolve deterministically. Therefore, we conjecture (and verify) an equilibrium in which the market’s conditional belief about the subsequent output gap, $E_{t+1}^{M} [\tilde{y}_{t+1}]$, is also deterministic and independent of the current policy rate, $\frac{dE_{t+1}^{M} [\tilde{y}_{t+1}]}{dt} = 0$. In particular, the baseline characterization in Section [3.2] applies. Eq. (7) then immediately implies (20). Since disagreements evolve deterministically, the Fed can still adjust the interest rate appropriately to hit its output target on average, according to its own belief. Disagreements manifest themselves in the interest rate that the Fed must set to achieve this outcome.

Next consider the IS curve (2) for the case without inflation

$$\tilde{y}_{t} = -(i_{t} - \rho) + g_{t} + E_{t+1}^{M} [\tilde{y}_{t+1}].$$

All terms except for g_{t} are deterministic. Taking the expectations according to each agent and using $E_{t}^{F} [\tilde{y}_{t}] = 0$, we obtain,

$$E_{t}^{M} [\tilde{y}_{t}] - E_{t}^{F} [\tilde{y}_{t}] = E_{t}^{M} [\tilde{y}_{t}] = g_{t}^{M} - g_{t}^{F}. \quad (23)$$

In general, the market does not expect the output gap to be zero since it thinks the Fed will make “mistakes.” The extent of these “mistakes” depends on disagreements. For instance, when $g_{t}^{F} > g_{t}^{M}$, the market thinks the Fed is too optimistic about demand and therefore sets an interest rate too high, which will on average induce a negative output gap, $E_{t+1}^{M} [\tilde{y}_{t+1}] < 0$.

Eq. (23) together with Lemma [1] verifies that $E_{t+1}^{M} [\tilde{y}_{t+1}]$ is deterministic and satisfies $\frac{dE_{t+1}^{M} [\tilde{y}_{t+1}]}{dt} = 0$. Using (6), we also solve for the equilibrium interest rate,

$$i_{t} = \rho + g_{t}^{F} + E_{t+1}^{M} [\tilde{y}_{t+1}] = \rho + g_{t}^{F} + g_{t+1}^{M} - g_{t+1}^{F} = \rho + g_{t}^{F} + c_{t+1} \left(g_{t}^{M} - g_{t}^{F} \right). \quad (24)$$

This proves Eq. (19). The anticipation of future “mistakes” affects current activity and induces the Fed to adjust the interest rate in the direction of the market’s belief. For instance, when $g_{t}^{F} > g_{t}^{M}$, the market thinks the Fed will remain optimistic in the next period, $g_{t+1}^{F} > g_{t+1}^{M}$, and will set a negative output gap, $E_{t+1}^{M} [\tilde{y}_{t+1}] < 0$. This exerts downward pressure on the current output gap. Consequently, the Fed sets a lower interest rate than implied by its own (more optimistic) belief. The extent to which the Fed moves policy rates toward those implied by the market’s belief depends on relative confidence, c_{t+1}, because this determines the extent to which the market expects current disagreements to persist into the future.

Finally, we establish the second part of Proposition [1] Consider the forward curve. Taking
the expectation of Eq. (19) according to the market’s belief, we obtain

\[E_M^0 [\nu_t] = \rho + (1 - c_{t,t+1}) E_M^0 [g_t^F] + c_{t,t+1} E_M^0 [g_t^{M, t+1}] . \] (25)

Substituting the higher order belief from Lemma 2 proves Eq. (21). For intuition, recall that the higher order belief, \(E_M^0 [g_t^F] \), monotonically converges to \(g_0^M \) as the horizon \(t \) increases. The market expects the Fed to learn over time and to converge to the market’s belief. Therefore, the market expects future interest rates to be determined by its current belief, \(g_0^M \). A symmetric argument proves Eq. (22).

Illustration. Figure 4 illustrates the result from of Proposition 1 and provides further intuition. In each panel, the thin dashed line corresponds to the (overlapping) expected interest rates with a common baseline belief. The thin solid line shows the expected rates when the common belief becomes more optimistic. The thicker purple and blue lines show the dot and the forward curves, respectively, when one agent becomes more optimistic and the other agent remains with the more pessimistic baseline belief.

First consider the case in which the Fed becomes more optimistic. The top panels of Figure 4 illustrate that this shifts both the dot and forward curves upward, but with a larger effect on the dot curve [cf. (22)–(21)]. This gap arises because the Fed expects the market to learn. Hence, over longer horizons, the Fed expects to set interest rates that reflect its optimism (whereas the market expects the Fed will learn instead).

These panels also illustrate that the Fed raises the interest rate by less than the increase in its optimism would imply in isolation [cf. (19)]. For a complementary intuition, note that the market’s expected future interest rates also increase—illustrated by the shaded area in the figure. Moreover, the market considers these increases a “mistake.” These “mistakenly high” future interest rates exert downward pressure on current output. Hence, even though the Fed becomes more optimistic, it only needs to increase the current interest rate slightly to achieve its target output gap. In fact, the Fed can be thought of as targeting an overall increase in the forward curve—the current rate hike plus the shaded area—that is just enough to counteract the increase in its optimism. Consistent with this intuition, the Fed increases the interest rate by more when agents are less confident in their initial beliefs. In that case, disagreements are less persistent and the market expects the interest rate hike to decline more quickly (see the top right panel of Figure 4).

Next consider the case in which the market is more optimistic. The bottom panels of Figure 4 show that this also shifts both the forward and dot curves upward, but with a larger effect on the forward curve. As before, this gap arises because agents expect each other to learn. Note that the Fed raises the initial interest rate even though its own belief did not change. In this case, the market expects the Fed to be too pessimistic and to set interest rates too low in future periods—illustrated by the shaded area in the figure. These “mistakenly low” future
Figure 4: Top (resp. bottom) panels illustrate expected interest rates when the Fed (resp. the market) becomes more optimistic while the other agent remains with the baseline belief. Left (resp. right) panels correspond to higher (resp. lower) levels of initial confidence, C_0.
interest rates (together with the market’s optimism) exert upward pressure on current output. Therefore, the Fed is forced to increase the interest rate to achieve its target output gap. In fact, the Fed can be thought of as hiking the current rate just enough to counteract the expected “shortfall” in future interest rates—the shaded area. Consistent with this intuition, the Fed increases the interest rate by less when agents are less confident in their initial beliefs. In that case, disagreements are less persistent and the market expects the interest rate to catch up with its optimism more quickly (see the bottom right panel of Figure 4).

Remark 1 (Expected Gradualism). In our baseline model, the optimal interest rate policy has a novel form of gradualism. When the Fed is more optimistic than the market, it chooses not to increase the policy rate by the full amount of its optimism (it partially accommodates the market’s view), but it also expects to continue raising rates since it expects the data to sway the market toward the Fed’s view over time (as reflected in the dot curve). Conversely, the Fed is very reactive to the market’s optimism, as it raises rates immediately with the expectation that it will undo those changes over time as the market learns from data.

5. Disagreements and monetary policy shocks

So far, we have assumed the Fed and the market know each others’ belief. While the Fed might observe changes in the market’s belief through asset prices (albeit with noise), it is harder for the market to observe changes in the Fed’s belief. In fact, much of the Fed’s communication policy can be viewed as an attempt to convey the Fed’s belief to the public. In this section, we analyze the role of the Fed’s announcements in revealing the Fed’s belief to the market.

We derive microfounded monetary policy shocks and categorize them into three groups. “Fed belief shocks” occur when the Fed’s interest rate decision optimally and fully reveals a change in its belief to the public. “Market reaction shocks” occur when the Fed’s belief is multidimensional. In this case, the interest rate decision signals the Fed’s belief only partially and its impact on the economy depends on the market’s reaction to the signal, rather than on the Fed’s actual belief. Finally, “tantrum shocks” occur when “market reaction shocks” are possible and the Fed does not fully know how the market will react to its interest rate decision. We also show that the fear of tantrum shocks induces the Fed to act even more gradually than in our baseline setting. Despite the Fed’s more conservative policy stance, these (tantrum) shocks are welfare reducing and can be mitigated by appropriate Fed communication policies.

5.1. Fed belief shocks

Consider the baseline setup with the difference that the market does not know the Fed’s initial belief, \(\mathbf{g}_0^F \). Specifically, the market believes the Fed’s belief is drawn from a distribution with mean \(\mathbf{g}_0^M \equiv E_0^M \left[g_0^F \right] \). The Fed still knows the market’s belief, \(\mathbf{g}_0^M \). The rest of the model is unchanged.
We conjecture an equilibrium that is exactly the same as in Section 4. That is, the Fed sets the interest rate
\[i_0 = \rho + (1 - c_{0,1}) g_0^F + c_{0,1} g_0^M. \]
Note that this rate is a one-to-one function of the Fed’s belief, \(g_0^F \). Therefore, after observing the interest rate, the market infers the Fed’s belief as, \(G_0^F (i_0) = g_0^F \). Once the market learns \(g_0^F \), the analysis is the same as in Section 4.

We also need to check that the Fed does not have an incentive to deviate from the equilibrium interest rate policy. In the appendix, we show that the policy has a constant impact on the market’s expected output gap,
\[dE_M^M [\bar{y}_t | i_0] = -c_{0,1} \frac{dG_0^F (i_0)}{di_0} = - \frac{c_{0,1}}{1 - c_{0,1}}. \tag{26} \]
A higher interest rate makes the market infer greater Fed optimism and expect a smaller output gap. Consequently, the interest rate has a larger impact on current output than in the previous section, \(\frac{d\bar{y}_0}{di_0} = - \left(1 + \frac{c_{0,1}}{1 - c_{0,1}} \right) \). However, the additional impact is constant across states and does not distort the Fed’s optimal interest rate decision [cf. Eq. (4)]. In particular, the baseline characterization in Section 3.2 still applies and the optimal interest rate is the same as before, verifying the equilibrium.

In this equilibrium, the Fed belief shock—the revelation of the Fed’s belief via the interest rate—affects the market’s expected equilibrium outcomes. To characterize the impact, first consider the expected outcomes after the interest rate decision. Proposition 1 implies the market’s expected interest rates are
\[E_M^M [i_t | i_0] = \rho + g_0^F c_{0,t} (1 - c_{t,t+1}) + g_0^M (1 - c_{0,t} (1 - c_{t,t+1})) \text{ for } t \geq 1. \tag{27} \]
Likewise, Eq. (23) and Lemma 1 imply the market’s expected output gaps are
\[E_M^M [\bar{y}_t | i_0] = c_{0,t} (g_0^M - g_0^F) \text{ for } t \geq 1. \tag{28} \]
Next note that the market’s expected outcomes before the interest rate decision correspond to the same expressions with \(g_0^F \) replaced by \(g_0^F \). This leads to the following result.

Proposition 2. Suppose the market initially does not know the Fed’s belief. Let \(\Delta x \) denote the equilibrium change of a variable in period 0 relative to its ex-ante expectation by the market. (For instance, \(\Delta g_0^F = g_0^F - g_0^F \) denotes the surprise change in the Fed’s belief and \(\Delta E_M^M [i_t] \equiv E_M^M [i_t | i_0] - E_M^M [i_t] \) denotes the change in the market’s expected interest rates.) The equilibrium is the same as in Proposition 4. The Fed’s interest rate announcement in period 0 fully reveals
its belief. A Fed optimism shock increases the current and the forward interest rates,

\[
\frac{\Delta i_0}{\Delta g^F_0} = 1 - c_{0,1} \quad \text{and} \quad \frac{\Delta E^M_0 [i_t]}{\Delta g^F_0} = c_{0,t} (1 - c_{t,t+1}) \quad \text{for} \ t \geq 1.
\]

(29)

The shock reduces the market’s expectation for the output gap and the price of the market portfolio,

\[
\frac{\Delta E^M_0 [\bar{y}_t]}{\Delta g^F_0} = \Delta E^M_0 [q_t] = -c_{0,t}.
\]

(30)

Eq. (29) says that a Fed optimism shock affects the expected rates as we described previously [cf. Figure 4]. Eq. (30) shows that the shock reduces the market’s expected output gap. After an interest hike, the market anticipates greater monetary policy “mistakes” in the direction of high interest rates. This also reduces the expected price of the market portfolio, which is a one-to-one function of the output gap [see (8)].

These results highlight that Fed belief shocks affect interest rates and (the market’s) expected economic activity like the textbook monetary policy shocks—typically modeled as random fluctuations around an interest rate rule (see, e.g., Galí (2015)). Finding an empirical counterpart to these shocks is challenging and requires a structural interpretation. Proposition 2 describes a microfounded monetary policy shock, and clarifies the conditions under which it induces the classical effects of monetary policy. A Fed belief shock unambiguously generates conventional effects on financial market outcomes (e.g., forward interest rates and asset prices) that depend on the market’s expectation. However, the predictions for subsequent real outcomes are more subtle and depend on whether the market’s or the Fed’s belief is closer to the true data generating process. The following result formalizes this point.

Corollary 1. Consider the setup in Proposition 2. Suppose that at the beginning of date 0 the market’s belief is fixed at some \(g^M_0\), whereas the Fed’s belief, \(g^F_0\), and the actual persistent component of demand, \(g\), are jointly drawn from a distribution with means \(g\) and \(g^F_0\). The market knows the Fed’s belief is drawn from a distribution with mean \(g^F_0\) but thinks it is uncorrelated with \(g\). Let \(\beta^{DGP} (y, x) = \frac{\text{cov}^{DGP}(y, x)}{\text{var}^{DGP}(x)}\) denote the beta coefficient between two variables under the data generating process. Then, we have

\[
\beta^{DGP} (\bar{y}_t, i_0) = \frac{c_{0,t}}{1 - c_{0,1}} \left(\beta^{DGP} (g, g^F_0) - 1 \right).
\]

6For instance, Ramey (2016) notes: “Because monetary policy is typically guided by a rule, most movements in monetary policy instruments are due to the systematic component of monetary policy rather than to deviations from that rule. We do not have many good economic theories for what a structural monetary policy shock should be.”

7The financial market reaction also helps differentiate our Fed belief shocks from the Fed information shocks emphasized in the recent literature. Unlike a Fed belief shock, an interest rate hike driven by a Fed information shock would typically increase stock prices—as it would make the market more optimistic about subsequent economic activity. In fact, Cieslak and Schrimpf (2019), Jarocinski and Karadi (2020) use the stock price response at the time of the policy announcement to disentangle conventional monetary policy shocks and Fed information shocks.
Figure 5: Impulse responses to a Fed optimism shock, $\Delta g^F_0 > 0$, that raises the interest rate by 1%. Blue lines (resp. purple lines) correspond to the case in which the actual persistent component of demand is equal to the market’s initial belief (resp. the Fed’s initial belief). All transitory demand shocks are set to zero [cf. (9)].

The result envisions a scenario in which a Fed belief shock—not matched by a market belief change—might be correlated with an actual (persistent) demand shock. In this scenario, regressing the output gap \tilde{y}_t on the interest rate i_0 will produce the conventional (negative) coefficient, $\beta^{DGP} (\tilde{y}_t, i_0) < 0$, if and only if the data on average changes less than one-to-one with the Fed’s belief, $\beta^{DGP} (g, g^F_0) < 1$. Intuitively, while the market thinks the Fed’s interest rate change is a mistake, the Fed thinks it is appropriate and stabilizes the output gap according to its belief, $E^F_0 [\tilde{y}_t] = 0$. If the Fed is right on average, $\beta^{DGP} (g, g^F_0) = 1$, then the regression coefficient is zero. If the market is right on average, $\beta^{DGP} (g, g^M_0) = 0$, then the regression coefficient is strictly negative [cf. Proposition 2]. If the truth is somewhere in between, $\beta^{DGP} (g, g^F_0) \in (0, 1)$—a reasonable assumption in a disagreement context—then the regression coefficient is still negative but smaller.

Figure 5 illustrates this result by plotting the impulse responses to a Fed optimism shock under different realizations of the persistent component of demand, g. We construct the impulse responses by setting all transitory demand shocks to zero: the realized aggregate demand is equal to the persistent component, $g_t = g$ [cf. (9)]. If the market has the correct belief, $g^M_0 = g$, the responses resemble a classical monetary policy shock: the interest rate increases and gradually declines, and the output gap declines and gradually recovers. If instead the Fed has the correct belief, $g^F_0 = g$, the output gap remains at zero. Moreover, the interest rate keeps increasing—the market learns from data and converges toward the Fed’s more optimistic belief.
5.2. Market reaction shocks

In the previous subsection, the Fed’s interest rate decision fully reveals its belief. In practice, beliefs are more complex and the interest rate might reveal the Fed’s belief only partially. This complexity leads to a second type of monetary policy shock that we refer to as “market reaction shocks.”

To capture these shocks, we extend the setup to allow for short-term as well as long-term disagreement. In particular, suppose in (only) period 0 the Fed and the market can also disagree about the transitory component of demand, \(v_0 \). Specifically, the Fed believes \(v_0 \sim N(\nu_0^F, \Sigma) \), whereas the market believes \(v_0 \sim N(0, \Sigma) \) as before. Suppose also that the market is uncertain about both dimensions of the Fed’s belief: the market thinks \(g_0^F \sim N(\bar{g}_0^F, \sigma_{g}^2) \) and \(\nu_0^F \sim N(\bar{\nu}_0^F, \sigma_{\nu}^2) \), which are independent of each other. The parameters \(\sigma_{g}^2 \) and \(\sigma_{\nu}^2 \) denote the market’s uncertainty about the Fed’s long-term and short-term belief, respectively. As before, we use the notation \(\Delta x \) to denote the change of a variable in period 0 relative to its ex-ante expectation. In particular, \(\Delta g_0^F \equiv g_0^F - \bar{g}_0^F \) and \(\Delta \nu_0^F \equiv \nu_0^F - \bar{\nu}_0^F \) denote the change in the Fed’s long-term and short-term optimism.

As a benchmark, consider what happens when either \(\sigma_g = 0 \) (and \(g_0^F = \bar{g}_0^F \)) or \(\sigma_{\nu} = 0 \) (\(\nu_0^F = \bar{\nu}_0^F \)) so that the market knows one dimension of the Fed’s belief but is uncertain about the other dimension. In this case, adapting our analysis from the previous sections implies the equilibrium interest rate is given by

\[i_0 = \rho + g_0^F + \nu_0^F + c_{0,1} (g_0^M - g_0^F). \]

In these corner cases, the equilibrium rate fully reveals the remaining dimension of the Fed’s belief. For instance, if the market knows \(g_0^F \) it can back out \(\nu_0^F \) from the interest rate (and vice versa). Therefore, the equilibrium is as if there is no belief uncertainty. The Fed accommodates for its long-term disagreement with the market but not for short-term disagreement—since this type of disagreement does not persist. Therefore, a short-term Fed optimism shock has a sizeable impact on the current rate, but no impact on the forward curve,

\[\frac{\Delta i_0}{\Delta \nu_0^F} = 1 \quad \text{and} \quad \frac{\Delta E_0^M [i_t]}{\Delta \nu_0^F} = 0 \quad \text{for} \quad t \geq 1. \]

In contrast, a long-term Fed optimism shock has an impact on both the current rate and the forward curve as before [cf. (29)].

Set against these benchmarks, consider arbitrary \(\sigma_{g}^2, \sigma_{\nu}^2 \). Since the market is uncertain about both dimensions of the Fed’s belief, the interest rate cannot fully reveal the Fed’s belief. In this case, the equilibrium consists of two functions that depend on each other: one describes the Fed’s optimal interest rate policy, \(i_0 \), and the other describes the market’s Bayesian posterior.
belief, $E^M_0 [g^F_0 | i_0]$. Our next result characterizes these functions as

$$i_0 = \rho + g^F_0 + v^F_0 + c_{0,1} (g^M_0 - E^M_0 [g^F_0 | i_0])$$

$$= E^M_0 [i_0] + (1 - c_{0,1} \tau) (\Delta g^F_0 + \Delta v^F_0);$$

$$E^M_0 [g^F_0 | i_0] = \overline{g}^F_0 + \tau \frac{i_0 - E^M_0 [i_0]}{1 - c_{0,1} \tau}$$

$$= \overline{g}^F_0 + \tau (\Delta g^F_0 + \Delta v^F_0)$$

where $\tau = \frac{\sigma^2}{\sigma^2 + \sigma^2_g}$. The first row in Eq. (33) describes the Fed’s optimal interest rate policy. The Fed still accommodates the long-term disagreement with the market. However, the extent of accommodation depends on the market’s posterior belief for the Fed’s long-term belief, $E^M_0 [g^F_0 | i_0]$, rather than on the Fed’s actual long-term belief, g^F_0 [cf. (31)]. The next row describes the equilibrium interest rate—obtained by substituting the market’s posterior belief along the equilibrium path.

The first row in Eq. (34) describes the market’s Bayesian posterior belief given the interest rate it observes. The next row describes the Bayesian posterior along the equilibrium path, obtained by substituting the equilibrium interest rate. In equilibrium, the posterior is centered around the market’s prior with an adjustment toward the change in total Fed optimism, $\Delta g^F_0 + \Delta v^F_0$, regardless of where that optimism comes from. Higher-than-expected interest rates reveal a bundled signal of Fed optimism, but not whether the optimism is short term or long term. The market interprets the signal according to its relative uncertainty about the long-term belief, $\tau = \frac{\sigma^2}{\sigma^2 + \sigma^2_g}$. When τ is high, the market is more uncertain about the long-term belief and attributes high interest rates to long-term optimism. Going forward, we refer to τ as the market’s reaction type.

The following result verifies the equilibrium and describes how a change in Fed optimism affects the forward rates as well as the current interest rate in equilibrium.

Proposition 3. Consider the setup with both long-term and short-term disagreement. Suppose the market believes $g^F_0 \sim N (\overline{g}^F_0, \sigma^2_g), v^F_0 \sim N (\overline{v}^F_0, \sigma^2_v)$, independent of each other. In equilibrium, the interest rate and the market’s posterior belief are given by Eqs. (33) and (34). An increase in Fed optimism—regardless of whether it is long-term or short-term—increases the current interest rate and the forward rates according to the market’s reaction type $\tau = \frac{\sigma^2}{\sigma^2 + \sigma^2_g}$:

$$\frac{\Delta i_0}{\Delta v^F_0 + \Delta g^F_0} = 1 - \tau c_{0,1},$$

$$\frac{\Delta E^M_0 [i_t]}{\Delta v^F_0 + \Delta g^F_0} = \tau c_{0,t} (1 - c_{t,t+1}) \text{ for } t \geq 1.$$

These results say that both the current and the forward interest rates are determined by the market’s reaction type—rather than by the Fed’s actual belief type. Figure 6 illustrates the result for the case in which the market’s reaction type is relatively high. The solid line plots the
current and forward rates’ responses to a change in (long-term or short-term) Fed optimism. For comparison, the dotted and the dashed lines plot the forward rates’ response to an equivalent change in long-term and short-term Fed optimism, respectively, when the market knows the Fed’s belief. With a reactive market, the equilibrium is similar to the case with long-term Fed optimism, regardless of the Fed’s actual belief type. In particular, even when the Fed has short-term optimism, it hikes the current interest rate by a small amount (smaller than the increase in its optimism).

Why does the market’s reaction drive the equilibrium? Forward rates are naturally determined by the market’s reaction, as these rates reflect the market’s belief. The current rate is also determined by the market’s reaction, because the Fed optimally responds to the market’s reaction. As before, the Fed targets an overall increase in the forward curve—the current rate plus the shaded area in the figure—that counteracts its initial optimism. Since the forward rates increase substantially, a Fed with short-term optimism raises the current interest rate by a small amount—closer to the baseline case in which it has long-term optimism [cf. Figure 4].

Finally, note that the analogues of Eq. (30) and Corollary 1 also apply in this setting. Market reaction shocks (driven by either long-term or short-term Fed beliefs) generate the conventional effects of monetary policy shocks on financial market outcomes but do not necessarily generate conventional effects on subsequent real outcomes.

Remark 2 (Interpreting the evidence on monetary policy shocks and forward rates). Empirical studies with high-frequency identification typically find that the forward interest rates’ reaction to monetary policy shocks can be captured with a small number of factors. For instance, Gürkaynak et al. (2005b) emphasize a (Fed funds rate) target factor that captures the surprise changes to near-term interest rates, and an orthogonalized path factor that captures surprises to longer-term interest rates (see also Hamilton (2008); Barakchian and Crowe (2013)). These factors can be mapped into our analysis. A target factor can be thought of as a market reaction shock with an average—that is, the market attributes the Fed’s belief change to an average horizon. In contrast, a path factor can be thought of as the market reaction relative to the average, τ − .Automation of text processing, including summarization and translation, is beyond the current capabilities of this system. The provided text is a natural reading of the content, without additional processing.
Figure 6: **Market reaction shock** from an increase in (long-term or short-term) Fed optimism when the market is relatively reactive (high τ). The solid line plots the current and the forward rates’ response. The dotted (resp. the dashed) line plots the forward rates’ response to an equivalent long-term (resp. short-term) optimism shock that the market knows.

Interpretation, empirical studies find that the path factor that drives the long-term interest rates is mainly driven by the content of Fed statements (see, e.g., Lucca and Trebbi (2017)).

5.3. Tantrum shocks

In the previous subsection, the Fed knows the market’s reaction type τ and understands how the forward rates will change in response to its interest rate decisions. In practice, the Fed might be confused or uncertain about the market’s reaction. This confusion or uncertainty leads to a third type of monetary policy shock that we refer to as “tantrum shocks.” These shocks are costlier (under the Fed’s belief) than the previous shocks. Their anticipation induces the Fed to move more gradually and creates a role for Fed communication.\(^1\)

We start with an extreme case in which the Fed does not anticipate tantrum shocks, which is

\[\Delta b^F + \Delta v^F = 1\%
\]

\[\Delta g^F = 1\%, \text{ market knows}\]

\[\Delta v^F = 1\%, \text{ market knows}\]

\(^1\)On May 23, 2013, the day after Fed Chairman Bernanke’s testimony to Congress that touched off the “Taper Tantrum” episode, the WSJ wrote: “...The next step by the Fed could be especially tricky. One worry at the central bank is that a single small step to shrink the size of the program could be interpreted by investors as the first in a larger move to end it altogether. Mr. Bernanke sought to dispel that view, part of a broader effort by Fed officials to manage market expectations. If the Fed takes one step to reduce the bond buying, it won’t mean the Fed is ‘automatically aiming towards a complete wind-down,’ Mr. Bernanke said. ‘Rather we would be looking beyond that to seeing how the economy evolves and we could either raise or lower our pace of purchases going forward. Again that is dependent on the data,’ he said.”
useful to illustrate how the shocks affect the equilibrium. Formally, suppose the market is either very unreactive or very reactive, \(\tau \in \{0, 1\} \). The Fed thinks the market is unreactive (\(\tau = 0 \)), whereas the market is actually reactive (\(\tau = 1 \)). We also assume that both the unreactive and the reactive types think the Fed knows their type. The rest of the model is unchanged.

In this case, the Fed sets the interest rate according to (33) with \(\tau = 0 \), which implies

\[
i_0 = E_0^M [i_0] + \Delta g_0^F + \Delta v_0^F.
\]

(37)

An optimistic Fed hikes the interest rate by the full amount of its optimism. Since the Fed thinks the market is unreactive, it expects the market to receive the optimism signal, \(\Delta g_0^F + \Delta v_0^F \), and to attribute it to short-term optimism [cf. Eq. (34) with \(\tau = 0 \)].

However, the market reacts to the Fed’s interest rate decision very differently than what the Fed anticipates. Since the market is reactive (and thinks the Fed knows this), it expects the Fed to set the interest rate according to (33) with \(\tau = 1 \), which implies

\[
i_0|_{\tau=1} = E_0^M [i_0] + (1 - c_{0,1}) (\Delta g_0^F + \Delta v_0^F) .
\]

In particular, the market expects an optimistic Fed to change the interest rate by a small amount. Therefore, after the market observes the interest rate in (37), it extracts a larger optimism signal, \((\Delta g_0^F + \Delta v_0^F)/(1 - c_{0,1}) \). Moreover, the market attributes this signal to long-term optimism, so its posterior belief is given by [cf. (34)]

\[
E_0^M [g_0^F | i_0] = g_0^F + \frac{\Delta g_0^F + \Delta v_0^F}{1 - c_{0,1}}.
\]

(38)

The forward curve and the market’s expected output gap in equilibrium are then given by Eqs. (27) and (28) after substituting \(g_0^F \) with the posterior belief, \(E_0^M [g_0^F | i_0] \).

In particular, Eqs. (27) and (38) imply

\[
\Delta E_0^M [\bar{y}_t] = \frac{\Delta g_0^F + \Delta v_0^F}{1 - c_{0,1}} c_{0,t} (1 - c_{t,t+1}) \text{ for } t \geq 1,
\]

(39)

where \(\Delta E_0^M [\bar{y}_t] \equiv E_0^M [\bar{y}_t | i_0] - E_0^M [\bar{y}_t] \), as before. In equilibrium, an increase in Fed optimism raises the forward curve substantially—more than the case in which the market knows the Fed’s belief [cf. (29)]. The top panel of Figure 7 illustrates this result. The solid line shows the actual change in the forward curve in period 0, whereas the dashed line is the change the Fed had anticipated when it announced the interest rate policy in period 0.

Likewise, Eqs. (28) and (38) imply that an increase in Fed optimism reduces the market’s expected output gap substantially,

\[
\Delta E_0^M [\bar{y}_t] = -c_{0,t} \frac{\Delta g_0^F + \Delta v_0^F}{1 - c_{0,1}}.
\]

(40)
Figure 7: **Tantrum shock** from a 1% increase in (short-term or long-term) Fed optimism. The Fed thinks the market is not reactive, $\tau = 0$, when the market is actually reactive, $\tau = 1$. The solid (resp. the dashed) blue lines plot the actual realization (resp. the Fed’s assumption) for the change in the market’s expectations in period 0. The purple line in the bottom panel plots the Fed’s expected output gap in period 0 conditional on the market’s actual reaction type.

This decline is greater than the perceived decline that would arise if the market knew the Fed’s belief, $\Delta E^M_0 [\tilde{y}_t] = -c_{0,t} (\Delta g^F_0 + \Delta v^F_0)$. In fact, since the Fed sets i_0 under the wrong assumption about the market’s reaction type, τ, it misses its expected output gap in period 0 even under its own belief,

$$E^F_0 [\tilde{y}_0 | \tau = 1] = \Delta E^M_0 [\tilde{y}_0] + \Delta g^F_0 + \Delta v^F_0 = -\frac{c_{0,1} (\Delta g^F_0 + \Delta v^F_0)}{1 - c_{0,1}} < 0. \quad (41)$$

Here, $E^F_0 [\tilde{y}_0 | \tau = 1]$ denotes the Fed’s expected output gap given the market’s actual reaction type. For subsequent periods $t \geq 1$, the Fed expects to hit its target, $E^F_0 [\tilde{y}_t | \tau = 1] = 0$, because it has learned that the market is reactive and will adjust its future policy appropriately. The bottom panel of Figure 7 illustrates these results.

In this extreme case, the Fed operates under the assumption that the market is unreactive and will interpret its interest rate change as temporary. Thus, the Fed is surprised when the market is reactive. This large reaction increases the forward curve substantially more than the Fed anticipated when it set the policy rate. This makes the Fed miss its expected output gap target—even according to its own belief [cf. Figure 7]. Note also that the market’s reaction is stronger—and the output gap is more negative—when relative confidence, $c_{0,1}$, is higher [cf.
In this case, the optimal policy with respect to a reactive market requires only a small adjustment of the interest rate. Therefore, adjusting the interest rate as-if the market is unreactive can be very costly.

5.4. Gradualism

In the previous subsection, we assumed the Fed sets the interest rate under incorrect beliefs about the market’s reaction type, \(\tau \). We also assumed the market (incorrectly) assumes the Fed knows its reaction type. These assumptions simplified the analysis and are relevant for episodes of extreme market reaction (such as the 2013 “Taper Tantrum” episode). However, tantrum shocks are costly even without these extreme assumptions. We next consider the case in which the Fed sets the interest rate policy under uncertainty about the market’s type, and the market knows that the Fed is uncertain (so neither agent has incorrect views). In this case, the equilibrium features milder tantrum shocks that still reduce the Fed’s welfare (under its own belief). Moreover, the fear of these shocks induces the Fed to act more gradually than in our baseline setting (see Remark 1). As emphasized by Brainard (1967), the Fed faces uncertainty about how a change in the policy rate will affect the economy, which induces it to act more conservatively.

Formally, suppose the Fed believes the market has the reactive type, \(\tau = 1 \), with probability \(\delta \in (0, 1) \), and the unreactive type, \(\tau = 0 \), with probability \(1 - \delta \). The market knows \(\delta \). The rest of the model is unchanged.

In this case, our next result shows the optimal interest rate and the market’s posterior belief are given by the following analogues of Eqs. (33-34),

\[
\begin{align*}
\bar{i}_0 &= \rho + g_{0}^{F} + v_{0}^{F} + c_{0,1} \left(g_{0}^{M} - \left\{ \begin{array}{l}
\delta E_{0}^{M} \left[g_{0}^{F} \left| \bar{i}_0, \tau = 1 \right] \\
1 - \delta E_{0}^{M} \left[g_{0}^{F} \left| \bar{i}_0, \tau = 0 \right]
\end{array} \right\} \right) \quad (42) \\
&= E_{0}^{M} \left[\bar{i}_0 \right] + \left(1 - c_{0,1} \beta \right) \left(\Delta g_{0}^{F} + \Delta v_{0}^{F} \right) \text{ where } \beta > \delta \text{ solves (B.5);} \\
E_{0}^{M} \left[g_{0}^{F} \left| \bar{i}_0, \tau \right]
ight] &= g_{0}^{F} + \tau \frac{\bar{i}_0 - E_{0}^{M} \left[i_0 \right]}{1 - c_{0,1} \delta} = g_{0}^{F} + \tau \left(\Delta g_{0}^{F} + \Delta v_{0}^{F} \right) \text{ where } \tau = \frac{\sigma_{g}^{2}}{\sigma_{v}^{2} + \sigma_{g}^{2}}. \quad (43)
\end{align*}
\]

Here, the parameter \(\beta \) is the solution to a quadratic equation that we relegate to the appendix.

Eq. (43) is the same as in the setup in which the Fed knows the market’s reaction type. Along the equilibrium path, the market extracts a bundled optimism signal and forms a posterior belief that depends on its reaction type. Eq. (42) is different and says that the Fed accommodates its long-term disagreement with the market according to a weighted-average of the market’s posterior beliefs over the cases in which the market is reactive and unreactive. Importantly, the Fed overweights the case in which the market is reactive relative to its perceived prior probability of this case, \(\beta > \delta \). Consequently, we also have \(1 - c_{0,1} \beta < 1 - c_{0,1} \delta \) (recall that \(\delta = E_{0}^{F} \left[\tau \right] \)). The Fed acts more gradually than in a “certainty-equivalent” benchmark in which the market’s
reaction type is certain and equal to the Fed’s ex-ante expectation of the market’s type [cf. (33)].

Related, and unlike the cases we have analyzed so far, Eq. (7) does not apply: the Fed does not hit its output target on average. Instead, we show in the appendix that the Fed’s ex-ante expected output gap satisfies

\[E_F^0 [\tilde{y}_0] = (\tilde{\delta} - \delta) c_{0,1} (\Delta g_0^F + \Delta v_0^F). \] (44)

Since \(\tilde{\delta} > \delta \), this expression implies that the Fed does not fully stabilize the expected output gap changes that result from its belief changes. For instance, when the Fed becomes more optimistic, \(\Delta g_0^F + \Delta v_0^F > 0 \), the Fed hikes the interest rate less than in the previous sections and allows for a positive output gap on average. We also characterize the Fed’s output gap conditional on the market’s type as

\[E_F^0 [\tilde{y}_0 | \tau = 1] = -\left(1 - \tilde{\delta}\right) c_{0,1} (\Delta g_0^F + \Delta v_0^F) \quad \text{and} \quad E_F^0 [\tilde{y}_0 | \tau = 0] = \tilde{\delta} c_{0,1} (\Delta g_0^F + \Delta v_0^F). \] (45)

An optimistic Fed expects a negative output gap when the market is revealed to be reactive—a milder version of the tantrum shocks from the previous section—and a positive output gap when the market is unreactive. The following result verifies this equilibrium.

Proposition 4. Consider the setup in Proposition 3 with the differences that the market has one of two types, \(\tau \in (0, 1) \); the Fed believes \(\tau = 1 \) with probability \(\delta \in (0, 1) \); and the market knows \(\delta \). In equilibrium, the interest rate and the market’s posterior belief are given by Eqs. (42-43), where \(\tilde{\delta} \in (\delta, 1) \) is the solution to Eq. (B.5) in the appendix. The Fed acts as if the market is more reactive than implied by its ex-ante mean, \(\tilde{\delta} > \delta = E_F^0 [\tau] \). The Fed’s ex-ante expected output gap is (typically) non-zero and given by (44). The Fed’s output gap conditional on the market’s type is also (typically) non-zero and given by (45).

Why does the Fed act more gradually than before and miss its expected output gap on average? Unlike in the previous sections, the Fed is uncertain about how a change in its policy interest rate \(i_0 \) will affect the output gap. As illustrated by Eq. (43), if the market is reactive, an interest rate hike increases the market’s perception for the Fed’s long-term optimism. Consequently, the interest rate hike also reduces the market’s expected future output gap, \(\frac{dE^M_M[y_1|i_0, \tau=1]}{d_i} = 0 \). In view of the IS curve (2), this creates a large impact on the current output gap, \(\frac{d\tilde{y}_0[\tau=1]}{d_{i_0}} < -1 \). In contrast, if the market is unreactive, an interest rate hike does not change the market’s expected future output gap, \(\frac{dE^M_M[y_1|i_0, \tau=0]}{d_{i_0}} = 0 \), and it has a smaller impact on the current output gap, \(\frac{d\tilde{y}_0[\tau=0]}{d_{i_0}} = -1 \). Since the economy is more sensitive to the Fed’s interest rate decision when the market is reactive, the Fed overweights that case in its decision, \(\tilde{\delta} > \delta \) [cf. Eq. (4)]. Therefore, the Fed acts as if the market is more reactive than implied by its prior mean, and adjusts the interest rate by a small amount. By acting conservatively, the Fed misses its output gap on average but it mitigates the tantrum shock that exacerbates its miss when the market is revealed to be reactive [cf. Eqs. (44-45)].
Note that, despite acting conservatively, the Fed misses its output gap conditional on the market’s type. Therefore, the possibility of tantrum shocks lowers the Fed’s ex-ante objective in (3). When the market is uncertain about the Fed’s belief, its reaction type \(\tau \) becomes a key parameter for policy. If the Fed is confused about \(\tau \), there can be extreme tantrum shocks as in the previous subsection. If the Fed is uncertain about \(\tau \), there are still (milder) tantrum shocks that make the Fed miss its output target more often than without these shocks.

5.5. Fed communication

The welfare losses induced by tantrum shocks create a natural role for communication between the Fed and the market. First, the Fed can try to figure out the market’s reaction type \(\tau \). Second, and perhaps more simply, the Fed can try to reveal its own belief to the market—mitigating the market reaction shocks and therefore the tantrum shocks. In an early and insightful analysis, Blinder (1998) emphasized this mechanism as the key benefit of central bank communication:

Greater openness might actually improve the efficiency of monetary policy... [because] expectations about future central bank behavior provide the essential link between short rates and long rates. A more open central bank... naturally conditions expectations by providing the markets with more information about its own view of the fundamental factors guiding monetary policy..., thereby creating a virtuous circle. By making itself more predictable to the markets, the central bank makes market reactions to monetary policy more predictable to itself. And that makes it possible to do a better job of managing the economy.

Our next result formalizes Blinder’s insight. In our model with two belief types, the Fed can reveal its belief by announcing the average interest rate it plans to set in the next period in addition to the current rate.

Proposition 5. Consider the setup in Propositions 3 and 4, with both long-term and short-term disagreement and market uncertainty about the Fed’s beliefs. Suppose in period 0 the Fed announces both \(i_0 \) and \(E^F_0 [i_1] \). In equilibrium, the Fed’s interest announcements are given by

\[
\begin{align*}
i_0 & = \rho + g_0^F + v_0^F + c_{0,1} (g_0^M - g_0^F), \\
E^F_0 [i_1] & = \rho + g_0^F + c_{0,2} (g_0^M - g_0^F).
\end{align*}
\]

These announcements fully reveal both dimensions of the Fed’s belief, \(v_0^F \) and \(g_0^F \). Therefore, the Fed belief shocks affect the equilibrium according to the Fed’s actual belief [cf. (29)–(30) and (32)]—rather than the market’s reaction type \(\tau = \frac{\sigma_y}{\sigma_y + \sigma_g} \). The Fed hits the output gap on average (according to its belief) regardless of its belief and the market’s type, \(E^F_0 [\tilde{y}_0] = E^F_0 [\tilde{y}_0 | \tau] = 0 \).

This result provides a rationale for the enhanced Fed communication that we have seen in recent years (e.g., the dot curves). In our model, the role of these policies is not to persuade...
the market—the market is opinionated. Rather, communication is useful because it helps reveal the Fed’s belief to the market, reducing the chance of tantrum shocks in which the market misinterprets the Fed’s belief.

6. Disagreements and inflation

So far, we have assumed nominal prices are fully sticky, $\kappa = 0$. In this section, we consider the case with partial price flexibility. We show that disagreements create a policy trade-off between output and inflation stabilization that reinforces our earlier findings. In particular, the Fed accommodates the market’s belief more than in the earlier sections with fully sticky prices. We further show that, for optimal policy purposes, disagreements closely resemble the cost push shocks in a textbook New Keynesian model. For simplicity, we focus on the baseline setup in which agents know each other’s beliefs and “agree-to-disagree.”

As in Section 4, we conjecture an equilibrium in which each agent’s expected output gap and inflation, $E_t^{\sigma} [\tilde{y}_t]$ and $E_t^F [\pi_t]$, evolve deterministically. The difference is that inflation is not necessarily zero and is determined by the NKPC [cf. (1)],

$$\pi_t = \kappa \tilde{y}_t + \beta E_{t+1}^M [\pi_{t+1}] .$$

Considering the equation (for period $t + 1$) under each agent’s belief and taking the difference, we obtain the key equation of this section,

$$E_{t+1}^M [\pi_{t+1}] = E_{t+1}^F [\pi_{t+1}] + \kappa \left(E_{t+1}^M [\tilde{y}_{t+1}] - E_{t+1}^F [\tilde{y}_{t+1}] \right)$$

$$= E_{t+1}^F [\pi_{t+1}] + \kappa \left(g_{t+1}^M - g_{t+1}^F \right) .$$

(46)

The second line uses Eq. (23) which also applies in this context. Eq. (46) shows that the market can expect inflation or disinflation, $E_{t+1}^M [\pi_{t+1}] \neq 0$, even if the Fed sets expected inflation to zero according to its own belief. Intuitively, with disagreements, the market thinks the Fed will make “mistakes” and won’t be able to stabilize inflation. Since price setters are forward looking, expected inflation creates inflationary pressure in the current period as well. Consequently, the divine coincidence breaks down: the Fed cannot simultaneously set average inflation and output to zero.

Next consider how the Fed trades off inflation and output. Problem (3) and the NKPC (1) imply the Fed chooses a particular split between expected output and inflation, $E_t^F [\tilde{y}_t] = \ldots$
Combining this with the NKPC (under the Fed’s belief), we obtain

\[
E_t^F [\pi_t] = \Phi \beta E_{t+1}^M [\pi_{t+1}], \quad \text{(47)}
\]

\[
E_t^F [\bar{\gamma}_t] = -\frac{1 - \Phi}{\kappa} \beta E_{t+1}^M [\pi_{t+1}] \quad \text{where} \ \Phi = \frac{\phi}{\phi + \kappa^2}. \quad \text{(48)}
\]

Here, \(\beta E_{t+1}^M [\pi_{t+1}]\) captures the current inflationary pressure that results from the market’s expected inflation. The composite parameter, \(\Phi \in \ [0, 1]\), captures the extent to which the Fed responds to the inflationary pressure by stabilizing output relative to inflation. As expected, the Fed focuses on output relatively more when it puts more weight on the output gap (greater \(\phi\)) and when nominal prices are more sticky (smaller \(\kappa\)).

Eqs. (46) and (47) characterize inflation expectations as the solution to a recursive equation. Our main result in this section describes how the solution depends on disagreements between the Fed and the market.

Proposition 6. Suppose prices are partially flexible, \(\kappa > 0\). In equilibrium, the market’s expected inflation is deterministic and given by

\[
E_t^M [\pi_t] = \kappa (g_t^M - g_t^F) + \Phi \beta E_{t+1}^M [\pi_{t+1}]
\]

\[
= \sum_{n=0}^{\infty} (\Phi \beta)^n \kappa (g_{t+n}^M - g_{t+n}^F), \quad \text{(49)}
\]

where \(\Phi = \frac{\phi}{\phi + \kappa^2}\) and \(g_t^M - g_t^F = c_{0,t} (g_t^M - g_t^F)\). The Fed’s expected inflation and output gap are given by Eqs. (47) and (48). When the market is more optimistic, \(g_0^M > g_0^F\), the market expects inflation, \(E_0^M [\pi_t] > 0\), and the Fed induces (on average) inflation and negative output gaps, \(E_t^F [\pi_t] > 0, E_t^F [\bar{\gamma}_t] < 0\). Conversely, when the market is more pessimistic, \(g_0^M < g_0^F\), the market expects disinflation, \(E_{t+1}^M [\pi_{t+1}] < 0\), and the Fed induces (on average) disinflation and positive output gaps, \(E_t^F [\pi_t] < 0, E_t^F [\bar{\gamma}_t] > 0\).

When the market is more optimistic than the Fed, it expects positive output gaps (“too low interest rates”) as in our earlier analysis. Expectations of positive output gaps translate into expected inflation. In turn, expected inflation exerts upward pressure on current inflation. When the market is more pessimistic than the Fed, the situation is the opposite.

We next characterize the equilibrium interest rate and generalize our main result from Section 4 [cf. Proposition 1]. Using Eqs. (2) and (48), we obtain

\[
r_t \equiv i_t - E_{t+1}^M [\pi_{t+1}] = \rho + g_t^F + E_{t+1}^M [\bar{\gamma}_{t+1}] + \frac{1 - \Phi}{\kappa} \beta E_{t+1}^M [\pi_{t+1}].
\]

Here, \(r_t\) denotes the real interest rate the Fed sets to target its desired output gap. The first three terms on the right side are similar to their counterparts with fully sticky prices [cf. (24)]. The last term is new and captures the Fed’s concern with stabilizing inflation. As before, output gap expectations satisfy Eq. (23). These observations imply the following corollary.
Corollary 2. The real interest rate corresponding to the equilibrium in Proposition 6 is

\[r_t = r_t^{\text{sticky}} + \frac{1 - \Phi}{\kappa} \beta \left(E_{t+1}^M [\pi_{t+1}] - E_{t+2}^M [\pi_{t+2}] \right), \]

where \(r_t^{\text{sticky}} = \rho + (1 - c_{t,t+1}) g_t^F + c_{t,t+1} g_t^M \) is the interest rate with fully sticky prices [cf. Proposition 7]. The interest rate reflects the market’s belief relatively more than the case with fully sticky prices,

\[
\begin{align*}
& r_t > r_t^{\text{sticky}} \quad \text{when } g_0^M > g_0^F \\
& r_t < r_t^{\text{sticky}} \quad \text{when } g_0^M < g_0^F.
\end{align*}
\]

For intuition, consider the case in which the market is more optimistic than the Fed. In this case, Proposition 1 says the market expects positive inflation, \(E_{t+1}^M [\pi_{t+1}] > 0 \) (and more so in earlier periods, \(E_{t+1}^M [\pi_{t+1}] > E_{t+2}^M [\pi_{t+2}] \)). Since the Fed is concerned with stabilizing inflation, it sets a higher rate than before. Effectively, this brings the interest rate closer to the level implied by the market’s optimistic belief. Conversely, when the market is pessimistic and expects disinflation, the Fed sets a lower interest rate that puts more weight on the market’s pessimistic belief.

This result reinforces our earlier analysis and provides a complementary reason for why the Fed should accommodate the market’s belief. With fully sticky prices, the market’s perceived monetary policy “mistakes” translate into future output gaps. This exerts pressure on the current output gap (via the IS curve) and forces the Fed’s hand. With partially flexible prices, perceived “mistakes” translate into future inflation. This exerts pressure on current inflation (via the NKPC) and forces the Fed’s hand through a second channel.

Relationship to cost-push shocks. In the textbook New Keynesian model, the NKPC is usually augmented with cost-push shocks: a catchall term for factors other than output gaps and inflation expectations that might affect firms’ price setting. In our model, disagreements closely resemble cost-push shocks from the Fed’s perspective. Therefore, our model inherits the optimal policy implications of cost-push shocks.

To illustrate this connection, we rewrite the NKPC (1) and substitute Eq. (46) to obtain

\[\pi_t = \kappa \tilde{y}_t + \beta E_{t+1}^F [\pi_{t+1}] + u_{t+1}, \]

where

\[u_{t+1} \equiv \beta \left(E_{t+1}^M [\pi_{t+1}] - E_{t+1}^F [\pi_{t+1}] \right) = \beta \kappa \left(g_{t+1}^M - g_{t+1}^F \right). \]

Therefore, the NKPC under the Fed’s belief features an “as-if” cost-push shock—even though the actual NKPC (under the market’s belief) features no such shock. Moreover, the as-if cost-push shock is positive, \(u_{t+1} > 0 \) (resp. negative \(u_{t+1} < 0 \)) when the market is more optimistic, \(g_0^M > g_0^F \) (resp. more pessimistic, \(g_0^M < g_0^F \)). This provides a complementary intuition for Proposition 3.

For the limit with high confidence, \(C_0 \rightarrow \infty \), disagreements remain constant over time,
that between our model and the textbook model. In particular, the equilibrium is identical to a corresponding equilibrium analyzed by Clarida et al. (1999) with an appropriate as-if cost-push shock.

Corollary 3. Consider the equilibrium characterized in Proposition 6. When confidence is high, \(C_0 \to \infty \), the Fed’s expected output gap and inflation are constant over time and given by

\[
E_t^F[\tilde{y}_t] = \frac{\kappa}{\kappa^2 + \phi(1-\beta)} u,
E_t^F[\tilde{\pi}_t] = \frac{\phi}{\kappa^2 + \phi(1-\beta)} u \text{ where } u = \beta \kappa (g_0^M - g_0^F)
\]

These expressions are the same as Eqs. (3.4) and (3.5) in Clarida et al. (1999) for the case with a fully persistent exogenous cost-push shock (after appropriately adjusting the notation).

This result implies that the optimal policy in our model shares some of the properties in Clarida et al. (1999). In particular, the Fed can benefit from committing to put a higher relative weight on inflation than implied by its own preferences in (3). Intuitively, since inflation is forward looking, committing to aggressively stabilize future inflation helps to stabilize current inflation. We leave a more complete analysis of the benefits of commitment in our setting for future work.

7. Final remarks

After illustrating the occasional large differences between FOMC interest rate predictions and the forward curve, we proposed a macroeconomic model where these differences emerge from disagreements about expected aggregate demand. We then studied the implications of these disagreements for monetary policy, the term structure of interest rates, and economic activity. The key feature of our environment is that the market constantly expects the Fed to make “mistakes” (under the market’s belief). The anticipation of future “mistakes” affects current output and forces the Fed to partially accommodate the market’s belief to stabilize the output gap. In particular, “rstar” (the natural interest rate) reflects the extent of disagreement as well as how entrenched each agent’s beliefs are. The more entrenched the beliefs, the more the Fed needs to weight the market’s belief. Partial price flexibility strengthens this result since perceived “mistakes” create inflationary or disinflationary pressures that induce the Fed to accommodate the market’s belief even more. The Fed plans to implement its own belief gradually, as it expects the market to learn over time and move closer to the Fed’s belief. The Fed and the market disagree about future interest rates, as in the data, because agents expect the other agent to come to their own belief.

The model generates microfounded monetary policy shocks because the market learns the Fed’s belief—and therefore the extent of future “mistaken” interest rate changes—from surprise policy announcements. These shocks come in different flavors that depend on the nature of
the market’s uncertainty about the Fed’s belief. Fed belief shocks and market reaction shocks are benign (under the Fed’s belief) as long as the Fed anticipates the market’s reaction and embeds it into its interest rate policy. Tantrum shocks are more damaging, as they arise when the Fed fails to forecast the market’s reaction. These shocks motivate additional gradualism as well as communication policies that reveal the Fed’s belief. The reason for communication in our environment is not to persuade the market about the state of the economy—the market is opinionated. Rather, communication is useful because it helps to reveal the Fed’s belief to the market, reducing the chance of tantrum shocks in which the market misinterprets the Fed’s belief.

Our monetary policy shocks generate contingent effects on subsequent economic activity depending on whether the Fed’s or the market’s belief is closer to the objective belief. Fed belief shocks generate the textbook impulse responses for the output gap and inflation according to the market’s belief, but not according to the Fed’s belief. Tantrum shocks can generate the textbook impulse responses under both beliefs. While we do not test these empirical predictions, our results are in line with the empirical findings that monetary policy shocks seem to have a smaller effect on economic activity—and sometimes with flipped signs—after the mid-1980s (see, e.g., Boivin and Giannoni (2006); Barakchian and Crowe (2013); Ramey (2016)). One interpretation is that greater central bank transparency in recent years has made tantrum shocks rarer. It is also possible that the Fed’s belief has become more accurate over time.

For simplicity, we assumed that both the Fed and the market were equally confident in their beliefs. In Appendix C.1 we analyze the case when they are not. Heterogeneous confidence leads to heterogeneous updating of beliefs as new macroeconomic shocks arrive. This implies that every demand shock now comes bundled with a market anticipation of a Fed belief shock. This bundling changes the impact of demand shocks on economic activity. Specifically, if the Fed is more data sensitive (less confident) than the market, then a positive demand shock has a dampened effect on output and asset prices—as the market anticipates that interest rates will overreact due to the embedded Fed belief shock. Conversely, if the Fed is less data sensitive (more confident), then the market expects the interest rates to underreact, and the demand shock has an amplified effect on output and asset prices. We leave a fuller analysis of bundled shocks for future research.

Finally, it is important to clarify that the optimal policy we have characterized does not mean that the Fed should “surrender” to the market and avoid surprises at all costs. Instead, the optimal policy says that disagreements and surprises are normal, as long as the policy itself considers the effect of disagreement and surprises on output and inflation stabilization. Concretely, suppose that the Fed (but not the market) receives divine information that the long run “rstar” has risen by 100 basis points. If the market had received the same information or fully trusted the infinite wisdom (or divine connections) of the Fed, the optimal policy would be to hike the target rate immediately by 100bps. Instead, in our environment the market is opinionated, so the Fed knows that if it raises the rate by 100bps in one shot, it will trigger a
much larger contraction in aggregate demand than it seeks. Thus, the Fed optimally raises the target rate by only 25bps today and it anticipates that it will continue raising rates by 25bps for three more meetings. This expected gradualism arises because the Fed expects the future data to confirm its belief. The Fed thinks that, by the next meeting, the market will update toward the Fed’s belief and will expect smaller “mistakes” than it did after the previous hike, which will create more room for the Fed to raise rates in subsequent meetings. Rather than “surrendering” to the market, the Fed plans to implement its own belief more gradually.
References

Evans, G. W., Honkapohja, S., 2001. Learning and expectations in macroeconomics.

Online Appendices: Not for Publication

A. Appendix: Model and the log-linearized equilibrium

In this appendix, we describe the details of the model and derive the log-linearized equilibrium conditions that we use in our analysis. The model and the analysis closely follows the textbook treatment in Galí (2015). The main difference is that the central bank sets the interest rate before observing the aggregate demand shock within the period.

Representative household (the market). The economy is set in discrete time with periods \(t \in \{0, 1, \ldots \} \). In each period, a representative household that we refer to as “the market” makes consumption-savings and labor supply decisions. Formally, the market solves,

\[
\max_{\{C_t, N_t\}_{t=1}^\infty} \mathbb{E}_t^M \left[\sum_{t=1}^\infty \beta^t \left(\log C_t - N_t^{1+\varphi} \right) \right]
\]

s.t. \(P_t C_t + \frac{B_t}{R_{t-1}} = B_{t-1} + W_t N_t + \int_0^1 \Pi_t(\nu) \, d\nu \).

Here, \(C_t \) denotes consumption, \(N_t \) denotes the labor supply, and \(\varphi \) is the inverse labor supply elasticity. The market has log utility—we describe the role of this assumption subsequently. The expectations operator \(\mathbb{E}_t^M [\cdot] \) corresponds to the market’s belief after the realization of uncertainty in period \(t \) (see Figure 3).

In the budget constraint, \(R_t^I \) denotes the gross risk-free nominal interest rate between periods \(t \) and \(t + 1 \). The term \(B_t \) denotes the one-period risk-free bond holdings. In equilibrium, the risk-free asset is in zero net supply, \(B_t = 0 \). The term \(\Pi_t(\nu) \) denotes the profits from intermediate good firms (that we describe subsequently). For simplicity, we do not allow households to trade the firms (in equilibrium, there would be no trade since this is a representative household).

The optimality conditions for problem (A.1) are standard and given by,

\[
\frac{W_t}{P_t} = \frac{N_t^\varphi}{C_t^{1-\varphi}}, \quad (A.2)
\]

\[
C_t^{-1} = \beta R_t^I \mathbb{E}_t^M \left[\frac{P_t}{P_{t+1}} C_{t+1}^{-1} \right]. \quad (A.3)
\]

Final good firms. There is a competitive final good sector that combines intermediate inputs from a continuum of monopolistically competitive firms indexed by \(\nu \in [0, 1] \). The final good sector produces according to the technology,

\[
Y_t = \left(\int_0^1 Y_{t}(\nu)^{\frac{1}{\gamma+1}} \, d\nu \right)^{\frac{\gamma}{\gamma+1}}. \quad (A.4)
\]
This firm’s optimality conditions imply a demand function for the intermediate good firms,

\[Y_t(\nu) = \left(\frac{P_t(\nu)}{P_t} \right)^{-\varepsilon} Y_t \]

(A.5)

where \(P_t = \left(\int_0^1 P_t(\nu)^{1-\varepsilon} d\nu \right)^{1/(1-\varepsilon)} \).

(A.6)

Here, \(P_t \) denotes the ideal price index.

Intermediate good firms. Each intermediate good firm produces according to the technology,

\[Y_t(\nu) = A_t N_t(\nu)^{1-\alpha}. \]

(A.7)

Firms take the demand for their goods as given and set price to \(P_t(\nu) \) to maximize the current market value of their profits, as we describe subsequently.

Market clearing conditions. The aggregate goods and labor market clearing conditions are given by,

\[Y_t = C_t \]

(A.8)

\[N_t = \int_0^1 N_t(\nu) d\nu. \]

(A.9)

Potential (flexible-price) outcomes. We start by characterizing a potential (flexible-price) benchmark around which we log-linearize the equilibrium conditions. In this benchmark, firms are symmetric and set the same price that we denote with \(P_t^* \). The optimal price solves [cf. (A.5) and (A.7)]:

\[
\begin{align*}
\max_{P_t^*, Y_t^*, N_t^*} & \quad P_t^* Y_t^* - W_t N_t^* \\
\text{s.t.} & \quad Y_t^* = A_t (N_t^*)^{1-\alpha} = \left(\frac{P_t^*}{P_t} \right)^{-\varepsilon} Y_t.
\end{align*}
\]

(A.10)

Here, \(Y_t \) denotes the aggregate output that firms take as given. The solution is given by,

\[P_t^* = \frac{\varepsilon}{\varepsilon - 1} \left(\frac{W_t}{P_t} \right) (1-\alpha) A_t (N_t^*)^{-\alpha}. \]

(A.11)

Hence, firms operate with a constant markup over their marginal cost. By symmetry, aggregate output is given by \(Y_t^* = Y_t = A_t (N_t^*)^{1-\alpha} \). Combining these observations with Eqs. (A.2) and (A.8), we solve for the potential labor supply

\[N_t^* = \left(\frac{\varepsilon - 1}{\varepsilon} (1-\alpha) \right)^{1/(1+\varphi)}. \]

(A.12)

Likewise, potential output is given by

\[Y_t^* = A_t (N_t^*)^{1-\alpha}. \]

(A.13)

Note that potential output is determined by current productivity and is independent of expectations about the future.
Nominal rigidities. We next describe the nominal rigidities. In each period, a randomly selected fraction, $1 - \theta$, of firms reset their nominal prices. The firms that do not adjust their price in period t, set their labor input to meet the demand for their goods (since firms operate with a markup and we focus on small shocks). Consider the firms that adjust their price in period t. These firms’ optimal price, P_{t}^{adj}, solves

$$
\max_{P_{t}^{\text{adj}}} \sum_{k=0}^{\infty} \theta^k E_t^M \left\{ M_{t,t+k} \left(Y_{t+k|t} P_{t}^{\text{adj}} - W_{t+k} N_{t+k|t} \right) \right\}
$$

(A.14)

where $Y_{t+k|t} = A_{t+k} N_{t+k|t} = \left(\frac{P_{t}^{\text{adj}}}{P_{t+k}} \right)^{-\varepsilon} Y_{t+k}$

and $M_{t,t+k} = \beta^k \frac{1}{C_{t+k}} \frac{P_{t}}{P_{t+k}}$.

The terms, $N_{t+k|t}$, $Y_{t+k|t}$, denote the input and the output of the firm (that resets its price in period t) in a future period $t + k$. The term, $M_{t,t+k}$, is the stochastic discount factor between periods t and $t + k$ (determined by the firm owners’ preferences). Note that firms share the same belief as the representative household. The optimality condition gives,

$$
\sum_{k=0}^{\infty} \theta^k E_t^M \left\{ M_{t,t+k} P_{t+k}^{\text{adj}} Y_{t+k} \left(P_{t}^{\text{adj}} - \frac{\varepsilon}{\varepsilon - 1} \frac{W_{t+k}}{A_{t+k} N_{t+k|t}^\alpha} \right) \right\} = 0
$$

(A.15)

where $N_{t+k|t} = \left(\frac{P_{t}^{\text{adj}}}{P_{t+k}} \right)^{\frac{\varepsilon}{1-\alpha}} \frac{Y_{t+k}}{A_{t+k}^{\frac{1}{1-\alpha}}}$.

The New-Keynesian Phillips curve. We next combine Eq. (A.15) with the remaining equilibrium conditions to derive the New-Keynesian Phillips curve. Specifically, we log-linearize the equilibrium around the allocation that features real potential outcomes and zero inflation, that is, $N_t = N^\ast$, $Y_t = Y_t^\ast$ and $P_t = P^\ast$ for each t. Throughout, we use the notation $\hat{x}_t = \log (X_t / X_t^\ast)$ to denote the log-linearized version of the corresponding variable X_t. We also let $Z_t = \frac{W_t}{A_t P_t}$ denote the normalized (productivity-adjusted) real wage.

We first log-linearize Eq. (A.2) (and use $Y_t = C_t$) to obtain,

$$
\tilde{z}_t = \varphi \tilde{n}_t + \tilde{y}_t.
$$

(A.16)

Log-linearizing Eqs. (A.4) – (A.7) and (A.9), we also obtain

$$
\tilde{y}_t = (1 - \alpha) \tilde{n}_t.
$$

(A.17)

Finally, we log-linearize Eq. (A.15) to obtain,

$$
\sum_{k=0}^{\infty} (\theta \beta)^k E_t^M \left\{ \tilde{p}_{t+k}^{\text{adj}} - (\tilde{z}_{t+k} + \alpha \tilde{n}_{t+k|t} + \tilde{p}_{t+k}) \right\} = 0
$$

(A.18)

where $\tilde{n}_{t|t+k} = \frac{-\varepsilon (\tilde{p}_{t+k}^{\text{adj}} - \tilde{p}_{t+k})}{1 - \alpha} + \tilde{n}_{t+k}$.

Here, the second line uses $\tilde{y}_t = (1 - \alpha) \tilde{n}_t$. 47
We next combine Eqs. (A.16)–(A.18) and rearrange terms to obtain a closed-form solution for the price set by adjusting firms,

\[p_{t}^{adj} = (1 - \theta \beta) \sum_{k=0}^{\infty} (\theta \beta)^{k} E_{t}^{M} [\Theta y_{t+k} + \tilde{p}_{t+k}] \]

where \(\Theta = \frac{1 + \varphi}{1 - \alpha + \alpha \varepsilon} \).

Since the expression is recursive, we can also write it as a difference equation

\[p_{t}^{adj} = (1 - \theta \beta) (\Theta y_{t} + \tilde{p}_{t}) + \theta \beta E_{t}^{M} \left[p_{t+1}^{adj} \right]. \tag{A.19} \]

Here, we have used the law of iterated expectations, \(E_{t}^{M} [\cdot] = E_{t}^{M} \left[E_{t+1}^{M} [\cdot] \right] \).

Next, we consider the aggregate price index (A.6),

\[P_{t} = \left((1 - \theta) \left(P_{t}^{adj} \right)^{1-\varepsilon} + \int_{S_{t}} (P_{t-1} (\nu))^{1-\varepsilon} d\nu \right)^{1/(1-\varepsilon)} \]

\[= \left((1 - \theta) \left(P_{t}^{adj} \right)^{1-\varepsilon} + \theta P_{t-1}^{1-\varepsilon} \right)^{1/(1-\varepsilon)} \]

Here, we have used the observation that a fraction \(\theta \) of prices are the same as in the last period. The term, \(S_{t} \), denotes the set of sticky firms in period \(t \), and the second line follows from the assumption that adjusting terms are randomly selected. Log-linearizing the equation, we further obtain \(\dot{p}_{t} = (1 - \theta) \dot{p}_{t}^{adj} + \theta \ddot{p}_{t-1} \). After substituting inflation, \(\pi_{t} = \dot{p}_{t} - \ddot{p}_{t-1} \), this implies,

\[\pi_{t} = (1 - \theta) \left(\dot{p}_{t}^{adj} - \ddot{p}_{t-1} \right). \tag{A.20} \]

Hence, inflation is proportional to the price change by adjusting firms.

Finally, note that Eq. (A.19) can be written in terms of the price change of adjusting firms as

\[\dot{p}_{t}^{adj} - \ddot{p}_{t-1} = (1 - \theta \beta) \Theta y_{t} + \tilde{p}_{t} - \ddot{p}_{t-1} + \theta \beta E_{t}^{M} \left[p_{t+1}^{adj} - \tilde{p}_{t} \right]. \]

Substituting \(\pi_{t} = \dot{p}_{t} - \ddot{p}_{t-1} \) and combining with Eq. (A.20), we obtain the New-Keynesian Phillips curve (1) that we use in the main text,

\[\pi_{t} = \kappa \ddot{y}_{t} + \beta E_{t}^{M} [\pi_{t+1}] \]

where \(\kappa = \frac{1 - \theta}{\theta} (1 - \theta \beta) \frac{1 + \varphi}{1 - \alpha + \alpha \varepsilon}. \tag{A.21} \)

Aggregate demand shocks. We focus on aggregate demand shocks, which we capture by assuming log productivity, \(a_{t+1} \), follows the process

\[a_{t+1} = a_{t} + g_{t}. \tag{A.22} \]

Here, \(g_{t} \) denotes the growth rate of productivity between periods \(t \) and \(t + 1 \), which is realized in period \(t \).
The IS curve. Finally, we log-linearize the Euler equation \([A,3]\) to obtain Eq. \((2)\) in the main text,
\[
\tilde{y}_t = - \left(i_t - E_t^M [\pi_{t+1}] - \rho \right) + g_t + E_t^M \tilde{y}_{t+1}.
\]
Here, \(i_t = \log R_f^t\) denotes the nominal risk-free interest rate and \(\rho = - \log \beta\) is the discount rate. We have used the market clearing condition, \(Y_t = C_t\) [cf. Eq. \((A,8)\)], the definition of the potential output, \(Y_t^* = A_t (N^*)^{1-\alpha}\) [cf. \((A,13)\)], and the evolution of productivity, \(A_{t+1} = A_t e^{g_t}\) [cf. \((A,22)\)]. The equation illustrates \(g_t\) has a one-to-one effect on aggregate spending and output in period \(t\). Hence, we refer to \(g_t\) as the aggregate demand shock in period \(t\).

Monetary policy and equilibrium. Recall that we assume the Fed sets the interest rate to solve problem \((3)\),
\[
\min_{i_t, \tilde{y}_t, \pi_t} \frac{1}{2} E^F_t \left[\phi \tilde{y}_t^2 + \pi_t^2 \right] \text{ s.t. } (A,21) \text{ and } (2).
\]
Here, \(\phi\) denotes the relative weight on the output gap. This completes the equilibrium conditions.

Price of the market portfolio. For future reference, we also derive the equilibrium price of “the market portfolio.” Specifically, in every period \(t\), agents can also invest in a security in zero net supply whose payoff is proportional to output in subsequent periods, \(\{Y_t\}_{t \geq t+1}\). We let \(\omega_t\) denote the market’s holding of this security and modify the budget constraint as follows,
\[
P_t C_t + \frac{B_{t+1}}{R^t_t} + \omega_t P_t Q_t = B_t + \omega_{t-1} P_t (Y_t + Q_t) + W_t N_t + \int_0^1 \Pi_t (\nu) \, d\nu.
\]
Here, \(Q_t\) denotes the ex-dividend and real price of this security (excluding the current dividends and adjusted for the nominal price level). Using the optimality condition for \(\omega_t\), we obtain,
\[
Q_t = E_t^M \left[\beta^{C_{t+1}^{-1}} \frac{C_{t+1}}{C_t} (Y_{t+1} + Y_{t+1}) \right].
\]
Solving the equation forward, and using the transversality condition, we further obtain
\[
Q_t = E_t^M \left[\sum_{k \geq 1} \beta^k \frac{(C_{t+k})^{-1}}{(C_t)^{-1}} Y_{t+k} \right].
\]
After substituting \(Y_t = C_t\) and simplifying, we find
\[
Q_t = \frac{\beta}{1-\beta} Y_t. \quad (A.23)
\]
Hence, in view of log utility, the equilibrium price of the market portfolio is proportional to output. Substituting \(Y_t = \exp (\tilde{y}_t) Y_t^*\) and \(Y_t^* = A_t (N^*)^{1-\alpha}\) and taking logs, we obtain Eq. \((8)\) in the main text,
\[
q_t = q^* + a_t + \tilde{y}_t \text{ where } q^* = \log \left(\frac{\beta}{1-\beta} (N^*)^{1-\alpha} \right).
\]
In equilibrium, asset prices are proportional to output. Therefore, asset prices change either when productivity \((a_t)\) changes or when the output gap \((\tilde{y}_t)\) changes.
B. Appendix: Omitted derivations

This appendix presents the derivations omitted from the main text.

B.1. Omitted derivations in Section 3.3

Bayesian updating. The realization of aggregate demand provides each agent with an independent and noisy signal about the persistent component, \(g_t = g + v_t \sim N(0, \Sigma) \). Agents combine this data with their prior beliefs, \(g \sim N \left(g_0, C_0^{-1} \Sigma \right) \) [cf. (10)], to form their posterior beliefs. Applying the Bayes’ rule, at the beginning of each period \(t \), agent \(j \) believes the persistent shock is Normally distributed with mean and variance given by,

\[
C_j(t) = C_j(0) + \sum_{t=0}^{t-1} \Sigma^{-1} g_t
\]

Here, \(C_j(0) \) denotes the precision of the initial belief and \(\Sigma^{-1} \) denotes the precision of each signal. The posterior belief is a precision-weighted average of the prior belief and the signals. The posterior precision (the inverse of the variance) is the sum of the precision of the initial belief and the precision of the signals. The posterior precision increases (or the posterior variance declines) over time.

Using the definition of relative confidence, \(c_{0,t} = \frac{C_0}{c_{0,t} + t} \) [cf. (12)], we write the posterior mean as

\[
g_{j,t} = c_{0,t} g_0 + (1 - c_{0,t}) \overline{g}_{t-1} = \sum_{t=0}^{t-1} \frac{g_t}{t},
\]

The term, \(\overline{g}_{t-1} \), denotes the average realization of aggregate demand up to (and including) the realization in period \(t-1 \). The agent’s posterior (conditional) mean belief is a weighted average of her initial mean belief and the realized data. This proves the first line in (11).

To prove the second line in (11), note that

\[
g_{j,t} = \frac{C_0}{C_0 + t} g_0 + \frac{t}{C_0 + t} \sum_{t=0}^{t-2} g_{t-1} + g_{t-1}
\]

\[
= \frac{C_0 + t - 1}{C_0 + t} \left[\frac{C_0}{C_0 + t - 1} g_0 + \frac{t - 1}{C_0 + t - 1} \left(\sum_{t=0}^{t-2} g_{t-1} \right) \right] + \frac{1}{C_0 + t} g_{t-1}
\]

Here, the last line substitutes the definitions of \(g_{j,t-1} \) and \(c_{t-1,t} \).

Proof of Lemma 1. Follows from Eq. (11).

Proof of Lemma 2. We next characterize the higher order beliefs. Note that the identities trivially hold when \(t = s \). Suppose \(t > s \). Consider \(j, j' \in \{F, M\} \) where we allow \(j' \) to be the same as \(j \). Consider the second line of Eq. (11) for agent \(j' \). By repeatedly applying the equation and using Eq. (12), we
obtain:
\[g_t^j' = c_{s,t} g_t^j + (1 - c_{s,t}) g_{s,t-1}, \]
where \(g_{s,t-1} = \sum_{n=0}^{t-s-1} g_{s+n} / (t-s) \) denotes the average realization between periods \(s \) and \(t-1 \). Considering agent \(j \)'s expectation of this expression in period \(s \), we obtain:

\[
E_s^j \left[g_t^j' \right] = c_{s,t} g_s^j + (1 - c_{s,t}) E_s^j [g_{s,t-1}]
\]

\[= c_{s,t} g_s^j + (1 - c_{s,t}) g_s^j. \] \hspace{1cm} (B.1)

Here, the first line uses the observation that \(g_s^j \) is known in period \(s \). The second line observes that for each \(n \geq 0 \), we have \(E_s^j [g_{s+n}] = g_s^j \) by definition of the conditional belief \(g_s^j \). Applying Eq. (B.1) for \(j' = j \) implies Eq. (14). Applying it for \(j' \neq j \) implies Eq. (15) and completes the proof.

B.2. Omitted derivations in Section 4

Recall that the relative confidence is given by \(c_{s,t} = \frac{C_0 + s}{C_0 + t} \) [cf. (12)]. Relative confidence satisfies the following identity, which we use in subsequent analysis,

\[c_{s,t} c_{t',t} = c_{s,t'} \] for \(s \leq t \leq t' \). \hspace{1cm} (B.2)

Proof of Proposition 1 part (i). Provided in the main text.

Proof of Proposition 1 part (ii). The derivation of the forward curve is presented in the main text. Here, we derive the dot curve, and we establish the limit results as \(t \to \infty \). Taking the expectation of Eq. (19) according to the Fed’s belief, we obtain,

\[
E_0^F [i_t] = \rho + (1 - c_{t,t+1}) E_0^F [g_t^F] + c_{t,t+1} E_0^F [g_t^M]
\]

\[= \rho + (1 - c_{t,t+1}) g_t^F + c_{t,t+1} (c_{0,t} g_t^M + (1 - c_{0,t}) g_0^F) \]

\[= \rho + g_t^F + c_{0,t+1} (g_t^M - g_0^F). \]

Here, the second line uses Lemma 2 and the third line uses Eq. (B.2). This proves Eq. (22).

To derive the limit results, note that \(c_{0,t+1} = \frac{C_0}{C_0 + t+1} \). Thus, \(c_{0,t+1} \) is decreasing in horizon \(t \) with \(\lim_{t \to \infty} c_{0,t+1} = 0 \). This implies \(\lim_{t \to \infty} E_0^F [i_t] = \rho + g_0^F \). Likewise, \((1 - c_{t,t+1}) c_{0,t} \) is decreasing in horizon \(t \) with \(\lim_{t \to \infty} (1 - c_{t,t+1}) c_{0,t} = 0 \). This implies \(\lim_{t \to \infty} E_0^M [i_t] = \rho + g_0^M \), completing the proof.

B.3. Omitted derivations in Section 5

Proof of Proposition 2. Most of the proof is provided in the main text. We verify that the conjectured actions correspond to an equilibrium. Specifically, we check that the Fed does not have an incentive to deviate from the equilibrium interest rate in (19),

\[i_0 = \rho + (1 - c_{0,1}) g_0^F + c_{0,1} g_0^M. \]
Recall that, after seeing this interest rate, the market thinks the Fed’s belief is given by,

$$G_0^F(i_0) = \frac{i_0 - \rho - c_{0,1} g_0^M}{1 - c_{0,1}}. $$

Along the equilibrium path, the market’s belief is correct, $G_0^F(i_0) = g_0^F$. Consider the allocations in periods $t \geq 1$. The market thinks the Fed’s belief is given by,

$$G_0^F(i_0) = \frac{i_0 - \rho - c_{0,1} g_0^M}{1 - c_{0,1}}. $$

The terms in set-parentheses are zero-mean random variables (transitory shocks) independent from both g and g_0^F. Substituting this into the expression for the output gap, we obtain

$$E_1^M [\tilde{y}_1|i_0] = g_1^M - g_1^F = c_{0,1} (g_0^M - G_0^F(i_0)) \text{ where } G_0^F(i_0) = \frac{i_0 - \rho - c_{0,1} g_0^M}{1 - c_{0,1}}. \quad (B.3)$$

Next consider the equilibrium in period 0. Note that Eq. (B.3) implies Eq. (26) in the main text, $\frac{dE_0^M[\tilde{y}_1|i_0]}{di_0} = -\frac{c_{0,1}}{1 - c_{0,1}}$. Substituting this into the Fed’s optimality condition (4), we obtain

$$E_0^F \left[(1 + \frac{c_{0,1}}{1 - c_{0,1}}) \tilde{y}_0 \right] = 0. \text{ Since } \frac{c_{0,1}}{1 - c_{0,1}} \text{ is constant, this implies Eq. (5) as before, } E_0^F[\tilde{y}_0] = 0. \text{ Thus, the Fed’s optimal interest rate is still given by Eq. (4),}$$

$$i_0 = \rho + E_0^F[g_0] + E_0^F[E_1^M [\tilde{y}_1|i_0]] = \rho + g_0^F + c_{0,1} (g_0^M - G_0^F(i_0)).$$

The second line substitutes $E_1^M [\tilde{y}_1|i_0]$ as well as the Fed’s belief, $E_0^F[g_0] = g_0^F$. Substituting the equilibrium condition, $G_0^F(i_0) = g_0^F$, we verify Eq. (19). \[\square\]

Proof of Corollary First consider the output gap in period t. Eq. (20) implies,

$$\tilde{y}_t = g_t - g_t^F = g - g_t^F + v_t,$$

where we substituted $g_t = g + v_t$. Next recall that the Fed’s conditional belief is given by [cf. (11)],

$$g_t^F = c_{0,t} g_0^F + (1 - c_{0,t}) \sum_{t=0}^{t-1} \frac{g_t}{t}$$

$$= c_{0,t} g_0^F + (1 - c_{0,t}) \left(g + \sum_{t=0}^{t-1} \frac{v_t}{t} \right)$$

$$= g + c_{0,t} (g_0^F - g) + (1 - c_{0,t}) \sum_{t=0}^{t-1} \frac{v_t}{t}.$$

Substituting this into the expression for the output gap, we obtain

$$\tilde{y}_t = c_{0,t} (g - g_0^F) + \left\{ v_t - (1 - c_{0,t}) \sum_{t=0}^{t-1} \frac{v_t}{t} \right\}.$$

The terms in set-parentheses are zero-mean random variables (transitory shocks) independent from both g and g_0^F.

52
Next consider the interest rate in period 0. Eq. \((33)\) implies

$$i_0 = \rho + (1 - c_{0,1}) g_0^F + c_{0,1} g_0^M.$$

All of the terms except for \((1 - c_{0,1}) g_0^F\) are deterministic.

Finally, we combine the expressions for the output gap and the interest rate to obtain the desired result,

$$\beta^{DGP} (\bar{y}_{t}, i_0) = \frac{cov^{DGP} (c_{0,t} (g - g_0^F), (1 - c_{0,1}) g_0^F)}{\text{var}^{DGP} ((1 - c_{0,1}) g_0^F)}$$

$$= \frac{c_{0,t} (1 - c_{0,1}) cov^{DGP} (g - g_0^F, g_0^F)}{(1 - c_{0,1})^2 \text{var}^{DGP} (g_0^F)}$$

$$= \frac{c_{0,t} \left(\frac{cov (g, g_0^F)}{\text{var} (g_0^F)} - 1 \right)}{1 - c_{0,1}}$$

$$= \frac{c_{0,t} \left(\beta (g, g_0^F) - 1 \right)}{1 - c_{0,1}},$$

where the last line substitutes the definition of \(\beta (g, g_0^F)\). \(\square\)

Proof of Proposition 3. We conjecture an equilibrium that satisfies Eqs. \((33 - 34)\),

$$i_0 = \rho + g_0^F + v_0^F + c_{0,1} (g_0^M - E_0^M [g_0^F | i_0])$$

$$= E_0^M [i_0] + (1 - c_{0,1} \tau) (g_0^F - g_0^F + v_0^F - \bar{v}_0^F)$$

$$E_0^M [g_0^F | i_0] = \frac{i_0 - E_0^M [i_0]}{1 - c_{0,1} \tau}$$

$$= g_0^F + \tau (g_0^F - g_0^F + v_0^F - \bar{v}_0^F).$$

The first row describes the optimal interest rate policy, \(i_0\), given the market’s posterior belief, \(E_0^M [g_0^F | i_0]\). The third row describes the market’s Bayesian posterior belief, \(E_0^M [g_0^F | i_0]\), given the interest rate it observes, \(i_0\). The second and the last rows describe the *equilibrium* levels of \(i_0\) and \(E_0^M [g_0^F | i_0]\), respectively, obtained by substituting the equilibrium level of the *other* variable. The term, \(E_0^M [i_0] = \rho + g_0^F + v_0^F + c_{0,1} (g_0^M - g_0^F)\), describes the market’s ex-ante expected interest rate.

To verify the conjecture, first consider the equilibrium starting period 1 onward given the market’s posterior belief, \(E_0^M [g_0^F | i_0]\). The analysis is the same as in Section 5.1. Since there is no short-run disagreement (by assumption), the Fed’s interest rate decision in period 1 fully reveals its conditional belief \(g_0^F\). Given \(g_0^F\), the equilibrium is the same as before. In particular, after the interest rate decision, the market’s expected output gap is given by the following analogue of Eq. \((28)\),

$$E_1^M [\bar{y}_{1} | i_1] = g_1^M - g_1^F = c_{0,1} (g_0^M - g_0^F).$$

Before the interest rate decision in period 1, we instead have,

$$E_1^M [\bar{y}_{1} | i_0] = c_{0,1} (g_0^M - E_0^M [g_0^F | i_0]) \text{ where } E_0^M [g_0^F | i_0] = \frac{i_0 - E_0^M [i_0]}{1 - c_{0,1} \tau}. \ (B.4)$$

The market expects an average mistake that reflects its posterior belief (in period 0) about the Fed’s
long-term belief.

Next consider the Fed’s optimal interest rate policy in period 0. Note that Eq. \(B.4 \) implies \(\frac{dE_F^M[\hat{y}_1|i_0]}{di_0} = -\frac{c_{0,1}}{1-c_{0,1}\tau} \). Substituting this into the Fed’s optimality condition \(4 \), we obtain \(E_F^M \left[(1 + \frac{c_{0,1}}{1-c_{0,1}\tau})\hat{y}_0\right] = 0 \). Since \(\frac{c_{0,1}}{1-c_{0,1}\tau} \) is constant, this implies Eq. \(3 \) as before, \(E_F^M[\hat{y}_0] = 0 \).

Thus, the Fed’s optimal interest rate is still given by Eq. \(0 \),

\[
\begin{align*}
i_0 &= \rho + E_F^0[\hat{y}_0] + E_F^0[E_F^M[\hat{y}_1|i_0]] \\
&= \rho + g_F^0 + v_0 + c_{0,1}(g_M^0 - E_F^M[g_F^0|i_0]),
\end{align*}
\]

where the second line substitutes \(E_F^M[\hat{y}_1|i_0] \) as well as the Fed’s belief, \(E_F^0[\hat{y}_0] = g_F^0 + v_0^F \). This proves Eq. \(33 \).

Next consider the market’s Bayesian posterior belief in period 0. In equilibrium, the interest rate in \(33 \) provides the market with an imperfect conditional signal of the Fed’s long-term belief (relative to its ex-ante mean),

\[
x_F^0 = \frac{i_0 - E_M[i_0]}{1 - c_{0,1}\tau} = g_F^0 - g_F^0 + v_0 - v_0^F | g_F^0 - g_F^0 \sim N \left(g_F^0 - g_F^0, \sigma^2_g\right).
\]

The market combines the signal with its prior belief, \(g_F^0 - g_F^0 \sim N \left(0, \sigma^2_g\right) \), to form the Bayesian posterior,

\[
E_M^0[\hat{g}_0|g_F^0,x_F^0] = x_F^0 \frac{1}{\sigma^2_g + \sigma^2_v} = \left(g_F^0 - g_F^0 + v_0 - v_0^F\right) \frac{\sigma^2_g}{\sigma^2_g + \sigma^2_v}.
\]

This proves Eq. \(34 \).

Finally, consider the comparative statics of the equilibrium described in the proposition. Eq. \(35 \) follows directly from Eq. \(33 \). Consider Eq. \(36 \) that describes the change in the forward interest rates for \(t \geq 1 \). Recall that starting period 1 onward, the Fed’s belief is revealed and the equilibrium is the same as before. Therefore, \textit{conditional on} \(g_F^0 \), the forward rates are still given by Eq. \(27 \),

\[
E_M^0[i_t|g_F^0] = \rho + g_F^t c_{0,t} (1 - c_{t,t+1}) + g_M^0 (1 - c_{0,t} (1 - c_{t,t+1})).
\]

Taking the expectation, we obtain,

\[
E_M^0[i_t|i_0] = E_M^0[g_F^0|i_0] c_{0,t} (1 - c_{t,t+1}) + g_M^0 (1 - c_{0,t} (1 - c_{t,t+1}))
\]

\[
= \rho + \left(\frac{\hat{g}_0^F}{\tau (g_F^0 - g_F^0 + v_0^F - v_0^F)}\right) c_{0,t} (1 - c_{t,t+1}) + g_M^0 (1 - c_{0,t} (1 - c_{t,t+1}))
\]

\[
= E_M^0[i_t] + \tau c_{0,t} (1 - c_{t,t+1}) (g_F^0 - g_F^0 + v_0^F - v_0^F).
\]

Here, the second line substitutes Eq. \(34 \) and the last line substitutes the market’s ex-ante expectation. Eq. \(36 \) then follows after substituting \(\Delta E_M^0[i_t|i_0] = E_M^0[i_t|i_0] - E_M^0[i_t] \).

\[\square\]

Proof of Proposition 4. We first describe the endogenous weight the Fed assigns to the case in which the market is reactive, \(\delta \). Consider the quadratic,

\[
P(x) = x^2 c_{0,1} - x (1 + 2 \delta c_{0,1}) + \delta (c_{0,1} + 1).
\]

54
Note that $P(\delta) = \delta (1 - \delta) c_{0,1} > 0$ and $P(1) = (1 - \delta) (c_{0,1} - 1) < 0$. Since $P(\cdot)$ is an upward sloping parabola, these conditions imply that $P(\cdot)$ has exactly one zero that falls in the interval $(\delta, 1)$. Let $\hat{\delta}$ denote this zero: that is, $\hat{\delta}$ is the unique solution to

$$P(\hat{\delta}) = 0 \text{ for } \hat{\delta} \in (\delta, 1).$$

(B.5)

Given $\hat{\delta}$, we conjecture an equilibrium that satisfies Eqs. (42) and (43), that is,

$$i_0 = \rho + g_F^0 + v_F^0 + c_{0,1} \left(E_M^0 \left[g_F^0 | i_0, \tau = 1 \right] - \delta E_M^0 \left[g_F^0 | i_0, \tau = 0 \right] \right),$$

$$E_M^0 \left[g_F^0 | i_0, \tau \right] = g_F^0 + \tau \frac{i_0 - E_M^0 \left[g_F^0 | i_0 \right]}{1 - c_{0,1} \delta} + \tau (\Delta g_F^0 + \Delta v_F^0),$$

where $\tau = \frac{\sigma^2_v}{\sigma^2_v + \sigma^2_g}$.

We also conjecture that the forward curve change in period 0 is given by the same expression as in Proposition 3, conditional on the market’s type [cf. (36)]. Therefore, after observing the forward curve reaction to its interest rate decision in period 0, the Fed learns the market’s reaction type τ.

To verify the conjecture, first consider the equilibrium in period 1 given the market’s posterior belief, $E_M^1 \left[g_F^0 | i_0, \tau \right]$. Since the Fed has learned the market’s type τ, the analysis is the same as in Section 5.1.

Following the steps in the proof of Proposition 3, we obtain the following analogue of (B.4):

$$E_M^1 \left[\tilde{y}_1 | i_0, \tau \right] = c_{0,1} \left(g_M^0 - E_M^0 \left[g_F^0 | i_0, \tau \right] \right) \text{ where } E_M^0 \left[g_F^0 | i_0 \right] = g_F^0 + \tau \frac{i_0 - E_M^0 \left[g_F^0 | i_0 \right]}{1 - c_{0,1} \delta}. \quad (B.6)$$

Next consider the Fed’s optimal interest rate policy in period 0. In this case, Eq. (B.6) implies $\frac{dE_M^1 [\tilde{y}_1 | i_0, \tau]}{di_0} = -\frac{\tau c_{0,1}}{1 - c_{0,1} \delta}$. Substituting this into the Fed’s optimality condition (4), we obtain,

$$E_F^0 \left[\frac{d\tilde{y}_0}{di_0} \right] = 0 \text{ where } \frac{d\tilde{y}_0}{di_0} = -\left(1 + \frac{\tau c_{0,1}}{1 - c_{0,1} \delta} \right). \quad (B.7)$$

The marginal policy impact, $\frac{d\tilde{y}_0}{di_0}$, depends on the market’s reaction type, τ. Since the Fed is uncertain about the market’s type, this term does not drop out of the expectation. Therefore, unlike the equilibria we analyzed so far, the Fed’s expected output gap, $E_F^0 [\tilde{y}_0]$, is not necessarily zero.

To characterize the optimal policy, we rewrite Eq. (B.7) in terms of conditional expectations,

$$0 = -E_F^0 \left[\frac{d\tilde{y}_0}{di_0} \tilde{y}_0 \right] = \delta \left(1 + \frac{c_{0,1}}{1 - c_{0,1} \delta} \right) E_F^0 [\tilde{y}_0 | \tau = 1] + (1 - \delta) E_F^0 [\tilde{y}_0 | \tau = 0].$$

Note that the quadratic in Eq. (B.5) implies,

$$\hat{\delta} = \frac{\delta \left(1 + \frac{c_{0,1}}{1 - c_{0,1} \delta} \right)}{\delta \left(1 + \frac{c_{0,1}}{1 - c_{0,1} \delta} \right) + 1 - \delta},$$

(B.8)
Therefore, the Fed’s optimality condition can be equivalently written as,

\[0 = \delta E_0^F [\tilde{y}_0 | \tau = 1] + \left(1 - \delta \right) E_0^F [\tilde{y}_0 | \tau = 0]. \tag{B.8} \]

Hence, the Fed targets a weighted average of the output gap over the cases in which the market is reactive and unreactive. The weight for the reactive case is given by the endogenous parameter, \(\delta \), which exceeds the prior probability of this case, \(\tilde{\delta} > \delta \).

We next solve the policy interest rate. Substituting the IS curve \((2)\) into \((B.8)\), we obtain,

\[
\begin{aligned}
i_0 &= \rho + E_0^F [g_0] + \delta E_1^M [\tilde{y}_1 | i_0, \tau = 1] + \left(1 - \tilde{\delta} \right) E_1^M [\tilde{y}_1 | i_0, \tau = 0] \\
&= \rho + g_0^F + \nu_0^F + c_{0,1} \left(g_0^M - \left\{ \begin{array}{l} \delta E_0^M [g_0^F | i_0, \tau = 1] \\
+ \left(1 - \tilde{\delta} \right) E_0^M [g_0^F | i_0, \tau = 0] \end{array} \right\} \right).
\end{aligned}
\tag{B.9}
\]

The second line substitutes \(E_1^M [\tilde{y}_1 | i_0, \tau] \) from \((B.6)\), as well as the Fed’s belief, \(E_0^F [g_0] = g_0^F + \nu_0^F \). This proves Eq. \((42)\).

Next consider the market’s Bayesian posterior belief in period 0. In equilibrium, the interest rate in \((42)\) provides the market with an imperfect signal of the Fed’s long-term belief (relative to its ex-ante mean), \(x_0^F = \frac{i_0 - E_0^F [g_0]}{1 - c_{0,1} \delta} = \Delta g_0^F + \Delta \nu_0^F \). Following the same steps as in the proof of Proposition 3, we prove Eq. \((43)\) and verify the conjectured equilibrium.

We next establish Eqs. \((44)-(45)\). To this end, we substitute the interest rate from \((B.9)\) into the IS curve \((2)\) to obtain

\[
\tilde{y}_0 = g_0 - E_0^F [g_0] + E_1^M [\tilde{y}_1 | i_0, \tau] - \left\{ \delta E_1^M [\tilde{y}_1 | i_0, \tau = 1] + \left(1 - \tilde{\delta} \right) E_1^M [\tilde{y}_1 | i_0, \tau = 0] \right\}.
\]

Taking the Fed’s expectation conditional on \(\tau = 1 \), we obtain

\[
\begin{aligned}
E_0^F [\tilde{y}_0 | \tau = 1] &= \left(1 - \tilde{\delta} \right) \left(E_1^M [\tilde{y}_1 | i_0, \tau = 1] - E_1^M [\tilde{y}_1 | i_0, \tau = 0] \right) \\
&= - \left(1 - \tilde{\delta} \right) c_{0,1} \left(E_0^M [g_0^F | i_0, \tau = 1] - E_0^M [g_0^F | i_0, \tau = 0] \right) \\
&= - \left(1 - \tilde{\delta} \right) c_{0,1} \left(\Delta g_0^F + \Delta \nu_0^F \right).
\end{aligned}
\]

The second and the third lines use Eqs. \((B.6)\) and \((43)\), respectively. Likewise, taking the Fed’s expectation conditional on \(\tau = 0 \), we obtain

\[
\begin{aligned}
E_0^F [\tilde{y}_0 | \tau = 0] &= \tilde{\delta} \left(E_1^M [\tilde{y}_1 | i_0, \tau = 0] - E_1^M [\tilde{y}_1 | i_0, \tau = 1] \right) \\
&= - \tilde{\delta} c_{0,1} \left(E_0^M [g_0^F | i_0, \tau = 0] - E_0^M [g_0^F | i_0, \tau = 1] \right) \\
&= \tilde{\delta} c_{0,1} \left(\Delta g_0^F + \Delta \nu_0^F \right).
\end{aligned}
\]

This proves Eq. \((45)\). Finally, note that the unconditional expectation is given by

\[
\begin{aligned}
E_0^F [\tilde{y}_0] &= \delta E_0^F [\tilde{y}_0 | \tau = 1] + (1 - \delta) E_0^F [\tilde{y}_0 | \tau = 0] \\
&= \left(-\delta \left(1 - \tilde{\delta} \right) + (1 - \delta) \tilde{\delta} \right) c_{0,1} \left(\Delta g_0^F + \Delta \nu_0^F \right) \\
&= \left(\tilde{\delta} - \delta \right) c_{0,1} \left(\Delta g_0^F + \Delta \nu_0^F \right).
\end{aligned}
\]
This establishes Eq. (44) and completes the proof of the proposition.

Proof of Proposition 5. We verify that the conjectured allocation is an equilibrium. The Fed’s expected interest rate for the next period, \(E^F_t \{i_t\} \), is a one-to-one function of the Fed’s long-term belief, \(g^F_t \). Therefore, the announcement of the expected rate reveals \(g^F_t \). Given \(g^F_t \), the current interest rate is a one-to-one function of the Fed’s short-term belief, \(v^F_t \). Thus, the announcement of the current rate reveals \(v^F_t \). Note also that the Fed does not benefit from deviating from the interest rate policy, since the policy enables it to hit its target (on average), \(E^F_t \{y_0\} = 0 \). This verifies the equilibrium. The rest of the result follows from the analysis preceding the proposition.

B.4. Omitted derivations in Section 6

Proof of Proposition 6. Most of the proof is provided in the main text. Here, we complete the remaining steps. Eq. (49) follows from solving the difference equation forward and assuming that \(\lim_{t \to \infty} E_t^M \{\pi_t\} \) remains bounded. Then, Eqs. (47)–(49) provide a closed form and deterministic solution for \(E_t^M \{\pi_t\}, E_t^i \{\pi_t\}, E^F_t \{y_t\} \). Note also that the IS curve implies \(E_t^M \{y_t\} = E_t^F \{y_t\} + g_t^M - g^F_t \) [cf. (23)]. This verifies the conjecture that for each \(j \), \(E_t^i \{\pi_t\}, E_t^i \{y_t\} \) evolve deterministically and completes the proof.

Proof of Corollary 2. The analysis that precedes the corollary implies

\[
 r_t = \rho + g^F_t + g^M_{t+1} - g^F_{t+1} + E^F_{t+1} \{y_{t+1}\} + \frac{1 - \Phi}{\kappa} E^M_{t+1} \{\pi_{t+1}\}.
\]

Lemma 1 implies \(g^M_{t+1} - g^F_{t+1} = c_{t+1} (g^M_t - g^F_t) \), and Proposition 6 implies \(E^M_{t+1} \{y_{t+1}\} = -\frac{1-\phi}{\kappa} E^M_{t+2} \{\pi_{t+2}\} \). Combining these observations, we obtain the expression for the interest rate,

\[
 r_t = r^{\text{sticky}}_t + \frac{1 - \Phi}{\kappa} \beta (E^M_{t+1} \{\pi_{t+1}\} - E^M_{t+2} \{\pi_{t+2}\}).
\]

To prove the inequalities in the second part of the result, let \(\Delta x_t = x_t - x_{t+1} \) denote the first forward difference of a variable \(x_t \). Note that Eq. (49) implies,

\[
 \Delta E^M_t \{\pi_t\} = \kappa \Delta (g^M_t - g^F_t) + \Phi \beta E^M_{t+1} \{\pi_{t+1}\}.
\]

(B.10)

Note also that Lemma 1 implies,

\[
 \Delta (g^M_t - g^F_t) = g^M_t - g^F_t - c_{t+1} (g^M_t - g^F_t) \\
 = (1 - c_{t+1}) (g^M_t - g^F_t) \\
 = c_{0,t} (1 - c_{t+1}) (g^M_0 - g^F_0).
\]

Combining this with (B.10), we obtain a closed-form solution for the forward difference of inflation,

\[
 \Delta E^M_t \{\pi_t\} = \kappa (g^M_0 - g^F_0) \sum_{n=0}^{\infty} c_{0,t+n} (1 - c_{t+n,t+n+1}).
\]

Note that \(\Delta E^M_t \{\pi_t\} > 0 \) iff \(g^M_0 > g^F_0 \). This implies \(r_t > r^{\text{sticky}}_t \) iff \(g^M_0 > g^F_0 \) and completes the proof of the corollary.
Proof of Corollary 3. Substituting \(g_i^M - g_i^F = g_0^M - g_0^F \), Eq. (49) implies

\[
E_i^M [\pi_t] = \frac{\kappa (g_0^M - g_0^F)}{1 - \Phi \beta} = \frac{u}{\beta (1 - \Phi \beta)}.
\]

Then, Eq. (48) implies

\[
E_i^F [\bar{y}_t] = -\frac{1 - \Phi}{\kappa (1 - \Phi \beta)} u = -\frac{\kappa}{\kappa^2 + \phi (1 - \beta)} u.
\]

Here, the second substitutes \(\Phi = \frac{\phi}{\phi + \kappa^2} \). Likewise, Eq. (47) implies

\[
E_i^F [\pi_t] = \frac{\Phi}{1 - \Phi \beta} u = \frac{\phi}{\kappa^2 + \phi (1 - \beta)} u.
\]

These equations are the same as Eqs. (3.4) and (3.5) in Clarida et al. (1999); Galí (2015) for the special case with a persistent cost-push shock \(\rho = 1 \) after appropriately adjusting the notation (specifically, by setting \(E_i^F [\bar{y}_t] = x_t, E_i^F [\pi_t] = \pi_t, \kappa = \lambda \) and \(\phi = \alpha \)).

C. Appendix: Omitted extensions

This appendix presents the extensions of the baseline model, omitted from the main text.

C.1. Heterogeneous data sensitivity and bundled Fed belief shocks

In the main text, we focus on the case in which the Fed and the market have the same level of confidence in initial beliefs, \(C_F^0 = C_M^0 \). In this appendix, we consider the general case in which agents have heterogeneous confidence levels, \(C_F^0 \) and \(C_M^0 \), as well as heterogeneous initial beliefs, \(g_F^0 \) and \(g_M^0 \). We establish the results that we describe in the concluding section. For simplicity, we focus on the baseline setup in which agents know each other’s initial beliefs and “agree-to-disagree.”

In this case, the Fed and the market have heterogeneous data sensitivity. Specifically, Bayesian updating implies the following analogue of Eq. (11),

\[
g_j^t = c_{j,t-1}^t g_{j,t-1}^t + \left(1 - c_{j,t-1}^t\right) g_{t-1}^j
\]

where \(c_{s,t}^j = \frac{C_0^j + s}{C_0^j + t} \) for \(s \leq t \).

Note that \(C_0^j > C_0^F \) implies \(c_{s,t}^j > c_{s,t}^F \) for each \(t > s \): higher initial confidence implies a higher relative confidence at all times. Therefore, agents put heterogeneous weights on new realizations of aggregate demand. In particular, the agent with smaller confidence puts greater weight on new data. This feature changes how output and asset prices react to demand shocks. The demand shocks are bundled with endogenous Fed belief shocks similar to the ones analyzed in Section 5.1. We start by presenting our main result that characterizes the equilibrium. We then illustrate the comparative statics of demand shocks and contrast the effects with the case with common data sensitivity.

Proposition 7. Consider arbitrary \(C_F^0, C_M^0, g_F^0, g_M^0 \) so that the Fed and the market can have heterogeneous data sensitivity as well as heterogeneous initial beliefs about aggregate demand.

58
The equilibrium output gap and risky asset price are given by
\[\tilde{y}_t = D_t (g_t - g^F_t) \quad \text{ (C.2)} \]
\[q_t = q^* + a_t + D_t (g_t - g^F_t) \quad \text{ (C.3)} \]

Here, \(\{D_t\}_t \) is a deterministic sequence that captures the output impact of demand shocks. It is the unique solution to the difference equation:
\[D_t = 1 + (c^F_{t,t+1} - c^M_{t,t+1}) D_{t+1} \text{ with } \lim_{t \to \infty} D_t = 1. \quad \text{ (C.4)} \]

The solution satisfies \(D_t > 0 \): above-average shocks have a positive impact. If the Fed is more data sensitive than the market, \(C^F_0 < C^M_0 \) (resp. less data sensitive than the market \(C^F_0 > C^M_0 \)), then the impact is dampened (amplified) impact compared to the case with common data sensitivity. Figure 8 illustrates the equilibrium sequence, \(\{D_t\}_t \), for a particular parameterization and heterogeneous data sensitivity.

Eqs. \(\text{(C.6) - (C.7)} \) characterize the equilibrium interest rate as well as the forward and the dot curves. These expressions are similar to their counterparts with common data sensitivity [cf. Proposition \(\text{[I]} \)]. We describe the forward and the dot curves for each period \(s \) (as opposed to only the initial period \(0 \)). This enables us to analyze how a demand shock in the initial period \(0 \), \(g_0 \), affects the forward and the dot curves. The initial demand shock affects the expected interest rates in period 1 (but not in period 0).

Sketch of proof of Proposition \(\text{[I]} \). We next provide a sketch of the proof for the result, which is useful to understand the intuition. We complete the proof at the end of the section. The limit condition holds, \(\lim_{t \to \infty} D_t = 1 \), because in the long run disagreements disappear (due to learning) and the equilibrium approximates the benchmark case with common beliefs. We conjecture that the output gap satisfies Eq. \(\text{(C.2)} \) for period \(t + 1 \). We then establish the same condition for period \(t \) (along with the other equilibrium conditions) proving the result by backward induction.

The key observation is that Eq. \(\text{(C.2)} \) and Eq. \(\text{(C.1)} \) together imply:
\[E^M_{t+1} [\tilde{y}_{t+1}] = D_{t+1} (g^M_{t+1} - g^F_{t+1}) \]
\[= D_{t+1} \left(c^M_{t,t+1} g^M_t - c^F_{t,t+1} g^F_t + \left[\frac{(1 - c^M_{t,t+1})}{(1 - c^F_{t,t+1})} \right] g_t \right). \quad \text{ (C.8)} \]
Unlike the case with common data sensitivity, disagreement is stochastic and depends on the most recent realization of aggregate demand, g_t. Therefore, the market’s expected output gap, $E_t^M[\tilde{y}_{t+1}]$, is no longer deterministic. For instance, when the Fed is more data sensitive, $1 - c^F_{t+1} > 1 - c^M_{t+1}$, an increase in aggregate demand, g_t, leads to a decrease in the expected output gap in the next period.

How does this happen? An increase in demand affects the extent of disagreement: it increases the Fed’s optimism compared to the market, because the Fed reacts to the data more than the market. As this happens, the market anticipates a Fed belief shock similar to the one in Section 5.1, which leads to a lower expected output gap.

Next recall from Eq. (7) that the equilibrium output gap depends on the surprises in the market’s expectation for the future output gap, $E_t^M[\tilde{y}_{t+1}] - E_t^F[E_t^M[\tilde{y}_{t+1}]]$. Using Eq. (C.8), we obtain,

$$E_t^M[\tilde{y}_{t+1}] - E_t^F[E_t^M[\tilde{y}_{t+1}]] = D_{t+1} \left(\frac{1 - c^M_{t+1}}{1 - c^F_{t+1}} \right) (g_t - g^F_t). \quad (C.9)$$

The surprise in the expected output gap depends on the surprise in the demand shock, $g_t - g^F_t$, because this determines the surprise in the extent of disagreement and the implied Fed belief shock.

Substituting Eq. (C.9) into Eq. (7) from Section 3.2 we obtain

$$\tilde{y}_t = \left(1 + D_{t+1} \left[\frac{1 - c^M_{t+1}}{1 - c^F_{t+1}} \right] \right) (g_t - g^F_t).$$

Combining this with the difference equation (C.4), the output gap satisfies Eq. (C.2) also in period t.

The proof at the end of the section completes the remaining steps. Among other things, we show that the difference equation (C.4) has a unique solution $\{D_t\}$, that satisfies the properties in the proposition. In particular, $D_t < 1$ if and only if $C_0^F < C_0^M$. For intuition, suppose the Fed is more data sensitive than the market, $1 - c^F_{t+1} > 1 - c^M_{t+1}$. In this case, the market expects the Fed to react to shocks more than (what the market thinks is appropriate). Therefore, the bundled Fed belief shock dampens
Comparative statics of demand shocks. To shed further light on the mechanism, we next describe how a demand shock in period 0 affects the forward and the dot curves in the next period 1. Recall that agents’ conditional belief in period 1 reflects a combination of their prior beliefs and the shock in period 0 [cf. (C.1)]:

\[g^j_1 = c^j_{0,1} \left(g + u^j_0 \right) + \left(1 - c^j_{0,1} \right) g_0 \text{ for } j \in \{F, M\}. \]

(C.10)

Suppose agents’ prior beliefs are the same, \(g^F_0 = g^M_0 = g \), so that agents initially have no disagreements. As a benchmark, suppose the initial shock in period 0 is the same as agents’ prior, \(g_0 = g \). In this benchmark, agents’ conditional belief is also the same as their prior, \(g^F_1 = g^M_1 = g \). Therefore, the forward and the dot curves in period 1 are also the same [cf. (C.6)–(C.7)].

Now consider what happens when the economy experiences a positive demand shock, \(g_0 = g + \Delta g_0 \) with \(\Delta g_0 > 0 \). First consider the case in which the Fed is more data sensitive, \(1 - c^F_{0,1} > 1 - c^M_{0,1} \). In this case, Eq. (C.10) illustrates that a greater shock induces both agents to become more optimistic, but with a greater effect on the Fed, \(\Delta g^F_1 > \Delta g^M_1 > 0 \). Therefore, the curves shift as if there is a common-optimism shift, as in Section 3.4, combined with a Fed belief shift, as in Section 4. In particular, the dot curve increases more than the forward curve—especially for more distant horizons. The left panel of Figure 9 illustrates this case. Conversely, when the Fed is less data sensitive, \(1 - c^F_{0,1} < 1 - c^M_{0,1} \), a greater demand shock has a larger effect on the market’s optimism than the Fed’s optimism, \(\Delta g^M_1 > \Delta g^F_1 > 0 \). Consequently, the forward curve increases more than the dot curve—especially for more distant horizons—as illustrated by the right panel of Figure 9.
This analysis also provides a complementary intuition for why heterogeneous data sensitivity changes the output impact of demand shocks [cf. Figure 8]. When the Fed is more data sensitive than the market, a positive demand shock increases the dot curve more than the forward curve [cf. the left panel of Figure 9]. This generates a dampened increase in output, because the market considers the Fed’s additional reaction a “mistake”—driven by a Fed belief shock as in Section 5.1. Conversely, when the Fed is less data sensitive than the market, the shock increases the dot curve less than the forward curve [cf. the right panel of Figure 9]; and this induces an amplified effect on output since the market considers the Fed’s muted reaction a “mistake.”

We next complete the sketch proof of Proposition 7. The proof relies on the following generalization of Lemma 2.

Lemma 3. Consider the setup with arbitrary C_0^F, C_0^M. Consider the mean belief at the beginning of period s about the conditional mean belief (about aggregate demand) in a subsequent period $t \geq s$. For each agent $j \in \{F, M\}$ and $j' \neq j$, we have:

\[
E_j^s \left[g_j^t \right] = g_j^s.
\]

\[
E_j^s \left[g_j^t \right] = c_{j,t}^j g_j^s + \left(1 - c_{j,t}^j \right) g_j^t.
\]

As before, each agent expects the other agent’s conditional belief about aggregate demand in a future period to be a weighted average of the other agent’s current belief and its own belief. The weights depend on the other agent’s relative confidence, $c_{j,t}^j$. Intuitively, the agent expects the other agent to learn from the data with a speed that depends on the other agent’s data sensitivity. The proof is omitted (it is a straightforward extension of the proof of Lemma 2 presented in Section 3.3).

Proof of Proposition 7. We first characterize the solution to the difference equation (C.4), \{D_t\}, and establish its properties. We then characterize the equilibrium interest rate as well as the forward curve and the dot curve.

To solve the difference equation, we first rewrite it as:

\[
D_t = 1 + C_t D_{t+1} \quad \text{with} \quad \lim_{t \to \infty} D_t = 1,
\]

where we define

\[
C_t = c_{t,t+1}^F - c_{t,t+1}^M.
\]

As a first step, we claim:

\[
|C_t| \leq |C_0| < 1 \quad \text{for each} \quad t.
\]

To prove this claim, we observe that $c_{t,t+1}^j = \frac{C_0^j + t}{C_0^j + t + 1}$ implies:

\[
C_t = \frac{C_0^F - C_0^M}{(C_0^F + t + 1)(C_0^M + t + 1)}.
\]

This in turn proves the claim since,

\[
|C_t| \leq \frac{|C_0^F - C_0^M|}{(C_0^F + 1)(C_0^M + 1)} = |C_0| = |c_{0,1}^F - c_{0,1}^M| < 1.
\]

62
Here, the last inequality follows since $c^F_{0,1}, c^M_{0,1} \in (0, 1)$.

We next iterate Eq. (C.11) forward to obtain:

$$D_t = 1 + C_t + C_t C_{t+1} + \ldots + C_t C_{t+1} \ldots C_{t+n} + C_t C_{t+1} \ldots C_{t+n} D_{t+n}.$$

Taking the limit of the expression as $n \to \infty$ and using $\lim_{n \to \infty} D_{t+n} = 1$ and $|C_t| \leq |C_0| < 1$ [cf. (C.13)], we obtain:

$$D_t = 1 + \sum_{n=0}^{\infty} C_t C_{t+1} \ldots C_{t+n}.$$

(C.14)

Note also that $|C_t| \leq |C_0| < 1$ implies $|D_t| \leq \frac{1}{1 - |C_0|}$. Thus, there exists a unique and finite solution characterized by (C.14).

Next consider the properties of the solution. First consider the case in which $C^F_0 > C^M_0$. This implies $c^F_{t,t+1} > c^M_{t,t+1}$ for each t, which in turn implies $C_t > 0$ for each t. Then, the closed-form solution in (C.14) implies $D_t > 1$ for each t.

Next consider the case in which $C^F_0 < C^M_0$. This implies $c^F_{t,t+1} < c^M_{t,t+1}$ for each t, which in turn implies $C_t < 0$ for each t. For this case, we next show $D_t \in (0, 1)$ for each t. This proves D_t satisfies the properties in the proposition.

To show the claim, first note that for an arbitrary $\varepsilon > 0$ we have $D_T \in (0, 1 + \varepsilon)$ for sufficiently large T (since $\lim_{t \to \infty} D_t = 1$). Let $\varepsilon = 1/|C_0| - 1$ and note that it is strictly positive [cf. (C.13)]. Suppose $D_{t+1} \in (0, 1 + \varepsilon)$ for some $t + 1$. Then, Eq. (C.11) implies:

$$D_t = 1 + C_t D_{t+1} > 1 - |C_t| (1 + \varepsilon) > 1 - |C_0| (1 + \varepsilon) = 0.$$

Here, the second inequality uses $|C_t| \leq |C_0|$ [cf. (C.13)] and the last equality substitutes the definition of ε. Thus, we have $D_t > 0$. Likewise, we have

$$D_t = 1 + C_t D_{t+1} < 1,$$

where the inequality follows since $C_t < 0$ and $D_{t+1} > 0$. It follows that, for any $D_{t+1} \in (0, 1 + \varepsilon)$, we have $D_t \in (0, 1) \subset (0, 1 + \varepsilon)$. By induction, this proves $D_t \in (0, 1)$ for each t.

Next consider the equilibrium interest rate. Using Eq. (C.8), we obtain

$$E_t^F [E_{t+1}^M \{ \hat{y}_{t+1} \}] = D_{t+1} c^M_{t,t+1} (g_t^M - g_t^F).$$

Substituting this into Eq. (C.6) from Section 3.2 we solve for the equilibrium interest rate as:

$$i_t = \rho + g_t^F + D_{t+1} c^M_{t,t+1} (g_t^M - g_t^F).$$

This proves Eq. (C.5).

Next consider the forward and the dot curves. Fix a period s and a subsequent period $t \geq s$. Consider the interest rate in period t. Taking the expectation of Eq. (C.6) according to the market’s belief in
period s, we obtain,

$$E_s^M [i_t] = \rho + (1 - D_{t+1}c_{t,t+1}^M) E_s^M [g_s^F] + D_{t+1}c_{t,t+1}^M E_s^M [g_s^F]$$

$$= \rho + (1 - D_{t+1}c_{t,t+1}^M) (c_s^F g_s^F + (1 - c_s^F) g_s^F) + D_{t+1}c_{t,t+1}^M g_s^M$$

$$= \rho + g_s^M + c_s^F (1 - D_{t+1}c_{t,t+1}^M) (g_s^F - g_s^M).$$

Here, the second line uses Lemma 3 to evaluate the higher order belief. This proves Eq. (C.6).

Likewise, taking the expectation of Eq. (C.6) according to the Fed’s belief, we obtain,

$$E_s^F [i_t] = \rho + (1 - D_{t+1}c_{t,t+1}^M) E_s^F [g_s^F] + D_{t+1}c_{t,t+1}^M E_s^F [g_s^F]$$

$$= \rho + (1 - D_{t+1}c_{t,t+1}^M) g_s^F + D_{t+1}c_{t,t+1}^M (c_s^M g_s^M + (1 - c_s^M) g_s^F)$$

$$= \rho + g_s^F + D_{t+1}c_{t,t+1}^M (g_s^M - g_s^F).$$

This establishes Eq. (C.7) and completes the proof of the proposition.

\[\Box\]

D. Appendix: Data details and omitted empirical results

This appendix presents the details of the data sources and variable construction used in the main text, and presents the empirical results omitted from the main text.

D.1. Data sources

Fed funds rate. The effective Fed fund rate used in Figure 1 is collected from the New York Fed (available at https://apps.newyorkfed.org/markets/autorates/fed%20funds). The data is available at the daily frequency on business days.

The Fed’s Greenbook forecasts. We obtain the Greenbook data set and its supplements from the Philadelphia Fed (available at https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/greenbook). These data sets are produced by the Fed research staff before each of the FOMC meetings, and they contain the Fed staff’s predictions for several macroeconomic variables. We obtain the policy interest rate predictions from the supplement data set, “Output Gap and Financial Assumptions from the Board of Governors.” Since the date of the Greenbook data set is slightly earlier than those of the FOMC meetings, the predictions in Figure 1 are matched to the corresponding FOMC meeting dates.

The Fed’s SEP and the dot curve. Beginning with the October 2007 FOMC meeting, FOMC meeting participants submit individual forecast of various economic variables in conjunction with four FOMC meetings a year. The Survey of Economic Projections (SEP) provides a summary of these forecasts such as the range, the mean, and the median. These summary forecasts are released to the public shortly after the corresponding FOMC meeting (beginning in April 2011, it is released with the Chairman’s post-meeting press conference). Individual forecasts are made available to the public after five years. Beginning in 2012, the SEP began to include the forecasts for the Fed funds rate—also known as “the dot curve.” Each dot corresponds to an FOMC member’s forecast for the Fed fund rate.

We extract the average SEP projections from the PDF document provided under “projection materials” for the corresponding meeting on the Federal Reserve’s website for the meeting calendars (available at https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm). We use these average predictions...
in the main text. Specifically, Figure 1 plots the median dot (at the time of the FOMC meetings) for the next one-year and two-year horizons.

We extract the individual SEP projections (for the available years) from the PDF document titled “SEP: Individual Projections” for the corresponding meeting on the Federal Reserve’s website for the historical materials by year (available at https://www.federalreserve.gov/monetarypolicy/fomc_historical_year.htm). We use these individual predictions in Appendix D.3 where we extend our empirical analysis in Section 2 to investigate disagreements among FOMC members.

The forward curve extracted from the Fed funds rate futures. We use Bloomberg to obtain the daily Fed funds rate futures prices for up to 36 monthly horizons ahead. Each futures contract settles at the end of the month at 100 minus the average Fed funds rate observed in the corresponding month. Therefore, we extract the implied forward interest rate for the corresponding month using the conversion,

$$(\text{Forward interest rate})_{t,h} = 100 - (\text{FFR futures price})_{t,h}.$$

Here, t is a trading day and $h \in \{1, \ldots, 36\}$ is the monthly horizon. We derive the daily prediction for the quarterly horizons by averaging over the months within the quarter (the remaining months are used for the nearest quarter). Finally, we convert this daily data to monthly data by averaging over all (trading) days within the month.

Blue Chip Financial Forecasts. This is a proprietary database that contains the forecasts made by member financial institutions for future interest rates and economic activity (available at https://lrus.wolterskluwer.com/store/blue-chip-publications/). The data is monthly and contains individual forecasts for up to five quarterly horizons.

At the time of this analysis, Blue Chip provides electronically accessible data from 2001 to 2020. We use this data in Section 2. Specifically, we focus on the predictions for the Fed funds rate, the real GDP growth, and the GDP price index at a horizon of three quarters (beyond the current quarter). The consensus forecast in Figure 2 and Table 1 is the simple average of all individual forecasts. We perform a fuzzy-string adjustment to the name of the financial institutions. For example, both Banc of America Securities and Bank of America Securities appear in the dataset, and we treat them as one forecaster. We make the fuzzy-string adjustment to 48 financial institutions.

Blue Chip also provides PDF publications from 1982 to 2000. We have access to these PDF publications but we haven’t digitized them. In recent work, Bordalo et al. (2018) have digitized the PDF publications. They have kindly agreed to share their digitized data with us. We received the digitized forecasts for the earlier years at a quarterly frequency. Our main data from 2001 to 2020 is at the monthly frequency. We merge the two data sets by converting the observations between 2001 and 2020 to quarterly frequency by taking the simple averages of monthly forecasts in each quarter. We use the extended data set in Appendix D.2 to investigate disagreements over forecasters over a longer time period.

D.2. Disagreements among forecasters over a longer time period

In Section 2 we use our main Blue Chip data from 2001 to 2020 to establish features of forecasters’ disagreements that are consistent with our modeling ingredients. In this section, we show that the same features also hold in our extended (quarterly) data set from 1982 to 2020. Specifically, we replicate the
regression analysis described in Section 2 with our extended data. Table 2 shows that the coefficients are significant and similar to those in Table 1 (although the magnitudes are not directly comparable since the analysis in the main text is at the monthly frequency whereas this analysis is at the quarterly frequency).

Table 2: Correlates of interest rate and inflation predictions

<table>
<thead>
<tr>
<th></th>
<th>FFR prediction</th>
<th>Inflation pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Inflation (GDP price index) pred.</td>
<td>0.18** (0.03)</td>
<td>0.17** (0.03)</td>
</tr>
<tr>
<td>Real GDP prediction</td>
<td>0.08** (0.02)</td>
<td>0.05** (0.01)</td>
</tr>
<tr>
<td>FFR prediction last quarter</td>
<td>0.53** (0.03)</td>
<td></td>
</tr>
<tr>
<td>Inflation pred. last quarter</td>
<td></td>
<td>0.54** (0.04)</td>
</tr>
<tr>
<td>Time and Forecaster FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R^2 (adjusted, within)</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Forecasters</td>
<td>164</td>
<td>164</td>
</tr>
<tr>
<td>Quarters</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>Observations</td>
<td>5,116</td>
<td>5,110</td>
</tr>
</tbody>
</table>

Note: The sample is an unbalanced panel of quarterly Blue Chip forecasts from 1982q4 to 2020q1. Predictions are for 3 quarters ahead. FFR is the quarterly average (percent) and the GDP price index and the real GDP are annualized quarterly growth rates (percent). Estimation is via OLS. Standard errors are in parentheses and clustered by forecaster and quarter. +, *, and ** indicate significance at 0.1, 0.05, and 0.01 levels, respectively.

D.3. Disagreements among the FOMC members

In this section, we show that the disagreements among the FOMC members share the same features as the disagreements among the Blue Chip forecasters that we document in Section 2.

Individual projections from the SEP. Our analysis in this section relies on individual projection data from the FOMC meetings between 2012 and 2015. We restrict our analysis to these dates because the SEP began to include FFR projections in 2012, and 2015 is the most recent year for which individual projection data is available. We analyze projections for the FFR, which proxies for the policy rate, and projections for the core PCE inflation and the real GDP, which proxy for aggregate demand. To parallel the analysis in the main text, we focus on predictions for the third quarter beyond the current quarter. We obtain these third-quarter predictions by appropriately interpolating the projections for the end of the current year and the end of the next year.

One issue is that the FOMC members’ predictions over this period are de-identified—that is, the individual projections are assigned random ID numbers separately for each meeting. To investigate the persistence of relative predictions, we need to link the individual projections across consecutive meetings. We link the projections with a small amount of noise using a matching algorithm that we describe at the end of the section. The algorithm relies on the time-series patterns observed in the SEP projections from 2010 and earlier, where we have full knowledge of individual projections and how they change from meeting to meeting.
Results. We replicate the regression analysis described in Section 2 for the FOMC members’ predictions. Table 3 shows that the coefficients are mostly significant and similar to those in Table 1. The first column shows that FOMC members’ interest rate predictions are correlated with their inflation predictions (with a larger coefficient than in Table 1). The last two columns show that FOMC members’ relative predictions are persistent over time after controlling for time and forecaster fixed effects. On the other hand, the second column is different than its counterpart in Table 1: Over this period, the FOMC members’ interest rate predictions are not significantly correlated with their real GDP predictions.

<table>
<thead>
<tr>
<th></th>
<th>(1) FFR prediction</th>
<th>(2) Inflation pred.</th>
<th>(3) Inflation pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation (core PCE) pred.</td>
<td>0.85** (0.13)</td>
<td>0.88** (0.13)</td>
<td>0.72** (0.18)</td>
</tr>
<tr>
<td>Real GDP prediction</td>
<td>-0.05 (0.08)</td>
<td>-0.09 (0.07)</td>
<td></td>
</tr>
<tr>
<td>FFR prediction last meeting</td>
<td>0.35** (0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation pred. last meeting</td>
<td></td>
<td></td>
<td>0.50** (0.10)</td>
</tr>
<tr>
<td>Time and Forecaster FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Forecaster FE</td>
<td>0.29</td>
<td>0.29</td>
<td>0.41</td>
</tr>
<tr>
<td>R^2 (adjusted, within)</td>
<td>21</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Forecasters</td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Meetings</td>
<td>297</td>
<td>297</td>
<td>275</td>
</tr>
</tbody>
</table>

Note: This data comes from Fed SEP reports from 2012-2015. Projections have been linked meeting to meeting with noise. Predictions and futures are for 3 quarters ahead. For FFR, quarterly data (percent) is obtained by interpolating annual predictions. For core PCE inflation and real GDP, annualized quarterly growth rates (percent) have been obtained from coarser annual predictions. Estimation is via OLS. Standard errors are in parentheses and clustered by forecaster and month. +, *, and ** indicate significance at 0.1, 0.05, and 0.01 levels, respectively.

D.3.1. Matching algorithm

With a ten-year lag, the Fed releases a participant key matching the names of individual participants to the number each was assigned for the meeting. Thus, for SEP reports from 2010 and earlier, we have full knowledge of individual projections and how these projections change over time. Our algorithms relies on the time-series patterns from this period to match the individual projections from 2012 until 2015 across subsequent meetings with a small amount of noise.

Time-series patterns from known data. Starting with the FOMC on 4/29/2009, the Fed began to include long-run predictions in the SEP. From this date through the end of 2010, we observe that participants change their long-run predictions minimally from meeting to meeting. For example, the following table summarizes the absolute change in individual participants’ long-run real GDP predictions across consecutive SEP reports during the time period from 4/29/2009 until 11/3/2010.

|----------------------|---------------------|
| Each data point is an individual participant’s absolute change across one pair of consecutive meetings. For predictions that are not long-run, the time frame is the year relative to the earlier meeting, and the corresponding
Table 4: Abs. change in real GDP prediction across SEPs

<table>
<thead>
<tr>
<th></th>
<th>y+0</th>
<th>y+1</th>
<th>y+2</th>
<th>y+3</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>0.55</td>
<td>0.34</td>
<td>0.16</td>
<td>0.13</td>
<td>0.02</td>
</tr>
<tr>
<td>std. dev.</td>
<td>0.38</td>
<td>0.39</td>
<td>0.21</td>
<td>0.18</td>
<td>0.05</td>
</tr>
<tr>
<td>observations</td>
<td>82</td>
<td>98</td>
<td>98</td>
<td>16</td>
<td>98</td>
</tr>
</tbody>
</table>

Figure 10: Mean absolute change in individual participants’ real GDP predictions across consecutive SEP reports over 4/29/2009-11/3/2010.

As shown in Figure 10, mean absolute change in real GDP predictions across consecutive SEP reports is smaller for predictions that are farther out and is smallest for the long-run predictions. Other prediction categories show a similar pattern, with long-run predictions changing the least from meeting to meeting.

Algorithm. Using this observation, we construct an algorithm for matching predictions across a pair of consecutive meetings. Let \(p = \{p_t^c\}_{t \in T, c \in C} \) be a prediction profile, i.e., an individual participant’s predictions at a particular meeting. Here, \(C \) is the set of categories for which predictions are made, while \(T \) is the set of all times for which predictions are made. We define the \(t \)-norm of the prediction profile \(p \) by the equation

\[
\|p\|_t^2 = \sum_{c \in C} w_t^c (p_t^c)^2,
\]

where the \(w_t^c \) are nonnegative weights. The induced \(t \)-distance between prediction profiles \(p \) and \(q \) is then \(\|p - q\|_t \). Having defined this distance, we can describe the matching algorithm.

Suppose there are \(m \) meetings, and suppose each participant \(p \) starts out with participant ID \(i(p) \).

prediction in the later meeting is made for the same year (e.g., the prediction made for 2016 at the end of 2014 is compared to the prediction made about 2016 at the beginning of 2015; this data point is categorized as a y+2 prediction change).
Let N be an integer greater than all meeting IDs for prediction profiles in the first meeting date. The idea of the algorithm is to match participants across consecutive meetings. Each time we find a match, we relabel the ID of the participant in the second meeting to match that of the participant in the first meeting. If a participant in the second meeting is left unmatched, then that participant is assigned an ID number that has not been used in earlier meetings. Figure 11 illustrates the pseudocode for the algorithm.

Performance. To avoid overfitting, the weights w_t are set to 1, except for unemployment rate, in which case $w_t = 0.1$ for $t = \text{LR}$ and 0 otherwise, due to the relative noisiness of long-run predictions in this category. For the data from 4/29/2009 through the end of 2010, we have the following results. A true positive is a correct match. A true negative is a member correctly left unmatched. A false positive is an incorrect match. A false negative is a member incorrectly left unmatched.

<table>
<thead>
<tr>
<th></th>
<th>TRUE</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>86</td>
<td>13</td>
</tr>
<tr>
<td>Negative</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>88</td>
<td>14</td>
</tr>
</tbody>
</table>

For meetings in this time period, the algorithm matches members with 86% accuracy.