Flip or Flop?
Tobin Taxes in the Real Estate Market *

Chun-Che Chi† Cameron LaPoint‡ Ming-Jen Lin§

April 28, 2022

Abstract

Concerns about housing affordability have led policymakers worldwide to call for property transfer taxes targeting speculators. We estimate the optimal tax on property flips using a sufficient statistics approach which extends the intuition for imposing financial transaction taxes, or Tobin taxes, to the housing market context. The framework incorporates investors’ housing tenure choice and search costs. We apply our approach to a 2011 reform in Taiwan which levied a sales surcharge of up to 15% on investment properties held for two years or less. Linking the universe of personal income tax returns to transaction records, we show via an hedonic bunching design that the tax generated a 75% drop in one-year flips and a 40% drop in overall second home sales volume. We use spatial and time variation in the severity of tropical storm seasons to estimate a 20% share of noise trading prior to the reform. Combining these two sufficient statistics, the optimal transfer tax on flips is 4%, at most, which is close to the flat transfer tax rates imposed in many global real estate markets. Segmentation and lock-in effects limit the ability of Tobin taxes to improve housing affordability.

Keywords: Tobin tax, housing affordability, sufficient statistics, noise trading, bunching, lock-in effects, holding period returns, weather shocks

JEL classifications: G11, G12, H21, R31, R38

*We would like to thank Alina Arefeva, Michael Best, Dragana Cvijanović, Eduardo Dávila, Gabriel Ehrlich, Marco Giaconeletti, Stefano Giglio, Will Goetzmann, Paul Goldsmith-Pinkham, Caitlin Gorback, Andy Haughwout, Wojciech Kopczuk, Jacob Sagi, Christophe Spiecjers, Matt Spiegel, Stijn Van Nieuwerburgh, Jiro Yoshida, and audiences at Yale, Baruch, the AREUEA Virtual Seminar, Online International Public Finance Seminar, UEA European Meeting, SFS Cavalcade, FIRS, AREUEA National Conference, ITAM Finance Conference, and CREDA Real Estate Research Symposium for helpful comments and suggestions. We are grateful to an anonymous firm for providing property listings data to supplement this project. Finally, we thank Mingjun Sun in New Haven, and Evan Hsieh and Ting-Yang Weng in Taipei for providing excellent research assistance. First draft: October 11, 2020.

†Chi: Academia Sinica, Institute of Economics. Email: ccchi@econ.sinica.edu.tw

‡LaPoint (Corresponding Author): Yale School of Management. 165 Whitney Avenue, P.O. Box 208200, New Haven, CT 06520. Phone: 203-432-3755. Email: cameron.lapoint@yale.edu

§Lin: National Taiwan University, Department of Economics. Email: mjlin@ntu.edu.tw
1 INTRODUCTION

Recent booms in real estate investment have fueled concerns about housing affordability and macroeconomic stability, leading policymakers in many large cities to call for taxes which target speculators. Much of the debate surrounding such policies has focused on the role of out-of-town (OOT) investors and the scope for additional taxes on some combination of non-owner occupied or vacant properties and sales to foreign buyers. However, evidence on the ability of anti-speculation transfer taxes to correct pricing inefficiencies in the housing market remains scarce. Transfer taxes render real estate less attractive as an investment good, thus lowering demand and putting downward pressure on prices. But such taxes may also crowd out noisy trades and reduce housing inventory, leading to overall ambiguous effects on prices, volatility, and the redistribution of wealth between renters and homeowners.

This paper quantifies these competing demand and supply effects to calibrate a sufficient statistics model of optimal housing flip taxes. We extend insights from equilibrium models of financial markets by incorporating the microstructure of housing markets, including investors’ tenure choices – that is, the decision of whether to rent or own – segmentation, and search and liquidity costs. For our empirical application, we consider a major transfer tax reform in Taiwan which introduced surcharges of 15% on the sale price of non-owner occupied properties with a holding period under one year, 10% on sales with a holding period between one and two years, and no surcharge if the holding period exceeds two years. Two key aspects of this reform motivate our focus on it. One is that unlike many similar tax policies enacted elsewhere, the regime remains in place for several years without continuous tweaking of the tax schedule, allowing us to cleanly identify treatment and control periods and focus on steady state effects of a discrete change in transfer tax rates. The second is that our access to administrative income and property tax records enables us to exactly compute individual tax liabilities and calibrate optimal transfer taxes targeting specific actors in the housing market, such as renters vs. homeowners, or buyers vs. sellers.

Our theoretical approach takes as a starting point the heterogeneous investor environment of Dávila (2021), who characterizes the optimal financial transaction tax when the policymaker wants to improve price efficiency by taxing away noise trading (à la Pigou). This framework builds on Tobin tax experiments conducted in Scheinkman & Xiong (2003) and Vives (2017). In this class of models, whether prices go up or down depends on investors’ prior beliefs and the relative impacts of the tax on supply and demand for the asset. Even if asset supply is perfectly inelastic, round-trip transaction taxes have competing effects on demand; if the tax is successful at crowding out traders with incorrect beliefs, then price
efficiency improves, which may bid up asset demand.

We show how implementing the optimal tax requires setting aggregate trading volume equal to fundamental volume, implying a tax rate which scales the ex ante share of non-fundamental trading by the semi-elasticity of volume with respect to the transfer tax rate. These are the two sufficient statistics we target in our empirical research designs. The baseline version of our model recovers the formula derived in Dávila (2021) for a general risky asset paying a common dividend, even when we allow for housing tenure decisions and a more complex risk structure in which investors are exposed to both pricing (capital gain) and rental income (dividend) risk. Our optimal tax analysis reflects the observation in Sinai & Souleles (2005) that renting is risky, and investors with non-owner occupied properties – who are the primary target of transfer taxes in practice – are exposed to rental income risk through renters’ substitution towards homeownership when rents fluctuate.

Linking the universe of personal income tax returns to property registrations and transfer tax records, we highlight three main findings from our empirical setting: (i) the tax was very effective at reducing the number of property flips. The tax induced a 75% drop in one-year flips, and a 40% drop in overall sales volume. (ii) The tax did not result in a significant decline in house prices. Negative price movements were concentrated among cheaper apartment units for which realized capital gains would have been small relative to the tax bill incurred by selling. Such sales disproportionately involve low-wealth, non-local investors. (iii) We estimate an upper bound of a 20% share of noise trading in the second home market prior to the transfer tax reform. We use our noise trading share and crowd out measures as sufficient statistics to compute an upper bound optimal tax rate on flips of 4%, which is comparable to the flat transfer tax rates imposed in many global real estate market. Moreover, in this particular episode, the government taxed too much, creating a liquidity crunch while doing little to improve housing affordability.

The real estate transfer tax we analyze shares several features with financial transaction taxes (FTTs), which have received renewed attention among policymakers in Europe since the Global Financial Crisis (Biais & Rochet 2020). Tobin (1978) famously introduced the idea of using FTTs to curb excessive volatility arising from non-fundamental trading. Early evidence on whether Tobin taxes accomplish this objective is mixed. Umlauf (1993), Jones & Seguin (1997), and Hau (2006) all note that increased transaction costs are associated with lower trading volume but increased price volatility in Swedish, U.K., and French equity markets, respectively. We find, within one year of the reform, a paltry 2% decline in volatility of per square-meter prices entirely driven by a 20% drop in unit price volatility in the prime property segment. Our finding that the transfer tax generated lock-in effects mirrors more
recent studies conducted on equity markets which highlight reductions in asset liquidity as a key determinant of the overall pricing effects of FTTs (Foucault, Sraer, & Thesmar 2011; Colliard & Hoffmann 2017; Deng, Liu, & Wei 2018).

A notable feature of anti-speculation housing transfer taxes, like the one we study, is that discontinuities, or “notches,” in the tax schedule are often delineated by the holding period of the property. This is in contrast to several recent papers on transaction taxes which have all analyzed bunching around home sale price notches (Dachis, Duranton, & Turner 2012; Besley, Meads, & Surico 2014; Kopczuk & Munroe 2015; Slemrod, Weber, & Shan 2017; Best & Kleven 2018). Our tax environment incentivizes traders to hold onto a property for at least two years, at which point the tax surcharge rate jumps down to 0%. This focus on short-term trading is also present in capital gains taxation, which usually offers preferential treatment for long-term investments, and which like transfer taxes, induces lock-in effects (Auerbach 1988; Burman & Randolph 1994; Cunningham & Engelhardt 2008; Dai et al. 2008; Gao, Sockin, & Xiong 2020).

The fact that discontinuities in the transfer tax are defined in units of time presents a challenge when it comes to identifying an appropriate counterfactual to quantify changes in sales volume due to the tax. The standard approach in the bunching literature is to use local polynomial regressions to fit a counterfactual distribution, using data from segments of the housing market which are located away from discontinuities in the tax schedule (Kleven & Waseem 2013; Kleven 2016; Glogowsky 2021). But a property owner’s decision to sell today has a mechanical and direct effect on the mass of sales at longer holding period lengths, meaning there is no “unaffected region” of the post-reform holding period distribution.

We propose an hedonic-logit model of house flips which we train on data from the pre-reform period. We then apply the factor loadings from this model to the post-reform period to estimate a counterfactual which adjusts for compositional changes over time which may have been due to either the tax reform or macroeconomic factors. Our identifying assumption is that the market would have priced property amenities in the same fashion as in the pre-reform period in the absence of the tax. We test this by confirming the absence of pre-trends on the loadings for factors included in our hedonic-logit model.

Our study closely relates to a recent set of papers documenting the contributions of property investors to the magnitude of real estate cycles. Sales involving OOT buyers account for one-third of transactions, but 60% of missing sales derived from our bunching analysis, indicating that the transfer tax effectively targeted this group. Chinco & Mayer (2016) show that demand from OOT second-home buyers predicts house price appreciation in the 2000s U.S., but argue that non-local investors earn lower capital gains than their local counterparts.
The positive pricing effects of the “OOT shock” to local housing markets have been echoed in the U.K. (Sá 2016; Badarinza & Ramadorai 2018), Paris (Cvijanović & Spaenjers 2021), Vancouver (Pavlov & Somerville 2020), and in large U.S. markets like California (Li, Shen, & Zhang 2018) and New York (Suher 2016). Gorback & Keys (2020) argue that a more recent wave of stamp duty taxes targeting non-residents in Singapore (Deng, Tu, & Zhang 2019), Hong Kong (Agarwal et al. 2021), and Australia (Hartley et al. 2021) drove up prices in the U.S. by generating an influx of Chinese capital into major U.S. real estate markets.

Contrary to the aforementioned papers, our results undermine the narrative of the novice investor who buys several bottom-tier properties and earns low returns (Haughwout et al. 2011; Chinco & Mayer 2016; García 2019; Garriga, Gete, & Tsouderou 2020). Relying solely on tags for high vs. low returns is problematic for identifying the noise trading share in the optimal transfer tax formula. Exploiting the richness of our transactions records linked to personal income tax returns and wealth statements allows us to move beyond capital gains and compute total tax-adjusted holding period returns, which include mortgage interest payments and rental income. We compute the term structure of holding period returns and find that it is downward sloping, as shown for gross returns on commercial real estate in Sagi (2021) and on housing in Giacoletti (2021), and that the transfer tax shifted returns from shorter to longer horizons. A downward-sloping term structure for second homes is consistent with the intuition of the model in Lovo & Spaenjers (2018), where a negative correlation between returns and holding periods arises in private-value asset markets because wealthier investors select higher reserve prices.

While OOT and low-wealth investors account for the majority of property flips that were crowded out by the transfer tax, short-term speculators do not appear to be misinformed. Prior to the flip tax, locals and OOT sellers earned statistically similar returns, and leveraged property investors earned capital gains similar to those of full equity holders. Hence, as noted in Bayer et al. (2020), tags like non-residency status and leverage which are synonymous with housing speculation in the literature may not necessarily translate to noise trading.

Given these facts about heterogeneous returns, we calibrate the optimal flip tax rate by combining our estimates of the reduction in trading volume from our bunching design with new estimates of the noise trading share in the second home market. We exploit spatial and time variation in severe weather during typhoon seasons in the pre-reform period as a shock to the fixed cost of selling second homes. Our use of weather shocks is inspired by Cho (2020), who documents heat waves in the 19th century reduced noise trading on the NYSE. In recognizing that weather conditions may increase fixed costs of selling properties, we build upon an emerging finance literature which has so far focused on the relationship between
weather-induced sentiments and economic activity (Hirshleifer & Shumway 2003; Goetzmann et al. 2014; Cortés, Duchin, & Sosyura 2016; Dehaan, Madsen, & Piotroski 2017).

Torrential rainfall events generate a robust 20% drop in aggregate sales volume that does not immediately rebound once the typhoon season ends, which yields an upper bound estimate for the noise trading share of 20%, and an upper bound estimate for the optimal real estate Tobin tax of 4%. Reassuringly, we estimate similar drops in local sales volume and a lack of pent-up demand when we match properties to documented typhoon pathways to exploit more granular variation in severe weather conditions. Ultimately, besides failing to promote housing affordability, the tax was excessively punitive towards second home sellers, crowding out more than just the noisy trades that predated the transfer tax.

To rationalize our use of weather conditions to identify noise trading volume, we introduce to our baseline model a general search or liquidity cost buyers must pay. We model these costs as arising from a combination of investors’ potentially biased beliefs about the ease of buyer-seller matching, and persistent shocks which mimic the slow recovery of housing sales volume we document following a severe storm. One might argue that inclement weather reduces sales volume through two mechanisms: by deterring buyers with noisy beliefs but also by increasing fixed transaction costs. We show in our augmented model that the magnitude of the latter channel is proportional to search costs as a fraction of housing prices. When we parameterize this search cost in the data using common measures of liquidity such as time on the market, we find that it is quantitatively small, indicating that the optimal tax rate from our original sufficient statistics formula is biased upward by, at most, 0.04 p.p.

While not directly relevant to our optimal tax rate calculations, the pricing effects of housing transfer taxes are important for their potential to redistribute from high to low housing consumption investors. We examine the short-run activity of sale prices and unit prices around the implementation date. For the entire second home market, prices are smooth across the time cutoff, but this masks significant segmentation. For properties in the bottom quintile of the pre-reform sale price distribution – namely smaller apartment units – there is a clear negative trend break whereby home values decline by 28% over the three years after the reform. Conversely, in the prime property segment, prices rose by 10% around the date cutoff, implying full pass through of the tax by one-year flippers, as wealthy buyers paid a premium to expedite purchases and offset the seller’s tax bill.

The negligible aggregate pricing effects we uncover accord with the housing search theory of Piazzesi, Schneider, & Stroebel (2020), where investors with preferences for low-inventory properties dampen the spread of shocks to other market segments. The market for investment properties in Taiwan is highly segmented; 30% of transactions consist of buyers and sellers
matching within the same wealth quintile. Consequently, when we calibrate a version of our model which allows for separate taxes on owner-sellers (flippers), owner-buyers, and renters, we estimate optimal tax rates of 5.50%, −0.72%, and −0.09%, respectively. Hence, taxing housing as a financial asset entails only mild redistribution from flippers towards renters trying to mount the housing ladder.

Finally, policymakers often invoke macroprudential considerations to support real estate transaction taxes. A common theme in the macro-housing literature is that investors’ access to mortgage credit helped amplify the housing boom-bust cycle in the 2000s U.S. (Mian & Sufi 2010; Favara & Imbs 2015; Graham 2019), leading to higher default and foreclosure rates (Haughwout et al. 2011; Albanesi, De Giorgi, & Nosal 2017). The Taiwan transfer tax reform also occurs during a period of rising levels of mortgage debt and price-rent ratios. Favilukis & Van Nieuwerburgh (2021) use a mono-city model to study the effects of OOT investors in general equilibrium and find that targeted transfer tax hikes are welfare-improving. DeFusco, Nathanson, & Zwick (2017) build a model with short-term and long-term investors with extrapolative beliefs, and conclude that short-term capital gains taxes on real estate sales promote financial stability. Our work provides a real-world laboratory to test whether property flip taxes can mitigate bubbles by deterring noise trading.

The paper proceeds as follows. Section 2 introduces the conceptual framework underlying our optimal transfer tax analysis. Section 3 provides background on our data and the implementation of the transfer tax. Section 4 presents our main results on quantity and pricing responses to the tax. Section 5 characterizes short-term property investors by their returns and offers a weather-based strategy for identifying noise trading. Section 6 combines our sufficient statistics estimates to back out the optimal Tobin tax on housing and discusses redistributive implications. Section 7 concludes.

2 Optimal Real Estate Transfer Tax Framework

This section presents a simple two-period equilibrium model with heterogeneous investors who disagree on the fundamental value of a risky asset, which we model to resemble the microstructure of the housing market, with renters and homeowners differentially exposed to rental and housing price risks. We begin by considering a baseline version of the model in which the policymaker implements the second-best allocation by levying a linear round-trip transfer tax which applies uniformly to all investors. The baseline setup draws heavily from Dávila (2021), who studies the optimal financial transaction tax (FTT) on an arbitrary risky, but non-housing, asset. The planner cares about achieving price efficiency in this market, so
the optimal linear Tobin tax functions as a Pigouvian tax on pecuniary externalities. The planner will set the tax rate to eliminate the spread between the average expected returns of buyers and sellers of housing.

The baseline model yields a sufficient statistics formula which we will apply to the housing transfer tax reform targeting speculators in our empirical setting. We then consider a policymaker who can condition on investor characteristics to set group-specific taxes, such as separate taxes on second homeowners, renters, or owner-occupiers.

2.1 Baseline Framework: Uniform Tobin Tax Instrument

We retain the two-period heterogeneous investor environment of Dávila (2021), but consider a scenario in which the risky asset is housing, which we model as an asset that carries an additional consumption cost H. The value of this housing cost depends on whether households are one of three potential types: renters, owner-occupiers, or landlords. Investors consume housing services on a continuous scale X, which refers to total floor space (e.g. square meters or square feet) occupied. We center this floor space scale around unity so that renters correspond to investors i who consume $X_i < 1$, owner-occupiers consume exactly $X_i = 1$, and landlords consume $X_i > 1$. In other words, landlords consume $X_i = 1$ themselves, and rent out any surplus floor space $X_i - 1$ at some rental rate r.\footnote{In Section 6, we discuss how our optimal tax conclusions carryover to a discrete choice version of this model – where investors demand an integer-valued number of houses. We obtain optimal tax rates of similar magnitude regardless of whether we calibrate the model to continuous or discrete housing decisions.}

There is a unit mass of investors indexed by i and distributed via cumulative distribution function $F(\cdot)$ such that $\int dF(i) = 1$. Investors make their housing decisions in period 1 and consume in period 2. All investors maximize expected utility with constant absolute risk aversion coefficient A_i, which varies across investors:

$$E_i[U_i(C_{i,2})] = E_i\left[-\exp(-A_i \cdot C_{i,2})\right]$$

$C_{i,2}$ refers to terminal (or lifetime) housing consumption net of any taxes, transfers, or housing costs. Implicit in equation (2.1) is that investors liquidate and consume all terminal housing wealth. Expectations are indexed by i since investors hold heterogeneous beliefs about rents and housing prices, which we will describe shortly.

There is a risk-free asset in elastic supply which offers a gross interest rate normalized to 1. We assume housing is in exogenously fixed supply $Q \geq 0$. $X_{i,0}$ is the initial asset endowment, which in this case indicates how much housing an investor is “born” with or
inherits. Housing endowments must add up to total housing supply \(Q \), so \(\int X_{i,0} dF(i) = Q \). We assume investors’ housing decisions are not subject to borrowing constraints, so any loan-to-value (LTV) or debt-to-income (DTI) limits do not bind. We discuss the possibility of leverage limits as a complementary policy tool to housing Tobin taxes in Section 6.\(^2\)

For now we assume the planner has access to a single policy instrument in the form of a linear housing transaction tax \(\tau \) levied as a surcharge on the price of any housing sold in period 1. This tax applies uniformly to both buyers and sellers, and is in that sense a “round-trip” tax like the one proposed by Tobin (1978). We are not aware of any existing anti-speculator housing transfer tax schemes which were levied to meet revenue constraints or finance particular public goods, and so we assume that tax collections are rebated lump-sum to investors.\(^3\) That is, each investor receives a rebate \(T_{i,1} \) and the government runs a balanced budget: \(\int T_{i,1} dF(i) = \int \tau \cdot P_1|\Delta X_{i,1}| dF(i) \). Applying a uniform rebate rule, rather than an individually-targeted rebate which sets the rebate equal to the investor’s tax liability, accounts for redistributive effects of taxing housing transactions.

Lifetime housing consumption is then given by the identity:

\[
C_{i,2} = Y_{i,2} + P_2 \cdot X_{i,1} + P_1 \cdot (X_{i,0} - X_{i,1}) - \tau \cdot P_1|\Delta X_{i,1}| + T_{i,1} - H_{i,2}
\]

where \(Y_{i,2} \) is the stochastic endowment (i.e. income). \(P_1 \cdot (X_{i,0} - X_{i,1}) \) captures proceeds from sales of initial asset holdings. Importantly, the housing cost in budget constraint (2.2) is stochastic and investor specific. We define this housing cost so that it captures imputed rents that landlords and owner-occupiers pay to themselves, and differential exposure to rental risk across the three main investor types:

\[
H_{i,2} = (1 - X_{i,1}) \cdot r_2 \quad \text{with} \quad r_2 \sim_i N(\mu_r, (\sigma_r)^2)
\]

We assume that the fundamentals of the economy are such that the per unit value of housing \(P_1 \) is always strictly positive. However, the unit value of housing in period 2 is stochastic

\(^2\)Housing is distinct from other asset classes in that it is difficult, if not impossible, to short sell. Indeed in our empirical setting we do not observe any taxpayers with \(X \leq 0 \). The baseline optimal uniform tax formula we obtain holds in the presence of short-selling constraints (cf. Proposition 8 of Dávila 2021). Intuitively this is because short-sale constrained investors are inframarginal to changes in the tax rate (i.e. \(dX_{i,1}/d\tau = 0 \) for them). Our framework therefore can accommodate prohibitions on short selling, even without us directly imposing \(X > 0 \) as a constraint.

\(^3\)Indeed, given the substantial lock-in effects of the transfer tax we study in Section 4, such taxes may not raise much revenue in practice. Favilukis & Van Nieuwerburgh (2021) find in a two-city general equilibrium model that the use of transfer tax revenues towards public goods valued by local residents can be important for aggregate welfare, but our focus here is on the use of transfer taxes as a way to correct price distortions in the presence of biased beliefs.
and depends on investor beliefs: \(P_2 \sim_i N(\mu^p_i, (\sigma^p)^2) \).

In this setting, the \textit{ex post} return, or net dividend yield \(\tilde{D}/P_1 \) accrued from occupying and/or renting out housing can then be expressed as:

\[
R_{i,2} = \frac{P_2 - H_{i,2}}{P_1} = \frac{\tilde{D}_i}{P_1}
\]

(2.4)

wherein \(P_2/P_1 \) captures the per unit “capital gain” component to the return which is common across investors, and \(H_{i,2} \) captures the housing cost which varies by investor type. By definition, renters choose \(X_{i,1} < 1 \), implying from (2.3) that housing costs enter negatively into their utility. Similarly, landlords choose \(X_{i,1} > 1 \), so the housing cost enters positively into their utility, indicating that they receive a stream of rental income on the portion of their housing portfolio that they themselves do not occupy. Thus, by modeling the housing cost in this fashion, we can incorporate the rental risk premium emphasized in Sinai & Souleles (2005) and investors’ housing tenure decision while retaining the intuition of the sufficient statistics approach to taxing financial asset transactions introduced in Dávila (2021).

We can now present the investor’s maximization problem as choosing housing (floor space) demand \(X_{i,1} \) under a linear tax imposed on transactions:

\[
\max_{X_{i,1}} \left\{ \left[\mu^p_i - P_1 - A_i \cdot \text{Cov}(Y_{i,2}, P_2) \right] \cdot X_{i,1} - \tau \cdot P_1 \cdot \Delta X_{i,1} - \frac{A_i}{2} \cdot (X_{i,1} \sigma^p)^2 + R_{P_i} \right\}
\]

(2.5)

\[
R_{P_i} = (1 - X_{i,1}) \cdot \left[-\mu^r_i - \frac{A_i}{2} (1 - X_{i,1}) \cdot (\sigma^r)^2 + A_i \cdot \text{Cov}(Y_{i,2}, r_2) + A_i X_{i,1} \cdot \text{Cov}(P_2, r_2) \right]
\]

(2.6)

Implicit in this maximization problem is the assumption that seller landlords perfectly pass through the costs of the transfer tax to their tenants. One can easily generalize this to the incomplete pass through case by defining the tax burden as \(\tau \cdot \eta \times \mathbb{1}\{X_{i,1} < 1\} \) for some constant \(\eta < 1 \).\(^4\) In writing the maximization problem in this way, we emphasize that asset demand in the housing market depends on the risk premium \(R_{P_i} \) that an investor is willing to pay to avoid any risk associated with renting. Asset price risk in (2.5) appears through the expected housing appreciation term: \((\mu^p_i - P_1) \cdot X_{i,1} \).

Equilibrium net asset demand arising from this problem, given an initial price \(P_1 \) and

\(^4\)In Appendix C and Appendix E, we discuss evidence from our application to the Taiwanese housing market of close to 100% pass through for high-end properties where transaction volume is concentrated.
positive flat tax rate \(\tau > 0 \), is therefore:

\[
\Delta X_{i,1}(P_1) = \begin{cases}
\Delta X^+_1(P_1) = \frac{(\mu_i^p + \mu_i^r) - A_i \Omega_i - P_1(1+\tau)}{A_i \Omega_i} - X_{i,0} & \text{if } \Delta X^+_1(P_1) > 0 \\
0 & \text{if } \Delta X^+_1(P_1) \leq 0, \Delta X^-_1(P_1) \geq 0 \\
\Delta X^-_1(P_1) = \frac{(\mu_i^p + \mu_i^r) - A_i \Omega_i - P_1(1-\tau)}{A_i \Omega_i} - X_{i,0} & \text{if } \Delta X^-_1(P_1) < 0
\end{cases}
\]

(2.7)

where net asset demand is \(X_{i,1}(P_1) - X_{i,0} \), and for shorthand we define the investor-specific and uniform variance-covariance terms, respectively, as \(\Omega_i \) and \(\Omega \):

\[
\Omega_i = \text{Cov}(Y_{i,2}, P_2) + \text{Cov}(Y_{i,2}, r_2) + \text{Cov}(P_2, r_2) - (\sigma^r)^2
\]

fundamental risk

affordability risk

(2.8)

\[
\Omega = (\sigma^p)^2 + (\sigma^r)^2 - 2\text{Cov}(P_2, r_2)
\]

(2.9)

Equation (2.7) shows that investors can be sorted into three main categories based on changes in their housing positions. Buyers expand their housing portfolio \(\Delta X^+_1(P_1) > 0 \), while sellers scale back their holdings \(\Delta X^-_1(P_1) < 0 \). The covariance terms in (2.8) and (2.9) show how housing demands are determined by investors’ needs to hedge against two sources of risk: (i) fundamental risk coming from the covariances of rents and prices with the investor’s endowment \(Y_{i,2} \), and (ii) affordability risk which is a market-wide factor captured by the covariance of prices with rents. The greater this covariance, the less renting or collecting rental income offers a hedge against house price movements.\(^5\) Affordability risk is a key feature which distinguishes our theoretical setting from related models of FTTs imposed on trading equities. As we formalize in the next subsection, these two risks interact in different ways depending on investors’ housing tenure decisions.

Trading volume is the sum of the asset demands from equation (2.7) over the set of investors who are buyers:

\[
V(\tau) = \int_{i \in B(\tau)} \Delta X_{i,1}(\tau) dF(i)
\]

(2.10)

Imposing market clearing, \(\int \Delta X_{i,1}(P_1) dF(i) = 0 \), we can solve for the equilibrium price as

\(^5\)Holding the equilibrium price \(P_1 \) fixed, affordability risk has a negative effect on housing demand, or \(\partial X_{i,1}/\partial\text{Cov}(P_2, r_2) = -3A_i < 0 \).
an implicit function of risk preferences and traders’ risk exposure:

\[P_1 = \frac{\int_{i \in \mathcal{T}(P_1)} \left(\frac{\mu_i^p + \mu_i^r}{a_i} - A (\Omega_i + \Omega X_{0i}) \right) dF(i)}{1 + \tau \cdot \left(\int_{i \in \mathcal{B}(P_1)} \frac{1}{a_i} dF(i) - \int_{i \in \mathcal{S}(P_1)} \frac{1}{a_i} dF(i) \right)} \]

(2.11)

where \(A \equiv (\int_{i \in \mathcal{T}(P_1)} A_i^{-1} dF(i))^{-1} \) is the harmonic mean of risk aversion coefficients across active traders, and \(a_i = A_i/A \). We use the sets \(\mathcal{T} \), \(\mathcal{B} \), and \(\mathcal{S} \) to denote investors who are traders, buyers, and sellers, respectively; equation (2.11) is an implicit characterization of the equilibrium price, because the composition of these sets depends, in turn, on the price. From the numerator of (2.11), we observe that prices are increasing in the expected payoff to owning housing, or \(\mu_i^p + \mu_i^r \). The second term in the numerator is proportional to the rental risk premium in (2.6), where \(A \) is the price of risk, and the quantity of risk originates from the variance-covariance terms in (2.8) and (2.9), scaled by portfolio exposure \(X_{i,0} \).

Having characterized the equilibrium in this market, we are now ready to derive an expression for the optimal Tobin tax rate. The policymaker chooses \(\tau \) to maximize the sum of investors’ certainty equivalents. The investor’s certainty equivalent from the planner’s perspective is given by:

\[CE_{i}^p(\tau) = \left[(\mu_i^p + \mu_{i'}^r) - P_1 - \Omega_i \right] \cdot X_{i,1}(\tau) + P_1(\tau) \cdot X_{i,0} - \frac{A_i}{2} \Omega \cdot (X_{i,1}(\tau))^2 + \tilde{T}_{i,1}(\tau) - \mu_p^r \]

(2.12)

where \(\tilde{T}_{i,1}(\tau) = T_{i,1}(\tau) - \tau \cdot P_1(\tau) | \Delta X_{i,1}(\tau) | \) is the transfer the investor receives net of any tax burden they face. \(\mu_p^p \) and \(\mu_p^{r'} \) reflect the planner’s beliefs on prices and rents, respectively. The planner sets the transfer rule \(T_{i,1}(\tau) \). The aggregate certainty equivalent is:

\[CE^p(\tau) = \int CE_{i}^p(\tau) dF(i) \]

(2.13)

and the optimal marginal welfare impact of \(\tau \) is identical to that in Dávila (2021):

\[\frac{dCE_i^p}{d\tau} = \left[(\mu_i^p + \mu_{i'}^r) - (\mu_p^p + \mu_{i'}^r) + \text{sgn}(\Delta X_{i,1}(\tau)) \cdot P_1(\tau) \cdot \tau \right] \frac{dX_{i,1}(\tau)}{d\tau} \]

\[- \Delta X_{i,1}(\tau) \cdot \frac{dP_1(\tau)}{d\tau} + \frac{d\tilde{T}_{i,1}(\tau)}{d\tau} \]

(2.14)

\[^{6} \text{In general, the sign of } \frac{dP_1}{d\tau} \text{ is ambiguous from the standpoint of the model. We elaborate on the conditions under which Tobin taxes increase or decrease the equilibrium price of housing in Appendix A.} \]
where the gap between the planner and investor beliefs on the expected payoff from housing is $(\mu_p^p + \mu_r^p) - (\mu_i^p + \mu_i^r)$. This leads to the following lemma.

Lemma 1. *(Tax equivalence)* The sufficient statistics formula for the optimal linear financial transaction tax is equivalent to that in Dávila (2021):

\[
\tau^* = \frac{s_{NF}\{\tau = 0\}}{-\frac{d \log V}{d \tau} \bigg|_{\tau=0}}
\]

(2.15)

Even after incorporating a richer market microstructure in which there is both pricing and dividend risk and owners and renters, we recover a familiar sufficient statistics formula when housing is taxed as if it were a financial asset. This formula says that, starting at a zero transfer tax rate, the optimal tax rate is the fraction of non-fundamental investors in this market, denoted by s_{NF} scaled by the semi-elasticity of sales volume with respect to the tax.\(^7\) Put another way, tenure choices which impact future housing costs will not change the optimal flat tax rate.

Like all optimal tax formulas in public finance, equation (2.15) showcases a tradeoff. There is more scope for a tax to improve price efficiency if the pre-existing share of non-fundamental trading $s_{NF}\{\tau = 0\}$ is large. However, welfare gains to imposing the tax are limited by the extent to which the tax deters fundamental trades, captured by the semi-elasticity of volume with respect to the tax in the denominator. Our bunching analysis in Section 4.2 calibrates this semi-elasticity, but as our five facts about return heterogeneity in Section 5.1 indicate, relying on observable tags such as non-residency or leverage is not sufficient to identify noise traders. This leads us to instead use severe weather shocks in Section 5.2 to tease out the *ex ante* noisiness of the market for investment properties.

To preview, for our preferred empirical specifications, we estimate a volume semi-elasticity (the denominator) of -5, and an *ex ante* noise trading share of 20% (the numerator), which implies an optimal tax rate of 4%. In Section 6, we put bounds on our optimal tax estimates and discuss the redistributive implications of transfer taxes which are particular to segmented asset markets like housing. As the policy background we provide in Section 3 and Appendix B demonstrates, an optimal flat tax rate of 4% is at the upper end of tax rates that have been implemented in the top 25 global housing markets by size of the investable real estate stock. Our application of the Pigouvian approach to improving price efficiency in housing markets therefore provides some justification for enacted housing tax policy.

\(^7\)The formula in (2.15) corresponds to Proposition 2 in Dávila (2021). We derive expressions for fundamental and non-fundamental trading shares in Appendix A.
2.2 Allowing Investor-Specific Taxes

We now suppose that policymakers can set investor-specific (linear) taxes, rather than being restricted to a uniform Tobin tax. Tenure choices are determined by investors’ beliefs on rents and prices, and thus the policymaker relies on targeted taxes on renters and landlords to implement the first-best allocation. We can categorize investors in this market into four groups based on their housing demand:

\[
\begin{align*}
X_{i,0} &< X_{i,1} &\text{renter-seller (RS)} \\
\max\{1, X_{i,1}(\tau_i')\} &< X_{i,0} &\text{landlord-seller (LS)} \\
X_{i,0} &\leq \max\{1, X_{i,1}(\tau_i')\} &\text{renter-buyer (RB)} \\
1 &< X_{i,0} < X_{i,1}(\tau_i') &\text{landlord-buyer (LB)}
\end{align*}
\]

(2.16)

The initial asset endowment \(X_{i,0}\) sorts investors into renters and landlords, while heterogeneous beliefs about rents and prices, hedging needs captured by the covariance of the income endowment with rental and pricing risk, and taxes determine whether households are sellers, buyers, or inactive investors (\(\Delta X_{i,1} = 0\)). If initial holdings and beliefs are the only sources of heterogeneity, then in order to be buyers landlords must be more optimistic than renters.

Optimal taxes targeting individual investors are given by:

\[
\tau_i^* = \text{sgn}(\Delta X_{i,1}) \cdot \frac{(\mu_i^P + \mu_i^r - \Upsilon)}{P^*}
\]

(2.17)

where \(\Upsilon\) is any real number, and \(P^*\) is the market-clearing price in period 1, which satisfies

8Note that we have ignored the knife-edge case where floor space demand is such that \(X_{i,1} = 1\) and the investor is an owner-occupier who does not have any surplus housing to rent out. Given a continuum of investor beliefs, there is a zero mass of investors at this level of housing demand. Such investors would be risk neutral with respect to rental risk, because they do not participate in rental markets as either a landlord or a renter. Ignoring this investor type is without loss of generality if the tax does not influence owner-occupiers’ tenure choice. That is, investors who are initially owner-occupiers \((X_{i,0} = 1)\) remain owner-occupiers regardless of the tax rate. Indeed, we document this fact in our empirical application, since the transfer tax only applies to second homeowners. Our calibration results in Section 6 support the optimality of a hefty tax on landlord-sellers, but negligible tax rates on other groups.

9A “renter-seller” in this scenario is a renter who lowers their demand for floor space, while a “renter-buyer” is a renter who increases their demand for floor space, but not to such an extent that \(X_i^+ \geq 1\). A renter-seller in the discrete model is an individual who either drops off the housing ladder by going from \(X_{i,0} = 1\) to \(X_{i,1} = 0\), or who remains a renter: \(X_{i,0} = X_{i,1} = 1\). Implicitly, short-selling housing is not possible, so \(X \geq 0\) in each period.
\[\int \Delta X_{i,1}(P^*) dF(i) = 0. \] Buyers who are more optimistic about future rents and prices pay a higher tax rate, and sellers who are more optimistic receive a lower subsidy if the optimal tax is negative. Assuming households are homogeneous within each of the two groups of sellers, the gap between the optimal tax on a landlord-seller vs. a renter-seller is equal to the gap in beliefs on prices and rents, relative to the current equilibrium price, or

\[\tau_{LS}^* - \tau_{RS}^* = \frac{(\mu_{pLS}^g + \mu_{rLS}^g) - (\mu_{pRS}^g + \mu_{rRS}^g)}{P^*} \] (2.18)

where \(\mu_{g}^p \) and \(\mu_{g}^r \) are beliefs about future housing prices and rents for investors in one of the groups \(g \in \{RS, LS, RB, LB\} \) sorted by asset demand in (2.16).

Our model implies the following regression relating housing demand and hedging needs to movements in prices and investor-specific tax rates:

\[\hat{\Omega} \cdot X_{i,t} + \hat{\Omega}_i = \alpha_i \cdot P_t \times (1 + D_{i,t} \cdot \tau_{i,t}) + e_i \] (2.19)

where \(D_{i,t} = \begin{cases} -1 & \text{if } X_{i,t} < X_{i,t-1} \text{ (sellers)} \\ 1 & \text{if } X_{i,t} > X_{i,t-1} \text{ (buyers)} \end{cases} \)

For shorthand, we define \(\alpha_i = -1/\hat{A}_i \), and \((\hat{\mu}_i^p + \hat{\mu}_i^r) = -e_i/\alpha_i\). \(\tau_{i,t} \) is the effective transfer tax rate that investor \(i \) faces under the current tax code.\(^{10}\) The regression in equation (2.19) relates investors’ hedging needs on the LHS to individual risk preferences \(\alpha_i \) and exposure to tax liability \(P_t \cdot \tau_{i,t} \), which may differ across buyers and sellers. The hypothetical housing demand of investor \(i \) under the optimal tax rate can then be written as:

\[X_{i,1}(\tau_i^*) = -\hat{A}_i \cdot \hat{\Omega}_i - P^* + \hat{\gamma} \] (2.20)

which is not a function of unobservable beliefs. Analogously, the estimated housing position is \(\hat{X}_i \), and takes as inputs estimates of the constant absolute risk aversion coefficient from the regression in (2.19) and the estimated market-clearing price \(\hat{P} \), which satisfies the condition:

\[\sum_i \Delta \hat{X}_i = \sum_i \Delta \left\{ \frac{-\hat{A}_i \cdot \hat{\Omega}_i - \hat{P} + \hat{\gamma}}{\hat{A}_i \cdot \hat{\Omega}} \right\} = 0 \] (2.21)

Assuming that individual tax liability is fully rebated via lump-sum transfers, the

\(^{10}\)As we describe in Section 3 and Appendix B, this effective tax rate includes the surcharge reform on sellers, as well as deed and stamp duty tax rates levied on buyers.
counterfactual welfare loss of group g in period t is given by the difference between the aggregate group certainty equivalents under the actual tax regime τ_g and the counterfactual optimal one τ_g^*:

$$\Delta W_{g,t} = CE_{g,t}(\tau_g, P, X_{g,t}, \hat{A}_g, \hat{\Omega}_g; \mu_p, \mu_r, X_{g,t-1}) - CE_{g,t}(\tau_g^*, \hat{P}, \hat{X}_{g,t}, \hat{A}_g, \hat{\Omega}_g; \mu_p, \mu_r, X_{g,t-1})$$

$$= \left\{ \left[(\hat{\mu}_p + \hat{\mu}_r) - \hat{P}_t \hat{\Omega}_g \right] X_{t,g} + P_t X_{t-1,g} - \frac{\hat{\mu}_p + \hat{\mu}_r}{2} \hat{\Omega}(X_{t,g})^2 \right\} - \left\{ \left[(\hat{\mu}_p + \hat{\mu}_r) - \hat{P} - \hat{\Omega}_g \right] \hat{X}_g + \hat{P} X_{t-1,g} - \frac{\hat{\mu}_p + \hat{\mu}_r}{2} \hat{\Omega}(\hat{X}_g)^2 \right\}$$

(2.22)

where $CE_{g,t} = \int_{i \in g} CE_{i,t} dF(i)$ is the group’s aggregate certainty equivalent. $P_t, X_{g,t-1}, X_{g,t}$ refer to actual prices, pre-reform and post-reform property holdings, respectively. $\hat{\Omega}_g$ is the group-specific analog of (2.8), which varies across groups according to the covariance of income endowments with rents and prices. The aggregate welfare loss is the share-weighted average of the welfare losses across investor groups. While the optimal tax results are independent of policymakers’ beliefs about rents and prices, the same cannot be said of investor group and aggregate welfare, which contain the terms $\hat{\mu}_p$ and $\hat{\mu}_r$. In this paper, we remain agnostic about the planner’s beliefs and focus on the optimal corrective tax for a given set of policymaker beliefs about fundamental housing value.

In addition to identifying the sufficient statistics formula from the baseline version of our model, we calibrate investor type-specific tax rates to rich administrative data containing housing portfolios and individuals’ tax liabilities. The calibration involves estimating the regression in (2.19). We defer a more complete discussion of our procedures to Section 6.2, but preview our findings by noting that the vector of optimal tax rates relative to the benchmark category of $\tau_{RS}^* = 0$ includes a tax on landlord-sellers of 5.50%, a subsidy to renter-buyers of −0.72%, and a small subsidy to landlord-buyers of −0.09%.

3 Policy Background & Data

This section offers an overview of the property tax regime in Taiwan and the 2011-2015 transfer tax reform we use as our empirical setting to calibrate our model of optimal housing Tobin taxes. We then describe how we link property transactions data to personal income and property tax returns. In Appendix B, we compare Taiwan’s system to transaction taxes in other major real estate markets.
3.1 **Taiwan’s Real Estate Transfer Tax**

Housing prices in Taiwan dramatically increased after the onset of the Global Financial Crisis in 2008. Figure 1 plots the time series of housing price levels for the entire island and separately for Taiwan’s six major cities using the Sinyi Residential Property Price Index. Overall prices rose by 116% (94% in real terms) from 2001Q1 to 2011Q1, with 41 p.p. of this increase occurring in the two years between 2009Q1 and 2011Q1, prompting concerns from policymakers about a future housing affordability crisis.\(^\text{11}\)

Attributing this house price appreciation to an increase in property flips, the government announced in January 2011 the passage of a transfer tax surcharge (TTS) on short-term sales

\(^{11}\)Publicly available indices do not show any dip in price levels after the transfer tax reform. But officials in the Taiwan Ministry of Finance thought this policy was initially successful at reducing prices, reporting that average transaction values in Taipei fell by around 12% in the quarter after implementation. Existing price indices exclude sales within a six month holding period. In Appendix C, we incorporate such short-term flips into a hybrid repeat sales-hedonic index and find a 7% decline in aggregate housing price levels.
of non-owner occupied properties, effective on June 1, 2011.\footnote{The transfer tax surcharge is included in a policy officially known as the Specifically Selected Goods and Services Tax. According to our translation of the Ministry of Finance website introducing the surcharge:}

Under the new law, sellers were required to pay a fraction of the sale price according to the following rate schedule:

\[
\tau = \begin{cases}
15\% & \text{if } T < 1 \\
10\% & \text{if } 1 \leq T < 2 \\
0\% & \text{if } T \geq 2
\end{cases} \tag{3.1}
\]

where \(T\) is the length of the holding period in years, measured from the seller’s purchase date. With these rules, owners of investment properties are clearly incentivized to wait until at least two years have passed before reselling.

This surcharge only applies to arms-length transactions; gifts between family members, transfers involving employers and their employees, or transfers of government properties are exempted. We exclude from our analysis transactions that satisfy any of these exemption criteria. For transfers involving newly built properties, only the value of land transferred is subject to the surcharge. We drop transactions involving only new constructions or properties which underwent major renovations because the holding period is undefined in such cases.\footnote{The transfer tax incentivizes landowners to engage in property development prior to selling when the cost of development is less than the implied tax savings from reducing \(\tau\) to zero. In spite of this potential tax avoidance opportunity, we do not observe any spike in the number of transactions involving “unregistered partitions” (i.e. renovations) or newly built properties during the reform period.}

The transfer tax surcharge is large relative to payments required under other provisions of the property tax system. Important for our purposes, the June 2011 reform only added the surcharge to short-term sales, leaving untouched all other features of property tax policy. Other pre-existing provisions in the property tax code include six additional taxes, which we describe through a sample tax bill calculation in Appendix B.2. After the reform, short-term sales can trigger three fees, with the seller bearing payment responsibility for each: a land value increment tax, a house transfer income tax, and the transfer tax surcharge. Since the surcharge rate directly applies to gross transfer income, for short-term sales it accounts for
an outsize fraction of the total transfer tax payment due.14

The transfer tax surcharge remained in place from June 1, 2011 until December 31, 2015. A key advantage to using Taiwan as our environment is that the transfer tax stays in place continuously over 4.5 years, so general equilibrium effects of stacking up multiple tax reforms and seasonality in windows around short-duration reforms do not play a role in our estimates.15 On January 1, 2016, the Taiwanese government replaced the surcharge with a new capital gains tax where the rates are decreasing in the holding period length. The capital gains tax rates differ depending on whether the taxpayer’s registered address is overseas, according to:

\[
\begin{align*}
\tau^R &= \begin{cases}
45\% & \text{if } T < 1 \\
35\% & \text{if } 1 \leq T < 2 \\
20\% & \text{if } 2 \leq T < 10 \\
15\% & \text{if } T \geq 10
\end{cases} \\
\tau^{NR} &= \begin{cases}
40\% & \text{if } T < 1 \\
35\% & \text{if } T \geq 1
\end{cases}
\end{align*}
\]

where τ^R is the tax rate for residents, τ^{NR} is the tax rate for non-resident sellers, and T is the holding period length in years. Under a capital gains tax (CGT), the seller’s payment depends on the appreciation of the property, not the transaction value at the time of sale:

\[
CGT^i = \tau^i \cdot (P_T - P_0), \text{ for } i = R, NR
\]

(3.3)

Capital gains taxes thus bid down demand in rapidly appreciating segments of the market, while transfer taxes, due to the fixed nature of the cost, bid down demand in segments where investors’ prospective capital gains are small relative to the tax bill.

We also examine sales volume and pricing behavior around the introduction of the 2016 capital gains tax for properties, but we find no immediate effect around the new time notch along either dimension. We argue that the original transfer tax surcharge was sufficiently punitive towards the predominantly out-of-town second home investors that the new capital gains tax served as a sufficient deterrent.

14Agarwal et al. (2020) study a reform in China which increased the capital gains tax rate for properties sold within five years but find minimal bunching due to rampant tax evasion. As prices underlying the transfer tax reform are not self-reported by taxpayers in Taiwan, the scope for tax evasion is more limited in our setting. Relabeling a second home as an owner-occupied unit would be an infeasible evasion strategy, as applications for permanent address changes would take a full tax year to resolve.

15This is in contrast to a series of stamp duty tax hikes initially levied on non-residents in Singapore (Deng, Tu, & Zhang 2019) in 2011 and Hong Kong (Agarwal et al. 2021) in 2012.
gains tax legislation did not alter the investment horizons of this group.16

3.2 PERSONAL INCOME TAX & PROPERTY DATA

We combine four main confidential tax datasets made available to us by the Financial Information Agency of the Ministry of Finance for years 2006 to 2016. We then merge the tax records to a registry of public property sales that we compiled from county offices.

Deed tax records. These data contain transaction dates, buyer and seller identifiers, and taxes paid by the buyer on the appraised property value, which we use to link property owners to their personal income tax returns and other files estimating taxpayer wealth. The deed tax data distinguish unique properties, so together with the transaction date, we can compute holding periods between sales for the 43% of observations where the previous sale date falls within our sample period.17

The deed tax files classify sellers and buyers based on their institutional and residency status. We also observe whether buyer-seller pairs share an employer, school, or other institutional affiliation. We use these markers to remove from our sample non-arms-length transactions, sales involving a public entity, and probate transfers, as such sales may not reflect market conditions and are not subject to the transfer tax surcharge.

Building property tax records. We use the unique property identifiers in the deed tax data to link transactions to information on property characteristics—such as address, building material, zoning, use category (e.g. residential, commercial, industrial), number of floors, layout, area, and floor space, among other features—contained in the building property tax records. These records are collected annually, while building characteristics are updated every three years when an appraisal occurs. Because the building property tax rate depends on the number of houses owned by the taxpayer and owner-occupied status of the structure, we combine the previous holding period with these records to identify sales subject to the

16Since the capital gains tax rate drops sharply by 15 p.p. after the two-year holding period threshold, the 2016 property tax reform may have encouraged some sellers of recently purchased properties to delay sales until 2017 or 2018. Unfortunately, this is beyond the December 31, 2016 end date of our sample of confidential transaction records.

17We can also estimate (up to the nearest year) the holding period for properties which were initially built and then subsequently sold for the first time within our sample period. To do so, we use cumulative building depreciation recorded in the deed tax records to back out the construction year. However, since we cannot precisely distinguish whether a sale of a new property has crossed the one or two-year holding period tax notches at the transaction date, in our main analysis we do not include sales of newly constructed buildings. This has little influence on our results, as newly constructed buildings are exempt from the TTS.
transfer tax surcharge. We find 28% of taxpayers own more than one home, and one-third of owners of second homes have a portfolio of three or more properties.

Personal income tax returns. Our third dataset consists of the universe of personal income tax returns which we link to property owners via the same taxpayer ID listed in the property tax records. Taxpayers provide two addresses when they file income taxes: a contact address (i.e. the tax bill address) and an address used to determine residency and any local components of income tax liability. Following Chinco & Mayer (2016), who use a similar dataset of merged property tax bills and transaction-level deeds, we define out-of-town (OOT) buyers or sellers as taxpayers with a residency address outside one of the 22 administrative regions where the transacted property is located.\(^{18}\) Given this definition, 73% of sales involve at least one OOT counterparty; sales where both the seller and buyer are OOT account for 27% of all arms-length transactions over our sample time period.

Income tax returns in Taiwan contain information on wages and salaries, as well as special sources of income such as lottery income and inheritances. Taxpayers also record interest payments towards mortgages, rental income and certain types of deductions for losses, donations, and insurance premia. Although we do not observe outstanding mortgage balances, we use the information on interest payments to adjust for net-of-tax mortgage payments in our definition of holding period returns.

Personal wealth estimates. Our final dataset consists of personal wealth records created by the government from a combination of property registrations and information reported by taxpayers on income tax returns, as described in Chu, Lin, & Liu (2017). We observe estimated values of properties, vehicles, equities, and savings and other liquid wealth. Since triennial building and land appraisals significantly underestimate market values, we focus on heterogeneous responses to the TTS reform by wealth quantiles rather than by levels of wealth. For vehicles, the tax authority uses information from DMV registrations to assign an average retail price for the make and model (including foreign and luxury vehicles), and subtracts linear depreciation. We compute savings deposits and other liquid wealth such as corporate bonds from interest income items in personal tax returns. We follow the procedures in Chu, Lin, & Liu (2017) to value stock shares; we price non-publicly traded stocks at face value and price publicly-traded stocks at the closing price of the annual ex-right date.\(^{19}\)

\(^{18}\)Administrative regions in Taiwan are roughly equivalent to the size of a combined statistical area (CSA) in the U.S. The 22 regions include the six special municipalities (Taipei, New Taipei, Taichung, Taoyuan, Tainan, Kaohsiung), three cities (Chiayi, Hsinchu, Keelung), and 13 counties.

\(^{19}\)For companies that do not distribute dividends, there is no ex-right date. In such cases we use the closing price on July 31 of each year.
Housing sale prices. Property sale values were not collected by the tax authority in a systematic fashion prior to the TTS reform in 2011, as the existing transfer taxes only applied to appraisal values. Prior to 2012 transaction records were scattered across 109 local land offices covering all 368 districts. We collect these records and append them to the public transaction records which cover all regional markets beginning in 2012Q3. We merge the public transaction records to the confidential property and deeds tax data using the address string, latitude/longitude coordinates, and transaction dates.

For our analysis of holding period returns in Section 5, we need to take a stance on property “market value” during tax filing years when the property does not sell. We inflate the last observed sale price to current market value using a price index which applies to the property type (i.e. apartment vs. single-family home) and metro area combination. We compare several candidate price indices, including official government indices and the Sinyi indices pictured in Figure 1, but settle on our own index based on the matching estimator approach of McMillen (2012), since it reflects the near universe of sales (including short-term sales) and covers the longest time period in the pre-reform period.\(^{20}\)

4 QUANTITY & PRICING RESPONSES

In this section we present our main results on the effects of the TTS reform on sales volume and prices, exploiting bunching around the holding period thresholds to identify the volume semi-elasticity in optimal tax rate formula (2.15).

4.1 SUMMARY STATISTICS: BEFORE VS. AFTER THE REFORM

We start by comparing key summary statistics before and after the June 2011 reform for sales of second homes which were targeted by the new surcharge. In the top panel of Table 1, we present summary statistics for sales conducted within one year on either side of the reform, as well as for different windows of within less than one year of the reform. Overall sales volume declines by 44% within a year of the TTS, and holding period lengths nearly double. The tax appears to have been immediately salient to investors, who shift their horizon beyond two years to avoid paying the surcharge.

\(^{20}\)We discuss our indexing methods in Appendix C. In the end, the indices all closely track each other. Over the period 2012Q3 to 2019Q4 when the official index is available, the time series correlation between our matching estimator index and the official index is 98%, with a correlation between our index and the Sinyi index of 73%.
The bottom panel of Table 1 shows how the composition of second homes changes across different parts of the *ex ante* sale value distribution within one year on either side of the TTS reform. Second home sales volume contracts by 45% at the top of the price distribution, and holding period length almost doubles regardless of property value. Interestingly, unit prices grow for properties in the top 60% of the pre-reform price distribution, but exhibit a mild 1% decline at the bottom of the distribution. This price growth could be due to two potential channels: one is a selection effect whereby only relatively high quality properties with a holding period above two years get offloaded in the aftermath of the reform, leading to a mechanical increase in average prices paid. Another channel is increased bargaining power of sellers, who may now seek higher prices as compensation for the increased tax burden. Since sales volume collapses following the reform, investment-grade real estate may very well have become a “seller’s market.” We provide evidence in favor of the latter channel in Section 4.3.

Overall volatility in the second home market declined by 2% within a year of the reform, with volatility initially dropping by around 30% within the first few months of the reform before recovering to pre-reform trend within a year, as investors who waited to reach the two-year threshold began to sell. The 20% drop in unit price volatility for prime properties while volatility increased for more affordable properties suggests significant market segmentation. More generally, the summary statistics echo Umlauf (1993), Jones & Seguin (1997), and Hau (2006), who provide evidence that increasing transaction costs in securities markets increases price volatility, which goes against the logic of Tobin’s (1978) proposal for a round-trip sales tax. Whether volatility increases or decreases for specific market segments is theoretically *ex ante* ambiguous and depends on buyer and seller outside options. We return to this point in our discussion of noise trading in Section 5.

4.2 Bunching Estimates of Market Unraveling

We now investigate in more detail the quantity effects of the tax to identify the volume semi-elasticity parameter in the optimal tax formula.

21 Similarly, Umlauf (1993) finds return volatility in the Swedish equity market declines *relative* to volatility in the NYSE and LSE, as investors can avoid a 2% transaction tax by shifting investments to other markets. Cai et al. (2020) show a tripling of the Chinese stamp tax on stock market trading led to a trading frenzy in the untaxed warrant market, illustrating the “whack-a-mole” game inherent in Tobin taxes.
<table>
<thead>
<tr>
<th></th>
<th>Sales volume</th>
<th>Holding period length</th>
<th>Unit prices</th>
<th>Unit price volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Growth</td>
<td>Before</td>
</tr>
<tr>
<td>< 1 year</td>
<td>120,265</td>
<td>67,197</td>
<td>−44%</td>
<td>579</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6 months</td>
<td>65,761</td>
<td>30,748</td>
<td>−53%</td>
<td>566</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 3 months</td>
<td>34,215</td>
<td>14,350</td>
<td>−58%</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2 months</td>
<td>24,488</td>
<td>9,252</td>
<td>−62%</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 month</td>
<td>14,944</td>
<td>4,120</td>
<td>−72%</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quintile</td>
<td>2,707</td>
<td>1,740</td>
<td>−36%</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second quintile</td>
<td>3,124</td>
<td>1,966</td>
<td>−37%</td>
<td>591</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third quintile</td>
<td>2,684</td>
<td>1,785</td>
<td>−33%</td>
<td>566</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth quintile</td>
<td>2,061</td>
<td>1,371</td>
<td>−33%</td>
<td>558</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fifth quintile</td>
<td>1,721</td>
<td>946</td>
<td>−45%</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table shows summary statistics around the transfer tax surcharge implementation date of June 1, 2011. The top panel shows how overall sales volume, average holding period length, average unit prices (in NTD per square meter of floor space), and unit price volatility evolve by window length around the reform. For instance, < 1 month subsets to second home sales occurring either one month before or after the reform, whereas < 1 year looks at a symmetric 365 day window around the reform. Unit price refers to the price per square meter of land, or in the case of an apartment unit, price per square meter of floor space. The bottom panel instead shows how the same variables change within a one-year window before vs. after the reform, split by quintiles of the last observed pre-reform sale price for the property.
4.2.1 Before vs. After Comparisons

Figure 3 compares the distribution of sale frequency for second homes by holding period for three years before (Panel A) versus three years after (Panel B) the transfer tax was implemented. The figure illustrates three behavioral responses: first, there is clear evidence of bunching above the one-year and two-year holding period notches. The bunching response is much larger around the two-year notch where the transfer tax rate drops from 10% to 0%, implying that many investors simply delay sales by up to two years to avoid paying the tax.

Second, the TTS reform was very effective at reducing the number of sales with a holding period of less than one year. Prior to 2011, about two-thirds of all flips occurring within two years have a holding period of less than one year. Even though the surcharge rate drops from 15% to 10% across the one-year holding period notch, compared to the pre-reform distribution the implied excess mass for a six-month window around this notch is negative. Interestingly, since newly constructed buildings are not subject to the transfer tax surcharge, the high volume of short-term flips in the ex ante period reflects the relative absence of other search frictions in the second home market.22

Third, the comparison between the pre-reform and post-reform distributions shows short-term unraveling in the market for investment properties. In the post-reform period, sales to the right of the two-year holding period notch only account for the drop in sales to the left of the notch once we include all properties with holding periods up to 2,000 days. Hence, in many cases, investors may already hold a property long enough to incur no surcharge but are unable to quickly find a buyer, implying that the transfer tax surcharge renders second homes more illiquid.23 In other words, while the surcharge reduces demand from buyers

22 In Appendix B, we estimate the minimum amount of time required to close a residential property sale after identifying a buyer to be 38 days, with an average duration of 113 days for transactions in the capital city of Taipei. Thus, the high number of sales occurring within a six-month holding period pre-2011 is completely plausible, conditional on sellers being able to quickly identify interested buyers.

23 In Appendix I we provide further evidence of a liquidity crunch using listings data from a large, anonymous brokerage firm. We find that mean time on market (TOM) increases by 7 days after the TTS reform (p-value = 0.000) among listings closed within a year on either side of the June 1, 2011 reform date. This increase in TOM is driven entirely by non-owner occupied homes which are subject to the flip tax.
FIGURE 2. Distribution of Sales Volume by Holding Period

A. Pre-reform Period

B. Post-reform Period

Notes: Each panel shows the distribution of total property sales, restricting to properties with a clearly defined holding period. Panel A is the distribution for the three years prior to June 1, 2011, while Panel B is the distribution for the three years following the TTS reform. The vertical red dashed lines indicate the one-year and two-year holding period notches. We bin holding period lengths by week.
looking for second homes, it also induces a short-term negative supply response.\footnote{Short-term sales volumes converged to a new steady state within six months. Some bunching at the two-year notch is present even in the first month, with bunching around the one-year notch stabilizing by the fourth month following the reform. This almost immediate convergence suggests a minor role for the optimization frictions documented in other bunching contexts (Chetty et al. 2011; Kleven & Waseem 2013; Gelber, Jones, & Sacks 2020), and is consistent with Best & Kleven (2018) who find similarly fast reactions to changes in the U.K. Stamp Duty Tax schedule. Our finding that sellers responded almost immediately to the policy is likely due to the large implied tax savings from delaying sales. For example, flipping a home after two years instead of after one year at the median post-reform value of 5.3 million NTD (177,000 USD) would lower the surcharge payment due by 17,700 USD.}

4.2.2 An Hedonic-Logit Counterfactual Model

A simple excess mass calculation based on comparing the pre-reform and post-reform distributions in Figure 2 may not be informative about the true extent of missing sales due to the tax. For instance, there may be macroeconomic trends unrelated to the tax which lead to changes in the composition of properties sold. A common approach to constructing counterfactuals in the literature is to fit local polynomial regressions to transactions data around the policy cutoff of interest (e.g. Chetty et al. 2011; Kleven & Waseem 2013; Best & Kleven 2018). In our setting such an approach can be summarized by the following regression:

\[
q_j = \sum_{k=0}^{p} \beta_k \cdot (h_j)^k + \sum_{j=h_-}^{h_+} \gamma_k \cdot 1 \{h_j = k\} + \nu_j
\]

(4.1)

where \(q_j \) refers to the mass in holding period bin \(j \) and \(h \) refers to the length of the holding period within the bin. \([h_-, h_+]\) is an excluded range of holding period lengths around either the one-year or two-year threshold. The counterfactual bin counts are then obtained as the fitted values from the polynomial of order \(p \) via: \(\hat{q}_j = \sum_{k=0}^{p} \hat{\beta}_k \cdot (h_j)^k \).

We obtain nonsensical results when we use this excluded range method to construct a counterfactual distribution of sales by holding period. Excluding properties around the one-year and two-year thresholds generates a counterfactual where sales volume for holding periods of six months or less is actually higher in the post-reform data than the predicted volume. If we took these results seriously, we would erroneously conclude that the transfer tax surcharge increased net trading volume!

The problem is, unlike transfer taxes which introduce price notches, the discontinuities in our setting are in terms of units of time. Since a homeowner’s decision to sell a property today has a persistent influence on sales in future dates, there can be no well-defined concept of an excluded region when the tax regime introduces holding period notches. Doubly problematic
is the fact that the transfer tax we study features two time discontinuities which are relatively
close together, so any behavioral responses around the one-year threshold will likely have
large effects on sales volume around the two-year threshold.

Our strategy to address these concerns is to estimate an hedonic-logit model on the
pre-reform transaction data. We then apply the fitted sale probabilities from that model
to construct what the distribution of sales would have looked like in the absence of the
tax, conditional on property amenities in the available housing stock. The procedure can be
described by the following equations:

\[f_{i,t} = \Pr(y_{i,t} = 1 | X_{i,t}, \delta_t, \beta) = \frac{1}{1 + \exp(-\delta_t - \beta' \cdot X_{i,t})} \quad (4.2) \]

\[y_{i,t} = \mathbb{1}\{\delta_t + \beta' \cdot X_{i,t} + \epsilon_{i,t} > 0\} \quad (4.3) \]

\[\hat{q}_j = \sum_{i=1}^{N_j} \hat{f}(X_{i,t}; \hat{\delta}_t, \hat{\beta}) \quad (4.4) \]

The first two equations specify a logit model of sale probability where we include month-year,
day-of-week, and week-of-month fixed effects, as well as a holiday dummy in the vector of
time fixed effects \(\delta_t \). A set of potentially time-varying property characteristics \(X_{i,t} \)
adjusts for compositional changes in the market, and includes a polynomial of holding period length.
The last line computes the counterfactual sales volume in holding period bin \(j \) by integrating
up from the fitted probabilities \(\hat{f}_{i,t} \) for each property \(i \) in the post-reform period.

The identifying assumption for \(\hat{q}_j \) to be an appropriate counterfactual for sales volume
is that, in the absence of the TTS, the market would have priced property amenities in
\(X_{i,t} \) in the same way as in the pre-reform period. We assess the validity of this assumption
in two ways. First, we check how well the model can fit the empirical distribution in the
pre-reform period. Figure 3 shows that our model fits the empirical distribution quite well.
We obtain a p-value of 0.86 for the Kolmogorov-Smirnov test of the null of no difference
between the empirical and model-implied sales distributions. Second, in Appendix J we

25Our counts of sales crowded out by the Tobin tax are similar when we instead estimate a linear
probability model (LPM) or probit. Under each type of model, conditional on the same RHS set of covariates,
we find the tax generated missing sales volume equal to approximately half of average annual sales in the
pre-reform period. The LPM frequently generates fitted probabilities in excess of one, leading to overestimates
of the counterfactual amount of short-term trades, and therefore overestimates of missing sales.

26In Appendix H, we show our missing mass estimates are quantitatively similar when we restrict to older
properties which are more likely to have recently been renovated. This suggests any model misspecification
in Figure 3 is not due to unobserved home improvements (Goetzmann & Spiegel 1995). We discuss how our
failure to fully predict \textit{ex ante} short-term sales volume influences our optimal tax results in Section 6.
FIGURE 3. Hedonic-Logit Model Fit to Pre-Reform Data

Notes: The figure plots the distribution of sales volume by holding period length estimated via the system of equations in (4.2)–(4.4) in red. The empirical pre-reform distribution appears in the blue dashed line. The full logit model includes month-year, week-of-month, day-of-week fixed effects, a holiday dummy, a quadratic in property age (measured from the construction date), dummies for structure material, dummies for use category (e.g. apartment vs. single family home), floor space, land area, holding period length, number of floors and building floor dummies. We bin holding period lengths by month.

run versions of the model in (4.2)–(4.3) where we interact property characteristics such as age with quarter-year fixed effects and check for pre-trends in the estimated factor loadings.\(^{27}\)

Figure 4 illustrates that the TTS reform crowded out about 33,000 sales, or 40% of a year’s worth of pre-reform sales volume, and generated a 75% drop in one-year flips. This translates to a volume semi-elasticity in the optimal tax formula (2.15) of \(-75/15\) p.p. = \(-5\). Interestingly, the estimated counterfactual curve suggests the tax not only discouraged sales to the left of the two-year threshold, but also at holding periods beyond four years in length.\(^{28}\) By increasing the cost of flipping, the transfer tax rendered housing even less liquid for potential investors. Hence, a seller may have trouble finding a buyer in the market for

\(^{27}\)An alternative exercise would be to run specifications of the form: \(f_{i,t} = \delta_t + \beta_t' \cdot X_{i,t} + \epsilon_{i,t}\), and conduct Sup-Wald tests for the null of a structural break in the components of \(\beta_t\). We do not adopt this as our main identification check given the relatively small number of quarter-years in our pre-reform period and the fact that such tests are known to be under-powered in small time samples.

\(^{28}\)Our finding of distortions beyond the two-year cutoff echoes the results in Kopczuk & Munroe (2015), who come to a similar conclusion regarding the 1% mansion tax in the New York metro area.
Notes: The figure plots the distribution of second home sales volume by holding period length estimated via the system of equations in (4.2)–(4.4) in red. The empirical post-reform distribution appears in blue. The full logit model includes month-year, week-of-month, day-of-week fixed effects, a holiday dummy, a quadratic in property age (measured using the construction date), dummies for the structure material, dummies for the use category (e.g. apartment vs. single family home), floor space, land area, holding period length, number of floors and building floor dummies. We bin holding period lengths by month.

vacation properties even if that seller does not face the tax liability themselves.

Which types of investors are most discouraged by the flip tax? Table 2 tabulates missing sales by sellers’ estimated quintile of net worth as of 2010. We obtain these numbers by applying the model in (4.2)–(4.4) to obtain fitted values for properties sold to taxpayers within each net worth quintile. About half of the overall missing mass originates from sellers in the bottom fifth of the wealth distribution. The proportion is also approximately the same when we examine crowd out of the fraction of sales within a two-year holding period. In light of this evidence that low-wealth individuals are an important source of speculative activity, we analyze in Section 5 whether the speculators that were crowded out in the low end of the wealth distribution were misinformed, but find that they earned higher tax-adjusted holding period returns than their wealthier counterparts.\(^{29}\)

\(^{29}\)When we apply the same counterfactual model to local and out-of-town (OOT) sellers, we find OOT sellers account for 60% of the net missing sales.
TABLE 2. Missing Sales Volume by Seller’s Net Worth Quintile

<table>
<thead>
<tr>
<th>Quintile</th>
<th>HP ≤ 2 yrs.</th>
<th>HP > 2 yrs.</th>
<th>Net missing</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>First quintile</td>
<td>32,669</td>
<td>−17,999</td>
<td>14,670</td>
<td>44%</td>
</tr>
<tr>
<td>Second quintile</td>
<td>520</td>
<td>137</td>
<td>657</td>
<td>2%</td>
</tr>
<tr>
<td>Third quintile</td>
<td>4,958</td>
<td>−65</td>
<td>4,893</td>
<td>15%</td>
</tr>
<tr>
<td>Fourth quintile</td>
<td>11,999</td>
<td>−6,693</td>
<td>5,306</td>
<td>16%</td>
</tr>
<tr>
<td>Fifth quintile</td>
<td>19,013</td>
<td>−11,400</td>
<td>7,613</td>
<td>23%</td>
</tr>
<tr>
<td>Total</td>
<td>69,159</td>
<td>−36,020</td>
<td>33,139</td>
<td>100%</td>
</tr>
</tbody>
</table>

Notes: The table shows the number of missing sales volume below (column 1) and above (column 2) the two-year holding period threshold, and the net missing sales (sum of the first two columns). Each row represents missing sales within each 2010 taxpayer net worth quintile implied by the hedonic-logit model in equations (4.2)–(4.4). Negative missing sales indicates there are more sales than the counterfactual model would predict for that section of the holding period distribution.

4.3 High-Frequency Evidence of Pricing Effects

The government implemented the transfer tax surcharge to increase housing affordability by targeting short-term investors. Was the reform successful in lowering housing prices? Our evidence suggests it was not. This is ultimately an empirical question, since whether prices increase or decrease in respond to a hike in the transfer tax τ is ambiguous in the context of our model. Overall, we find that although the reform helped reduce price volatility, the negative pricing effects were limited to low-end apartments for which realized capital gains would have been small relative to the hike in tax liability.

We explore the pricing effects of the TTS by looking at how sale prices for all arms-length transactions evolved around the reform date. Figure 5 plots on the left daily average log sale prices and fits a quadratic polynomial estimated using a triangular kernel on either side of the reform date. In the absence of any other shocks that would influence prices in the second home market around June 1, 2011, a jump in prices around that date represents a shift due to changes in relative buyer-seller bargaining power from the surcharge.

Prices spike by 2% around the implementation date for the bottom quintiles, but by 10% among properties in the top quintile of tax assessed value per square meter as of the beginning of the sample. For two-year flips in the top value quintile, this would imply sellers completely

30 We fit local quadratic polynomials to data on either side of the implementation date to avoid the issues with higher-order polynomials in regression discontinuity designs outlined in Gelman & Imbens (2018).
FIGURE 5. Actual vs. Residualized Sale Prices around the Tax Reform

All Transactions

Notes: Each panel presents the evolution of either log sale prices (left panels, light blue) or residualized log sale prices (right panels, dark blue) relative to the reform implementation date of June 1, 2011. Each point on a graph represents an average within a daily bin. The first row pools all transactions, while the second and third rows show price dynamics for the first and fifth quintiles based on tax assessed value per square meter as of the beginning of the sample period. Residualized prices adjust for quality differences across transacted properties, as proxied by block fixed effects and a vector of characteristics. We winsorize prices at the 1st and 99th percentiles before residualizing and/or binning. See Appendix C for the full model generating the price residuals.
pass through the increased tax burden to buyers.31 In Appendix E, we use inheritances from untimely deaths as an exogenous measure of housing portfolio exposure to the tax reform. Taxpayers with more housing wealth on the eve of the reform disproportionately buy and sell housing at the high-end of the market and successfully extract a premium from buyers after the TTS reform.

The behavior of raw housing prices around the reform are a closer empirical analog to the equilibrium price in our heterogeneous investor model from Section 2. However, transfer taxes induce positive selection effects in the housing market, meaning that without adjusting for changes in the quality composition of properties across the reform, the effects on housing affordability are unclear. The right-hand side panels in Figure 5 instead plot log price residualized on property characteristics and block fixed effects.32 The price discontinuities at the high or low end of the market disappear when we perform this quality adjustment. That is, accounting for the fact that properties at the low end of the market were of relatively lower quality in the post-reform period, prices increased by 5% within a year.

In sum, our high-frequency evidence points to a negative trend break in prices for cheaper apartments, with prices declining by 28% in the three years after the TTS reform (−8.6% annualized growth), but a sharp jump in sale prices for high-end properties before a return to trend.33 While the tax may have improved housing affordability at the very low end of the market in the medium-run, the net effect on prices across the entire housing market was virtually nil and actually positive on a quality-adjusted basis.34

31The surcharge applied retroactively to any properties purchased before the reform date. We perform a similar exercise using as the cutoff the seller’s original purchase date relative to June 1, 2009, after which any property sold within two years would be subject to the transfer surcharge (results not shown here). Given that the TTS was announced at the beginning of 2011, buyers of second homes in 2009 would not have any incentive to alter the sale date to avoid transfer tax liability; there were no reforms to other transfer taxes around that time. The results qualitatively mirror those in Figure 5, in that sale prices are smooth across the time notch for all but the top quintile of property values, where prices jump discretely by about 2%.

32We plot the evolution of quality-adjusted prices separately by the seller’s owner-occupied status in Appendix C. Those results imply almost complete pass through of the tax on the non-owner occupied to the owner-occupied segment of the market. We also discuss in Appendix C the construction of the regression model used to produce the residuals in Figure 5.

33We document similar heterogeneity by value tier in Appendix I where we examine differences in liquidity among single family home listings around the TTS reform. We find mean time on market increases by 7.5 days in the bottom quintile (p-value = 0.001) and by 9.5 days in the top quintile (p-value = 0.002), but only by 4-5 days in the middle of the value distribution.

34We replicate the high-frequency analysis using prices per square meter instead of transaction values. The main difference is that unit prices are smooth across the June 1, 2011 time notch for the top quintile of properties, indicating larger properties comprised a greater share of volume in the post-reform period. Our hedonic-logit bunching methods in Section 4.2 account for these compositional changes in measuring the extent of market unraveling.
5 Who are the Noise Traders?

In this section we identify the second sufficient statistic we require to back out the optimal transfer tax rate via equation (2.15): the share of non-fundamental trading in the housing market prior to the TTS.

5.1 Heterogeneity in Returns to Flipping

A commonly recounted narrative of the 2000s U.S. boom is that many cities which experienced a pricing boom in the absence of clear restrictions on new real estate supply saw an influx of capital from non-local, or “out-of-town” (OOT) investors. Second home investors in that episode were more likely to be low-income or low-wealth individuals buying bottom tier properties, were heavily mortgaged, and earned lower capital gains (Haughwout et al. 2011; Chinco & Mayer 2016; García 2019; Garriga 2020). Many of these findings on heterogeneity in capital gains earned by locals vs. non-locals have been affirmed in other settings, such as London (Badarinja & Ramadorai 2018, Paris (Cvijanović & Spaenjers 2021), and Vancouver (Pavlov & Somerville 2020).

The richness of our transactions records linked to personal income tax returns and wealth statements allows us to go one step further – we can analyze the role of taxes, mortgage interest payments, and rental income in generating heterogeneous returns. OOT investors may not have local knowledge which allows them to time the market as proficiently as locals, yet they may have more flexibility with regards to location, and therefore may garner higher returns due to property and income tax arbitrage. We test for this possibility using the following definition of (net) total holding period returns at the taxpayer level:

\[r^j_{t-1,t} = \frac{\sum_{i=1}^n (1 - \tau_{i,t}) \cdot \tilde{V}_{i,t}^j + (1 - c_{i,t}^j) \cdot Y_{i,t}^j - T_{t-1,t}^j}{\sum_{i=1}^n \tilde{V}_{i,t-1}} - 1 \]

(5.1)

where \(r^j_t \) is the holding period return for the set of properties held by taxpayer \(j \) between periods \(t - 1 \) and \(t \). \(\tau_{i,t} \) is the fraction of the market value \(\tilde{V} \) the seller pays in transfer taxes, \(c_{i,t}^j \) is the income tax paid by \(j \) on rental income \(Y_{i,t}^j \) accumulated between \(t - 1 \) and \(t \), and \(T_{t-1,t}^j \) refers to the total property tax bill on land and buildings incurred by \(j \) during the holding period. We discuss the schedules underlying all the tax terms in Appendix B. If a property \(i \) does not transact in period \(t \), we inflate up from the previous transaction price in \(t - 1 \) using our estimated price index \(\hat{P} \) described in Appendix C, and assuming a linear
rate of depreciation that we estimate to be 2% in Appendix G:

\[\tilde{V}_{i,t} = (1 - \delta) \cdot V_{i,t-1} \times \frac{\hat{P}_{i,t}}{P_{i,t-1}} \quad (5.2) \]

We annualize returns by computing \((1 + r_{t-1,t}^{j})^{365/n} \), with \(N\) days in the holding period.\(^{35}\)

Using this return definition, we offer five facts about heterogeneity in returns:

1. Locals earn a premium from selling to out-of-town (OOT) buyers, even when compared to the premium OOT sellers earn from selling to OOT buyers. Table 3 illustrates this premium in a difference-in-differences table (Panel A) which compares different local/non-resident buyer-seller combinations. However, as shown in Panel B, this wedge between local and OOT seller returns only appears in the post-reform period; instead, OOT sellers earn a statistically insignificant premium of 1.75 p.p. in the pre-reform period. The sign of this premium reverses in the post-reform period, as the tax creates an average wedge of 5.48 p.p. in holding period returns between local and OOT sellers. This reversal arises, in part, because OOT sellers are more likely to be flippers in the pre-reform period, and the tax flattened out the term structure (see fact #5 below).\(^{36}\)

2. Holding period returns decline with taxpayer wealth. Sellers in the first quintile of taxpayer net worth earn average annualized returns of 28.0%, compared to 18.3% among sellers in the top quintile (p-value on difference in means < 0.001).

3. On average, mortgaged investors earn similar capital gains to those earned by investors with full equity. We break down the components of returns by year and by mortgaged and full equity investors in Appendix D. In all years except 2007 there is no statistically significant difference in average capital gains (\(\mu_{\text{capital}}\)) earned by the two types of sellers. Although full owners earn about a 1 p.p. higher annualized return in our sample, this is almost entirely due to interest payments (\(\mu_{\text{interest}}\)) less income tax deductions.

4. Stockholders earn lower returns (12.7% annualized) compared to non-stock holders.

\(^{35}\)Our results in this section are robust to using either our matching estimator indexing method of Appendix C or the translog hedonic method of Appendix G to inflation-adjust holding period returns. An advantage of the translog hedonic method is that it allows us to leverage the full set of transactions to create regional indices.

\(^{36}\)In additional results in Appendix D, we breakdown holding period returns into capital gains vs. other components by year and by local vs. OOT investors. We find that prior to the reform there is no statistically significant local premium even in terms of capital gains. We find limited evidence that owners of properties subject to the tax responded by substituting towards rental income.
TABLE 3. Differences in Mean Holding Period Returns across Counterparty Pairs

A. Difference-in-differences: Local vs. OOT Buyers/Sellers

<table>
<thead>
<tr>
<th></th>
<th>Local buyer</th>
<th>OOT buyer</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOT seller</td>
<td>11.43%</td>
<td>12.89%</td>
<td>1.46***</td>
</tr>
<tr>
<td>Local seller</td>
<td>14.99%</td>
<td>16.98%</td>
<td>1.99***</td>
</tr>
<tr>
<td>Difference</td>
<td>3.56***</td>
<td>4.09***</td>
<td>0.53***</td>
</tr>
</tbody>
</table>

B. Difference-in-differences: Local vs. OOT Sellers Pre vs. Post-reform

<table>
<thead>
<tr>
<th></th>
<th>Pre-reform</th>
<th>Post-reform</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOT seller</td>
<td>25.18%</td>
<td>8.71%</td>
<td>−16.47***</td>
</tr>
<tr>
<td>Local seller</td>
<td>23.43%</td>
<td>14.19%</td>
<td>−9.24***</td>
</tr>
<tr>
<td>Difference</td>
<td>−1.75</td>
<td>5.48***</td>
<td>7.23***</td>
</tr>
</tbody>
</table>

C. Triple Differences: Local vs. OOT Sellers Pre vs. Post-reform

<table>
<thead>
<tr>
<th></th>
<th>Pre-reform</th>
<th>Post-reform</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOT seller</td>
<td>25.06%</td>
<td>25.17%</td>
<td>0.11</td>
</tr>
<tr>
<td>Local seller</td>
<td>23.16%</td>
<td>24.09%</td>
<td>0.93</td>
</tr>
<tr>
<td>Difference</td>
<td>−1.90</td>
<td>−1.08</td>
<td>0.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pre-reform</th>
<th>Post-reform</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOT seller</td>
<td>7.96%</td>
<td>9.37%</td>
<td>1.41***</td>
</tr>
<tr>
<td>Local seller</td>
<td>13.42%</td>
<td>15.69%</td>
<td>2.27***</td>
</tr>
<tr>
<td>Difference</td>
<td>5.46***</td>
<td>6.32***</td>
<td>0.86***</td>
</tr>
</tbody>
</table>

Notes: Each cell in the above tables shows the mean total holding period return for either a buyer-seller pair (Panels A and C), or for sellers in the pre or post-reform period (Panel B). Returns calculated using the procedures described in the text and equations (5.1) and (5.2). In each table, the “difference” column displays the difference between the first two columns. ***p < 0.01, **p < 0.05, *p < 0.1 on the t-test for differences in means across the first two columns.
Returns are also decreasing in the share of wealth from equities. Returns are also decreasing in the share of wealth from equities.

5. As pictured in Figure 6, the term structure of holding period returns is downward sloping, consistent with short-horizon results for equities (van Binsbergen, Brandt, & Koijen 2012), as well as nominal Treasury bonds and corporate bonds (van Binsbergen & Koijen 2017). The pattern in Figure 6 agrees with the results in Giglio et al. (2021) who argue that at long horizons the term structure of real estate discount rates is downward sloping. We document a downward-sloping term structure for realized returns from the universe of investment property sales for a particular market. The transfer tax reform flattens out the term structure at the short end (≤ 24 months), and produces a positive shift in returns at longer horizons (> 24 months) due to the drop in tax rates from 10% to 0% after the two-year holding period.

To summarize, our bunching analysis in Section 4 generally agrees with the quantity patterns witnessed in other real estate markets – namely, that OOT and low wealth investors account for the majority of property flips that were crowded out by the transfer tax. However, our tax and income-adjusted returns show that short-term speculators do not appear to be misinformed. This echoes the argument in Bayer et al. (2020) that short-term flippers may function as intermediaries in housing markets and actually improve price efficiency. Prior to the flip tax, locals and OOT sellers earned similar returns, and leveraged property investors earn similar capital gains to full equity holders. Our results on heterogeneity demonstrate that simple tags like non-residency status, leverage, or stock market participation may not necessarily translate to noise trading. We propose an alternative method for capturing the fraction of non-fundamental property sales volume in the next subsection.

5.2 Severe Weather Shocks & Speculative Flips

Our strategy for identifying the share of non-fundamental trading in the numerator of the optimal tax formula in (2.15) is inspired by a growing literature documenting the influence

37 Stock market participation in Taiwan is high by international standards. 40% of taxpayers and 82% of second homeowners hold stocks.

38 Chambers, Spaenjers, & Steiner (2021) compute property-level annualized net total returns for a set of Oxford-Cambridge colleges over a 70-year period. They do not discuss the term structure in their analysis, but like Giglio et al. (2021), conclude that long-term gross income yields for residential properties trend towards zero. Sagi (2021) documents a downward-sloping term structure for realized gross returns to commercial real estate and Giacoletti (2021) does the same for housing.

39 We recover a downward-sloping term structure regardless of whether we subset to young or old properties, suggesting that capital improvements are not driving these patterns in returns.
FIGURE 6. Term Structure of Total Holding Period Returns

Notes: The figure plots the term structure of annualized total holding period returns, computed using the steps outlined in the text and equations (5.1) and (5.2). Vertical dashed lines indicate the holding period notches introduced by the transfer tax surcharge in the post-reform period (red dashed line).

of weather on economic activity.\footnote{Papers in this literature include Goetzmann et al. (2014), who show that cloudy days induce pessimistic sentiments in equities markets. Dell, Jones, & Olken (2014) summarize the methods researchers use in economics to identify treatment effects from weather shocks. A common finding is that rain deters economic activities, such as voting (Meier, Schmid, & Stutzer 2019) and stock trading (Cho 2020), which supports our use of accumulated precipitation as a proxy for seasonal storm severity. While much of the new weather literature in finance has focused on weather-induced sentiments, our contribution is to recognize that severe, persistent weather conditions may also increase fixed costs to trading properties. Goetzmann & Zhu (2005) show NYSE spreads widen on cloudy days, which hints that weather conditions generate market frictions.} The basic notion is that selling a home generates fixed costs. Individuals who wish to sell a home for job or family-related reasons have a higher threshold fixed cost beyond which they will not sell, compared to owners who are only selling...
to maximize capital gains (Igan & Kang 2011; Hilber & Kyytiäinen 2017). A persistent, positive shock to the fixed costs of selling should then force out more speculators than non-speculators. In Appendix A, we add housing search costs to our baseline framework to formalize the link between non-fundamental trading volume and weather conditions.

We use spatial and temporal variation in the severity of typhoon seasons in Taiwan during the period (2006-2011) before the transfer tax surcharge to identify shocks to the fixed cost of selling a home. We collect daily data from all 832 meteorological stations managed by the Taiwan Central Weather Bureau. Of these stations, 517 record measures which are used to forecast and classify tropical storms: wind speed, precipitation, humidity, low sea pressure, and temperature. We match each property transacted in our sample to the nearest weather station to exploit the granularity of severe weather paths. We provide scientific context for Pacific storm seasons in Appendix F.

We focus on running time series regressions of the following form:

\[
Volume_t = \beta \cdot (\text{Weather}_t \times \text{Summer}_t) + \delta_t + \gamma' \cdot X_t + \epsilon_t
\] (5.3)

where \(Volume_t\) is total transactions in the Taipei-New Taipei greater metro area on date \(t\). \(\text{Weather}_t\) is a meteorological reading, averaged across the main weather stations which are manned by a person. The typical typhoon season runs from July to September, with 80% of all official typhoon forecast warnings occurring during those months, so we set the dummy \(\text{Summer}_t\) equal to unity during July, August, or September. The interaction of \(\text{Weather}_t \times \text{Summer}_t\) captures how the effects of weather variables on the real estate market are amplified in the summer months due to the confluence of extreme conditions (e.g. wind gusts + torrential rain + high temperatures and humidity). We control for property damage counts in \(X_t\) to rule out drops in volume due to weather-induced changes in the underlying quality of the housing stock. \(\delta_t\) includes a full set of day-of-week and 7-day fixed effects to rule out other storms.

\[41\text{We can use the tax returns to identify buyers and sellers whose transactions coincide with changes in marital or employment status and exclude these sales from } Volume_t. \text{ Such sales are less likely to be driven by speculative motives. Roughly 7% of sales occur within the same tax year as a buyer or seller marriage, and 14% occur within the same tax year as a buyer or seller employer change (20% satisfy at least one condition). We obtain nearly identical estimates in this section regardless of whether we include sales involving either employment or marital status changes, for either counterparty, in our sales volume measure. This is yet another reason we conservatively interpret our estimates as upper bound measures of the } ex \ ante \text{ noise trading share.}

\[42\text{In Appendix H, we exploit spatial variation in exposure of local real estate markets to typhoon-like conditions by matching each property to the nearest weather station. Areas with greater rainfall on a given date experience a larger decline in sales volume. The cross-sectional results difference out common macroeconomic components to sales volume such as mandated shutdowns. We run an LPM at the property-level and find that typhoon events result in a 0.002% lower probability that a second home sells.} \]
Our results from estimating equation (5.3) in Table 4 show a robust negative effect of accumulated daily rainfall on volume, but no effect of maximum wind gusts conditional on rainfall. These findings make intuitive sense. Severe rainfall increases the costs to commuting, restricts outside activity, and may even result in flooding. While high wind speeds also hinder the process involved in listing a house, given the historical prevalence of typhoons in the southern Pacific, power grids and building materials have evolved to limit damages and service interruptions from downed trees. Notably, even when we control for temperature (column 4), or directly control for high wind speeds that trigger official typhoon and tropical storm warnings (column 6), rainfall continues to exert a stable and statistically significant effect on sales volume.

In terms of magnitude, a one millimeter increase in accumulated daily rainfall lowers volume by about 0.3% relative to its six-month moving average. A three standard deviation shock to rainfall of 66 mm (2.6 inches) produces the average precipitation observed during tropical storms, resulting in a 20% drop in sales volume. Assuming that fundamental traders will not be deterred by severe weather from listing houses and closing the deal, this estimate corresponds to the \(s_{NF} \). One concern is that our estimates of \(\hat{\beta} \) in equation (5.3) may not capture a drop in volume from noise trader exits if sellers simply delay sales by a few weeks to avoid weather shocks. That is, immediately after a severe storm system subsides there may be pent-up demand for properties, indicating that a large fraction of the original drop in volume was due to short-run intertemporal substitution. We test for the possibility of pent-up demand using the following time series specification:

\[
Volume_t = \beta_1 \cdot (Rain_t \times Summer_t) + \delta_t + \beta_2 \cdot (\overline{Rain}_{t-L,t-1} \times Summer_t) + \gamma' \cdot X_t + \varepsilon_t
\]

where, informed by our results in Table 4, we focus on severe rain as a positive shock to costs associated with selling properties. The variable \(\overline{Rain}_{t-L,t-1} \) refers to the average

43 We find a marginally statistically significant drop in volume of \(-0.79\%\) per meter/second increase in maximum wind gusts averaged across stations. The effect of rainfall still hovers around a \(-0.26\%\) drop in volume per one millimeter of average accumulated rainfall, irrespective of any wind speed measures we include on the RHS.

44 In Appendix F, we provide further support for our focus on rain and wind as proxies for weather shocks by conducting factor analysis using a richer set of atmospheric conditions.

45 The majority (81%) of property sales in our sample involve units in reinforced concrete buildings.

46 The estimated coefficients \(\hat{\beta}_1 \) remain unchanged when we include wind speed readings on the RHS.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max WS × Summer</td>
<td>−2.27**</td>
<td></td>
<td></td>
<td>−1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.95)</td>
<td></td>
<td></td>
<td>(0.98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainfall × Summer</td>
<td></td>
<td>−0.32***</td>
<td>−0.26***</td>
<td>−0.31***</td>
<td>−0.24**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1{T > 32°C}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6.88)</td>
<td></td>
</tr>
<tr>
<td>1{27 < T ≤ 32°C}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4.03)</td>
<td></td>
</tr>
<tr>
<td>1{Max WS ≥ 74mph}</td>
<td></td>
<td></td>
<td></td>
<td>−65.98***</td>
<td>−27.49**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(15.52)</td>
<td>(13.32)</td>
<td></td>
</tr>
<tr>
<td>1{55 ≤ Max WS < 74mph}</td>
<td></td>
<td></td>
<td></td>
<td>−10.88</td>
<td>−9.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(9.85)</td>
<td>(7.47)</td>
<td></td>
</tr>
<tr>
<td>7-day FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Day-of-week FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Damages controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>N</td>
<td>1,973</td>
<td>1,973</td>
<td>1,973</td>
<td>1,973</td>
<td>1,973</td>
<td>1,973</td>
</tr>
</tbody>
</table>

Notes: The table presents results from estimating time series regressions according to equation (5.3). The outcome variable in each column is 100 times the deviation of aggregate log sales volume from its 6-month symmetric moving average. RHS variables include maximum wind speed and accumulated rainfall interacted with a dummy for the summer typhoon season, dummies for daily high temperature ranges, a dummy for gusts over 74 mph (typhoon), and a dummy for gusts between 55-73 mph (tropical storm). We include daily observations from the pre-reform period during which our sales and weather datasets overlap: January 1, 2006 through May 31, 2011. All regressions control for daily counts of casualties and properties lost due to flooding and typhoons (see Appendix F for details). Newey-West standard errors with six lags in parentheses adjust for serial correlation. We select the maximum possible lag order such that the estimator for the covariance matrix is consistent (Newey & West 1987). ***p < 0.01, **p < 0.05, *p < 0.1.
accumulated daily rainfall over the previous L days. Therefore, the “true” upper bound drop in volume due to noise trader exits is given by $\hat{\beta}_1 + \hat{\beta}_2$.\footnote{We provide event study results in Appendix F which show that taxpayers also do not accelerate sales in advance of forecasted severe weather events.}

The point estimates in Table 5 confirm that sales volume does not bounce back after a severe typhoon season ends. We identify a 0.3% drop in sales per one millimeter of rainfall regardless of whether we account for pent-up demand effects at a one, two, four, or eight-week horizon. We also check whether pent-up demand is a consequence of only particularly severe weather shocks by substituting $\text{Rain}_{t-L,t-1}$ for dummies $1_{t-L,t-1}\{\text{Rain} \geq 0.5\text{in.}\}$ which are equal to unity when the average accumulated daily rainfall over the previous L days exceeds one-half inches.\footnote{Rainfall of a half inch or more is above the 80th percentile of daily rainfall, and 40% of such days coincide with official typhoon warnings for the entire island. On average, across days with confirmed typhoon events (i.e. when sustained wind speeds reach 74 mph), accumulated daily rainfall is 73 mm or 2.9 inches.} While the coefficients on $1_{t-L,t-1}\{\text{Rain} \geq 0.5\text{in.}\}$ are never significant across our specifications, the point estimates remain negative up to four weeks after the initial shock, suggesting severe rainfall over a period of several weeks has a persistently negative effect on speculative volume. Overall, these results support our interpretation of the estimates in Table 5 as upper bound measures of the noise trading share.

6 Calibration & Discussion

What do the behavioral responses we have documented imply for the optimality of property transfer taxes as a policy instrument to improve pricing efficiency? In this section, we combine the sufficient statistics identified from the Taiwan reform to produce an upper bound optimal transfer tax rate estimate of 4%. We then compute optimal tax rates for different groups of investors and probe how Tobin taxes redistribute wealth between renters and homeowners.

6.1 Calibration of Baseline Sufficient Statistics Formula

We have now identified the two parameters needed to estimate the optimal transfer tax given by equation (2.15): the semi-elasticity of volume with respect to the tax and the ex ante share of non-fundamental trading. Given our estimates of a 75% drop in one-year flips from the bunching analysis, and a 20% non-fundamental trading share based on the results in Section 5.2, we obtain a semi-elasticity of $\epsilon = -75%/15\text{ p.p.} = -5$, and an optimal flat tax rate of $\tau^* = 20%/5 = 4\%$, compared to the actual tax rate of 15% on one-year flips.
TABLE 5. Testing for Pent-up Sales after Storm Season

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Rain_t \times Summer_t$</td>
<td>-0.33^{***}</td>
<td>-0.33^{***}</td>
<td>-0.32^{***}</td>
<td>-0.32^{***}</td>
<td>-0.33^{***}</td>
<td>-0.33^{***}</td>
<td>-0.32^{***}</td>
<td>-0.31^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.09)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.09)</td>
<td>(0.09)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>$\overline{Rain}_{t-1w,t-1} \times Summer_t$</td>
<td>-0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.52)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\overline{Rain}_{t-2w,t-1} \times Summer_t$</td>
<td>-0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\overline{Rain}_{t-4w,t-1} \times Summer_t$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\overline{Rain}_{t-8w,t-1} \times Summer_t$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbb{1}_{t-1w,t-1}{\overline{Rain} \geq 0.5\text{in.}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbb{1}_{t-2w,t-1}{\overline{Rain} \geq 0.5\text{in.}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbb{1}_{t-4w,t-1}{\overline{Rain} \geq 0.5\text{in.}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbb{1}_{t-8w,t-1}{\overline{Rain} \geq 0.5\text{in.}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table presents results from estimating time series regressions according to equation (5.4). The outcome variable in each column is 100 times the deviation of aggregate log sales volume from its 6-month symmetric moving average. The RHS variables are either the moving average of daily accumulated rainfall, or indicators for whether the moving average of daily accumulated rainfall exceeds 0.5 inches over a specific, lagged time horizon (one, two, four, or eight week periods). We include daily observations from the pre-reform period during which our sales and weather datasets overlap: January 1, 2006 through May 31, 2011. All regressions control for daily counts of casualties and properties lost due to flooding and typhoons (see Appendix F for details). Newey-West standard errors with six lags in parentheses adjust for serial correlation. We select the maximum possible lag order such that the estimator for the covariance matrix is consistent (Newey & West 1987). *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

7-day FEs ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Day-of-week FEs ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Damages controls ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
N 1,973 1,973 1,973 1,973 1,973 1,973 1,973 1,973
It is less straightforward to map our estimate of the 40% overall drop in second home sales volume into a semi-elasticity due to the multiple holding period thresholds imposed by the policy. The fact that rates in this context discontinuously change along a time dimension means that any market unraveling beyond the two-year threshold cannot be decoupled from the magnitude of the rate changes for short-term sales. An alternative, but conservative, estimate of an overall semi-elasticity would be $\frac{-40\%}{10 \text{ p.p.}} = -4$, which supposes the drop from a 10% to 0% rate is the most important source of unraveling for longer holding periods. This assumption is consistent with the large bunching response at the two-year notch that is absent around the one-year notch. Such reasoning yields an optimal transfer tax of $\tau^* = 20\%/4 = 5\%$.

Table 6 shows how our semi-elasticity estimates vary by the age of houses sold and by the inclusion of controls for property and buyer/seller characteristics in the hedonic-logit model. For properties of all ages, our estimates of the semi-elasticity for one-year flips (ϵ_{1-year}) fall between 4.7 and 5.1, while those for the overall semi-elasticity (ϵ_{2-year}) fall between 3.7 and 4.8. Our preferred specification described in Section 4.2 yields $\epsilon_{1-year} = 5.1$ and $\epsilon_{2-year} = 3.7$. We obtain semi-elasticities which are around 50% higher for properties older than 5 years at time of sale, indicating that segments of the market which have experienced muted price growth – such as houses which are rapidly depreciating – are more sensitive to transfer taxes.

Our estimates generate an extreme upper bound on τ^* for two main reasons. First, as discussed in Section 4.2, the missing mass estimates from our hedonic-logit bunching design underestimate short-term sales volume in the pre-reform period, meaning we also underestimate the amount of trades crowded out by the transfer tax. This biases the semi-elasticity downward, and hence, τ^* is upward biased. Second, our weather shock estimates of the non-fundamental share are intent-to-treat (ITT) in the sense that we do not know the true fraction of the 20% drop in volume that is due to noisy flippers. By assuming the entire drop in volume due to storm systems is from speculators delaying sales for at least several months after the typhoon season subsides, we focus on a worst-case scenario from the policymaker’s perspective. We derive a revised sufficient statistics formula in Appendix A which depends on weather-induced search costs and find that our baseline optimal tax estimates are upward biased by, at most, 0.04 p.p.

6.2 Calibration with Investor Type-Specific Taxes

Recall from our conceptual framework in Section 2.2 the categorization of investors in the housing market into four groups based on their housing demands from equation (2.16):
TABLE 6. Sensitivity Analysis of Volume Semi-Elasticity and Optimal Tax Rate

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full sample</td>
<td>Full sample</td>
<td>Full sample</td>
<td>Full sample</td>
<td>Full sample</td>
<td>Age ≥ 5</td>
<td>Age ≥ 10</td>
</tr>
<tr>
<td>HP</td>
<td>0.997</td>
<td>0.997</td>
<td>0.997</td>
<td>0.997</td>
<td>0.998</td>
<td>0.997</td>
<td>0.997</td>
</tr>
<tr>
<td></td>
<td>(−216.91)</td>
<td>(−216.70)</td>
<td>(−216.58)</td>
<td>(−215.43)</td>
<td>(−202.32)</td>
<td>(−203.03)</td>
<td>(−185.52)</td>
</tr>
<tr>
<td>HP^2</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>(141.76)</td>
<td>(141.67)</td>
<td>(141.60)</td>
<td>(139.03)</td>
<td>(129.92)</td>
<td>(138.54)</td>
<td>(123.84)</td>
</tr>
<tr>
<td>$Floor$</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>(−2.71)</td>
<td>(−2.68)</td>
<td>(−2.63)</td>
<td>(−0.66)</td>
<td>(−0.64)</td>
<td>(0.01)</td>
<td>(−0.20)</td>
</tr>
<tr>
<td>TotalFloors</td>
<td>1.005</td>
<td>1.005</td>
<td>1.005</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.004</td>
</tr>
<tr>
<td></td>
<td>(19.65)</td>
<td>(19.43)</td>
<td>(19.50)</td>
<td>(13.61)</td>
<td>(18.95)</td>
<td>(7.60)</td>
<td>(8.60)</td>
</tr>
<tr>
<td>Age</td>
<td>1.004</td>
<td>1.004</td>
<td>1.004</td>
<td>1.005</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>(24.43)</td>
<td>(24.28)</td>
<td>(24.20)</td>
<td>(24.08)</td>
<td>(25.05)</td>
<td>(23.71)</td>
<td>(18.87)</td>
</tr>
<tr>
<td>Realty</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>NW$_B$</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW$_S$</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16.96)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNW$_B$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.02)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNW$_S$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(18.44)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Use FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Time FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>N</td>
<td>12,163,977</td>
<td>12,163,977</td>
<td>12,163,977</td>
<td>12,163,977</td>
<td>11,939,191</td>
<td>8,281,861</td>
<td>7,171,456</td>
</tr>
<tr>
<td>$\Delta mass_{<720}$</td>
<td>71,411</td>
<td>70,977</td>
<td>70,961</td>
<td>69,159</td>
<td>85,762</td>
<td>69,407</td>
<td>57,087</td>
</tr>
<tr>
<td>$\Delta mass_{\geq720}$</td>
<td>−28,488</td>
<td>−28,506</td>
<td>−28,592</td>
<td>−36,020</td>
<td>−25,888</td>
<td>−12,946</td>
<td>−16,091</td>
</tr>
<tr>
<td>$\Delta mass_{<365}$</td>
<td>31,156</td>
<td>30,855</td>
<td>30,827</td>
<td>33,546</td>
<td>41,455</td>
<td>35,966</td>
<td>29,088</td>
</tr>
<tr>
<td>$\epsilon_{1\text{-year}}$</td>
<td>4.8</td>
<td>4.7</td>
<td>4.7</td>
<td>5.1</td>
<td>6.3</td>
<td>7.7</td>
<td>6.8</td>
</tr>
<tr>
<td>$\epsilon_{2\text{-year}}$</td>
<td>4.8</td>
<td>4.7</td>
<td>4.7</td>
<td>3.7</td>
<td>6.8</td>
<td>9.2</td>
<td>7.5</td>
</tr>
<tr>
<td>$\tau^*_{1\text{-year}}$</td>
<td>4.2%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>3.9%</td>
<td>3.2%</td>
<td>2.6%</td>
<td>2.9%</td>
</tr>
<tr>
<td>$\tau^*_{2\text{-year}}$</td>
<td>4.2%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>5.4%</td>
<td>2.9%</td>
<td>2.2%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

Notes: The table shows robustness of our sales volume semi-elasticity estimates and optimal tax rates to logit models of the form described by equations (4.2)–(4.4). The last two rows show the implied optimal transfer tax rate τ^*, conditional on a 20% noise trading share using either the one-year or two-year semi-elasticities. HP is the holding period length in days; Realty is a dummy that indicates if a property was sold by a realty company. NW and HNW refer to net worth and housing net worth, respectively, for buyers (B) or sellers (S). Columns report the odds ratios for each model with t-statistics in parenthesis. Column (4) refers to our baseline specification which we describe in Section 4.2. $\epsilon_{1\text{-year}}$ equals the missing mass of one-year flips $\Delta mass_{<365}$ scaled by pre-reform average annual sales of properties held less than 365 days ($\approx 43,646$) divided by the 15% flip tax rate; $\epsilon_{2\text{-year}}$ equals total missing mass ($= \Delta mass_{<720} + \Delta mass_{\geq720}$) scaled by pre-reform average annual sales ($\approx 89,765$) divided by the 10% flip tax rate. In the last two columns of the table we restrict to sales of properties ≥ 5 years old or ≥ 10 years old as of the sale date.
renter-sellers (RS), landlord-sellers (LS), renter-buyers (RB), and landlord-buyers (LB). To estimate the optimal tax rates for a group \(g \) of investors, we need two items: (i) estimates of each group’s beliefs about the returns to housing, \(\mu_g^p + \mu_g^r \), and (ii) the empirical share \(s_g \) of investors who fall into each group.

We sort taxpayers for whom we observe initial housing endowments \(X_{i,0} \) and housing demands into the four groups \(g \in \{RS, LS, RB, LB\} \). From the investment rule in equation (2.20), let \(\Upsilon \) be the sum of mean observed prices and rents, or \(\Upsilon \equiv \mu_p^p + \mu_r^p \). Setting the free parameter \(\Upsilon \) to the expected payoff from the planner’s perspective is consistent with a production economy in which investors own the developers who supply housing units to the market. In our data, the vector of investor type shares is \(\{s_{RS}, s_{LS}, s_{RB}, s_{LB}\} = \{1.02\%, 66.01\%, 5.20\%, 27.77\%\} \). The vast majority of housing transactions in our dataset originate from landlords, rather than renters climbing onto the housing ladder.

We then run the model-implied regression from equation (2.19) group-by-group, or:

\[
\hat{\Omega} \cdot X_{i \in g,t} + \hat{\Omega}_{i \in g} = \alpha_{i \in g} \cdot P_t \times (1 + D_{i \in g,t} \cdot \tau_{i \in g,t}) + e_{i \in g} \quad (6.1)
\]

where \(\hat{\Omega}_{i \in g} \) and \(\hat{\Omega} \) are the empirical analogs of (2.8) and (2.9), respectively. From this regression, we recover taxpayer fixed effects \(\alpha_i \), which capture individual risk preferences. The interaction term \(D_{i \in g,t} \cdot \tau_{i \in g,t} \) captures time-varying exposure to housing transfer taxes, which is jointly determined by buyer (\(D_{i,t} = 1 \)) or seller (\(D_{i,t} = -1 \)) status and the observed tax rates \(\tau_{i \in g,t} \). The 2011 tax reform acts as a shock to \(\tau_g \) which allows us to identify the fixed effect vector and calibrate the optimal group-specific taxes via formula (2.17).

Let \(\tilde{\tau}_g \) be the median \(\tau_{i \in g} \) across investors within the same group. Using renter-sellers as the reference category, we obtain for a given \(\tilde{\tau}_{RS} \) a vector of tax rates on the other investor types of \(\{\tilde{\tau}_{LS}, \tilde{\tau}_{RB}, \tilde{\tau}_{LB}\} = \tilde{\tau}_{RS} + \{5.50\%, -0.09\%, -0.72\%\} \). Group-specific transfer taxes imply landlord-sellers – the flippers in our empirical context – pay the highest tax rates, renter-buyers climbing the housing ladder receive a small subsidy, and landlord-buyers receive a larger subsidy. Although the optimal tax is a function of investor beliefs, and buyers tend to be more optimistic than sellers, optimal tax rates on buyers need not be higher than the rate imposed on sellers. This is because trading decisions are also influenced by factors other than beliefs, namely risk aversion \(\hat{A}_i \), hedging needs \(\hat{\Omega}_i \), and initial asset holdings \(X_{i,0} \). In this case, the result that the optimal subsidy is higher for landlord-buyers than renter-buyers arises from selection effects; the small share of investors who are renter-buyers in the data are more likely to have noisy beliefs.

The fact that this exercise results in a number for the tax rate on flippers that is similar
to what we obtain under the sufficient statistics approach for flippers suggests that any mis-measurement from the small-tax approximation underlying the formula in (2.15) for the second-best allocation is small. In particular, consider the empirically-relevant case where the tax on the reference category is zero ($\tilde{\tau}_{RS} = 0$). In that case, the share-weighted average optimal tax across the four investor types is $\sum_g (s_g \times \tilde{\tau}_g^*) = 3.4\%$, compared to our upper bound estimates for the optimal uniform tax rate based on equation (2.15) and displayed in Table 6, which range from 3.9\% to 4.3\% for one-year flips.

We also estimate a version of regression (6.1) in which we take asset demands X to be discrete, meaning investors can only choose integer values of X rather than continuous floor space units. In this discretized version of the model $X = 0$ would correspond to an individual who only rents and for whom housing costs are $H_{i,2} = r_2$, $X = 1$ would correspond to an individual who is exclusively an owner-occupier (as in the continuous version of the model), and $H_{i,2} = 0$. Any investor with an integer-valued demand $X > 1$ would have multiple homes and live in one of them. This discrete housing choice model yields a group share vector of $\{s_{RS}, s_{LS}, s_{RB}, s_{LB}\} = \{16.75\%, 45.94\%, 14.49\%, 22.82\%\}$, and a group-specific set of tax rates $\{\tilde{\tau}_{LS}^*, \tilde{\tau}_{RB}^*, \tilde{\tau}_{LB}^*\} = \tilde{\tau}_{RS}^* + \{4.19\%, 0.33\%, 0.55\%\}$. Thus, the share-weighted average transfer tax rate is 2.1\% in the discrete choice model.49

In the end, our estimates for the optimal real estate Tobin tax tell us one key lesson: in our empirical application the government taxed too much. The planner’s objective function underlying equation (2.15) does not incorporate price stability, revenue requirements, or macroprudential concerns about leverage. Given the evidence in Section 4.3 that housing prices overall increased after the reform, but fell by roughly 20\% for bottom-tier apartments, normative concerns about housing consumption inequality (e.g. larger Pareto weights on renters) might justify higher optimal tax rates. However, as a price correction tool, our study supports the low, flat Tobin tax rates on housing transactions currently in place in many large property markets.

49The average homeownership rate in our sample is $s_{LS} + s_{LB} = 68.76\%$, which is only slightly higher than the 66.96\% average homeownership rate in the U.S. during our sample period. U.S. homeownership rate series for the U.S. available from the Census through FRED: \url{https://fred.stlouisfed.org/series/RHORUSQ156N}.
7 Conclusion

In this paper, we provide estimates of the optimal tax on speculative transactions in the housing market. Our framework extends theoretical arguments for setting financial transaction taxes to the housing market context. Unlike in equities markets, investors decide whether to rent or own property and experience search frictions, in addition to facing rental income and capital gain risk. Leveraging a reform which levied a new tax surcharge on sales of investment properties in Taiwan, we calibrate a sufficient statistics model which implies an upper bound for the optimal tax rate of 4%. Allowing for separate taxes on owner-sellers (flippers), owner-buyers, and renters, optimal transfer tax policy consists of mild redistribution in the form of a small subsidy for renters and a 4-5% tax on flippers.

The episode we study in our empirical application offers general lessons for the implementation of Tobin taxes on housing. Our results support the relatively low transfer tax rates of less than 4% which are currently in place in major U.S. and European cities. The simple sufficient statistics formula reveals the government crowded out too many transactions relative to the pre-existing volume of speculative flips. Our missing mass estimates indicate the tax generated a 75% drop in one-year flips and a 40% drop in overall sales volume. We use spatial and time series variation in severe weather shocks during tropical storm season to isolate an upper bound of only 20% for the non-fundamental trading share. By linking property records to personal income tax returns and wealth estimates, our setting provides a more complete picture of non-fundamental housing sales volume and the term structure of holding period returns. Our findings on heterogeneous responses largely agree with a narrative frequently told about speculators during the 2000s U.S. boom – that they were primarily low-wealth, out-of-town taxpayers buying lower quality properties.

Ultimately Tobin taxes render assets more illiquid, so their desirability depends on the potential for a price correction through deterring trades based on biased beliefs. Our analysis emphasizes the crucial role of market segmentation and lock-in effects in informing optimal housing transfer tax rates. Given the limited ability of Tobin taxes to redistribute housing wealth from homeowners to renters, we view causal empirical analysis of alternative policy instruments, such as loan-to-value (LTV) limits on home mortgages, combined with structural work which models the microstructure of property markets as a promising route for future work.
REFERENCES

Online Appendix to
Flip or Flop? Tobin Taxes in the Real Estate Market
by Chun-Che Chi (Academia Sinica), Cameron LaPoint (Yale SOM),
and Ming-Jen Lin (National Taiwan University)

Contents

A Optimal Transfer Tax Model Extensions 55
A.1 Adding Housing Search Costs 55
A.2 Optimal Tax Estimates with Weather Shocks 59
A.3 Calibration and Counterfactual Pricing Analysis 61

B Details on Taiwan’s Property Tax System 63
B.1 Housing Tax Bases .. 63
B.2 Housing Sale Procedures 64
B.3 Comparison to Other Property Tax Regimes 67

C Quality-Adjusted Pricing Dynamics 69
C.1 Transaction Price Index Construction 69
C.2 Residualized Prices by Market Segment 73

D Additional Results on Return Heterogeneity 73

E Pass Through Estimates from Inheritance Shocks 80
E.1 Details on the Inheritance Tax System 81
E.2 Segmentation: Evidence from Inheritance Shocks 83

F Constructing Weather Shocks 89
F.1 Meteorological Background 89
F.2 Factor Analysis of Weather Shocks 93

G Estimating Property Depreciation Rates 96

H Robustness and Additional Results 101
List of Figures

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>Comparison of Quarterly Housing Price Indices</td>
<td>71</td>
</tr>
<tr>
<td>C.2</td>
<td>Quarterly Housing Price Indices for Top Six Markets</td>
<td>72</td>
</tr>
<tr>
<td>D.1</td>
<td>Reaching for Rental Yields</td>
<td>80</td>
</tr>
<tr>
<td>F.1</td>
<td>Pacific Storm Incidence and Cyclicality: 1960–2015</td>
<td>90</td>
</tr>
<tr>
<td>F.2</td>
<td>Spatial Distribution of Cumulative Rainfall and Severe Wind (2005-2011Q2)</td>
<td>92</td>
</tr>
<tr>
<td>G.1</td>
<td>Quarterly Translog Housing Price Indices for Top Six Markets</td>
<td>97</td>
</tr>
<tr>
<td>G.2</td>
<td>Non-parametric Estimates of Prices by Building Age</td>
<td>99</td>
</tr>
<tr>
<td>H.1</td>
<td>Empirical and Counterfactual Sales: the Role of OOT Investors</td>
<td>103</td>
</tr>
<tr>
<td>H.2</td>
<td>Empirical and Counterfactual Sales: Older vs. Newer Properties</td>
<td>104</td>
</tr>
<tr>
<td>H.3</td>
<td>Sales Volume around Severe Weather Shocks</td>
<td>105</td>
</tr>
<tr>
<td>I.1</td>
<td>Time on Market by Price Tier</td>
<td>110</td>
</tr>
<tr>
<td>J.1</td>
<td>Non-parametric Pre-trend Test: Sales by Covariate Quartile Bin</td>
<td>114</td>
</tr>
<tr>
<td>J.2</td>
<td>Parametric Pre-trend Test: Average Marginal Effects on Housing Prices</td>
<td>115</td>
</tr>
</tbody>
</table>
A Optimal Transfer Tax Model Extensions

In this appendix, we provide more details on the optimal Tobin tax framework from Section 2, including an extension where we incorporate housing search costs. We then derive formal linkages between the housing search costs version of our model and the weather shocks we use to recover the noise trading share in Section 5.2.

A.1 Adding Housing Search Costs

To summarize this extension, we introduce search costs which capture the ease with which traders can find counterparts. We assume this search cost increases with the severity of weather patterns. Since sellers can list properties beforehand, only buyers are subject to this cost. We then recover a sufficient statistics formula featuring the same tradeoff as in (2.15), but with an added term that takes into account the idea that the presence of search frictions limits the role for corrective taxation in the presence of biased beliefs.

Specifically, we assume that buyers pay a search cost c_t per unit of floor space when they trade in period t. This leads to an amended expression for lifetime housing consumption:

$$C_{i,2} = Y_{i,2} + P_2 \cdot X_{i,1} + P_1 \cdot (X_{i,0} - X_{i,1}) - \tau \cdot P_1|\Delta X_{i,1}| + T_{i,1}$$

$$- c_1 \cdot (X_{i,1} - X_{i,0}) \times 1\{X_{i,1} > X_{i,0}\} - H_{i,2}$$

(A.1)

where the indicator $1\{X_{i,1} > X_{i,0}\}$ indicates that only buyers pay a search cost. Hence, the revised maximization problem is:

$$\max_{X_{i,1}} \left\{ \left[\mu_p^i - P_1 - A_i \cdot Cov(Y_{i,2}, P_2) \right] \cdot X_{i,1} - \tau \cdot P_1|\Delta X_{i,1}|
- c_1 \cdot X_{i,1} \times 1\{X_{i,1} > X_{i,0}\} - \frac{A_i}{2} \cdot (X_{i,1}\sigma_p)^2 + RP_i \right\}$$

(A.2)

where the rental risk premium RP_i is defined as before in equation (2.6). Asset demands are also identical to those derived in equation (2.7), except for buyers, there is an additional term in the denominator for the search cost:

$$\Delta X_{i,1}^+(P_1) = \frac{(\mu_P^i + \mu_r^i)}{A_i\Omega} - A_i\Omega - P_1(1 + \tau) - c_1 - X_{i,0} \quad \text{if} \quad \Delta X_{i,1}^+(P_1) > 0$$

(A.3)

Higher search costs deter buyers from purchasing housing. The equilibrium price is then given by the implicit function:

$$P_1 = \frac{\int_{i \in T(P_1)} \left(\frac{\mu_P^i + \mu_r^i}{a_i} - A_i (\Omega_i + \Omega X_{0i}) \right) dF(i) - c_1 \left(\int_{i \in B(P_1)} \frac{1}{a_i} dF(i) \right)}{1 + \tau \cdot \left(\int_{i \in B(P_1)} \frac{1}{a_i} dF(i) - \int_{i \in S(P_1)} \frac{1}{a_i} dF(i) \right)}$$

(A.4)
where $A \equiv (\int_{i \in \mathcal{T}(P_1)} A_i^{-1} dF(i))^{-1}$ and $a_i = A_i / A$. We use the sets \mathcal{T}, \mathcal{B}, and \mathcal{S} to denote investors who are traders, buyers, and sellers, respectively. Following Dávila (2021), we make a symmetry assumption regarding traders’ preferences, the cross-sectional distribution of mean beliefs, hedging needs, and initial property holdings.

Assumption. [S] (Symmetry) Traders have identical preferences, as indexed by $A_i = A$, $\forall i$. The cross-sectional distribution of traders’ mean beliefs, hedging needs, and initial property holdings are symmetric: $(\mu_i^p + \mu_i^r) - A_i \cdot \Omega_i - A_i \cdot X_{i,0}$.

Under Assumption [S], the equilibrium price P_1 simplifies to:

$$P_1 = \int_{i \in \mathcal{T}(P_1)} \left(\frac{(\mu_i^p + \mu_i^r)}{a_i} - A_i (\Omega_i + \Omega Q) \right) dF(i) - c_1 \cdot \left\{ \int_{i \in \mathcal{B}(P_1)} dF(i) \right\}$$

$$P_1 = P_1^* - \frac{1}{2} c_1$$

in which $Q \equiv \int X_{i,0} dF(i)$ is total housing supply and $P_1^* \equiv \int_{i \in \mathcal{T}(P_1)} \left((\mu_i^p + \mu_i^r) / a_i - A_i (\Omega_i + \Omega \cdot Q) \right) dF(i)$ is the equilibrium price in the absence of search costs. In this case, the price is independent of the tax. Intuitively, any jump in search costs discourages buyers from entering the market. Lower demand for housing then reduces the equilibrium price. The following lemma summarizes this result.

Lemma 2. (Linear shock) Under assumption [S], the price when buyers pay a search cost P_1 is linear in the search cost c_1 and the price with no search cost P_1^* so that $P_1 = P_1^* - c_1 / 2$.

Symmetry is a useful benchmark because shutting down heterogeneity in risk aversion results in equilibrium prices P_1^* which are invariant to the tax rate τ. At the aggregate housing market level, this is in keeping with the empirical behavior of prices in response to the Taiwan reform in Section 4.3. In general, the housing price absent any search costs P_1^* will increase with τ whenever $\int_{i \in \mathcal{B}(P_1)} \frac{1}{a_i} dF(i) \leq \int_{i \in \mathcal{S}(P_1)} \frac{1}{a_i} dF(i)$, and decrease if this inequality is flipped. This condition says that prices increase whenever a tax hike reduces homeowners’ willingness to sell more than it reduces buyers willingness to buy, reducing housing inventory and resulting in a liquidity crunch.

As will become clear later, the linear shock property from Lemma 2 is critical when analyzing the effect of weather shocks on future prices and trading volume. In what follows, we assume that the search cost $c_t = z_t \cdot w_t$ is a product of two independent components: $z_t \sim N(\mu_i^w, (\sigma^2)^2)$ which reflects heterogeneous investor beliefs, and time-dependent slack in the housing market $w_t = \phi \cdot w_{t-1} + \varepsilon_t^w$ which captures weather conditions. Bad weather implies a jump in ε_t^w.\footnote{This shock may not necessarily be a continuous function of proxies for weather conditions we consider in our empirical setting, such as rainfall or wind gusts. For instance, ε_t^w may be a dummy equal to one when a (local) weather condition attains some threshold (i.e. an official typhoon at ≥ 74 mph wind gusts).} In keeping with our empirical evidence (cf. Table 5) that severe
weather conditions have persistent effects on trading volume – even after a month from when a tropical storm initially makes landfall – we model \(w_t \) as following an AR(1) process.

Alternatively, one might interpret \(w_t \) more generally as a persistent shock to housing search costs. The recent proliferation of iBuyers such as Opendoor in the U.S., which improve housing liquidity by giving homeowners “take it or leave it” offers (Buchak et al. 2021) would represent a scenario in which \(\varepsilon^w_i < 0 \). Under this formulation, one can think of bad weather as a negative shock to the arrival rate of buyers, which gradually recovers once weather conditions normalize. Lemma 2 implies that beliefs about future prices include investors’ beliefs about the impact of weather on search frictions in the housing market. For example, under a transitory (negative) weather shock with \(\varepsilon^w_1 > 0 \) in period 1 and \(\varepsilon^w_t = 0 \) in period 2 onward, the mean of future prices is \(\mathbb{E}_i[P_2] = \mu^p_i + \mathbb{E}_i[c_2]/2 \), with \(\mathbb{E}_i[c_2] = \phi \cdot \varepsilon^w_i \mu^z_i \) and \(\text{var}(P_2) = (\sigma^p)^2 + (\phi \cdot \varepsilon^w_i \sigma^z/2)^2 \).

We now proceed to derive a new sufficient statistics formula for the optimal transfer tax rate in the presence of weather-induced search costs. To do so, we apply the trading volume implementation in Dávila (2021), in which the policymaker sets the tax rate to completely eliminate any non-fundamental trading activity. We start by presenting an expression for trading volume and then show how to decompose aggregate volume into components induced by fundamental and non-fundamental traders, and any reductions in volume due to the tax regime \(\tau \) and weather shocks. First, aggregate trading volume is:

\[
P_1 V(\tau) = \kappa(P_1, \tau) \left[\frac{1}{2} \int_{i \in T(\tau)} \left(\left(-\frac{dX_{i,1}}{d\tau} \right)(\mu^s_i - A_i \Omega_i - P_1 \text{sgn}(\Delta X_{i,1}) \tau \right)
- A_i \Omega^s_i X_{i,0} dF(i) + c_1 \int_{i \in B(\tau)} \frac{\partial X_{i,1}}{\partial \tau} dF(i) \right]
\]

with \(\Omega^s = (\sigma^p)^2 + (\phi \cdot \varepsilon^w_i \sigma^z/2)^2 + (\sigma^r)^2 - 2 \text{Cov}(P_2, r_2) \)

\(\mu^s_i = \mu^p_i + \phi \cdot \varepsilon^w_i \mu^z_i + \mu^r_i \)

\(\kappa(P_1, \tau) = (1 + \tau \cdot (d \log P_1/d\tau))^{-1} \)

Trading volume is decreasing in the search cost \(c_1 \) and the buyer’s elasticity of owned property with respect to the tax. A transitory weather shock persistently affects the trading volume and equilibrium price via expectations of future housing prices that reflect heterogeneous beliefs about future search costs. Trading volume can be decomposed into the following four components:

\[
P_1 V(\tau) = \Theta_F(\tau) + \Theta_{NF}(\tau) - \Theta_\tau(\tau) - \Theta_{WS}(\tau)
\]
where the components are defined as

\[
\Theta_F(\tau) = \frac{\kappa(P_1, \tau)}{2} \int_{i \in T(\tau)} \left(-\frac{dX_{i,1}}{d\tau} \right) (-A_i \Omega_i - A_i \Omega^s X_{i,0}) \, dF(i) \quad \text{(A.9)}
\]

\[
\Theta_{NF}(\tau) = \frac{\kappa(P_1, \tau)}{2} \int_{i \in T(\tau)} \left(-\frac{dX_{i,1}}{d\tau} \right) \mu_i^s \, dF(i) \quad \text{(A.10)}
\]

\[
\Theta_{\tau}(\tau) = \frac{\kappa(P_1, \tau)}{2} \cdot \tau P_1 \int_{i \in T(\tau)} \left(-\frac{dX_{i,1}}{d\tau} \right) \text{sgn}(\Delta X_{i,1}) \, dF(i) \quad \text{(A.11)}
\]

\[
\Theta_{WS}(\tau) = \kappa(P_1, \tau) \varsigma_1 \int_{i \in B(\tau)} \left(-\frac{\partial X_{i,1}}{\partial \tau} \right) \, dF(i) \quad \text{(A.12)}
\]

which represent, respectively, fundamental volume \([F]\), non-fundamental volume \([NF]\), tax-induced volume reduction \([\tau]\), and weather-induced volume reduction \([WS]\). Under the symmetry assumption and the assumption that the market starts out with no excess demand or supply, we can simplify these expressions using the fact that \(\kappa(P_1, \tau) = 1\).\(^2\)

\[
\Theta_F(\tau) = \frac{1}{2} \left| \frac{dX_{i,1}}{d\tau} \right|^A \left(\int_{i \in S(\tau)} \Omega_i dF(i) - \int_{i \in B(\tau)} \Omega_i dF(i) \right)
\]

\[
\Theta_{NF}(\tau) = \frac{1}{2} \left| \frac{dX_{i,1}}{d\tau} \right|^A \left(\int_{i \in S(\tau)} (\mu_i^P + \phi \cdot \varepsilon_i^w \mu_i^s + \mu_i^s) dF(i) - \int_{i \in B(\tau)} (\mu_i^P + \phi \cdot \varepsilon_i^w \mu_i^s + \mu_i^s) dF(i) \right)
\]

\[
\Theta_{\tau}(\tau) = \tau P_1 \left| \frac{dX_{i,1}}{d\tau} \right| \int_{i \in B(\tau)} dF(i)
\]

\[
\Theta_{WS}(\tau) = -\varsigma_1 (\phi \cdot w_0 + \varepsilon_i^w) \frac{dX_{i,1}}{d\tau} \int_{i \in B(\tau)} dF(i),
\]

where we take \(\left| \frac{dX_{i,1}}{d\tau} \right| = \frac{P_i}{\sqrt{\text{var}[D]}}\) outside of the integrals because it is constant across investors under the symmetry assumption \([S]\). Under symmetry, \(dP_1/d\tau = 0\) and therefore the total derivative of housing demand with respect to the tax is equal to the partial derivative:

\[
\frac{dX_{i,1}}{d\tau} = \frac{\partial X_{i,1}}{\partial \tau} + \frac{\partial X_{i,1}}{\partial P_1} \cdot \frac{dP_1}{d\tau} = \frac{\partial X_{i,1}}{\partial \tau}
\]

The weather shock \(\varepsilon_i^w\) only affects \(\Theta_{WS}\) and \(\Theta_{NF}\) via the expected price. The following lemma summarizes this result:

Lemma 3. (Weather does not affect fundamental trades) Under Assumption \([S]\), changes in trading volume due to \(\varepsilon_i^w\) are not due to changes in fundamental volume if buyers and sellers start with the same aggregate housing endowment: \(\int_{i \in S(\tau)} X_{i,0} dF(i) = \int_{i \in B(\tau)} X_{i,0} dF(i)\).

\(^2\)That is, \(\int_{i \in S(\tau)} X_{i,0} dF(i) = \int_{i \in B(\tau)} X_{i,0} dF(i)\). This initial condition is guaranteed under the assumption that investors have Gaussian trading motives.
We are now ready to characterize the optimal tax rate with weather-induced search costs. The certainty equivalent of investor i from the planner’s perspective is given by:

$$V_p^i(\tau) = \left[\left(\mu_p^i + \phi \cdot \varepsilon_1^u \mu_p^i + \mu_p^i \right) - P_1 - \Omega_i - c_1 \cdot 1\{X_{i,1} > X_{i,0}\} \right] X_{i,1}(\tau)$$

$$+ P_1(\tau)X_{i,0} - \frac{A_i}{2} \Omega(X_{i,1}(\tau))^2 + \tilde{T}_{i,1}(\tau) - \mu_p^i$$

(A.13)

The optimal tax satisfies $\int_{i \in T(\tau)} (dV_p^i/d\tau) dF(i) = 0$, leading to the optimality condition:

$$\int_{i \in T(\tau)} \left(-\frac{dX_{i,1}}{d\tau} \right) \mu_s^i dF(i) = \tau P_1 \int_{i \in T(\tau)} \left(-\frac{dX_{i,1}}{d\tau} \right) sgn(\Delta X_{i,1}) dF(i) + c_1 \cdot \int_{i \in B(\tau)} \frac{dX_{i,1}}{d\tau} dF(i)$$

(A.14)

Using our decomposition of aggregate trading volume from (A.8), we can use this condition to write the optimal tax rate as a function of the share of non-fundamental trades $\Theta_{NF} = \Theta_{NF}/P_1 V$, the semi-elasticity of volume with respect to the tax, and the search cost as a fraction of home values.

$$\Theta_{NF}(\tau) = \Theta_r(\tau) - \frac{1}{2} \Theta_{WS}(\tau)$$

(A.15)

$$= -\kappa(P_1, \tau) P_1 \frac{dV}{d\tau} - \frac{\kappa(P_1, \tau)}{2} c_1 \frac{dV}{d\tau}$$

(A.16)

$$\Rightarrow \frac{\Theta_{NF}(\tau^*)}{P_1(\tau^*) V(\tau^*)} = -\kappa(P_1, \tau^*) \left(\tau^* + \frac{1}{2} \frac{c_1}{p_1} \right) \frac{d \log V}{d\tau} \bigg|_{\tau^*}$$

(A.17)

$$\Rightarrow \tau^* = \frac{\frac{\Theta_{NF}(\tau^*)}{P_1(\tau^*) V(\tau^*)} \frac{d \log V}{d\tau} \bigg|_{\tau^*}}{-\kappa(P_1, \tau^*) \frac{d \log V}{d\tau} \bigg|_{\tau^*}} - \frac{1}{2} \frac{c_1}{P_1}$$

(A.18)

Using the small-tax approximation around τ^*, the sufficient statistics formula for the optimal tax rate is:

$$\tau^* \approx -\frac{\Theta_{NF}(0)}{P_1(0) V(0)} - \frac{1}{2} \frac{c_1}{P_1} \equiv s_{NF}\{\tau = 0\} - \frac{1}{2} \frac{c_1}{P_1}$$

(A.19)

where the tax rate is decreasing in the search cost. Intuitively, bad weather (or any market friction which raises the search cost to buyers), deters noisy trades, and thus a lower tax rate is needed to implement the Pigouvian approach to mitigating speculation.

A.2 Optimal Tax Estimates with Weather Shocks

In Section 5, we use severe weather shocks to identify the share of housing transfers which are due to noise trading. We now formalize the conditions under which weather-induced search frictions in the housing market are informative about speculative beliefs.
A consequence of the new sufficient statistics formula in (A.19) is that when search costs are small relative to the price of housing \((c_1/P_1 \to 0) \), we recover the original sufficient statistics formula. In our empirical context, we propose daily frequency time series regressions of deviations of aggregate home sale volume from long-run trend (e.g. a six-month moving average as in Section 5) on weather shocks of the following form:

\[
Volume_t = \beta \cdot Weather_t + \delta_t + \varepsilon^w_t
\]
(A.20)

where \(\delta_t \) are week-year and day of week fixed effects to soak up high and low-frequency seasonality in the housing market, and \(Weather_t \) is a weather condition such as a dummy for whether market experiences a tropical storm or severe rainfall. The coefficient \(\hat{\beta} \) obtained from this regression does not directly pin down the non-fundamental volume share \(s_{NF} \); it is contaminated by the effect of weather on buyer search costs.

From the decomposition in (A.8) we can relate \(\hat{\beta} \) to volume shares via

\[
\hat{s}_{NF} = \hat{\beta} - \hat{s}_{WS}
\]
(A.21)

To see why, consider long-run average sales volume \(\bar{V} \) around a point where \(\varepsilon^w = 0 \), or weather conditions are at their long-run trend:

\[
\bar{V} = \Theta_F(\varepsilon^w = 0) + \Theta_{NF}(\varepsilon^w = 0) - \Theta_s(\varepsilon^w = 0) - \Theta_{WS}(\varepsilon^w = 0)
\]
(A.22)

Now consider a transitory negative weather shock \(\varepsilon^w_1 = 1 \). For instance, if \(\varepsilon^w_t \sim N(0, 1/3) \), then this is equivalent to the three-standard deviation rainfall shock that corresponds to a typhoon event in our empirical setting. From equation (A.8) we have that:

\[
\frac{\partial V}{\partial \varepsilon^w_1} = \frac{\partial (V - \bar{V})}{\partial \varepsilon^w_1} = \frac{1}{P_1} \cdot \left[\Theta_{NF}(\varepsilon^w_1) - \Theta_{WS}(\varepsilon^w_1) \right]
\]
(A.23)

\[
\Rightarrow \frac{\partial V/V}{\partial \varepsilon^w_1} = \frac{1}{P_1 \cdot V} \cdot \left[\Theta_{NF}(\varepsilon^w_1) - \Theta_{WS}(\varepsilon^w_1) \right]
\]
(A.24)

\[
= \frac{s_{NF}(\varepsilon^w_1) - s_{WS}(\varepsilon^w_1 = 1)}{\propto c_1/P_1}
\]
(A.25)

Since \(\hat{s}_{WS} \propto c_1/P_1 \), it follows from (A.19) that as weather-induced search costs become small relative to home values (i.e. \(c_1/P_1 \to 0 \)), \(\hat{\beta} \) from our weather regressions becomes a better proxy for the non-fundamental trading share:

\[
\lim_{c_1/P_1 \to 0} \tau^* = \frac{\hat{\beta}}{-d\log V/d\tau \big|_{\tau=0}}
\]
(A.26)

Or, put another way, using \(\hat{\beta} \) from a regression in the tax regime where \(\tau = 0 \) as an empirical proxy for the non-fundamental trading share \(s_{NF} \) produces an upper bound estimate of the optimal Tobin tax rate, because time variation from \(\varepsilon^w_t \) identifies changes in volume due to non-fundamental traders exiting the market and increased search costs that make it harder
for buyers to match with sellers. How sharp is this upper bound? As a back-of-the-envelope exercise, we parameterize this search cost by running regressions of the form:

$$TOM_t = \gamma \cdot Weather_t + \delta_t + \varepsilon_t^w$$

(A.27)

where the outcome variable is time on market (TOM) in the pre-reform period ($\tau = 0$) for properties from a large home listing service. \(\hat{\gamma}\) from this regression identifies the effect of the same weather shock we use to identify \(\hat{\beta}\) on buyer-seller matching, measured in days. We obtain estimates of \(\hat{\gamma}\) between 20 and 21 days for our most conservative specification that defines \(Weather_t\) as a “rainy season” dummy equal to unity when the 4-week moving average of cumulative daily rainfall during the peak storm months of July, August, and September exceeds average daily rainfall during the calendar year.\footnote{Our calibration is conservative in that if we saturate the RHS of the TOM market regression with controls capturing property quality, such as property age, floor space, initial appraisal value, floor number, and land area, \(\hat{\gamma}\) ceases to be statistically significant.}

Using Census data to recover monthly wages, we then convert this estimate from units of time to a monetary value to pin down \(c_1\). During the time period of our listing data, the median regular monthly wage (exclusive of fringe benefits) was 36,687 NTD compared to a median transaction value of roughly 7 million NTD, implying a search cost of 0.36% of market housing value.\footnote{We retrieved monthly wage data from the Earnings and Productivity tables at Taiwan National Statistics. We describe the home listings data and how we computed TOM in more detail in Appendix I.}

\(\hat{\gamma}\) from this regression identifies the effect of the same weather shock we use to identify \(\hat{\beta}\) on buyer-seller matching, measured in days. We obtain estimates of \(\hat{\gamma}\) between 20 and 21 days for our most conservative specification that defines \(Weather_t\) as a “rainy season” dummy equal to unity when the 4-week moving average of cumulative daily rainfall during the peak storm months of July, August, and September exceeds average daily rainfall during the calendar year.\footnote{Note that we use log deviations from six-month moving average volume as our outcome in Section 5. It follows immediately that we recover the same optimal tax conditions with “hat algebra,” where \(\hat{\beta} = \frac{\partial \log \hat{V} / \hat{V}}{\partial \varepsilon^w} = \hat{s}_{NF}(\varepsilon^w_1 = 1) - \hat{s}_{WS}(\varepsilon^w_1 = 1)\).}

Compared to our preferred estimate of \(\tau^* = 4\%\) which ignores search costs, accounting for search costs attenuates our estimated optimal Tobin tax by only \((0.36/2)/5 + (0.36/2) = 0.216\) p.p. Thus, the original sufficient statistics formula of Dávila (2021) delivers a close approximation to the optimal tax rate in the presence of housing search costs.

A.3 Calibration and Counterfactual Pricing Analysis

In both the baseline version of our model in Section 2, and the augmented model with search costs described in the preceding subsection, the effect of a change in \(\tau\) on the market-clearing price is *ex ante* ambiguous. In the empirical results of Section 4.3 and Appendix C, we find that prices increased for virtually all segments of the market after the surcharge reform which hiked the transfer tax rate on landlord-sellers (LS) from \(\tau = 0\%\) to \(\tau = 15\%\). We now show that moving from the set of pre-reform tax rates to the vector of optimal tax rates calibrated in Section 6.2 would generate an increase in prices that is lower than the increase we document in our analysis of pricing effects of the actual reform.
To assess the counterfactual pricing impact of optimally setting investor-specific taxes, we perform the following procedures:

1. We compute the common and investor-specific variance-covariance terms, \(\hat{\Omega} \) and \(\hat{\Omega}_i \) used in the regression in (2.19), and which capture investors’ hedging needs. We use average housing prices and annual rental income to compute the covariance term \(\text{Cov}(P_2, r_2) \) in (2.9). For the investor-specific covariance terms \(\text{Cov}(Y_{i,2}, P_2) \) and \(\text{Cov}(Y_{i,2}, r_2) \) in (2.8), we use each taxpayer’s pre-tax annual taxable income as a proxy for the stochastic endowment \(Y_{i,2} \). For this exercise, we restrict to years 2006 – 2013. We exclude the post-2014 period to avoid a reform which imposed loan-to-value (LTV) limits for high-end investment properties in certain regions.

2. We compute the vector of actual tax rates faced by each investor in Taiwan before the transfer tax hike. We describe the full set of housing tax schedules, with examples, in Appendix B.

3. We estimate the model-implied regression in equation (2.19), using the average market-wide price \(P_t \) in a given year, and the investor-specific tax rate \(\tau_i \) calculated in the previous step. \(P_t \cdot \tau_i \) yields a measure of investors’ potential exposure to subsequent changes in the tax regime. From this regression we recover the individual fixed effects \(\hat{\alpha}_i \), which capture individuals’ beliefs and risk preferences.

4. Using the estimated investor fixed effects, we rearrange equation (2.21) to estimate the market-clearing price under the optimal tax regime, \(\hat{P} \). We set \(\Upsilon \) to be the sum of mean observed prices and rents, or \(\Upsilon \equiv \mu^p + \mu^r \). Setting the free parameter \(\Upsilon \) to the expected payoff from the planner’s perspective is consistent with a production economy in which investors own the developers who supply housing units to the market.

5. Next, we plug \(\hat{P}, \hat{\alpha}_i, \hat{\Omega}, \hat{\Omega}_i \) into (2.20) to retrieve counterfactual housing demand \(X_i(\tau_i^*) \) under the optimal tax rates \(\tau_i^* \) for each individual investor \(i \).

6. We then sort taxpayers into the four investor types from equation (2.16) based on their housing positions \(X_i(\tau_i^*) - X_{i,0} \), where we take \(X_{i,0} \) to be investors’ initial housing endowment within our sample period. To recap, the investor groups are renter-sellers (RS), landlord-sellers (LS), renter-buyers (RB), and landlord-buyers (LB). We use RS as the reference category, since such investors are rarely subject to taxation.

7. Finally, we run the group-by-group regression (6.1) to recover a vector of group-specific beliefs \(\hat{\alpha}_g \) and plug these into (2.18) to obtain optimal tax rates for each group. Recall from Section 6.2 that the set of group-specific optimal tax rates for the continuous housing demand version of the model is: \(\{ \hat{\tau}_{LS}^*, \hat{\tau}_{RB}^*, \hat{\tau}_{LB}^* \} = \hat{\tau}_{RS}^* + \{5.50\%, -0.09\%, -0.72\%\} \). For the discrete housing demand version of the model, the vector is \(\{ \hat{\tau}_{LS}, \hat{\tau}_{RB}, \hat{\tau}_{LB} \} = \hat{\tau}_{RS}^* + \{4.19\%, 0.33\%, 0.55\%\} \).

From this exercise, we can compute the predicted percent change resulting from moving to the optimal tax regime as \((\hat{P} - P)/P = (5.24 \text{ million} - 5.1 \text{ million})/5.1 \text{ million NTD} \approx 2.7\% \) for the discrete housing demand version of the model, or \((5.14 \text{ million} - \)
5.1 million)/5.1 million NTD ≈ 0.8% when we define housing demands \(X\) to be in continuous units of floor space. Given that optimal taxation calls for tax rates of 4-5% on the LS group, compared to rates of 10-15% implemented by the Taiwanese government, the model-predicted results suggest the pricing effects scale approximately linearly with \(\Delta \tau_{LS}\).

\section*{B Details on Taiwan’s Property Tax System}

In this appendix, we discuss the administration of Taiwan’s property tax system, as outlined in Section 3.1. We focus on the four taxes paid at the time of transaction, of which two (the deed tax and stamp duty tax) are paid by the buyer and two (the land value increment tax and house transfer income tax) are the responsibility of the seller. We then put Taiwan’s housing market in a global context by comparing features of transfer and property tax regimes across major real estate markets.

\subsection*{B.1 Housing Tax Bases}

Before and after the enactment of the transfer tax surcharge we study, there are six other tax bases related to housing.

(i) \textit{Building property tax} (paid by owners): 1.2% to 5% of the appraised building value, depending on whether the house is self-occupied, the number of houses the taxpayer holds, and whether the property is residential or commercial use. Building appraisals occur once every three years.

(ii) \textit{Land value tax} (paid by owners): progressive tax ranging from 1% to 5.5% of the “announced land value,” which is an appraised value based on land transactions occurring in the area within the past three years.\(^6\)

(iii) \textit{Deed tax} (paid by buyers at the time of sale): 6% of the appraised value of the property. Property appraisals are conducted by the government once every three years.

(iv) \textit{Stamp duty tax} (paid by buyers at the time of sale): 0.1% of the sum of the appraised building value and “current land value” (CLV). The CLV is reassessed annually and based on recent transactions in the area.\(^7\)

(v) \textit{Land value increment tax} (paid by sellers at the time of sale): 10% tax on CLV for sales of owner-occupied homes. Otherwise, this is a flat tax on a fraction (between 0

\(^6\)The law allows taxpayers to pay the land value tax on a “declared land value” which must be within 80%-120% of the most recently announced land value. If the taxpayer does not declare a land value, the government automatically applies the tax rate to 80% of the announced value. This is essentially a scheme whereby property owners have the ability to donate money to the tax authority.

\(^7\)According to official descriptions of the deed tax, the CLV is computed to be larger than the appraised land value determined every three years, although no computation methods are disclosed.
and 1, but close to 0.3 on average) of the CLV, with tax rates weakly decreasing in the holding period and ranging between 20% to 40%.

(vi) *House transfer income tax* (paid by sellers at the time of sale): liability is determined by the seller’s personal income tax bracket and a local scale factor applied to transfer income, ranging from 0.08 for rural districts to 0.37 for the capital city of Taipei.

B.2 Housing Sale Procedures

From the seller’s perspective, there are five main steps required to transfer property ownership.

1. Signing the contract and providing documents to the state to identify parties in the transaction and the new owner. The buyer pays the 0.1% stamp duty tax and a “contract fee” equal to 5-10% of the transaction price (1 to 3 days). The contract fee is then held in escrow until the sale closes.

2. Sellers file a transaction tax return and wait for the official tax document which lists the total payment due. The document usually arrives within 7 to 21 days.

3. Sellers pay transaction taxes and capital gains tax (post-2016), as well as any unpaid building property tax and land value tax. All taxes must be paid within 30 days after signing the contract (step 1).

4. Sellers file the transfer of ownership and pay the stamp duty tax remitted to them by the buyer plus a small flat fee (0.1% + 80 NTD). This process usually takes 3 to 5 days.

5. Buyers pay the remaining balance on the property to the seller and complete the transfer.

Given these steps and approximate timeline, we estimate that finalizing an arms-length property transfer takes 38 days, at maximum.\(^8\)

In addition to the transfer tax surcharge (TTS) we focus on in this paper, all sellers need to pay the land value increment tax and the house transfer income tax. We now illustrate with examples how the TTS amount would typically be much larger than the combined amount of these taxes.\(^9\)

Land value increment tax (LVIT): This tax is applied to the “current land value” (CLV), which is an annually reassessed appraisal value designed to closely track market values. It is a

\(^8\)The Taiwan Real Estate Almanac provided by the Sinyi Research Center for Real Estate, estimates that during our sample period the average time a brokered property spent on the market in the six largest cities in Taiwan was 69 days for Taipei, 55 days for New Taipei, 59 days for Taoyuan, 64 days for Hsinchu, 66 days for Taichung, and 77 days for Kaohsiung. Hence, for a transaction where the buyer is not predetermined, selling a property within four to five months from listing to closing is feasible.

\(^9\)The examples are based on entries in the Ministry of Finance Tax Manual, available here.
flat 10% rate on the CLV for sales of owner-occupied homes. For sales of non-owner occupied properties, payments are higher if the land quickly appreciates relative to the overall CPI within the period from the last transfer date, or if this is the first sale of the property, from the initial appraisal date. More concretely, the payment amount can be summarized via:

\[LVIT = \tau_1 \cdot X - \tau_2 \cdot Y \]

(B.1)

\[X = CLV - P_0 \times \frac{CPI_T}{CPI_0} - B \]

(B.2)

\[Y = P_0 \times \frac{CPI_T}{CPI_0} \]

(B.3)

where \(\tau_1 \in [20\%, 40\%] \) is levied on \(X \) which captures the wedge between land appreciation and CPI inflation. An adjustment is then made for land appreciation according to the CPI, \(Y \), at deduction rate \(\tau_2 \in [0\%, 30\%] \). \(B \) is the total tax paid during ownership towards local infrastructure benefits. \(P_0 \) refers to the initial appraisal or previous transfer value, \(P_T \) is the current sale price.

Hence, a more transparent way to express the LVIT payment due is:

\[LVIT = \tau_1 \cdot CLV - (\tau_1 - \tau_2) \cdot Y - \tau_1 \cdot B \]

(B.4)

The tax rate pair \((\tau_1, \tau_2)\) is determined by the holding period length \(T \) and the ratio of \(X/Y \) (essentially the price growth rate relative to CPI), according to the table below.

<table>
<thead>
<tr>
<th>Land Value Increment Tax Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T < 20)</td>
</tr>
<tr>
<td>Level 1: (X/Y < 1)</td>
</tr>
<tr>
<td>Level 2: (1 \leq X/Y < 2)</td>
</tr>
<tr>
<td>Level 3: (X/Y \geq 2)</td>
</tr>
</tbody>
</table>

House transfer income tax (HTIT): This portion of transfer tax policy applies to the appraised value of buildings (updated once every three years). The HTIT payment can be written as:

\[HTIT = \tau^I \cdot \theta \times P_A \]

(B.5)

where \(P_A \) is the appraised building value in the most recent appraisal year. The rates \(\tau^I \) are the same as those that apply to other sources of personal income. Income tax brackets are
automatically tied to total CPI inflation, but in 2010 the schedule was:

\[
\tau^I = \begin{cases}
5\% & \text{if } I < 500,000 \text{ NTD} \\
12\% & \text{if } 500,000 < I \leq 1,090,000 \text{ NTD} \\
20\% & \text{if } 1,090,000 < I \leq 2,180,000 \text{ NTD} \\
30\% & \text{if } 2,180,000 < I \leq 4,090,000 \text{ NTD} \\
40\% & \text{if } I > 4,090,000 \text{ NTD}
\end{cases}
\]

(B.6)

where \(I \) refers to taxable income, inclusive of income from the building sale (1 NTD \(\approx \) 0.03 USD). The scale factor \(\theta < 1 \) determines the portion of the building sale that is taxable and is set at the municipal level. In 2010, \(\theta \) was equal to 37% in Taipei, 21% in New Taipei City, 20% in Kaohsiung, 13% in other major cities, 10% in county-administered cities, and 8% in counties.

Example: Computing Total Transfer Tax Liability

Consider the following short-term residential property sale, with features chosen to be representative of appraisal, and sale prices for a single-family home in Taipei in 2012.

Suppose it is January 2012, and Mr. Lee has found a buyer willing to pay 65,000,000 NTD for his second home. The land area is 125 \(m^2 \), the current land value (CLV) is 200,000 NTD per \(m^2 \), and Mr. Lee originally paid 170,000 NTD per \(m^2 \). Suppose he has held the land since July 2010, and the CPI inflation rate over the preceding two years was 1%. Over the holding period, Mr. Lee made a payment of 3,000 NTD towards infrastructure benefits. The land value increment tax Mr. Lee owes is derived as follows:

\[
Y = (170,000 \times 125) \times 1.01 = 21,462,500 \text{ NTD}
\]

\[
X = (200,000 \times 125) - (170,000 \times 125) \cdot 1.01 - 3,000 = 3,534,500 \text{ NTD}
\]

\[\implies LVIT = 0.2 \cdot (CLV - Y - B) = 0.2 \cdot (25,000,000 - 21,462,500 - 3,000) = 706,900 \text{ NTD}\]

For the house transfer income tax, suppose the house was recently assessed at 33,600,000 NTD. Since property flippers tend to be very high income, suppose prior to this sale, Mr Lee’s taxable income already placed him in the top tax bracket. Given that the house is located in Taipei, the HTIT payment due is \(HTIT = 0.4 \times 0.37 \times 33,600,000 = 4,972,800 \) NTD.

Thus, if there were no transfer tax surcharge imposed in 2011, Mr. Lee’s total transfer tax liability would be 5,679,700 NTD, which is roughly 8.7% of the transaction value of 65,000,000 NTD.\(^{10}\) With the surcharge in place and 1.5 year holding period, the total transfer tax bill rises by 6,500,000 NTD (\(\approx \) 222,000 USD) to 18.7% of the sale price.

\(^{10}\)Note this is a conservative example, as in practice the CLV can be much lower than the market value for the land, and not all properties occur among taxpayers in the highest HTIT county (Taipei) and in the highest income tax bracket.
B.3 Comparison to Other Property Tax Regimes

We now briefly summarize transaction taxes enacted in other global housing markets. We emphasize that the two distinguishing features of Taiwan’s TTS reform are the high tax burden it imposes on sellers, and its focus on very short-term sales. To illustrate this, in Table B.1 we catalogue real estate transfer tax policies for the four “Asian Tigers” (Taiwan, Hong Kong, Singapore, and South Korea) and top 25 cities by value of investable real estate stock.11 With the exception of Dallas, Houston, and Phoenix, all of these major markets have either a transfer tax or a capital gains or value-added tax which applies to real estate sales. Outside of Taiwan only four markets impose a tax where the rates depend on the holding period of the seller, and for the two cities in Japan this preference for long-term investing comes through the capital gains tax system rather than through a transfer tax.12

The other takeaway from Table B.1 is that among economies which impose a flat-rate transfer tax, the rates tend to be fairly low, ranging from 0.055\% in San Diego to 11\% for luxury properties in Madrid. In Taiwan, the transfer tax surcharge we study here is levied on top of two other taxes, the land value increment tax and house transfer income tax, which can easily amount to a rate of 10\% paid by the seller for high-value properties. If behavioral responses to transfer taxes are non-linear in the tax rate, this rationalizes why we find such large effects on trading volume relative to other studies, such as Kopczuk & Munroe (2015) on the 1\% “mansion tax” in New York and New Jersey, and Slemrod, Weber, & Shan (2017) on a 0.8 p.p. rate increase in Washington, D.C.13

Gorback & Keys (2020) argue that a series of stamp duty tax hikes levied on non-residents in Singapore (SG) in 2011 and Hong Kong (HK) in 2012 incentivized Chinese capital to flow into U.S. housing markets.14 Stamp tax duty schedules in HK and SG are complicated and vary by holding period, sale prices, and non-residency status. These schedules have been continuously reformed over the last decade, and now feature rates as high as 16-20\% for non-residents in the top brackets. Yet, since neither HK nor SG impose capital gains tax on income from property sales, effective rates paid by sellers are comparable to those for a flipper

11We use the ranking of cities provided by commercial real estate investment firm CBRE in their 2017 report available \textcolor[rgb]{1.00,0.00,0.00}{here}. CBRE apply a rule of thumb in the real estate investment industry to value investable real estate stock, which assumes the real estate capital stock is roughly equal to 45\% of output once the economy achieves some threshold level of per capita GDP of roughly 27,000 USD.

12Using the CBRE method applied in Table 1 we obtain an estimate of $253,973 million USD for investable real estate stock in Taiwan. This means Taiwan’s real estate stock is about the same as the 10th largest market (Houston). Second, we total the transaction value of all purchases made in 2017 and obtain a value of $111,425 million USD. The latter estimate only takes into account observed transactions (flow) rather than the stock. Together these two numbers imply annual property turnover equivalent to 44\% of Taiwan’s entire real estate stock.

13The relatively small lock-in effects found in Kopczuk & Munroe (2015) and Slemrod, Weber, & Shan (2017) stand in contrast to Dachis, Duranton, & Turner (2012) who find a 15\% drop in single-family home sales in response to the introduction of a 1.1\% land transfer tax in Toronto.

14Price-rent ratios grew by a similar magnitude in the Taipei/New Taipei metro area as in HK and SG in the run up to these tax reforms. We collect lease records for Taipei/New Taipei and find median price-rent ratios rose from 10 to 22 in Taipei, and from 18 to 30 in New Taipei between 2009Q2 and 2011Q2.
Table B.1. Key Features of Transfer Taxes in Major Real Estate Markets

<table>
<thead>
<tr>
<th>City</th>
<th>RE stock value</th>
<th>Transfer tax</th>
<th>Capital gains tax (CGT)</th>
<th>Rate(s)</th>
<th>Holding period notch(es)</th>
<th>Exemptions</th>
<th>Legal Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taiwan</td>
<td>253,973</td>
<td>Yes</td>
<td>Yes</td>
<td>10-15% (flat)</td>
<td>Yes (both)</td>
<td>Inheritance/public entity</td>
<td>Seller</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>190,706</td>
<td>Yes</td>
<td>No</td>
<td>1.5-20% (progressive)</td>
<td>✔️ (buyer surcharge)</td>
<td>N/A</td>
<td>Seller & buyer surcharge</td>
</tr>
<tr>
<td>Singapore</td>
<td>217,042</td>
<td>Yes</td>
<td>No</td>
<td>0.33-16% (progressive)</td>
<td>✔️ (seller stamp tax)</td>
<td>Certain uses (e.g., childcare center)</td>
<td>Buyer & seller (separate rates)</td>
</tr>
<tr>
<td>South Korea</td>
<td>758,376</td>
<td>Yes</td>
<td>No</td>
<td>46% (flat)</td>
<td>N/A</td>
<td>N/A</td>
<td>Buyer</td>
</tr>
<tr>
<td>Tokyo</td>
<td>711,255</td>
<td>Yes</td>
<td>Yes</td>
<td>3% (flat)</td>
<td>Yes (CGT)</td>
<td>Inheritance</td>
<td>Buyer</td>
</tr>
<tr>
<td>New York</td>
<td>656,903</td>
<td>Yes</td>
<td>No</td>
<td>1-2.625% (flat)</td>
<td>No</td>
<td>Sales by public agency</td>
<td>Seller (buyer if seller exempt)</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>482,065</td>
<td>Yes</td>
<td>No</td>
<td>0.45% (flat)</td>
<td>No</td>
<td>Court order/collateral/gifts</td>
<td>Seller</td>
</tr>
<tr>
<td>Paris</td>
<td>342,389</td>
<td>Yes</td>
<td>No</td>
<td>0.71-6.41% (flat)</td>
<td>N/A</td>
<td>N/A</td>
<td>Seller</td>
</tr>
<tr>
<td>London</td>
<td>333,683</td>
<td>Yes</td>
<td>Yes</td>
<td>2-12% (progressive)</td>
<td>No</td>
<td>New homeowner/value < 125k GBP</td>
<td>Buyer</td>
</tr>
<tr>
<td>San Francisco</td>
<td>307,076</td>
<td>Yes</td>
<td>No</td>
<td>0.5-2.5% (flat)</td>
<td>No</td>
<td>Gifts/inheritance/refinancing/trusts</td>
<td>Buyer</td>
</tr>
<tr>
<td>Chicago</td>
<td>299,593</td>
<td>Yes</td>
<td>No</td>
<td>1.05% (flat)</td>
<td>No</td>
<td>Collateral/public/divorce</td>
<td>70-30 buyer-seller split</td>
</tr>
<tr>
<td>Seoul</td>
<td>290,695</td>
<td>Yes</td>
<td>No</td>
<td>0.02-5% (flat)</td>
<td>No</td>
<td>N/A</td>
<td>Buyer</td>
</tr>
<tr>
<td>Osaka</td>
<td>287,726</td>
<td>Yes</td>
<td>Yes</td>
<td>3% (flat)</td>
<td>Yes (CGT)</td>
<td>Inheritance</td>
<td>Buyer</td>
</tr>
<tr>
<td>Houston</td>
<td>254,515</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>239,336</td>
<td>Yes</td>
<td>No</td>
<td>1.1-4.5% (flat)</td>
<td>No</td>
<td>Public/gifts/collateral/inheritance/non-profits</td>
<td>Seller</td>
</tr>
<tr>
<td>Boston</td>
<td>165,320</td>
<td>Yes</td>
<td>No</td>
<td>0.456% (flat)</td>
<td>No</td>
<td>Gifts/public/value < 2 mil. USD</td>
<td>Seller</td>
</tr>
<tr>
<td>Dallas</td>
<td>164,475</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Atlanta</td>
<td>142,551</td>
<td>Yes</td>
<td>No</td>
<td>0.1% (flat)</td>
<td>No</td>
<td>Court order/divorce/inheritance/firm-to-firm</td>
<td>Seller</td>
</tr>
<tr>
<td>Miami</td>
<td>140,244</td>
<td>Yes</td>
<td>No</td>
<td>0.7% (flat)</td>
<td>No</td>
<td>Divorce/inheritance/trusts</td>
<td>Seller</td>
</tr>
<tr>
<td>Toronto</td>
<td>130,279</td>
<td>Yes</td>
<td>No</td>
<td>0.5-2.5% (progressive)</td>
<td>No</td>
<td>Public/nursing homes/hospitals/schools</td>
<td>Buyer</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>128,534</td>
<td>Yes</td>
<td>No</td>
<td>4.2% (flat)</td>
<td>No</td>
<td>Gifts between family</td>
<td>50-50 buyer-seller split</td>
</tr>
<tr>
<td>Seattle</td>
<td>125,147</td>
<td>Yes</td>
<td>No</td>
<td>1.28% (flat)</td>
<td>No</td>
<td>Gifts/refinancing</td>
<td>Seller</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>114,309</td>
<td>Yes</td>
<td>No</td>
<td>0.34% (flat)</td>
<td>No</td>
<td>Public/inheritance/refinancing/divorce</td>
<td>Seller</td>
</tr>
<tr>
<td>Sydney</td>
<td>113,365</td>
<td>Yes</td>
<td>No</td>
<td>1.25-5.5% (progressive)</td>
<td>No</td>
<td>Inheritance/spouse</td>
<td>Buyer</td>
</tr>
<tr>
<td>Detroit</td>
<td>107,711</td>
<td>Yes</td>
<td>No</td>
<td>0.11-0.75% (flat)</td>
<td>No</td>
<td>Gifts/inheritance/energy storage</td>
<td>Seller</td>
</tr>
<tr>
<td>Madrid</td>
<td>107,007</td>
<td>Yes</td>
<td>No</td>
<td>6-11% (flat)</td>
<td>No</td>
<td>Transfer of ownership shares</td>
<td>Buyer</td>
</tr>
<tr>
<td>Phoenix</td>
<td>102,956</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>San Diego</td>
<td>90,343</td>
<td>Yes</td>
<td>No</td>
<td>0.05% (flat)</td>
<td>No</td>
<td>Collateral/public/share transfer</td>
<td>Seller</td>
</tr>
<tr>
<td>Milan</td>
<td>97,492</td>
<td>No</td>
<td>Yes (VAT)</td>
<td>N/A (10% VAT)</td>
<td>No</td>
<td>Residential/share transfers (VAT)</td>
<td>Buyer</td>
</tr>
</tbody>
</table>

Notes: The table summarizes the provisions of real estate transfer tax and real estate capital gains tax policies in place among the top 25 cities by investable real estate stock (in millions of USD), plus the four “Asian Tigers;” Taiwan, Hong Kong, Singapore, and South Korea. We use the methods outlined by CBRE (2017) to compute real estate stock in a way that allows direct comparison across markets. We note whether the transfer tax charges a flat rate based on the value and other features of the property, or whether the tax rate rises progressively with sale value. Although Taiwan has several taxes incurred by a real estate transaction, for simplicity here we only list provisions of the transfer tax surcharge. We also list common cases in which a transfer would be tax exempt, such as transfers related to posting collateral, divorce, or inheritance. Information on tax policy sourced from various official government websites and research reports from real estate investment firms.
in Taiwan once all other transfer tax bases are included (see Appendix B.2). An advantage to using Taiwan as our environment is that the transfer tax stays in place continuously over 4.5 years, so general equilibrium effects of stacking up multiple tax reforms and seasonality in windows around short-duration reforms do not play a role in our estimates.

C QUALITY-ADJUSTED PRICING DYNAMICS

This appendix describes our methods for producing quality-adjusted prices, such as the residualized regression discontinuity-style plot shown in Section 4.3. Since the tax created strong incentives for sellers to withhold their properties from the market, the transactions we observe in the post-reform period will consist of more desirable properties. We then use our quality-adjusted prices to illustrate almost complete pass through of the tax on the second home market to sales of previously owner-occupied properties.

C.1 TRANSACTION PRICE INDEX CONSTRUCTION

As discussed in Section 3.2, we create transaction price indices using newly compiled sales records from local land offices prior to 2012Q3, which we then append to the files available from the government for 2012Q3 to 2019Q4. We describe the index construction methodology in this appendix. The public records offer a rich dataset of property characteristics for sales involving a combination of land parcels and or buildings. Our dataset contains information on the number of floors in the unit and building, floor space, land area, land use/zoning, building materials, front-facing road width, location on the street, construction date, and variables generated from remarks enumerated in the public sale record which we use to identify arms-length transactions.

Yet, while addresses are known up to the block level, one challenge is that unique property identifiers are not included, meaning we cannot directly track sales of the same property over time. This not not necessarily an issue for hedonic indexing methods, which use a set of potentially time-varying observables to price properties in the cross-section. An hedonic approach would, however, require us to make strong assumptions about the underlying functional form for transaction values given the relatively small set of variables available over the full time period (2000Q1 to 2019Q4) and for all properties.

Therefore, we adopt a hybrid repeat sales hedonic-approach in the spirit of McMillen (2012) and Fang et al. (2015) that transforms the time fixed effects in the following regression to

15SG and HK have foreign homebuyer stamp duty tax surcharges. SG has a progressive stamp duty tax schedule for buyers (1-4% for domestic buyers) and a progressive set of schedules for sellers which depends on the holding period (higher tax on short-term) and the original purchase date. Deng, Tu, & Zhang (2019) study rate changes at holding period discontinuities in the SG context, and uncover clear lock-in effects and argue sellers who persist in spite of the tax charge a premium.

16The records also include files related to housing leases and parking lot or parking space transfers, which we exclude from our analysis.
estimate a transaction price index:

\[
\log P_{c,t}^e = \delta_t^c + \gamma_{i}^c + \beta^{ct'} \cdot X_{i,t}^c + \epsilon_{i,t}^c
\]
\[
P_t^c = \exp(\delta_t^c)
\]

where \(i\) indexes a property, \(t\) denotes a quarter-year or month-year period, and \(c\) refers to a classification based on a combination of the regional market (e.g. Taipei) and property use category (i.e. residential, commercial, industrial). The property type fixed effects \(\gamma_i^c\) control for all time-invariant observed or unobserved characteristics of the transacted property type.

We make three further restrictions to estimate the model. First, we restrict to transactions involving a single building and drop any transactions with a parking lot or parking space included in the sale. In other words, our sample includes sales of either a land parcel plus structure bundle, or a unit or floor within a building. Second, we drop newly built structures and recently renovated properties. Finally, we identify the \(\gamma_i^c\) by matching transactions on geolocation information and other features to determine "uniqueness" of a transaction. We consider four variations of this method, with uniqueness defined with increasing stringency as we go down the following list:

1. **Block-level fixed effects**: we assign two transactions the same panel id if they share the same address string (85% of transactions).

2. **Property development fixed effects**: two transactions share a panel id if they have the same latitude and longitude coordinates (18% of transactions).

3. **Unique properties up to the nearest 5 m\(^2\) in floor space**: two properties share a panel id if they have the same coordinates and the same building and land area, each rounded to the nearest 5 m\(^2\). This effectively treats two apartments with similar floor space as the same unit, conditional on apartment layout (7% of transactions).

4. **Unique properties up to the nearest 1 m\(^2\) in floor space**: we consider two properties to be the same if they share coordinates and have the same building and land area, each rounded to the nearest 1 m\(^2\). Rounding to the nearest 1 m\(^2\) identifies two units of the same size, accounting for minor typos in the coding of the area variables (5% of transactions).

In the regression, the vector \(X_{i,t}\) includes a polynomial in land area and floor space, the number of floors in the building, and the unit floor (for apartments and office space). To the extent that the above methods may assign two distinct but adjacent properties to the same panel id, controlling for \(X_{i,t}\) accounts for small differences due to the height and size which may be relevant to the transaction value.

When we subset to transactions of pre-existing residential structures, our four indices comove strongly with each other and with two other publicly available indices: the official government index and the Sinyi Residential Property Index. Figure C.1 plots all six indices for the aggregate market over the period 2012Q3 to 2019Q4 when the indices overlap. Notably, the level of the Sinyi index drops below the other indices, including the official index, starting
Notes: The figure compares the official government price index, constructed using the public transaction records available from 2012Q3, to the Sinyi Residential Property Price Index, and our indices created using four methods for identifying repeat sales. The vertical red dashed line indicates the capital gains tax reform in 2016Q1. All indices normalized to unity in the base period of 2012Q3. See text for details.

in 2014Q. Since the Sinyi is a hedonic price index, it does not suffer from the positive selection bias on price growth that comes with repeat sales. The official government index is a weighted version of our pricing regression, where the weights are constructed to mitigate the sample selection bias issue inherent in restricting to repeat sales. This upward bias is apparent when we compare how the price level increases with the stringency of our criteria.

\[\text{Notes: }\text{The official indexing procedures, after restricting to arms-length transactions and deleting outliers, can be summarized by a three-step procedure (translated from this website):}\]

(i) Assign properties to the same panel id if they share the same neighborhood designation or are within 500m of each other, the same type and use categories, they were each constructed within 10 years of each other, there is at least six-month gap in transaction dates between the observations.

(ii) Price matching houses via automated valuation models (AVM), which are trained on the full set of transactions. These models are then used to create adjusted house prices for the repeat sales according to observables.

(iii) Estimate Case-Shiller repeat sales regressions by weighted least squares, where the weights adjust observations according to the length of time elapsed between repeat sales.
FIGURE C.2. Quarterly Housing Price Indices for Top Six Markets

Notes: The figure plots our indices created using our matching estimator method outlined in the main text (what we call “Method 1”). Overall refers to the model in equation (C.1) estimated for all arms-length transactions. The other lines refer to indices estimated for the six largest housing markets in Taiwan. Vertical red dashed lines indicate the transfer tax reform in 2011Q2 and the capital gains tax reform in 2016Q1. All indices normalized to unity in the base period of 2001Q1.

for identifying unique properties.\footnote{Our price levels lie on top of the official ones, in part, because our indices include sales of similar properties occurring within six months. We find in the confidential property records that these extremely short-term sales are very prevalent, particularly in the pre-reform period.}

In spite of these differences, the correlation between our index and the official index is 98%, and the correlation between our index and the Sinyi index is 73%. These correlations are stable even when we compare city-level price indices across different methods. We adopt our method 1, which uses 85% of total transactions, as our preferred index to maximize the precision of our estimates \(\hat{\delta}_t \), maximize sample coverage, and reduce selection bias relative to standard repeat sales.

We plot the time series obtained from our preferred indexing Method 1 in Figure C.2 for the entire housing market and for each of the top six cities by population. In contrast to popularly referenced indices like the Sinyi, our indices show a clear price drop of 7% within the quarter after the reform (2011Q2), with the magnitude of this drop varying between 6% (Taipei and New Taipei) to 28% (Hsinchu). The main difference between our index and publicly available ones is we incorporate short-term property flips which were targeted by
the transfer tax surcharge. At the same time, our index generates much smaller price gains between 2001Q1 and 2011Q1 of 40%, compared to the 116% implied by the Sinyi index.

C.2 Residualized Prices by Market Segment

We now use a model akin to the indexing approach in equation (C.1) to examine the behavior of prices in different segments of the housing market around the transfer tax reform. Specifically, we run the regression in (C.1) pooled across cities, where γ_i are block-level fixed effects, and we include a vector of potentially time-varying covariates to adjust for unit characteristics that may vary at the sub-block level. We omit the time fixed effects δ_t, and instead extract the residuals $\hat{\epsilon}_{i,t}$ and bin those at high frequency.

Figure C.3 displays the results of residualizing prices separately according to the seller’s owner-occupied status. In the top left panel where we pool all transactions, we observe a slight jump in prices among sales of previously owner-occupied properties, and prices remain elevated relative to second homes for about a year after the reform. There are a few notable deviations from this general pattern once we divide transactions into quality quintiles based on tax assessed unit values at the beginning of the sample. First is that prices for second home sales which are subject to the tax spike by roughly 5% at the bottom of the quality distribution, but are otherwise smooth across the cutoff in other quintiles. Secondly, there is a marked jump of around 10% for prices on sales of owner-occupied homes in the top quintile, reflecting demand spillovers from the reduction in the supply of luxury properties induced by the new tax. Overall, the dynamics of quality-adjusted prices support the notion of almost complete pass through of the incidence of the tax on second homes to the owner-occupied segment of the housing market.

D Additional Results on Return Heterogeneity

This appendix offers additional results on how annualized total returns to housing differ by investors and property type, and for different definitions of non-resident status. To summarize these findings:

- Individual and institutional investors earn statistically identical returns (Table D.1).
- Single family homes earn higher returns than apartments (Table D.2).
- We find no evidence of a local premium in the pre-reform period when we follow the definition of “out-of-town” commonly used in the housing investor literature and define local at the metro area level (Table D.4). In contrast, there is a 4 p.p. premium for local sellers when we define local at the neighborhood level, and this premium widens to 8 p.p. in the post-reform period. We dub owners of properties at an address in distinct district from their permanent address, but potentially within the same metro area, as “out-of-neighborhood” investors (Table D.3).
FIGURE C.3. Residualized Sale Prices by Owner-Occupied Status

Notes: Each panel presents the evolution of log sale prices residualized on neighborhood block fixed effects, day of week fixed effects, a quadratic in property age, floor space, land area, unit floor number (for apartments), and number of floors (for single family homes). In each panel, we separately residualize over the sample of transactions in which the property being sold is currently owner-occupied (blue, triangles) vs. non-owner occupied (red, circles). Sellers only pay transfer tax on sales of non-owner occupied homes. Each point on a graph represents an average residual within a weekly bin. We winsorize prices at the 1st and 99th percentiles before residualizing and binning. Following Gelman & Imbens (2018), we fit local quadratic polynomials to data on either side of the implementation date of June 1, 2011. Quintiles based on tax assessed value per square meter as of the beginning of the sample period.
We compute rental yields at the taxpayer portfolio level by dividing total rental income reported on the personal income tax return by the sum market value of all properties.19 In cases where the property did not transact within the tax year, we use the last observed sale price inflated by the price index value created in Appendix C. In Figure D.1 we find average post-reform rental yields were about 50 bps higher (p-value = 0.034) for taxpayers who had strictly positive rental income in the pre-reform period. This indicates some investors’ reaching for rental yields, although this 50 bps increase is economically small relative to the flattening of the yield curve brought about by the tax (Figure 6).

Mortgaged investors earn similar capital gains to those earned by investors with full equity (Table D.5).

For exposition, we repeat here the taxpayer-level holding period return formula:

\[r_{j,t-1}^j = \frac{\sum_{i=1}^{n} (1 - \tau_{i,t}) \cdot \tilde{V}_{i,t} + (1 - c_{i,t}) \cdot Y_{i,t} - T_{i,t-1}^j}{\sum_{i=1}^{n} \tilde{V}_{i,t-1}} - 1 \]

(D.1)

where \(r_{j}^{t} \) is the holding period return for the set of properties held by taxpayer \(j \) between periods \(t-1 \) and \(t \). \(\tau_{i,t} \) is the fraction of the market value \(\tilde{V} \) the seller pays in transfer taxes, \(c_{i,t}^j \) is the income tax paid by \(j \) on rental income \(Y_{i,t}^j \) accumulated between \(t-1 \) and \(t \), and \(T_{i,t-1}^j \) refers to the total property tax bill on land and buildings incurred by \(j \) during the holding period. We discuss the schedules underlying all the tax terms in Appendix B. In the event that a property \(i \) does not transact in period \(t \), we inflate up from the previous transaction price in \(t-1 \) using our estimated price index \(\hat{P} \) described in Appendix C, and assuming a linear rate of depreciation that we estimate to be 2\% in Appendix G. We annualize returns by computing \((1 + r_{i-1,t}^j)^{365/n}\), where \(N \) is the number of days in the holding period.

19We do not observe rental income at the property level since our data are based on annual personal income tax returns.
Table D.1. Annualized Holding Period Returns by Investor Type

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>(\mu_{HPR})</th>
<th>(\sigma_{HPR})</th>
<th>(P_{HPR}^{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-resident investors</td>
<td>34</td>
<td>30.97</td>
<td>78.16</td>
<td>5.76</td>
</tr>
<tr>
<td>Individual investors</td>
<td>94,099</td>
<td>14.89</td>
<td>81.62</td>
<td>2.15</td>
</tr>
<tr>
<td>Institutional investors</td>
<td>1,716</td>
<td>11.96</td>
<td>66.79</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Notes: We define non-resident investors using the flag provided by the tax authority, which only counts taxpayers as non-residents if they report a permanent address outside Taiwan. The true number of non-resident property owners is obviously much higher, but tricky to identify in this context due to surnames common to Taiwan and other property markets in East Asia.

Table D.2. Annualized Holding Period Returns by Property Type

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>(\mu_{HPR})</th>
<th>(\sigma_{HPR})</th>
<th>(P_{HPR}^{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments</td>
<td>66,720</td>
<td>13.27</td>
<td>75.08</td>
<td>2.86</td>
</tr>
<tr>
<td>Single-family homes</td>
<td>7,016</td>
<td>13.75</td>
<td>67.21</td>
<td>5.95</td>
</tr>
<tr>
<td>Office space</td>
<td>976</td>
<td>9.03</td>
<td>50.83</td>
<td>2.75</td>
</tr>
<tr>
<td>Factories & warehouses</td>
<td>519</td>
<td>10.66</td>
<td>39.50</td>
<td>4.15</td>
</tr>
<tr>
<td>Storefronts</td>
<td>1,037</td>
<td>24.54</td>
<td>79.17</td>
<td>10.15</td>
</tr>
</tbody>
</table>
Table D.3. Differences in Mean Holding Period Returns across Counterparty Pairs (OON)

A. Difference-in-differences: Local vs. OON Buyers/Sellers

<table>
<thead>
<tr>
<th></th>
<th>Local buyer</th>
<th>OON buyer</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OON seller</td>
<td>9.39%</td>
<td>11.72%</td>
<td>2.33***</td>
</tr>
<tr>
<td>Local seller</td>
<td>15.72%</td>
<td>18.72%</td>
<td>3.00***</td>
</tr>
<tr>
<td>Difference</td>
<td>6.33*</td>
<td>7.00*</td>
<td>0.67</td>
</tr>
</tbody>
</table>

B. Difference-in-differences: Local vs. OON Sellers Pre vs. Post-reform

<table>
<thead>
<tr>
<th></th>
<th>Pre-reform</th>
<th>Post-reform</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OON seller</td>
<td>22.06%</td>
<td>8.13%</td>
<td>−13.93***</td>
</tr>
<tr>
<td>Local seller</td>
<td>25.98%</td>
<td>16.30%</td>
<td>−9.68***</td>
</tr>
<tr>
<td>Difference</td>
<td>3.92</td>
<td>8.17*</td>
<td>4.25*</td>
</tr>
</tbody>
</table>

C. Triple Differences: Local Premium Pre vs. Post-reform

<table>
<thead>
<tr>
<th></th>
<th>Pre-reform</th>
<th>Post-reform</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OON seller</td>
<td>21.96%</td>
<td>22.11%</td>
<td>0.15</td>
</tr>
<tr>
<td>Local seller</td>
<td>26.32%</td>
<td>25.77%</td>
<td>−0.55</td>
</tr>
<tr>
<td>Difference</td>
<td>4.36</td>
<td>3.66</td>
<td>−0.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>OON seller</th>
<th>Local buyer</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OON seller</td>
<td>5.74%</td>
<td>9.04%</td>
<td>3.30***</td>
</tr>
<tr>
<td>Local seller</td>
<td>13.78%</td>
<td>17.63%</td>
<td>3.85***</td>
</tr>
<tr>
<td>Difference</td>
<td>8.04</td>
<td>8.59</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Notes: Each cell in the above tables shows the mean total holding period return for either a buyer-seller pair (Panels A and C), or for sellers in the pre or post-reform period (Panel B). Returns calculated using the procedures described in the text and equations (5.1) and (5.2). In each table, the “difference” column displays the difference between the first two columns. ***p < 0.01, **p < 0.05, *p < 0.1 on the t-test for differences in means across the first two columns.
Table D.4. Returns Earned by Out-of-town vs. Local Investors

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>μ_{HPR}</th>
<th>σ_{HPR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local investors sell to OOT buyers:</td>
<td>Pre-reform</td>
<td>3,865</td>
<td>24.09</td>
</tr>
<tr>
<td></td>
<td>Post-reform</td>
<td>21,348</td>
<td>15.69</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>25,213</td>
<td>16.98</td>
</tr>
<tr>
<td>Local investors sell to local buyers:</td>
<td>Pre-reform</td>
<td>8,092</td>
<td>23.16</td>
</tr>
<tr>
<td></td>
<td>Post-reform</td>
<td>42,053</td>
<td>13.42</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>50,145</td>
<td>14.99</td>
</tr>
<tr>
<td>OOT investors sell to OOT buyers:</td>
<td>Pre-reform</td>
<td>2,492</td>
<td>25.17</td>
</tr>
<tr>
<td></td>
<td>Post-reform</td>
<td>8,684</td>
<td>9.37</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>11,176</td>
<td>12.89</td>
</tr>
<tr>
<td>OOT investors sell to local buyers:</td>
<td>Pre-reform</td>
<td>2,186</td>
<td>25.06</td>
</tr>
<tr>
<td></td>
<td>Post-reform</td>
<td>8,586</td>
<td>7.96</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>10,772</td>
<td>11.43</td>
</tr>
</tbody>
</table>

Notes: We define out-of-town (OOT) counterparties as taxpayers involved in the sale of a property located in one of the 22 administrative regions of Taiwan that is different from the region of the permanent address they report on their personal income tax returns. In contrast, out-of-neighborhood (OON) counterparties are involved in the sale of a property located in one of the 368 districts that is distinct from the taxpayer’s district of permanent residence.
Table D.5. Breakdown of Returns Earned by Mortgaged and Full Equity Investors

<table>
<thead>
<tr>
<th>Year</th>
<th>Investor type</th>
<th>N</th>
<th>μ_{HPR}</th>
<th>μ_{capital}</th>
<th>μ_{rental}</th>
<th>μ_{interest}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Mortgaged</td>
<td>3,859</td>
<td>1.15</td>
<td>2.30</td>
<td>0.20</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>Full equity</td>
<td>11,514</td>
<td>7.47</td>
<td>6.80</td>
<td>0.95</td>
<td>0.00</td>
</tr>
<tr>
<td>2008</td>
<td>Mortgaged</td>
<td>6,494</td>
<td>2.06</td>
<td>2.61</td>
<td>0.23</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Full equity</td>
<td>22,359</td>
<td>3.41</td>
<td>3.07</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>2009</td>
<td>Mortgaged</td>
<td>9,384</td>
<td>−0.24</td>
<td>−0.31</td>
<td>0.78</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>Full equity</td>
<td>32,864</td>
<td>−0.22</td>
<td>−0.48</td>
<td>0.61</td>
<td>0.00</td>
</tr>
<tr>
<td>2010</td>
<td>Mortgaged</td>
<td>13,652</td>
<td>9.14</td>
<td>8.92</td>
<td>1.28</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Full equity</td>
<td>44,709</td>
<td>6.47</td>
<td>6.22</td>
<td>0.64</td>
<td>0.00</td>
</tr>
<tr>
<td>2011</td>
<td>Mortgaged</td>
<td>21,175</td>
<td>6.94</td>
<td>9.46</td>
<td>0.61</td>
<td>2.97</td>
</tr>
<tr>
<td></td>
<td>Full equity</td>
<td>57,948</td>
<td>8.56</td>
<td>8.00</td>
<td>1.04</td>
<td>0.00</td>
</tr>
<tr>
<td>2012</td>
<td>Mortgaged</td>
<td>32,445</td>
<td>6.52</td>
<td>6.88</td>
<td>0.78</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>Full equity</td>
<td>77,335</td>
<td>6.35</td>
<td>5.87</td>
<td>0.91</td>
<td>0.00</td>
</tr>
<tr>
<td>2013</td>
<td>Mortgaged</td>
<td>47,376</td>
<td>10.59</td>
<td>10.70</td>
<td>1.30</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>Full equity</td>
<td>99,708</td>
<td>11.39</td>
<td>10.92</td>
<td>0.89</td>
<td>0.00</td>
</tr>
<tr>
<td>2014</td>
<td>Mortgaged</td>
<td>53,626</td>
<td>8.30</td>
<td>8.18</td>
<td>1.15</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Full equity</td>
<td>141,035</td>
<td>8.59</td>
<td>8.17</td>
<td>0.69</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes: The table breaks down the components of annualized holding returns for mortgaged sellers and sellers with full equity in their house. μ_{HPR} indicates the overall rate of return, which equals the net of transfer tax capital gain plus the market-value-weighted (across properties in the taxpayer’s real estate portfolio) rental income minus the market-value-weighted mortgage interest payment and minus the annual holding tax, divided by the last market value. μ_{capital} indicates the capital gain. μ_{rental} indicates the rental income divided by the last market value. μ_{interest} indicates the ratio of mortgage interest payments to the last market value of the property. The market value is defined as the real transaction price, or, if a sale price is not available, we use the appraisal value times the city-year specific price-appraisal value ratio to proxy for market value. For years during which a property was not transacted, the market value is defined as the last transaction price inflated by the city-year price index, less linear depreciation of 2% per year. We winsorize capital gains at the top and bottom 1%.
Notes: We compute annual rental yields at the taxpayer portfolio level by dividing total rental income reported on the personal income tax return by the sum market value of all properties. In cases where the property did not transact within the tax year, we use the last observed sale price inflated by the price index value created in Appendix C. We winsorize rental yields at the top 1% level. The solid grey vertical line indicates the mean rental yield in the pre-reform period, while the blue dashed line shows the mean in the post-reform period.

E Pass Through Estimates from Inheritance Shocks

In this appendix we provide causal evidence of the inward shift in the supply curve in the investment property market using sellers’ differential exposure to the tax, captured by recent and unexpected inheritances as a shock to ex ante housing net worth. Given existing evidence that heirs anticipate inheritances (Bernheim, Shleifer, & Summers 1985) and that individuals exercise some control over the timing of their death (Kopczuk & Slemrod 2003), we use the cause of death provided in inheritance tax records to identify inheritances derived from untimely deaths.

Consistent with the short-run pricing responses around the transfer tax implementation in Section 4.3, a one standard deviation positive shock to sellers’ housing net worth induced sellers to charge 9.5% more than in the pre-reform period for a comparable property. The strength of this inventory reduction channel explains why we observe such muted changes in housing prices. Our estimates imply almost full pass through at the high-end of the market.
which was targeted by the Tobin tax. Thus, we find empirical support for the baseline version of our optimal tax framework which supposes landlords perfectly pass through the costs of the transfer tax to their tenants.

E.1 Details on the Inheritance Tax System

Here we discuss the estate planning process and inheritance tax regime in Taiwan and how we compute the inherited wealth measures we use as an instrument for net worth. The key variable we observe in the tax data is inheritance income net of any deductions and tax liability incurred by the heirs, and net of any expenses and outstanding debts of the decedent. Taiwan imposes a flat estate and gift tax rate of 10%, with the following deductions:

- Standard deduction of 73,000 USD for each donor, on top of deductions for the deed and land increment tax associated with bequeathed properties.
- A deduction of 20% on any assets held by the deceased for at least six years, 40% on assets held for seven years, 60% on those held for eight years, up to 80% for those held for nine years or longer.
- Spouses get the largest deduction on inheritances (150,000 USD), followed by parents (37,000 USD), then lineal descendants, siblings, and grandparents (15,000 USD each).
- Funeral expenses, legal fees, and any outstanding debts, fines, and unpaid taxes incurred by the deceased.
- Conservation easements if inherited land continues to be employed in agriculture.

All these potential deductions are totalled and netted out of our inherited wealth measure \(IW \) defined below.\(^{20}\) Therefore, our first stage measures the extent to which a dollar of net inheritance income passes through the taxpayer net worth on the eve of the tax reform.

Another issue concerns how estates are divided among surviving heirs. Table E.1 summarizes the statutory default inheritance shares for wills or if the decedent dies intestate. There are also minimum legal requirements for inheritance shares of immediate family members. For example, if the deceased is survived by two lineal dependents, parents, and a spouse, then the parents get nothing and the lineal dependents and spouse evenly split the estate. Alternatively, if the deceased is survived by two siblings and a spouse, the spouse gets one-half of the estate and the siblings each get one-fourth. That is, one cannot completely disinherit lineal descendants, parents, spouses, siblings, or grandparents. For lineal descendants, parents, and spouses, the minimum legal share is one-half the default share, while for siblings and grandparents the minimum requirement is one-third of the default share. Although we do not observe the status of the will, inheritances rarely deviate from the default proportions. We therefore assign inherited wealth by allocating taxpayers a share of the estate consistent with the ordering of heirs in Table E.1.

\(^{20}\)The total deduction on the estate (i.e. totalled across all heirs, cannot exceed 400,000 USD).
Table E.2 summarizes the importance of inheritances for taxpayers’ illiquid and total wealth. On average, 15% of sellers’ illiquid wealth (land + buildings + vehicles) was inherited, compared to 17% of buyers’ illiquid wealth. The average inheritance in the pre-reform period (2007-2010) was about 72,000 USD, of which roughly 70% consisted of illiquid assets. Inherited properties are thus an important component of counterparties’ overall net worth. Inheritances account for a large fraction of the stock of tangible assets in Taiwan. On average, inherited properties account for 15% of 2010 taxpayer housing wealth, with a slightly higher share of 17% among buyers. The differences in the importance of inheritances for buyers vs. sellers reflects the fact that buyers tend to be younger and hence more likely to be a point in the life cycle where asset accumulation is accelerating.

Our identification strategy relies on the fact that inheritances received as a consequence of untimely deaths represent a component of taxpayer net worth that is unrelated to housing market outcomes. If the probability of family members’ untimely death were correlated with the size of the inheritance, then this would be a violation of the exclusion restriction for our instrument. Table E.3 shows no clear relationship between the decedent’s age at death and the (net) value of housing inherited by heirs. This bolsters our argument that unanticipated inheritance receipt is unrelated to the pre-existing size of the taxpayer’s portfolio.

Table E.1. Default Inheritance Shares by Descendant Type

<table>
<thead>
<tr>
<th>Order of heirs</th>
<th>Default shares</th>
<th>Heirs</th>
<th>Spouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineal descendants</td>
<td></td>
<td>Even split</td>
<td></td>
</tr>
<tr>
<td>Parents</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>Siblings</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>Grandparents</td>
<td>1/3</td>
<td>2/3</td>
<td></td>
</tr>
</tbody>
</table>
Table E.2. Taxpayer Inheritance Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Wealth</th>
<th>Illiquid wealth</th>
<th>Inheritance</th>
<th>Illiquid inheritance</th>
<th>Illiquid inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer</td>
<td>103,030</td>
<td>729,458</td>
<td>438,121</td>
<td>72,311</td>
<td>52,579</td>
<td>0.172</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,738,570)</td>
<td>(2,764,760)</td>
<td>(573,058)</td>
<td>(244,733)</td>
<td></td>
</tr>
<tr>
<td>Seller</td>
<td>112,843</td>
<td>737,802</td>
<td>487,134</td>
<td>72,655</td>
<td>51,165</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,048,988)</td>
<td>(2,176,712)</td>
<td>(583,536)</td>
<td>(195,098)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Includes assessed inheritances net of taxes received in 2007-2010. 198,150 transactions in the post-reform period featured at least one counterparty who received an inheritance. Units in real 2015 USD. Illiquid wealth includes the total estimated liquidation value of land, buildings, and vehicles. See Section 3.2 for more information on how we construct wealth estimates.

Table E.3. Decedent’s Age at Death by Quintile of Inherited Housing Wealth

<table>
<thead>
<tr>
<th>Quintile</th>
<th>μ<sub>age</sub></th>
<th>σ<sub>age</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>First quintile</td>
<td>74.50</td>
<td>13.43</td>
</tr>
<tr>
<td>Second quintile</td>
<td>73.03</td>
<td>13.10</td>
</tr>
<tr>
<td>Third quintile</td>
<td>71.96</td>
<td>14.10</td>
</tr>
<tr>
<td>Fourth quintile</td>
<td>73.82</td>
<td>13.23</td>
</tr>
<tr>
<td>Fifth quintile</td>
<td>71.71</td>
<td>13.35</td>
</tr>
</tbody>
</table>

E.2 SEGMENTATION: EVIDENCE FROM INHERITANCE SHOCKS

We now attempt to identify causal impacts of the transfer tax surcharge reform on transaction prices. Whether prices and volatility go up or down in response to a financial transaction tax is theoretically ambiguous, since such taxes influence both asset demand and supply (Dávila 2021). Tobin’s (1978) argument of FTTs as price stabilizers focused on the partial equilibrium effect of taxes on demand, assuming asset supply remained fixed. The transfer tax surcharge renders owning short-term investment properties substantially less attractive, thus lowering demand, but also discourages current owners from engaging in flips, which lowers market inventory. Contrary to the objectives of the transfer tax, prices may therefore increase if the latter effect dominates.

We estimate the extent to which sellers in the post-reform period are able to extract a premium from buyers to offset the increased transfer tax bill. Our idea is to compare households with more vs. less inherited housing wealth as of the filing year directly prior to
the reform. Taxpayers with more inherited housing wealth are more exposed to the reform in that they hold more assets which could be subject to the transfer tax surcharge.21

In particular, we estimate the following model relating sale prices to taxpayer net worth \((NW)\) or housing net worth \((HNW)\):

\[
Y_{i,j,t} = \alpha_2 + \beta_2 \cdot (NW_{i,\tau} \times Post_t) + \gamma' \cdot X_{i,j,t} + \delta_t + \epsilon_{i,j,t} \tag{E.1}
\]

\[
NW_{i,\tau} = \alpha_1 + \beta_1 \cdot \sum_{t=0}^{k} IW_{i,\tau-t} + \eta_i \tag{E.2}
\]

\[
\text{cov}(NW_{\text{Shock}}, \epsilon_{i,t}) = 0 \tag{E.3}
\]

where \(Y_{i,j,t}\) is an outcome at the level of property \(j\) (i.e. log sale price, probability of property sale) attached to taxpayer \(i\) on date \(t\). \(IW_{i,\tau}\) is value of inheritances received in tax filing year \(\tau\), net of the estate tax bill and any deductions.22 \(NW_{\tau}\) is estimated net worth in a tax filing year \(\tau\) prior to the announcement of the TTS reform in early 2011. \(\delta_t\) are time fixed effects, including month-year, day-of-week, and week-of-month fixed effects to strip out low and high frequencies of seasonality in property sales. The vector of potentially time-varying property controls \(X_{i,j,t}\) accounts for the fact that inheritance shocks may alter heirs’ preferences over house characteristics.

Equations (E.1)–(E.3) characterize a difference-in-differences model where we instrument the endogenous pre-treatment exposure measure \(NW\) with \(NW_{\text{Shock}}\). The first stage in equation (E.2) produces a fitted value \(\hat{NW}_{i,\tau}\) which reflects the component of an agent’s housing wealth observed directly prior to the reform which can be explained by the cumulative amount of any inheritances received up to \(k\) years prior to \(\tau\).23 In our baseline specification, we set \(k = 4\). Setting a longer \(k\) increases the number of taxpayers in the treated group of inheritors, but at a cost; the longer the pre-reform horizon we use to define \(NW_{\text{Shock}}\) the more potential there is for portfolio exposure to the reform to be based

21In results not shown here, we use the reported cause of death to distinguish between deaths arising from chronic conditions (e.g. cancers) and “sudden deaths” arising from accidents or untimely deaths due to non-chronic conditions (e.g. heart attack or stroke). The inheritance tax records indicate more than 360,000 unique causes of death. Rather than take a stance on the probability that the reported cause of death is associated with a known terminal illness, we simply use clear-cut cases where the heirs are unlikely to have sufficient lead time to rebalance their portfolios in anticipation of a windfall. We obtain qualitatively similar results when we instead restrict to inheritances received from a decedent who died ten years or more before their life expectancy (i.e. two standard deviations younger than the average age at death).

22Tax years in Taiwan run from January 1st to December 31st, meaning the last full tax year prior to the TTS reform is 2010. Taxpayers normally must file personal income tax returns by May 31st of the following year. Hence, any information recorded on 2010 tax returns only reflects taxpayer earnings and wealth prior to reform implementation on June 1, 2011. Since the reform was first announced in January 2011, any information on 2010 returns captures a taxpayer’s financial status prior to the announcement, and thus should not reflect anticipatory responses.

23We inflate up to estimated values as of filing year \(\tau\) using portfolio weights and price indices constructed for each asset type: real estate (weighted by the distribution of taxpayer properties), vehicles, and equities.
on heirs’ pre-reform investment decisions in response to inherited wealth rather than the inheritance windfall itself.\footnote{The pass through of inheritances to housing wealth can differ across taxpayers because inherited wealth IW may be assessed differently from asset values used to compute NW. Identification in this model comes from cross-sectional variation in the estimated value of taxpayer portfolios. Hence, we only require that either assessment rules for NW and IW are applied uniformly across taxpayers, or, that any taxpayer-specific components to assessments do not systematically vary across the tax implementation.}

To be more explicit, our DD-IV design has two identifying assumptions:

1. Exclusion restriction: equation (E.3) says that cumulative pre-reform inheritances must only influence outcomes related to property sales through their effect on pre-reform taxpayer net worth (measured from filing year $\tau = 2010$).

2. Parallel trends: taxpayer outcomes were similar in the pre-reform period with respect to the component of net worth explained by inheritances received between 2007-2010. In other words, characteristics of sales involving people with large vs. small inherited housing wealth were demonstrably similar prior to June 2011.

Both assumptions could be violated if, for instance, individuals with large inheritances are able to charge a premium for their properties due to social capital or market power (e.g. access to better realtors), regardless of their initial wealth balances. To the extent that property characteristics may not be absorbed by taxpayer fixed effects, we include on the RHS a vector $X_{i,j,t}$ of features of property j bought or sold by taxpayer i.

We find clear evidence that inheritance shocks pass through to net worth on the eve of the transfer tax reform. Table E.4 reports first and second stage results from estimating 2SLS models in the form of equations (E.1) and (E.2) for different versions of the net worth shock. We consider shocks to both the seller’s and buyer’s wealth, and to both overall wealth and to only housing wealth. In our preferred estimate (column 2), 0.57 cents of every one dollar increase in inherited wealth passes through to the seller’s pre-reform net worth. pass through is weaker, in a first stage F-stat sense, when we restrict to housing inheritances (columns 1 and 3), and when consider shocks to the buyer’s portfolio (columns 3 and 4). Our first stage estimates for buyers are relatively weak because buyers are more likely to be at an earlier point in the life cycle and still accumulating assets. Since investment responses prior to the reform may influence market prices in the post-reform period, independent of the direct effect of inheritances on buyers’ wealth, we focus on how sellers respond to the shock. In all specifications where we use inheritance shocks to sellers, the Montiel-Olea-Pflueger F-test exceeds the thresholds for 5\% worst case bias relative to OLS at the 5\% level, indicating that our research design does not suffer from a weak IV problem (Andrews, Stock, & Sun 2019).

Table E.5 checks robustness of our preferred 2SLS specification to the inclusion of property controls, time and district fixed effects, and the level of clustering. Sale prices increase by 1.3\% for every 1 million NTD ($\approx 35,000$ USD) increase in the seller’s wealth (Panel A). Or, a 1 s.d. increase in inherited (housing) wealth induces sellers to charge 9.3\% (9.5\%) more relative to the pre-reform period for a comparable property. A seller who receives the average
Table E.4. First and Second Stage Results by Inheritance Shock Measure

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWShock (β_1)</td>
<td>1.938***</td>
<td>0.574***</td>
<td>0.827***</td>
<td>-0.008</td>
<td>0.218***</td>
<td>0.226***</td>
<td>0.230***</td>
<td>0.228***</td>
</tr>
<tr>
<td></td>
<td>(0.221)</td>
<td>(0.170)</td>
<td>(0.186)</td>
<td>(0.262)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.108)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>First stage $Y \times Post$ (β_2)</td>
<td>0.017***</td>
<td>0.013***</td>
<td>0.031***</td>
<td>0.030***</td>
<td>0.024***</td>
<td>0.024***</td>
<td>0.063***</td>
<td>0.053***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.008)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.015)</td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>First stage Y IV</td>
<td>HNWS</td>
<td>NWS</td>
<td>HNWB</td>
<td>NWB</td>
<td>ln(HNWS)</td>
<td>ln(NWS)</td>
<td>ln(HNWB)</td>
<td>ln(NWB)</td>
</tr>
<tr>
<td></td>
<td>IHWS</td>
<td>IWS</td>
<td>IHWB</td>
<td>IWB</td>
<td>ln(IHWS)</td>
<td>ln(IWS)</td>
<td>ln(IHWB)</td>
<td>ln(IWB)</td>
</tr>
<tr>
<td>Montiel Olea & Pflueger F-test</td>
<td>12.27</td>
<td>100.31</td>
<td>3.59</td>
<td>0.60</td>
<td>694.38</td>
<td>851.10</td>
<td>452.78</td>
<td>739.59</td>
</tr>
<tr>
<td>First stage F-test (Kleibergen-Paap)</td>
<td>12.23</td>
<td>99.99</td>
<td>3.58</td>
<td>0.60</td>
<td>696.62</td>
<td>852.61</td>
<td>454.90</td>
<td>741.27</td>
</tr>
<tr>
<td>First stage F-test (Cragg-Donald)</td>
<td>856.15</td>
<td>1304.31</td>
<td>130.56</td>
<td>522.00</td>
<td>1243.02</td>
<td>1272.54</td>
<td>1221.65</td>
<td>1294.02</td>
</tr>
<tr>
<td>Property controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Time & district FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Adj R^2</td>
<td>0.697</td>
<td>0.698</td>
<td>0.700</td>
<td>0.711</td>
<td>0.713</td>
<td>0.717</td>
<td>0.716</td>
<td>0.716</td>
</tr>
<tr>
<td>N</td>
<td>182,646</td>
<td>182,646</td>
<td>182,646</td>
<td>182,646</td>
<td>22,658</td>
<td>27,074</td>
<td>20,076</td>
<td>23,721</td>
</tr>
</tbody>
</table>

Notes: The table provides first stage and 2SLS estimates from the model specified in equations (E.1) and (E.2). NWShock refers to the estimated pass through of inheritance shocks over 2007-2010 to overall taxpayer net worth as of the 2010 filing year. First stage $Y \times Post$ refers to the 2SLS estimate of the premium charged by a seller or buyer. We check how inheritance shocks differentially influence the behavior of sellers and buyers, and how the pass through to net worth changes depending on whether we restrict to housing inheritances (IHW) or all inheritances (IW). All inheritance measures are net of estate tax liability and applicable deductions. The last two columns provide estimates in logs, and therefore only include taxpayers with strictly positive inheritance receipts (intensive margin). There are $N = 368$ districts in total, and in some specifications we include district fixed effects as well as month-year, week-of-month, day-of-week fixed effects, and a holiday dummy. Property controls include a polynomial in age, area, floor space, use category, structure type, unit floor number (for apartments), and number of floors (for single family homes). Robust standard errors in the second stage regression clustered at the district of the property. ***$p < 0.01$, **$p < 0.05$, *$p < 0.1$.
Table E.5. Seller Pass Through of Transfer Tax to Buyers

A. Overall Responses: Sale Price Response to Changes in Seller’s Wealth

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$NW^S \times Post$</td>
<td>0.0003** (0.0001)</td>
<td>0.0088** (0.0031)</td>
<td>0.0095** (0.0032)</td>
<td>0.0127** (0.0043)</td>
<td>0.0126** (0.0043)</td>
<td>0.0126** (0.0046)</td>
</tr>
<tr>
<td>Estimation</td>
<td>OLS</td>
<td>2SLS</td>
<td>2SLS</td>
<td>2SLS</td>
<td>2SLS</td>
<td>2SLS</td>
</tr>
<tr>
<td>Montiel Olea & Pflueger F-test</td>
<td>–</td>
<td>100.72</td>
<td>99.03</td>
<td>100.31</td>
<td>132.44</td>
<td>89.60</td>
</tr>
<tr>
<td>First stage F-test (Kleibergen-Paap)</td>
<td>–</td>
<td>100.31</td>
<td>98.62</td>
<td>99.99</td>
<td>132.08</td>
<td>89.35</td>
</tr>
<tr>
<td>First stage F-test (Cragg-Donald)</td>
<td>–</td>
<td>1337.85</td>
<td>1,312.08</td>
<td>1,304.31</td>
<td>1,286.73</td>
<td>1,288.99</td>
</tr>
<tr>
<td>Property controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Time & district FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Clustering</td>
<td>$district^P$</td>
<td>$district^P$</td>
<td>$district^P$</td>
<td>$district^P$</td>
<td>$district^S$</td>
<td>$district^B$</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.672</td>
<td>0.009</td>
<td>0.085</td>
<td>0.698</td>
<td>0.689</td>
<td>0.690</td>
</tr>
<tr>
<td>N</td>
<td>182,646</td>
<td>183,007</td>
<td>182,660</td>
<td>182,646</td>
<td>180,256</td>
<td>179,634</td>
</tr>
</tbody>
</table>

B. Intensive Margin Responses: Change in Price-wealth Elasticity across Reform

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\logNW^S \times Post$</td>
<td>0.023*** (0.002)</td>
<td>0.015*** (0.003)</td>
<td>0.016*** (0.003)</td>
<td>0.023*** (0.002)</td>
<td>0.023*** (0.001)</td>
<td>0.023*** (0.001)</td>
</tr>
<tr>
<td>Estimation</td>
<td>OLS</td>
<td>2SLS</td>
<td>2SLS</td>
<td>2SLS</td>
<td>2SLS</td>
<td>2SLS</td>
</tr>
<tr>
<td>Montiel Olea & Pflueger F-test</td>
<td>–</td>
<td>714.58</td>
<td>674.20</td>
<td>851.10</td>
<td>743.00</td>
<td>915.18</td>
</tr>
<tr>
<td>First stage F-test (Kleibergen-Paap)</td>
<td>–</td>
<td>711.12</td>
<td>670.88</td>
<td>852.61</td>
<td>741.71</td>
<td>913.67</td>
</tr>
<tr>
<td>First stage F-test (Cragg-Donald)</td>
<td>–</td>
<td>1466.66</td>
<td>1,402.87</td>
<td>1,272.54</td>
<td>1,253.18</td>
<td>1,245.60</td>
</tr>
<tr>
<td>Property controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Time & district FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Clustering</td>
<td>$district^P$</td>
<td>$district^P$</td>
<td>$district^P$</td>
<td>$district^P$</td>
<td>$district^S$</td>
<td>$district^B$</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.707</td>
<td>0.016</td>
<td>0.106</td>
<td>0.707</td>
<td>0.710</td>
<td>0.707</td>
</tr>
<tr>
<td>N</td>
<td>161,049</td>
<td>27,183</td>
<td>27,121</td>
<td>27,091</td>
<td>26,722</td>
<td>26,640</td>
</tr>
</tbody>
</table>

Notes: The dependent variable in each regression is the log transaction value. In Panel A, for 2SLS specifications we instrument overall seller net worth with $NWShock$ as in equation (E.2). In Panel B, we estimate the change in the elasticity of prices with respect to exogenous wealth by regressing log seller net worth with log inherited wealth in the first stage. Regressions in Panel B only include transactions involving sellers who received a strictly positive amount of inheritances in the pre-reform period. There are $N = 368$ districts in total, and in some specifications we include district fixed effects as well as month-year, week-of-month, day-of-week fixed effects, and a holiday dummy. Property controls include a polynomial in age, area, floor space, use category, structure type, unit floor number (for apartments), and number of floors (for single family homes). Robust standard errors in the second stage regression clustered at either the district of the property, of the buyer, or of the seller. ***$p < 0.01$, **$p < 0.05$, *$p < 0.1$
FIGURE E.1. Changes in Sale Probability in Response to Inheritance Shocks

Notes: The figure plots the estimated event study coefficients $\hat{\beta}_k$ from event study reduced form equation (E.4). The dependent variable is a dummy for whether property j sells in month t. 95% confidence intervals for the point estimates with standard errors clustered by district of the property plotted in red dashed lines.

inheritance amount of around 72,000 USD thus completely passes through the increase in their transfer tax bill on short-term sales to the buyer. On the intensive margin (Panel B), a 1% increase in the seller’s wealth leads to a 2.3 p.p. increase in the sale price elasticity of wealth relative to the pre-reform period. 25

On the extensive margin, how do taxpayers with more exogenous housing wealth respond to the tax? Figure E.1 plots the coefficients from the following event study version of the reduced form in our 2SLS model:

$$Y_{i,j,t} = \alpha_j + \delta_t + \sum_{k=-7}^{+7} \beta_k \cdot \left(\log(\hat{NW})_{i,\tau} \times Post_{t-k} \right) + \varepsilon_{i,j,t} \quad (E.4)$$

where $\hat{NW}_{i,\tau}$ is the fitted value for taxpayer i obtained from a log-log version of the first stage regression in equation (E.1), α_j are property fixed effects, and δ_t are time fixed effects. A 1%

25 In results not reported here, we uncover differential effects of inheritance receipt on house prices depending on the heir’s position in the wealth distribution. The pricing response is positive and of a similar magnitude to the point estimates in Table E.5 when we restrict to high-wealth sellers who receive an inheritance, but nil for low-wealth sellers. This segmentation mirrors the RD-style evidence in Section 4.3, where prices rose around the implementation date at the low end of the market, but there was visible evidence of a negative trend break at the low end of the market.

88
increase net worth means inheritors are 0.3 p.p. more likely to sell around the announcement of the transfer tax \((k = -4)\), and 0.5 p.p. more likely to sell just prior to implementation \((k = 0)\). Thus, savvy taxpayers who have more portfolio exposure to the second home tax pass through the incidence to buyers and expedite sales to avoid paying the tax.

F Constructing Weather Shocks

This appendix provides more details on the meteorological features of Pacific storms, and how we compiled the data used in Section 5.2 to estimate an upper bound limit on the share of non-fundamental trading in the housing market.

F.1 Meteorological Background

Figure F.1 shows that over the last 60 years on average 26 tropical cyclones originated in the Pacific each year, with an average of five storms coming within 300km of the main island of Taiwan.\(^\text{26}\) In the period 2006-2011, which overlaps with our confidential data and occurs prior to the tax reform, an average of two storms per year made direct landfall in Taiwan. Although climate change has led to an increase in the severity of storms, the overall frequency of storms has been on a downward trend, and there is no evidence of the traditional typhoon season (July through September) lengthening for Taiwan, as the number of storms occurring in June and October has consistently hovered between five to seven per year.\(^\text{27}\) Hence, in this paper we focus on July, August, and September as the months where severe weather shocks are most likely to occur.

We rely on two main sources for our weather data. We scrape daily weather readings over 2005-2019 from all 832 stations scattered across Taiwan via the CoDiS Database of the Central Weather Bureau (CWB), and merge in the dates when the CWB issued typhoon warnings from the Typhoon Database. According to the official classification system in Table D.1, typhoon warnings are issued whenever winds are expected to reach a sustained speed of at least 74 mph (118 km/h). Meteorological stations are geographically distributed across Taiwan such that each of the 22 administrative regions contains at least two, with more populated regions being serviced by more non-automated stations due to the increased likelihood of property damage should a severe storm arrive.\(^\text{28}\)

There are three types of ground stations which record weather readings:

\(^\text{26}\)Even if a typhoon does not make landfall it often has a noticeable impact on local weather conditions. Typhoons can grow to a diameter of up to 1,000 miles (1,600 km).

\(^\text{27}\)The downward trend in frequency is in part due to the increased incidence of two low pressure centers fusing into a larger storm in what is known as the Fujiwara Effect. The time series in Figure F.1 display 10-year cycles due to El Niño effects.

\(^\text{28}\)The total number of stations contained in each region is as follows: Taipei (19), New Taipei (49), Taichung (64), Tainan (65), Kaohsiung (72), Keelung (4), Taoyuan (24), Hsinchu (2), Hsinchu County (20), Miaoli (50), Nantou (85), Changhua (34), Yunlin (35), Chiayi (2), Chiayi County (45), Pingtung (83), Yilan (51), Hualien (69), Taitung (48), Penghu (4), Kinmen (4), Liuchiang (3).

Notes: The figure plots the time series of storm frequency by month of occurrence and by the closest the storm comes to making landfall on the main island of Taiwan. Total storms refers to all storms classified as either tropical storms or a more severe storm category. See Table F.1 for the full classification system. Vertical red lines indicate the pre-transfer tax reform period (2005-2011) we use to infer noise trading volume from the weather data. Data on overall Pacific storm frequency are from the Regional Specialized Meteorological Center (RSMC) Tokyo - Typhoon Center. Data on the distance of storms to Taiwan are from the Taiwan Central Weather Bureau.

1. Main stations (N = 32) are staffed by government employees who record all weather variables, including: daily average wind speed, max wind gust, accumulated precipitation, sea surface pressure, air pressure, hours of precipitation and sunlight, cloud coverage, visibility, UVI, dew point, humidity, and average and high/low temperature.

2. Automated stations (N = 485) only record crucial typhoon forecasting variables, including variables related to temperature, station pressure, humidity, wind speed, and accumulated precipitation.

3. Precipitation stations (N = 315) only report accumulated precipitation. Stations in this category are also equipped to provide automated readings.

For each station and each day, we take averages and maxima/minima over hourly readings. Notably, even if a station is equipped to report certain weather variables there can be missing values due to equipment damages or malfunctions, both of which are more likely to occur
Table F.1. Classification System for Tropical Cyclones

<table>
<thead>
<tr>
<th>Category</th>
<th>Sustained wind speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violent typhoon</td>
<td>≥ 105 knots (121 mph)</td>
</tr>
<tr>
<td>Very strong typhoon</td>
<td>85-104 knots (98-120 mph)</td>
</tr>
<tr>
<td>Typhoon</td>
<td>64-84 knots (74-97 mph)</td>
</tr>
<tr>
<td>Severe tropical storm</td>
<td>48-63 knots (55-73 mph)</td>
</tr>
<tr>
<td>Tropical storm</td>
<td>34-47 knots (39-54 mph)</td>
</tr>
<tr>
<td>Tropical depression</td>
<td>≤ 33 knots (38 mph)</td>
</tr>
</tbody>
</table>

during severe weather events. Therefore in our analysis we focus on either the manned stations in the first category or a balanced panel of stations within the first two categories.

Table F.2 provides summary statistics for the key weather variables which are related to forecasting Pacific storm severity. To create a consistent sample across variables, in computing these statistics we exclude the 40% of stations which only report automated precipitation readings and create a balanced panel of the remaining stations. Taiwan averages 16 days with active typhoon warnings during the peak season but only four days during non-peak months. Maximum daily precipitation across all stations is 5% higher during typhoon season in the Taipei-New Taipei area, and 42% higher across stations in all other metro areas. The other key metrics which accompany storms are also more pronounced during the peak season and outside the Taipei area: low station pressure readings and high maximum wind gusts. Due to the track patterns of storms in the Pacific, storms are more likely to strike the southern tip of Taiwan or run through the middle of the island, than strike the northern portion where Taipei and New Taipei are located.

Because storm severity can vary at such a granular level, we exploit both time series and spatial variation in weather shocks. Figure F.2 shows how rainfall during typhoon seasons in the pre-reform period is disproportionately concentrated in the center and southern portions of the island of Taiwan (Panel A). However, even within the greater Taipei metro area at the northern tip of the island, where most property sales volume occurs, average accumulated rainfall varies from 157 to 354 inches per typhoon season. In contrast, the spatial pattern of typhoon-force wind incidence appears to be relatively divorced from the distribution of rainfall (Panel B). Yet, we note that our geographic coverage of wind speed readings is
FIGURE F.2. Spatial Distribution of Cumulative Rainfall and Severe Wind (2005-2011Q2)

A. Accumulated Rainfall (mm) during Typhoon Seasons

B. Total Number of Days with Strong Winds (≥ 74 mph) during Typhoon Seasons
Table F.2. Summary Statistics for Key Meteorological Station Readings

<table>
<thead>
<tr>
<th></th>
<th>Taipei/New Taipei</th>
<th>Other Metros</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak season</td>
<td>Non-peak</td>
</tr>
<tr>
<td>Avg. # typhoon warning days</td>
<td>15.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Max daily precipitation (in)</td>
<td>17.5</td>
<td>16.7</td>
</tr>
<tr>
<td>Cumulative precipitation (in)</td>
<td>38.9</td>
<td>82.4</td>
</tr>
<tr>
<td>Avg. wind speed (mph)</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Max wind gust (mph)</td>
<td>101.4</td>
<td>88.3</td>
</tr>
<tr>
<td>Avg. station pressure (hPa)</td>
<td>989.7</td>
<td>997.4</td>
</tr>
<tr>
<td>Min. station pressure (hPa)</td>
<td>896.5</td>
<td>907.4</td>
</tr>
<tr>
<td>Avg. daily high temperature (°F)</td>
<td>89.5</td>
<td>73.6</td>
</tr>
<tr>
<td>Max daily high temperature (°F)</td>
<td>116.6</td>
<td>115.8</td>
</tr>
<tr>
<td>N</td>
<td>19,944</td>
<td>64,440</td>
</tr>
<tr>
<td># Stations</td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

Notes: Observations from a balanced panel of stations (N = 171) reporting key typhoon forecasting variables in the pre-reform period. Peak season refers to daily weather readings during the months of July, August, and September, while non-peak consists of readings from all other months. Typhoon warnings are set at the national level, and a full history of announcements going back to 1960 is available from the Central Weather Bureau Typhoon Database.

F.2 Factor Analysis of Weather Shocks

A natural question is whether precipitation and wind gusts are sufficient to characterize the severity of weather conditions. We test the validity of our interpretation of the meteorological data by using factor analysis to identify the four factors with eigenvalues above one, which together capture 88% of variation in weather patterns. Table F.3 reports the factor loadings for the eleven variables which are common to all main stations and automated stations in our sample. The first factor loads on fair weather characteristics: high atmospheric pressure, high temperature, low humidity, limited wind and precipitation. The second loads negatively on pressure and positively on temperatures. Since, these two characteristics precede tropical storm systems, this factor identifies a storm forecast component. The third factor loads prominently on average and maximum wind speed, while the fourth factor loads on humidity and accumulated rainfall. Hence, we loosely interpret factor 1 as a “fair weather” factor,
Table F.3. Factor Loadings for Key Weather Variables

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. station pressure</td>
<td>0.37</td>
<td>−0.38</td>
<td>0.01</td>
<td>0.21</td>
</tr>
<tr>
<td>Max station pressure</td>
<td>0.37</td>
<td>−0.38</td>
<td>0.02</td>
<td>0.21</td>
</tr>
<tr>
<td>Min station pressure</td>
<td>0.37</td>
<td>−0.37</td>
<td>0.01</td>
<td>0.21</td>
</tr>
<tr>
<td>Avg. temperature</td>
<td>0.33</td>
<td>0.43</td>
<td>−0.01</td>
<td>0.19</td>
</tr>
<tr>
<td>Max temperature</td>
<td>0.33</td>
<td>0.44</td>
<td>−0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>Min temperature</td>
<td>0.31</td>
<td>0.42</td>
<td>0.00</td>
<td>0.28</td>
</tr>
<tr>
<td>Avg. relative humidity</td>
<td>−0.34</td>
<td>0.04</td>
<td>−0.32</td>
<td>0.38</td>
</tr>
<tr>
<td>Min relative humidity</td>
<td>−0.33</td>
<td>−0.07</td>
<td>−0.19</td>
<td>0.46</td>
</tr>
<tr>
<td>Avg. wind speed</td>
<td>−0.13</td>
<td>−0.01</td>
<td>0.65</td>
<td>0.14</td>
</tr>
<tr>
<td>Max wind gust</td>
<td>−0.13</td>
<td>0.06</td>
<td>0.66</td>
<td>0.17</td>
</tr>
<tr>
<td>Cumulative precipitation</td>
<td>−0.14</td>
<td>0.02</td>
<td>0.00</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Notes: The table reports the factor loadings for each variable recorded by the main and automated weather stations in our sample. We restrict attention to the four factors (columns) with eigenvalues greater than one.

factor 2 as a low pressure system, factor 3 as high wind, and factor 4 as heavy rainfall.29

In Table F.4 we replace the Weather shocks in our baseline volume regression (5.2) with the four factors identified in Table F.3. Consistent with our interpretation, the four factors have the expected sign on property sales. Fair weather (factor 1) is positively associated with volume, while wind (factor 3) and rain (factor 4) are negatively associated with volume. There is no obvious economic reason why low atmospheric pressure conditional on other weather conditions (factor 2) would influence selling behavior, and consequently the association of this factor with volume is statistically insignificant. When we run a “horserace” regression with all four factors in column 6, the wind factor (factor 3) is the only one with an effect on volume. This suggests what we interpret as a rainfall effect on noise trading in our main results may in fact be due to wind once we condition on a richer set of atmospheric conditions. However, wind is not a substitute for rain, as both factors have a significantly negative effect on volume when we exclude the fair weather and low pressure factors (column 5).

We match each property sale in our dataset to the nearest station – according to Haversine distance – as of the transaction date. Since the government periodically retires and relocates weather stations during our sample period (mainly due to equipment depreciation). The average property in our sample is located within 10.2 km of one of the first two types of

29We obtain similar results when we restrict to main stations, which offer a larger set of meteorological variables, including visibility, sunshine, cloud coverage, dew point, and duration of rain vs. sunshine. The main difference is we identify a fifth factor with an eigenvalue greater than one, which we interpret as an “overcast” factor.
Table F.4. Principal Weather Factors and Real Estate Sales

<table>
<thead>
<tr>
<th>Factor × Summer</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1 × Summer</td>
<td>17.54***</td>
<td>6.35</td>
<td>(3.34)</td>
<td>(6.69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor 2 × Summer</td>
<td>-4.46</td>
<td>5.63</td>
<td>(6.90)</td>
<td>(7.27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor 3 × Summer</td>
<td>-17.67***</td>
<td>-13.66***</td>
<td>-14.29***</td>
<td>(2.89)</td>
<td>(2.74)</td>
<td>(2.93)</td>
</tr>
<tr>
<td>Factor 4 × Summer</td>
<td>-13.24***</td>
<td>-8.02***</td>
<td>-3.42</td>
<td>(2.60)</td>
<td>(2.32)</td>
<td>(5.00)</td>
</tr>
</tbody>
</table>

Notes: The table presents results from estimating time series regressions according to equation (5.2) using the principal components from Table F.3 instead of the usual rainfall and maximum wind speed shocks. The outcome variable in each column is 100 times the deviation of aggregate log sales volume from its 6-month symmetric moving average. We include daily observations over the period 2006-2016, which encompasses a full El Niño cycle. All regressions control for daily counts of casualties and properties lost due to flooding and typhoons. Newey-West standard errors with eight lags in parentheses adjust for serial correlation. We select the maximum possible lag order such that the estimator for the covariance matrix is consistent (Newey & West 1987). ***p < 0.01, **p < 0.05, *p < 0.1.

Weather stations (median of 7.4 km). To account for the fact that readings may be a less precise measure of local storm severity in more rural areas where CBDs are further from weather stations, we also check robustness of our property-level specifications to including polynomial functions of distance to the nearest station on the RHS.

We recognize that strong storms may entail property damage which alter sales volume by either lowering the quality of the available housing stock or inducing owners to engage in costly and time-consuming renovations. We downloaded official statistics from the National Fire Agency, Ministry of Interior going back to 1960 on reported fatalities, injuries, full and partial property losses, and disaster crews and equipment deployed. This information is itemized by the date and type of disaster, allowing us to match the damages to the typhoon warnings and other weather variables in our dataset. Over our pre-reform window of 2005-2011, the average flood or typhoon event during the regular typhoon season generated 70 casualties – most of which were minor injuries – completely destroyed 20 houses, and partially destroyed eight houses. Excluding damages from Typhoon Morakot in August 2009, which was the most destructive typhoon hitting Taiwan in the last 60 years, the average flood or typhoon event was responsible for 12 casualties, 4 completely destroyed homes, and 3...
partially destroyed homes. Overall, the typical severe weather event was more of a nuisance than a substantial shock to the quality of investable real estate.

G Estimating Property Depreciation Rates

Our methods follow LaPoint (2021) and Yoshida (2020), who estimate depreciation rates for the Japanese commercial and residential property markets, respectively. Two main assumptions underlie our estimation of real estate depreciation (Epple, Gordon, & Sieg 2010). First, real estate production is a generalized CES function of building and land quantities. Second, property owners are assumed to maximize profits subject to paying shadow prices for structure and land. Under these assumptions one can show that the overall property depreciation rate is the building depreciation rate \(\delta_a \) times the building value share \(s_{t,a} \) in real estate production:

\[
-\frac{\partial \log P_{t,a}}{\partial a} = \delta_a \cdot s_{t,a} \equiv \delta \tag{G.1}
\]

where \(\delta_a \) is a function of the age \(a \) of the building at time \(t \), the production inputs (i.e. floor area and plot size), and any factors that augment the productivity of the inputs.

This motivates estimating hedonic regression models with the following translog form:

\[
\log P_{i,j,t} = \alpha_0 + f(A, S, L, D) + \beta_1 \log S_i + \beta_2 (\log S_i)^2 \\
+ \beta_3 \log L_i + \beta_4 (\log L_i)^2 + \beta_5 D_i + \beta_6 D_i^2 + \beta_7 D_i^3 \\
+ \beta_8 \log S_i \times \log L_i + \beta_9 \log S_i \times D_i + \beta_{10} \log L_i \times D_i \\
+ \psi X_{i,j,t} + \gamma_j + \delta_t + \epsilon_{i,j,t} \\
f(A, S, L, D) = \alpha_1 A_i + \alpha_2 A_i \times \log S_i + \alpha_3 A_i \times \log L_i + \alpha_4 A_i \times \log D_i \tag{G.2}
\]

where \(P_{i,j,t} \) denotes the price of property \(i \) located in district \(j \) traded in time \(t \), log \(S_i \) is log floor area, log \(L_i \) is log plot size, and \(D_i \) is distance to the nearest transport hub, which we define as the minimum among the distances to a metro stop, commuter rail, or high speed rail station.\(^{30}\) The function \(f(A, S, L, D) \) captures how prices vary with building age \(A_i \) and interactions of age with building size, plot size, and distance. The vector \(X_{i,j,t} \) includes a full set of indicators for land use designation, building material, the number of floors, and the floor of the apartment unit (if applicable). \(\gamma_j \) and \(\delta_t \) are a full set of location and quarter-year fixed effects, respectively.\(^{31}\)

The quarter-year dummies in equation (G.2) form an alternative index to the matching

\(^{30}\)A district here refers to a neighborhood within one of the 22 administrative regions of Taiwan. There are 368 districts in total which appear in the transactions data.

\(^{31}\)We restrict to transactions involving either apartments or single-family homes, which are land plus building bundles. Land-only transactions typically pertain to agricultural land and do not have an age.
FIGURE G.1. Quarterly Translog Housing Price Indices for Top Six Markets

Notes: The figure plots indices created by transforming the estimated quarter-year dummies in equation (G.2) via $P_t = \exp(\hat{\delta}_t)$. Overall refers to the translog model estimated for all arms-length transactions. The other lines refer to indices estimated for the six largest housing markets in Taiwan. We compare the translog indices to the official government price index which uses the public transaction records available from 2012Q3. The vertical red dashed line indicates the capital gains tax reform in 2016Q1. All indices normalized to unity in the base period of 2012Q3. See text for details.

estimator index we use to compute holding period returns. Figure G.1. compares the translog indices for the overall market and top six metros to the official government index for the overall market. Notably, the translog index continues to grow beyond 2014, while the official government index stagnates. The translog index includes a rich set of interactions between size, age, and distance, and therefore accounts for changes in sample composition in ways that the official index, which is a type of matching estimator, does not. The overall translog index grew by 48% between 2012 and 2019, while our matching estimator index for the overall market (see Method 1 in Figure C.2. grew by 38% over the same period.

We also estimate versions of equation (G.2) where the function $f(A, S, L, D)$ is stepwise in age:

$$f(A, S, L, D) = \sum_g \left[\alpha_{1,g} \mathbb{1}_g + \alpha_{2,g} \mathbb{1}_g \times \log S_i + \alpha_{3,g} \mathbb{1}_g \times \log L_i + \alpha_{4,g} \mathbb{1}_g \times D_i \right]$$

(G.3)

The stepwise function allows us to parametrically estimate how the depreciation rate varies at different age groups g, which we create by taking five year intervals of age. Figure G.2. plots
prices relative to the price of a new property (of age equal to one year or less) as a function of building age. For single family homes, there is a roughly linear relationship between prices and building age for the first 20 years in the property life cycle. Overall, apartments tend to depreciate faster than single-family homes, and beyond age 20 apartments in the top six metros and single family homes outside the top six metros actually begin to appreciate, perhaps reflecting historic value or selection on building durability with respect to adverse weather events.

Table G.1 provides the linear depreciation rates implied by estimating the average marginal effect (AME) of age from the continuous hedonic model (odd columns) and the stepwise model (even columns). Consistent with the non-parametric results, apartments and properties located in the most populated markets depreciate the fastest. There is little difference in depreciation rates over the property life cycle between the top six and non-top six metros. Yet, single family homes depreciate more slowly outside the top six metros.

The estimates in Table G.1 capture the overall real estate depreciation rate δ given by equation (G.1). Although there is no accounting depreciation associated with land, the economic value of a parcel of land might depreciate independently of the building for a variety of reasons, including the introduction of new commuting patterns or demographic changes. To isolate building depreciation for single family homes, we compute $\delta_a = \delta / s_{t,a}$. Under the two assumptions on real estate production described above the building value ratio is equal to $\partial \log P_{t,a} / \partial \log S = s_{t,a}$. The ratio of the AME with respect to age divided by the AME with respect to floor area from estimating equation (G.2) thus isolates the building depreciation rate. For single family homes, we estimate an average building value share of 0.66, implying an annual building depreciation rate of $0.013/0.66 = 2\%$ in the top six areas. We therefore apply a 2\% linear depreciation rate to both single family homes and apartments to compute market values in between sale years.
FIGURE G.2. Non-parametric Estimates of Prices by Building Age

Apartments, Non-Top Six Metros

Single Family Homes, Non-Top Six Metros

Apartments, Top Six Metros

Single Family Homes, Top Six Metros

Notes: Each panel in the figure plots non-parametric local linear functions of the transaction price relative to the price of a new property of age one year or less with respect to age. Top six metros refers to properties located in Taipei, New Taipei, Kaohsiung, Taoyuan, Taichung, or Hsinchu. Building age is defined as the transaction year minus the build year plus one.
Table G.1. Translog Hedonic Estimates of Property Depreciation

<table>
<thead>
<tr>
<th></th>
<th>Top Six Metros</th>
<th>Outside Top Six Metros</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single family</td>
<td>Apartment</td>
</tr>
<tr>
<td>Building age</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>0-5 years</td>
<td>0.013***</td>
<td>0.017***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>1(6-10 years)</td>
<td>0.025***</td>
<td>0.022***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>1(11-15 years)</td>
<td>0.036***</td>
<td>0.042***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>1(16-20 years)</td>
<td>0.062***</td>
<td>0.067***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>1(21-25 years)</td>
<td>0.068***</td>
<td>0.072***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>1(26-30 years)</td>
<td>0.057***</td>
<td>0.077***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>1(31-35 years)</td>
<td>0.060***</td>
<td>0.085***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>1(36-40 years)</td>
<td>0.055***</td>
<td>0.087***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>1(41-45 years)</td>
<td>0.041***</td>
<td>0.092***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>1(46-50 years)</td>
<td>0.045***</td>
<td>0.095***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.002)</td>
</tr>
</tbody>
</table>

Controls	✓	✓	✓	✓
Location FEs	✓	✓	✓	✓
N	81,434	81,434	356,386	356,386
	47,126	47,126	141,617	141,617
Adj. R^2	0.761	0.773	0.846	0.852
	0.759	0.775	0.788	0.801

Notes: Each column in the table provides estimates of annual property depreciation rates from the Actual Price Registration data (2012-2019). Specifications in odd columns show the average marginal effect with respect to age from estimating equation (G.2), while even columns show the average marginal effect at different 5-year age bins from estimating the stepwise hedonic model in equation (G.3). Controls include the set of variables in the $X_{i,j,t}$ vector described in the text. Top six metros refers to properties located in Taipei, New Taipei, Kaohsiung, Taoyuan, Taichung, or Hsinchu. Building age is defined as the transaction year minus the build year plus one.
This appendix presents several robustness checks for the main results presented in Section 4 and Section 5. We summarize these supplemental findings as follows:

1. **Kolmogorov-Smirnov tests of hedonic-logit model fit.** Our ability to match the empirical distribution of housing sales in the pre-reform period via our hedonic-logit model in Section 4.2 is not affected by skewed outcomes in various subsample populations. Table H.1 provides the test statistics and the associated p-value for Kolomogorov-Smirnov tests of the difference in the empirical and model-implied sales distributions by holding period. We fail to reject the null of no difference when we restrict to older properties, out-of-town sellers, or sellers with different ex ante levels of net worth.

2. **Local vs. non-local investor responses.** Behavioral responses to the transfer tax reform are concentrated among non-local investors who decide to delay sales to avoid paying the tax. Figure H.1 computes the missing mass implied by comparing the empirical distribution to the counterfactual distribution of sales made by out-of-town (OOT) investors (Panel A) or local investors (Panel B). In spite of the fact that OOT investors account for only one-third of observed sales, the missing mass generated by OOT investors is 2.5 times as large as that generated by local investors.

3. **Old vs. new properties.** We examine the sensitivity of our bunching results to the exclusion of properties which were built within the five years prior to sale. Figure H.2 uncovers similar bunching patterns to our baseline analysis in Figure 4 when we exclude newly built properties (Panel A). Bunching patterns are less pronounced for units which are ten or more years old (Panel B), reflecting that depreciated properties are less attractive short-term investments.

4. **Weather shock event studies.** Figure H.3 shows that for the aggregate greater Taipei metro area there is no clear pre-trend in housing sales volume in the week prior to either a rain shock (Panel A), or a confirmed typhoon event where maximum wind gusts exceed 74 mph (Panel B). Thus, taxpayers do not accelerate sales in advance of bad weather.\(^{32}\) Sales volume contemporaneously declines by 0.52%, relative to the six month moving average, for every one millimeter of rainfall, and this effect persists for about a week. For a severe weather shock like a confirmed typhoon event, volume precipitously falls by 60% and immediately reverts to trend after the storm passes.

5. **District-level weather shock results.** One potential issue with interpreting the estimates from equation (5.3) is that weather shocks may coincide with other factors which deter property sales, even after stripping out high and low frequency calendar variation. For instance, if severe weather forecasts induce the state or local governments to recommend businesses and transport services to shutdown, then sales volume may decrease.

\(^{32}\)In other results (untabulated) we find no noticeable increase in sales volume around days where the government has issued an official typhoon warning.
decline regardless of whether forecasts turn out to be true at the local level. We difference out common daily factors influencing aggregate sales volume by considering district-level panel regressions, where we define the weather shock $Weather_{j,t}$ as the average reading across stations located within district j on date t. Table H.2 shows that rain continues to have a negative and statistically significant effect on sales volume in the cross-section of districts. In the pre-reform period, a district experiencing a one millimeter greater amount of accumulated rainfall sees sales volume decline by 0.04% more than other districts. This effect increases to 0.08% in the post-reform period when typhoon seasons were on average more severe and generated more spatial variation in rainfall. As in the main results in Section 5.2, wind is negatively associated with volume in the geographical cross-section, but the point estimates are not statistically significant.

6. Seller’s permanent address as shock location. Given that we focus on second homeowners, one question is whether the effects of rainfall on property sales differ depending on whether the weather event occurs at the seller’s location, measured by their permanent address (i.e. where they receive tax bills), instead of the property location. We obtain similar district-level results when we measure $Volume_{j,t}$ as sales volume in district j using the seller’s address instead of the property address. In the pre-reform (post-reform) period a one millimeter greater amount of accumulated rainfall implies a 0.03% (0.08%) greater decline in sales initiated by sellers in that district.
FIGURE H.1. Empirical and Counterfactual Sales: the Role of OOT Investors

A. OOT Investors: Distribution by Holding Period Length

B. Local Investors: Distribution by Holding Period Length

Notes: The figure plots the distribution of second home sales volume by holding period length estimated via the system of equations in (4.2)–(4.4) in red for either out-of-town (OOT) investors in Panel A, or local (non-OOT) investors in Panel B. The empirical post-reform distribution appears in the blue dashed line. The full logit model includes month-year, week-of-month, day-of-week fixed effects, a holiday dummy, a quadratic in property age (measured using the construction date), dummies for the structure material, dummies for the use category (e.g. apartment vs. single family home), floor space, land area, holding period length, number of floors and building floor dummies.
FIGURE H.2. Empirical and Counterfactual Sales: Older vs. Newer Properties

A. Properties Built ≥ 5 Years Prior to Sale

B. Properties Built ≥ 10 Years Prior to Sale

Notes: The figure plots the distribution of second home sales volume by holding period length estimated via the system of equations in (4.2)–(4.4) in red for either housing units older than 5 years (Panel A) or older than 10 years (Panel B). The empirical post-reform distribution appears in the blue dashed line. The full logit model includes month-year, week-of-month, day-of-week fixed effects, a holiday dummy, a quadratic in property age (measured using the construction date), dummies for the structure material, dummies for the use category (e.g. apartment vs. single family home), floor space, land area, holding period length, number of floors and building floor dummies.
FIGURE H.3. Sales Volume around Severe Weather Shocks

A. Rainfall Shocks to Sales Volume

\[\text{Volume}_t = \sum_{k=-7}^{+7} \beta_k \cdot \text{Weather}_{t-k} + \delta_t + \gamma' \cdot X_t + \varepsilon_t \]

\text{Weather} is a continuous variable equal to the average daily accumulated rainfall across weather stations in the Taipei-New Taipei metro area (Panel A), or a dummy equal to unity if date \(t \) features a confirmed typhoon event in which maximum wind gusts exceed 74 mph (the meteorological definition of a typhoon). \text{Volume} is 100 times the deviation of aggregate log sales volume from its 6-month symmetric moving average. We control for reported damages, holiday effects, and day-of-week and 7-day fixed effects in each panel. 95% confidence intervals for the point estimates pictured in red dashed lines from Newey-West standard errors with six lags to adjust for serial correlation.

Notes: The figure plots the estimated \(\hat{\beta}_k \) from regressions of the form: \[\text{Volume}_t = \sum_{k=-7}^{+7} \beta_k \cdot \text{Weather}_{t-k} + \delta_t + \gamma' \cdot X_t + \varepsilon_t \]. Weather is a continuous variable equal to the average daily accumulated rainfall across weather stations in the Taipei-New Taipei metro area (Panel A), or a dummy equal to unity if date \(t \) features a confirmed typhoon event in which maximum wind gusts exceed 74 mph (the meteorological definition of a typhoon). Volume is 100 times the deviation of aggregate log sales volume from its 6-month symmetric moving average. We control for reported damages, holiday effects, and day-of-week and 7-day fixed effects in each panel. 95% confidence intervals for the point estimates pictured in red dashed lines from Newey-West standard errors with six lags to adjust for serial correlation.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Age ≥ 5</th>
<th>Age 5-10</th>
<th>Age ≥ 10</th>
<th>OOT</th>
<th>non-OOT</th>
<th>Q₁(NWₛ)</th>
<th>Q₃(NWₛ)</th>
<th>Q₅(NWₛ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-S stat</td>
<td>0.105</td>
<td>0.149</td>
<td>0.090</td>
<td>0.149</td>
<td>0.105</td>
<td>0.119</td>
<td>0.149</td>
<td>0.119</td>
<td>0.075</td>
</tr>
<tr>
<td>p-value</td>
<td>0.858</td>
<td>0.444</td>
<td>0.951</td>
<td>0.444</td>
<td>0.858</td>
<td>0.726</td>
<td>0.444</td>
<td>0.726</td>
<td>0.992</td>
</tr>
</tbody>
</table>

Notes: This table provides the test statistics and the associated p-value for Kolmogorov-Smirnov tests of the null that the empirical and counterfactual distributions of sales by holding period are identical. We conduct tests for several property subsample groups: baseline refers to estimating the hedonic-logit model on the full sample, as pictured in Figure 4 in the main text; age ≥ 5, 5-10, and geq 10 refer to buildings constructed more than five years prior to sale, more than five but less than ten years and more than ten years prior to sale, respectively; OOT focuses on sales involving an out-of-town counterparty; the last three columns refer to sales where the seller is in either the first, third, or fifth quintile of the taxpayer net worth distribution.
Table H.2. District-level Results: Weather Shocks and Real Estate Sales

A. Pre-reform Period (2006-2011Q2)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall × Summer</td>
<td>-0.037**</td>
<td>-0.038**</td>
<td></td>
<td>-0.030**</td>
<td>-0.037**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.015)</td>
<td></td>
<td>(0.015)</td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>Max WS × Summer</td>
<td>0.043</td>
<td>0.116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
<td>(0.142)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. WS × Summer</td>
<td></td>
<td></td>
<td>-0.138</td>
<td>-0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.383)</td>
<td>(0.382)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damages controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7-day FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Day-of-week FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>District FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>N</td>
<td>101,141</td>
<td>101,141</td>
<td>88,078</td>
<td>98,666</td>
<td>88,076</td>
<td>98,627</td>
</tr>
</tbody>
</table>

B. Post-reform Period (2011Q3-2015)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall × Summer</td>
<td>-0.074***</td>
<td>-0.077***</td>
<td></td>
<td>-0.074***</td>
<td>-0.077***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.016)</td>
<td></td>
<td>(0.016)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>Max WS × Summer</td>
<td></td>
<td>-0.223</td>
<td>-0.106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.163)</td>
<td>(0.163)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. WS × Summer</td>
<td></td>
<td>-0.399</td>
<td>-0.291</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.412)</td>
<td>(0.410)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damages controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7-day FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Day-of-week FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>District FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>N</td>
<td>89,656</td>
<td>89,656</td>
<td>88,078</td>
<td>88,603</td>
<td>88,076</td>
<td>88,601</td>
</tr>
</tbody>
</table>

Notes: The table presents results from estimating district-level panel regressions of the form: \(\text{Volume}_{j,t} = \beta \cdot (\text{Weather}_{j,t} \times \text{Summer}_t) + \delta_t + \psi_j + \gamma' \cdot X_t + \varepsilon_{j,t} \). The outcome variable in each column is 100 times the deviation of log sales volume in district \(j \) from its 6-month symmetric moving average. RHS variables include maximum or average wind speed and accumulated rainfall interacted with a dummy for the summer typhoon season. We include daily observations from the pre-reform period (Panel A) during which our sales and weather datasets overlap: January 1, 2006 through May 31, 2011. For the post-reform period (Panel B), we include observations during the transfer tax regime which lasted from June 1, 2011 through December 31, 2015. All regressions except the first column control for daily counts of casualties and properties lost due to flooding and typhoons (see Appendix F for details). Conley (2008) standard errors in parentheses adjust for spatial autocorrelation according to the distance between the midpoint coordinates of each district. *** \(p < 0.01 \), ** \(p < 0.05 \), * \(p < 0.1 \).
I Property Flip Tax & Time on Market

In this appendix we present evidence from listings data that the transfer tax negatively impacted liquidity of investment properties based on time on market (TOM). We obtained residential listings data for the Greater Taipei metro area covering a symmetric one-year period on either side of our reform date of June 1, 2011 from a large, anonymous brokerage firm.33 The data include the start and end date of the listing and basic property characteristics such as the block-level address, last listed price, and floor space and land area. Our sample includes listings which were removed due to a sale closing.

We use the address and closing date to merge these listings to the confidential tax returns, which allows us to assess whether the sale was subject to the tax based on owner-occupied status. Since the listing removal date is the contract date (what we observe in the tax data) plus any delays in taking down the listing, merging on the block-level address and listing removal date produces very few exact matches. Hence, we use a two-step procedure to match properties across the listings and tax data:

1. For each property in the listing data, we find the set of properties in the tax records which (i) match on the address and (ii) for which the listing removal date is equal to the contract date ± 7 days.

2. From the set obtained via step 1, we compute Euclidean distance with respect to the prices and floor space of the sale listing for each potential match and then select the sold property which minimizes the distance. Or, in symbols:

\[
\min_i \left\{ (x_\ell - x_i)^2 + (p_\ell - p_i)^2 \right\}
\]

where \(\ell\) indicates a listing, \(i\) is a potential matched transaction, \(x\) is floor space, \(p_i\) is the contract price, and \(p_\ell\) is the last observed listed price.

Applying this procedure we obtain a matched sample with owner-occupier flags and non-missing building characteristics for 4,605 transactions out of a full sample of 17,685 listings closed between June 1, 2010 and June 1, 2012.

Our main bunching results in Section 4 support the notion that liquidity declined in the medium-run, as the holding period nearly doubled and after the transfer tax and the missing mass of sales was positive for very long holding periods (> 5 years). The results in this appendix based on TOM suggest that liquidity also declined in the very short-run after the reform. We summarize our TOM results as follows:

- We start by comparing TOM for the pre-reform vs. post-reform period for all transactions and by price tier. Figure I.1 shows an average post-reform increase in TOM of 6.9 days in the full set of listings, compared to a difference in means of 6.2 for

33 Although we were only able to obtain a short window around the reform, the symmetric nature of this window means seasonality can play only a minimal role in our results.
the matched sample of listings. This suggests that there may be a slight selection bias in our two-step matching procedure which skews towards properties which are more liquid in both the pre-reform and post-reform period. Mirroring the heterogeneity in the high-frequency analysis of Section 4.3, mean time on market increases by 7.5 days in the bottom quintile (p-value = 0.001) and by 9.5 days in the top quintile (p-value = 0.002), but only by 4 to 5 days in the middle of the price distribution.

• Figure I.2 indicates that the reduction in short-run liquidity in the housing market was driven by an increase in TOM among the non-owner occupied properties subject to the tax. TOM increased by 7.3 days for non-owner occupied properties (Panel A) but, if anything, declined by a statistically insignificant 4.5 days (p-value = 0.3445). Given that 76% of the sales in our matched listings sample are non-owner occupied compared to 75% in the full sample of transactions in the tax data, our matching procedure is not inadvertently selecting on properties which are more or less likely to be subject to the tax on investment homes.

• Finally, we adjust the means in Figure I.2 for property covariates and sales seasonality by estimating standard differences-in-differences regressions of the form:

\[
TOM_{i,t} = \alpha + \beta_1 \cdot Post_t + \beta_2 \cdot SelfOcc_{i,t} + \beta_3 \cdot Post_t \times SelfOcc_{i,t} + \gamma' \cdot X_{i,t} + \varepsilon_{i,t}
\]

(I.2)

where \(TOM_{i,t}\) is time on the market, \(Post_t\) is a dummy for the post-reform period, \(SelfOcc_{i,t}\) is a dummy for whether the property is owner-occupied, and \(X_{i,t}\) includes covariates such as day-of-week and month-year fixed effects, property age, previous transaction value, land area, floor space, total number of floors (for single-family homes), and floor number (for apartments). Our coefficient of interest is the \(\beta_3\), which captures by how much TOM differed in the post-reform period for owner-occupied (control) vs. non-owner occupied (treated) properties.

The first three columns of Table I.1 show the results from estimating equation (I.2). Average TOM increased by around 7.5 days after the reform, but this increase in TOM was 15 days less for self-occupied properties which were not subject to the tax.

The last three columns of Table I.1 replace \(SelfOcc_{i,t}\) in equation (I.1) with \(Second_{i,t}\), a dummy for whether the listed property was acquired by the seller after their first property. \(Second_{i,t}\) is a temporal ordering of homes within the seller’s portfolio. Since homes which were acquired later by the seller may still be owner-occupied, and therefore not subject to this tax, the interaction \(Post \times Second\) captures the extent to which the tax may have influenced sellers’ reservation prices for all but the first property in their portfolio. While we find average TOM for second homes was higher (statistically insignificant) than for first homes, we do not observe any meaningful difference across the tax reform with respect to the temporal ordering of home acquisitions. Overall, we conclude it is unlikely that the liquidity crunch spilled over to segments of the housing market which were not subject to the flip tax.
FIGURE I.1. Time on Market by Price Tier

All Transactions

First Quintile

Pre−reform mean = 48.6
Post−reform mean = 55.51
p−value on diff = 0

Second Quintile

Pre−reform mean = 42.04
Post−reform mean = 49.53
p−value on diff = .0001

Third Quintile

Pre−reform mean = 43.64
Post−reform mean = 49.76
p−value on diff = .0009

Fourth Quintile

Pre−reform mean = 51.87
Post−reform mean = 55.43
p−value on diff = .0886

Fifth Quintile

Pre−reform mean = 60.19
Post−reform mean = 69.51
p−value on diff = .0002

Notes: Each panel compares pre-reform and post-reform residential listings in the greater Taipei metro area by time on market. Data from a large, but anonymous, brokerage firm. We define time on market as the number of days between the initial listing date and the day the listing was removed. Pre-reform includes listings removed within the year prior to the Tobin tax reform, while post-reform includes listings posted and removed within the year after the reform. The first panel pools all transactions, while the remaining five panels divide the transactions into quintiles based on the property’s last assessed value. Solid grey vertical lines indicate the mean time on market in the pre-reform period, while blue dashed lines show the mean in the post-reform period.
FIGURE I.2. Time on Market by Occupancy Status

A. Non-owner Occupied Properties (Treatment Group)

B. Owner-occupied Properties (Control Group)

Notes: Each panel compares pre-reform and post-reform residential listings in the greater Taipei metro area by time on market. Data from a large, but anonymous, brokerage firm. We define time on market as the number of days between the initial listing date and the day the listing was removed. Pre-reform includes listings removed within the year prior to the Tobin tax reform, while post-reform includes listings posted and removed within the year after the reform. Panel A includes listings we match to the tax data which are non-owner occupied at the time of sale, while Panel B includes listings which are owner-occupied at the time of sale and therefore not subject to the surcharge. Solid grey vertical lines indicate the mean time on market in the pre-reform period, while blue dashed lines show the mean in the post-reform period.
Table I.1. Time on Market and Occupancy Status: DiD Results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post</td>
<td>7.59***</td>
<td>7.39***</td>
<td>7.52***</td>
<td>7.71**</td>
<td>6.88*</td>
<td>6.92*</td>
</tr>
<tr>
<td></td>
<td>(1.87)</td>
<td>(1.89)</td>
<td>(1.90)</td>
<td>(3.51)</td>
<td>(3.54)</td>
<td>(3.57)</td>
</tr>
<tr>
<td>SelfOcc</td>
<td>1.14</td>
<td>2.21</td>
<td>2.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.60)</td>
<td>(3.82)</td>
<td>(3.82)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post × SelfOcc</td>
<td>-15.01***</td>
<td>-14.62***</td>
<td>-14.82***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.52)</td>
<td>(5.62)</td>
<td>(5.62)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td></td>
<td></td>
<td></td>
<td>2.88</td>
<td>2.76</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.39)</td>
<td>(2.38)</td>
<td>(2.38)</td>
</tr>
<tr>
<td>Post × Second</td>
<td></td>
<td></td>
<td></td>
<td>-2.31</td>
<td>-1.44</td>
<td>-1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4.06)</td>
<td>(4.10)</td>
<td>(4.11)</td>
</tr>
<tr>
<td>District × month-year FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Property controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Day-of-week FEs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>N</td>
<td>4,605</td>
<td>4,553</td>
<td>4,553</td>
<td>4,605</td>
<td>4,553</td>
<td>4,553</td>
</tr>
<tr>
<td>Adj. R²</td>
<td>0.021</td>
<td>0.033</td>
<td>0.033</td>
<td>0.019</td>
<td>0.031</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Notes: The table displays regression results from estimating differences-in-differences specifications of the form in equation (I.2), with time on market (TOM) in days as the outcome variable. The first three columns include a dummy for whether the listing is for an owner-occupied property (SelfOcc), while the last three columns instead include a dummy for whether the listing is for the seller’s second (or later) home. We define a “second home” here as one that was acquired after the seller’s original home purchase. Property controls include building age, previous transaction value, floor space and land area, the number of floors on the property, or the floor of the unit if it is in an apartment building. Standard errors in parentheses clustered at the property panel id level. ***p < 0.01, **p < 0.05, *p < 0.1.

J PRE-TRENDS TEST FOR PROPERTY CHARACTERISTICS

Our bunching analysis of the transfer tax reform in Section 4.2 relies on a key identifying assumption: that the market would have valued property amenities in the same fashion as in the pre-reform period in the absence of the new tax. In this appendix we provide two tests of this assumption for each of the covariates we include in our baseline hedonic-logit model.

1. Non-parametric test using sales shares. We compute the 2010Q4 quartiles of candidate covariates used in our hedonic-logit models, including building age (years), distance to the nearest train station (kilometers), floor space (square meters), and the plot size for the land underlying the building. We then compute for each quarter the fraction of sales sorted into four bins based on the 2010Q4 covariate quartiles. We choose 2010Q4 as our base period, as it is the last quarter of sales data before the announcement of the flip tax at the end of January 2011. Therefore, this test is...
analogous to an event study design where we normalize the time dummies to the last pre-reform period, except that we are not imposing functional form assumptions.

Figure J.1 plots the results of this exercise. We find little evidence of any selection prior to the reform on age, commuting distance, or floor space for the unit. However, we do find evidence of selection in favor of sales of units in smaller land plot buildings, which is consistent with the evidence on heterogeneity in Section 4.2 that the incidence of the tax disproportionately fell on lower-quality apartments favored by flippers in the pre-reform period. Hence, in our hedonic-logit models we interact land area with a dummy for whether the transaction involves a detached single-family home (< 5% of sales in the greater Taipei metro area).

2. **Factor loadings in matching estimator regressions.** Our second test is an event study design where we estimate matching estimator regressions of the form outlined in Appendix B:

$$\log P_{i,t} = \sum_{t=2008Q1}^{2012Q2} \sum_{k=1}^{N} \beta_{t,k} \cdot X_{i,t}^k + \gamma_i + \epsilon_{i,t} \quad (J.1)$$

We allow prices to be a polynomial of order N for each continuous covariate $X_{i,t}$ to account for well-documented non-linear relationships with prices. The match-level fixed effects γ_i strip out all time-invariant property characteristics common to a six decimal point latitude-longitude area (roughly half a street block). As discussed in Appendix C, this type of pricing model allows us to create a quality-adjusted index without the extreme selection bias of standard repeat sales.

Figure J.2 plots the average marginal effects (again, normalized to zero in 2010Q4) for a quadratic function of age, station distance, floor space, and land plot size, as well as the time-varying loading on a dummy for whether the sale involves a unit in a high-rise apartment building (i.e. a building with > 10 floors). We again find no systematic evidence of pre-trends in pricing of housing characteristics, with the exception of a statistically insignificant negative trend in station distance. Thus, in our baseline hedonic-logit specifications we exclude station distance as a predictor of sale probability.
FIGURE J.1. Non-parametric Pre-trend Test: Sales by Covariate Quartile Bin

Building Age

Distance to Train Station

Floor Space

Land Plot Size

Notes: Each panel shows the fraction of sales in each quarter from 2008Q1 to 2012Q2 split into four bins corresponding to a 2010Q4 covariate quartile. The transfer tax surcharge on second home flips was announced at the beginning of 2011Q1 and implemented at the end of 2011Q2. Note that since each variable is not entirely continuous, the sales fractions in each bin are not exactly 0.25 in the base period of 2010Q4. For this exercise, we pool all residential sales in the greater Taipei metro area, and exclude newly built properties with age < 1 year. We define train station distance as the minimum among the distances to a metro stop, commuter rail, or high speed rail station.
FIGURE J.2. Parametric Pre-trend Test: Average Marginal Effects on Housing Prices

Notes: Each panel plots the average marginal effects (AMEs) from a matching regression of the form in equation (J.1), estimated separately for each covariate. For the continuous variables (building age, distance, floor space, land plot size), we plot marginal effects from a quadratic specification ($\beta_{t,1} + 2\beta_{t,2}$) and standard errors computed via the delta method. The transfer tax surcharge on second home flips was announced at the beginning of 2011Q1 (vertical dashed black line). We normalize all coefficients relative to the value in the base period of 2010Q4. We pool all residential sales in the greater Taipei metro area, and exclude newly built properties with age < 1 year. We define train station distance as the minimum among the distances to a metro stop, commuter rail, or high speed rail station.
Appendix References

TABLE 7. Summary Statistics for Sales around the TTS Reform

<table>
<thead>
<tr>
<th></th>
<th>Sales volume</th>
<th>Holding period length</th>
<th>Unit prices</th>
<th>Unit price volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Growth</td>
<td>Before</td>
</tr>
<tr>
<td>< 1 year</td>
<td>120,265</td>
<td>67,197</td>
<td>−44%</td>
<td>579</td>
</tr>
<tr>
<td>< 6 months</td>
<td>65,761</td>
<td>30,748</td>
<td>−53%</td>
<td>566</td>
</tr>
<tr>
<td>< 3 months</td>
<td>34,121</td>
<td>14,350</td>
<td>−58%</td>
<td>534</td>
</tr>
<tr>
<td>< 2 months</td>
<td>24,488</td>
<td>9,252</td>
<td>−58%</td>
<td>505</td>
</tr>
<tr>
<td>< 1 month</td>
<td>14,944</td>
<td>4,120</td>
<td>−72%</td>
<td>486</td>
</tr>
<tr>
<td>First quintile</td>
<td>2,264</td>
<td>1,483</td>
<td>−34%</td>
<td>624</td>
</tr>
<tr>
<td>Second quintile</td>
<td>2,339</td>
<td>1,395</td>
<td>−40%</td>
<td>607</td>
</tr>
<tr>
<td>Third quintile</td>
<td>2,250</td>
<td>1,493</td>
<td>−34%</td>
<td>576</td>
</tr>
<tr>
<td>Fourth quintile</td>
<td>2,214</td>
<td>1,477</td>
<td>−33%</td>
<td>550</td>
</tr>
<tr>
<td>Fifth quintile</td>
<td>2,279</td>
<td>1,447</td>
<td>−36%</td>
<td>538</td>
</tr>
</tbody>
</table>

Notes: The table shows summary statistics around the transfer tax surcharge implementation date of June 1, 2011. The top panel shows how overall sales volume, average holding period length, average unit prices (in NTD per square meter of floor space), and unit price volatility evolve by window length around the reform. For instance, < 1 month subsets to second home sales occurring either one month before or after the reform, whereas < 1 year looks at a symmetric 365 day window around the reform. Unit price refers to the price per square meter of land, or in the case of an apartment unit, price per square meter of floor space. The bottom panel instead shows how the same variables change within a one-year window before vs. after the reform, split by quintiles of the last observed pre-reform sale price for the property. t-stat reports the t-statistics of two-sample t tests with unequal variances.
TABLE 8. Summary Statistics for Owner-occupied Home Sales around the TTS Reform

<table>
<thead>
<tr>
<th></th>
<th>Sales volume</th>
<th>Holding period length</th>
<th>Unit prices</th>
<th>Unit price volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Growth</td>
<td>t-stat</td>
</tr>
<tr>
<td>< 1 year</td>
<td>13,926</td>
<td>6,595</td>
<td>−52%</td>
<td>499</td>
</tr>
<tr>
<td>< 6 months</td>
<td>7,472</td>
<td>2,963</td>
<td>−60%</td>
<td>490</td>
</tr>
<tr>
<td>< 3 months</td>
<td>3,884</td>
<td>1,414</td>
<td>−64%</td>
<td>455</td>
</tr>
<tr>
<td>< 2 months</td>
<td>2,763</td>
<td>883</td>
<td>−68%</td>
<td>425</td>
</tr>
<tr>
<td>< 1 month</td>
<td>1,703</td>
<td>417</td>
<td>−76%</td>
<td>404</td>
</tr>
<tr>
<td>First quintile</td>
<td>211</td>
<td>97</td>
<td>−54%</td>
<td>599</td>
</tr>
<tr>
<td>Second quintile</td>
<td>186</td>
<td>132</td>
<td>−29%</td>
<td>557</td>
</tr>
<tr>
<td>Third quintile</td>
<td>209</td>
<td>92</td>
<td>−56%</td>
<td>528</td>
</tr>
<tr>
<td>Fourth quintile</td>
<td>205</td>
<td>111</td>
<td>−46%</td>
<td>450</td>
</tr>
<tr>
<td>Fifth quintile</td>
<td>175</td>
<td>117</td>
<td>−33%</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table shows summary statistics around the transfer tax surcharge implementation date of June 1, 2011. The top panel shows how overall sales volume, average holding period length, average unit prices (in NTD per square meter of floor space), and unit price volatility evolve by window length around the reform. For instance, < 1 month subsets to second home sales occurring either one month before or after the reform, whereas < 1 year looks at a symmetric 365 day window around the reform. Unit price refers to the price per square meter of land, or in the case of an apartment unit, price per square meter of floor space. The bottom panel instead shows how the same variables change within a one-year window before vs. after the reform, split by quintiles of the last observed pre-reform sale price for the property. t-stat reports the t-statistics of two-sample t tests with unequal variances.
TABLE 9. Summary Statistics for Second Home Sales around the TTS Reform

<table>
<thead>
<tr>
<th></th>
<th>Sales volume</th>
<th>Holding period length</th>
<th>Unit prices</th>
<th>Unit price volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Growth</td>
<td>Before</td>
</tr>
<tr>
<td>< 1 year</td>
<td>106,339</td>
<td>60,602</td>
<td>−43%</td>
<td>590</td>
</tr>
<tr>
<td>< 6 months</td>
<td>58,289</td>
<td>27,785</td>
<td>−52%</td>
<td>576</td>
</tr>
<tr>
<td>< 3 months</td>
<td>30,331</td>
<td>12,936</td>
<td>−57%</td>
<td>545</td>
</tr>
<tr>
<td>< 2 months</td>
<td>21,725</td>
<td>8,369</td>
<td>−61%</td>
<td>515</td>
</tr>
<tr>
<td>< 1 month</td>
<td>13,241</td>
<td>3,703</td>
<td>−72%</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quintile</td>
<td>2,075</td>
<td>1,391</td>
<td>−33%</td>
<td>629</td>
</tr>
<tr>
<td>Second quintile</td>
<td>2,112</td>
<td>1,285</td>
<td>−39%</td>
<td>616</td>
</tr>
<tr>
<td>Third quintile</td>
<td>2,040</td>
<td>1,363</td>
<td>−33%</td>
<td>572</td>
</tr>
<tr>
<td>Fourth quintile</td>
<td>2,060</td>
<td>1,407</td>
<td>−31%</td>
<td>561</td>
</tr>
<tr>
<td>Fifth quintile</td>
<td>2,073</td>
<td>1,300</td>
<td>−37%</td>
<td>544</td>
</tr>
</tbody>
</table>

Notes: The table shows summary statistics around the transfer tax surcharge implementation date of June 1, 2011. The top panel shows how overall sales volume, average holding period length, average unit prices (in NTD per square meter of floor space), and unit price volatility evolve by window length around the reform. For instance, < 1 month subsets to second home sales occurring either one month before or after the reform, whereas < 1 year looks at a symmetric 365 day window around the reform. Unit price refers to the price per square meter of land, or in the case of an apartment unit, price per square meter of floor space. The bottom panel instead shows how the same variables change within a one-year window before vs. after the reform, split by quintiles of the last observed pre-reform sale price for the property. t-stat reports the t-statistics of two-sample t tests with unequal variances.