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Abstract

To explain why sellers in takeover auctions restrict bidders’ entry, we quantify
economic costs incurred when inviting an additional bidder. Our auction model al-
lows bidders to discount their synergy values when other industry players gain access
to confidential information about the target company. We identify the model primi-
tives, allowing for unobserved heterogeneity, as confidential information is latent. We
obtain the posterior of the primitives using a sample with 287 M&A deals of U.S.
public companies. The unobserved heterogeneity explains around 30 percent of the
premium variation. We find a considerable economic cost of running a takeover auc-
tion. First, information costs are heterogeneous across industries, ranging from 2% to
38%. Second, operating costs are 3 to 9 times higher than the reported accounting
fees. However, we do not find evidence that an alternative mechanism would generate

higher premiums than the sealed-bid auction, justifying the current mechanism.
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1 Introduction

The literature on mergers and acquisitions (M&A) has reported that sellers of takeover
auctions routinely restrict bidders’ entry. The seminal article, Boone and Mulherin (2007),
documents that about half of the company sales in their sample invite one acquirer, and
even when they do more than one, they allow only a few. This observation contradicts the
received theory: competition raises the seller’s (expected) revenue.! We explain the entry
regulation by the seller’s costs to conduct a takeover auction.

We study two distinctive economic costs discussed in the literature: operating cost and
information cost. First, the operating cost is directly associated with planning, carrying
out, and concluding a takeover process. That includes not only accounting costs such as
advisory fees for investment banks and law firms but also other opportunity costs resulting
from disruption of business, negative impacts on the employee morale, and missing out on
business opportunities; see Rosenbaum and Pearl (2009) and DePamphilis (2018). These
opportunity costs are naturally target-specific, privately known to the seller, and have not
been formally measured or documented.

Second, the information cost indirectly arises from bidders’ evaluation of the target com-
pany and their bidding behavior. Hansen (2001) notes that bidders discount their synergy
values when competitors have access to the target’s confidential information. Since bidders
are often industry rivals, customers, or suppliers who strategically interact in their daily
business, they can exploit this information against the acquirer—even after they lose the
auction. As a result, when competitors participate in the auction, bidders lower their valu-
ations, reducing their bids and ultimately decreasing the seller’s revenue. This revenue loss
constitutes the information cost. Confidential information remains critical both during and
after the takeover auction, a distinctive feature of takeover auctions.

While the information cost has been mostly discussed in the field of corporate finance,
e.g., Boone and Mulherin (2007); Rogo (2014); Schlingemann and Wu (2015), legal studies
of corporate takeovers also echo this concept through their term “legitimate proprietary
concerns” referring to the risks of sensitive information being disclosed to industry players.
Specifically, the Delaware Court of Chancery often indicates that a full-blown auction may

not be desirable, as the cost could outweigh the benefits.? For instance, in the case of Lear

'Bulow and Klemperer (1996) shows that no bargaining power is as valuable to the seller as attracting
one extra bona fide bidder. This claim can fail in various situations, e.g., auctions with almost common value
in Klemperer (1998) and auctions with a voluntary entry in Li and Zheng (2009). The takeover auction,
however, does not fit into those frameworks; see sections 2 and 3.

2Delaware is the leading jurisdiction for publicly traded corporations listed on U.S. stock exchanges,
with more than half choosing to incorporate there. It is also the top choice for out-of-state incorporations,
where companies headquartered in one state incorporate in another. See for more information https:


https://corplaw.delaware.gov/facts-and-myths
https://corplaw.delaware.gov/facts-and-myths

Corp. Shareholder Litigation, 926 A.2d 94, 119, the target company rejected a potential
acquirer due to the risk of losing an initial bidder or receiving a lower offer if additional
bidders were involved; see Sautter (2013) for more examples. Among such cases, concerns
over the potential loss of competitive information are frequently cited as a key issue.

While it is evident that sellers limit bidder participation due to economic costs, no study
has formally measured these costs or examined their economic implications. This paper
addresses that gap.

To quantify information costs, we develop an optimal bidding strategy that allows bidders
to discount their synergy values following their beliefs about how many competitors have
access to the target’s confidential information. Although a takeover process involves multiple
stages, the seller shortlists a few bidders for the final stage, where they gain access to the
most critical data about the target. At this stage, bidders conduct comprehensive due
diligence and submit sealed bids without knowing their competitors’ identities or offers.?
Reflecting this key institutional feature, we develop a sealed-bid (first-price) auction model
in which shortlisted bidders receive private signals, update their beliefs about the number of
competitors, and discount their synergy values accordingly.

Interpreting bid data as equilibrium outcomes, we then establish the identification of the
auction model, allowing for unobserved heterogeneity conditional on observed auction char-
acteristics. Unobserved heterogeneity should be critical in this study because confidential
information is, by nature, latent. We use the deconvolution method of Kotlarski (1966) and
Krasnokutskaya (2011) to identify the distribution of unobserved heterogeneity by within-
auction bid variation.* After separating out unobserved heterogeneity, following the strategy
of Guerre, Perrigne, and Vuong (2000, 2009), we identify the model primitives, including dis-
tributions of private signals and discounting factors by exploiting cross-auction bid variation
and the exogenous variation of the number of potential bidders.

We analyze a sample of 287 takeover auctions of U.S. public companies from 2000 to 2008.
Using a Bayesian method, we account for unobserved heterogeneity and explore the poste-
rior distribution of structural parameters through a Markov chain Monte Carlo (MCMC)

algorithm. From the posterior, we find that sellers invite fewer bidders when signal distri-

//corplaw.delaware.gov/facts-and-myths.

3From our conversation with an experienced investment banker specializing in M&A, we learned that it is
common practice for the seller to withhold information about their rivals, such as their identities and offers.
Strong evidence of this can be found in many SEC (Security and Exchange Commission) filings; see section
3 for more details. Moreover, our empirical findings in section 5 suggest that withholding information about
the competition can align with the seller’s interests, leading to higher premiums.

4Li and Vuong (1998) has first introduced Kotlarski (1966) to identify models with measurement error.
Using this technique, Li, Perrigne, and Vuong (2000) identifies a class of auctions with conditionally inde-
pendent private values, and Krasnokutskaya (2011) identifies auction models with unobserved heterogeneity.
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butions are more dominant, and bidders heavily discount their synergy values, highlighting
the critical role of value discounting in takeover auctions. Given the high heterogeneity of
takeover auctions in the sample, we illustrate prediction quality using five target compa-
nies—one from each industry—whose attributes are closest to their industry medians. For
these industry-median targets, the posterior accurately predicts observed premiums (win-
ning bids) with a small standard deviation. We also find that unobserved heterogeneity
accounts for 26~32% of the premium variation, highlighting the importance of unobserved
heterogeneity in empirical analyses of takeover auctions.

With the posterior distribution, we conduct counterfactual analysis to quantify informa-
tion and operating costs incurred by the seller. First, the predictive premium with value
discount is first-order stochastically dominated by the predictive premium under the hypo-
thetical scenario without value discount. The discrepancy between the predictive premiums
with and without value discounts allows us to measure information costs. We find that
the information costs vary across industries, ranging from 2 to 38 percent of the premium.
Second, we also find that the lower bound of operating costs is three to nine times higher
than the documented advisory fees (0.84% of the transaction value; see Hunter and Jag-
tiani (2003)). Finally, despite such substantial economic costs the seller bears in the current
mechanism, our counterfactual analysis also reveals that the predictive premium under the
ascending auction or negotiation would be lower than the current premium in many cases,
and not clearly higher in others. This justifies the current use of the sealed-bid auction.

The main contribution of this paper is to quantify the information cost and operating cost
incurred by the seller in takeover auctions. Many studies in corporate finance use the concept
of information cost to explain other stylized features in M&A transactions. For example,
Boone and Mulherin (2007) finds that negotiations and auctions yield similar transaction
premiums and suggests that the presence of information cost may explain the choice of sale
mechanism. In addition, Schlingemann and Wu (2015) finds that the likelihood of choosing
auction over negotiation decreases with R&D intensity and explains this by the hypothesis
that R&D intensity may serve as a proxy for the cost of disclosing proprietary information.
However, these studies take a reduced-form approach, which cannot measure the information
cost, as it is structural in nature and requires formulating bidding behavior.

A few articles develop a structural approach but study other aspects of takeover compe-
titions. Taking the pool of acquirers as given, Gorbenko and Malenko (2014) estimates an
auction model to learn how strategic and financial bidders evaluate target companies and
find that different targets appeal to different groups of bidders. Gentry and Stroup (2019)
models potential acquirers’ entry decision, i.e., a decision on whether to sign confidentiality

agreements and investigates how the pre-entry uncertainty on the target value affects the



bidders’” entry and bidding behavior. Recently, Allen, Clark, Hickman, and Richert (2023)
studies takeover auctions that allocate failed banks to a solid financial institute, focusing on
bidders’ uncertainty about the scoring rule and multiple bids for hedging the associated risk.

Unlike those papers, we consider a setting where the seller restricts bidders’ entry into
the final competition to improve his revenue. We examine how the seller’s shortlisting
process influences bidding behavior, from which we recover the structural costs incurred by
the seller. Moreover, none of the previous empirical studies formally consider unobserved
target heterogeneity. Confidential information plays a crucial role in our analysis, as it drives
the information cost yet remains unobservable. This paper incorporates unobserved target
heterogeneity into our econometric analysis and demonstrates its economic significance in
the study of M&A transactions.

In addition, Kang and Miller (2023) finds that many government procurement contracts
use negotiations with one seller due to buyer solicitation costs, offering insights through a
seller menu design approach. Garrett, Ordin, Roberts, and Serrato (2023) also observes
similar patterns of one or few bidders competing in bond auctions and model bidders’ entry
costs to explain limited participation. In both cases, the concept of information costs is
irrelevant, as losing bidders do not exploit critical information about the auctioned item
afterward in a strategic environment.

Finally, the existing theoretical research primarily resides on the idea that information
acquisition is costly for bidders; see, for example, Ye (2007), Quint and Hendricks (2018),
and Lu and Ye (2018). Ye (2007) finds that bidders’ entry cost cannot explain why the seller
of a company uses an indicative bidding stage to shortlist bidders into the final bidding
competition. Quint and Hendricks (2018) shows that in a particular scenario, where the
indicative bids sort bidders into a finite number of groups, the seller can use indicative bids
to shortlist bidders optimally. Lu and Ye (2018) develops an optimal two-stage mechanism
where bidders must incur information acquisition costs to discover their values. These studies
acknowledge the seller’s active role in shortlisting actual bidders in the takeover process, but
they do not consider the costs incurred by the seller.

The next section outlines a typical takeover process, based on which section 3 develops
our economic model. Section 4 discusses data, identification, and inference, section 5 presents
empirical results and counterfactual analysis, and section 6 concludes the paper, followed by
an appendix collecting all proofs. The supplementary material (Kim and Zheng, 2025) offers

additional details about computation and data collection.



Table 1: Summary of Takeover Process

Description Remarks
Stage 1 The seller contacts a set N1 of prospective buyers with a delivery of Cursory info.
a teaser and confidentiality & standstill agreements (C&S agreements). is released.
Stage 2 A subset AV C N7 of prospective buyers in stage 1 signs the C&S Preliminary
agreements to enter stage 2 and obtain confidential information info. in CIM
memorandum (CIM) to conduct the preliminary due diligence. is released.
Stage 3 A subset N3 C N> of prospective buyers submits indications of interest N :=|N3|.

after the preliminary due diligence based on CIM obtiained in stage 2.
The buyers who indicate their interest are potential bidders.

Final stage | The seller invites a subset Ny C N3 of potential bidders to the final round | n := |Ny|.
(focus) of comprehensive due diligence. After the comprehensive due diligence, Comprehensive

the actual bidders submit sealed bids by the due date. The seller and information

the winner in this stage sign the M&A agreement and publicly announce is released.

the deal, which concludes the private takeover.

2 Takeover process

A takeover process consists of multiple stages, each with its own objective and releasing
different amounts of information on the target. This section outlines a typical takeover
process. As we shall discuss briefly, bidders have access to confidential information and offer
bids in the final stage, where the information cost arises to the seller. The institutional
features of the final stage motivate the specification of the auction model in section 3.

A corporate takeover is initiated either by a target company considering the sale of its
enterprise as a strategic alternative or by an acquiring company launching an unsolicited
inquiry; see Gorbenko and Malenko (2024). Once a takeover begins, the target hires an
investment bank for financial advice and retains a law firm for legal counsel — we call the
target and its advisors as the seller in this paper. Then, a takeover typically follows the

multiple stages; see also Table 1.

Stage 1: Delivery of a teaser

The seller contacts prospective buyers, delivering a teaser and confidentiality and standstill

agreements.” For public companies, Regulation Fair Disclosure concerns govern the content

5The confidentiality agreement governs how buyers can use the information obtained, and the standstill
agreement precludes the prospective buyer from making unsolicited offers or purchasing the target’s shares,
etc., in a specified period of time.



of the teaser; see Hansen (2001).° The teaser contains cursory information. The contacted
prospective buyers may not even know the target’s identity before signing the agreements
because revealing it may constitute selective disclosure of material information only to those

contacted buyers.

Stage 2: Preliminary due diligence

Prospective buyers, if interested, sign the confidentiality and standstill agreements to obtain
the Confidential Information Memorandum (CIM). The seller prepares a CIM to encourage
prospective buyers to submit indications of interest (stage 3 below). Therefore, the CIM
often describes the target company in the best possible light. The CIM includes an overview
of the target company, product and service summary, revenue profiles, data on employee
and customer body, key financials (history and projections), management structure, etc.

Examples of CIM are available on the internet.

Stage 3: Indications of interest

After reviewing the CIM, if further interested, a prospective buyer submits an indication
of interest, which is not legally binding. The indication specifies indicative purchase prices
(typically in a range) and form of consideration (cash vs. stock mix), assumptions to arrive
at the indicative purchase price, information on financing sources, treatment of management
and employees, and conditions to signing and closing. We consider the buyers indicating

their interest as potential bidders.”

Final stage: Comprehensive due diligence & final bidding

After reviewing the indications of interest, the seller invites a few potential bidders to the final
round of comprehensive due diligence. The shortlisting decision also considers factors such
as transaction speed, fulfillment of fiduciary duties, business disruption, and confidentiality
concerns. Notably, concerns about the dissemination of confidential information are unique
to takeover auctions, which is the focus of this study. For example, in the sale of Spinnaker
Exploration Company, the seller’s financial advisor Randall & Dewey suggested that the

company adopt a “limited marketing approach as it minimized the exposure of Spinnaker’s

6The Regulation Fair Disclosure mandates that all publicly traded companies “may properly share ma-
terial nonpublic information with outsiders, for legitimate business purposes, when the outsiders are subject
to duties of confidentiality.” See https://wuw.sec.gov/rules/final/33-7881.htm

"The definition of potential bidders varies to serve specific research agendas. For example, Gentry and
Stroup (2019) refers to prospective buyers contacted in stage 1 as potential bidders to model their decisions
on whether to sign the confidentiality agreement, i.e., the decision to enter stage 2. Our definition of potential
bidders serves our purpose of understanding the bidders’ behavior in the final stage.


https://www.sec.gov/rules/final/33-7881.htm

sensitive confidential information to a smaller group of competitors” because “the likely
buyers for Spinnaker were all competitors.”

We emphasize that the seller restricts bidders” entry to the final stage. The actual bid-
ders—those invited to this stage—gain access to the most confidential materials through a
series of on-site visits and multiple consultations with target management. The seller is obli-
gated to disclose all relevant data to these bidders. While the seller extensively communicates
with each actual bidder, he keeps them uninformed of other bidders’ identities or tentative
offers for competitive and legal reasons; see Gorbenko and Malenko (2014). Following the
due diligence, the actual bidders submit their final offers in the form of a sealed bid by the
pre-specified due date. The seller then analyzes those bids and selects the winner to work
on the final definitive agreement, which includes the purchase price, method of payment,
fiduciary-out provisions, etc. Upon signing the M&A agreement, the seller and the winner
publicly announce the deal, concluding the private takeover process.

We study this stage because it is where the most critical information is released; thereby;,

information cost arises. We shall develop an auction model for the final stage in section 3.°

3 Model

For empirical analysis of takeover auction data, this section introduces an auction model
to formulate bidding behavior in the final stage. Section 3.1 explains the auction format,
section 3.2 specifies the synergy values, and section 3.3 models bidders’ perception on the

number of actual bidders. Then, section 3.4 investigates bidders’ strategies.

3.1 Sealed-bid auction

We develop a model of sealed-bid (first-price) auctions due to the institutional feature that in
the final stage bidders submit sealed bids, the highest bidder wins, and the winner pays her
own bid. Recently, Allen, Clark, Hickman, and Richert (2023) and Gorbenko and Malenko
(2024) consider sealed-bid auctions for takeover sales. Nevertheless, since the corporate

finance literature has employed other allocation mechanisms, we still elaborate on our mod-

8The italic texts are extracted directly from the DEFM14A document filed by Spinnaker to SEC on
November 10, 2005. (Kim and Zheng, 2025) shows a detailed description of the takeover deal.

9 The M&A agreement can be challenged by another industry player, triggering a public battle. This
occurs 4 percent of the time (Moeller, Schlingemann, and Stulz, 2007), and the original winner wins with
70.7% of chance (Betton, Eckbo, and Thorburn, 2009). That is, the public battle replaces the winner with 1.2
percent of the time, in which case the seller compensates the original winner following the M&A agreements
that they signed. Another stream of literature studies the public competition; see, for example, Betton,
Eckbo, and Thorburn (2009) and Dimopoulos and Sacchetto (2014).



eling choice.

The entire takeover process consists of multiple stages as outlined in section 2, and
formulating the whole process can be daunting. The previous articles have focused on a
certain stage by a mechanism that fits their choice. For example, a bargaining model may
be used if the seller contacts only one prospective buyer from the beginning; see Hoffmann
and Vladimirov (2024). An ascending auction would better approximate the public battle
after the final stage; see Footnote 9 and references therein. Unlike those previous articles,
we study the final stage where bidders submit sealed bids.

The final stage still has some components resembling negotiation, as the seller interacts
with each bidder. The nontechnical monograph, Subramanian (2020), uses the term negoti-
auction, describing that bidders are “fighting on two fronts”, i.e., across the table with the
seller and on the same side of the table with other bidders. However, Bulow and Klemperer
(1996) argues that the competition between bidders dominates the seller’s bargaining power.
Following the prediction, we use an auction model to formalize the bidders’ competition,
abstracting away any marginal influence from the bargaining-like elements.

Another concern is that when the seller communicates with multiple bidders, the seller
might be able to leverage his bargaining power by informing bidders of the outstanding offer
or other bidders’ identities, inducing an environment strategically equivalent to an ascending
auction. We also rule out this possibility because the seller cannot release information about
the potential competition. Even if the seller attempts to do so, bidders cannot verify the
seller’s message about other bidders. Thus, such attempts are not credible.

This claim accords with many M&A cases in the SEC (U.S. Security and Exchange
Commission) filings. For example, in some cases, bidders were revising their bids, but all
were below the outstanding offer. In other cases, the only actual bidder bids more than the
market value of the company and even raises her own bid, as if there are other bidders.'’
Subramanian (2020) also gives anecdotes about how sellers try to form a false impression
about competition among the bidders, for example, declining access to the data room when
available, or leaving empty pizza boxes around the conference room. All of this suggests
that bidders are uncertain about the competition.

Based on the institutional details as outlined, we build a first-price auction model, where
bidders are uncertain about the competition but observe their own synergy values of merging
with the target company. Our modeling choice is similar to Allen, Clark, Hickman, and
Richert (2023), which employs a first-price auction model with an uncertain number of

bidders to study the bidding stage of the takeover process in the U.S. bank industry.

0The supplementary material (Kim and Zheng, 2025) shows an example, the Spinnaker case, where the
highest bidder raised her own bid, which was already the highest even before she updated it.



3.2 Value discount

The seller restricts bidders’ participation to the final stage because bidders may lower their
bids if their rivals also learn confidential information. To consider this feature, we allow
bidders to discount their synergy values depending on the number, n, of actual bidders.
We build a baseline model and allow it to depend on auction heterogeneity to facilitate
our empirical analysis. Formally, let y; € R summarize the heterogeneity of auction t €
{1,...,T}. The actual bidders commonly observe g, when they bid, but the researcher has
partial information on it. Thus, we specify 1 to depend on a vector z; € R% of d,, attributes
in the dataset and a scalar ¢, € R summarizing unobserved heterogeneity. Among others, x;
includes the target’s book value, size;, and the number N, of potential bidders, and &, may
contain some confidential information if affecting all bidders’ synergy value in the same way.

Bidder 7 in auction ¢ also learns an unscaled private signal v}, > 0 in the final stage.
The signal v} represents the idiosyncratic business compatibility of bidder ¢ with target ¢,
which may depend on the target’s confidential information. It can also reflect the bidder’s
opportunity costs of merging with the company, which again depend on idiosyncratic factors,
such as strategic enterprise plans, business backlog, recruitment schemes, and production
efficiency. Hence, we consider the signal vj; as private information. If bidder 7 knew that n,

bidders are competing in the final stage, she would form her unscaled synergy value as
wiy = exp(y;)(sizey + 0(ny)v}),

where d(n;) € (0,1] denotes the discounting factor. Even if there is no positive business
compatibility, i.e., vj; = 0, the target company with y;, = 0 must still be valued by every
bidder at its book (liquidation) value. This specification allows the synergy value to depend
on auction characteristics, y;, and each bidder’s private signal, v;.

Bidder ¢ would not discount her synergy value if she were the sole bidder but would apply

a greater discount as n; increases.
Assumption 1. (1) =1 and §(n) > d(n + 1) > 0 for all integers n > 1.

To develop the baseline model, we normalize the synergy value by the company’s book
value. That is, bidder i’s (normalized) synergy value is now given as

wt
Wit = — L= eXP(?Jt)(l + 5(nt)vit)> (1)
Slze;

where v = v};/size; € [0,7], (normalized) private signal, for which we maintain the follow-

ing assumption.

10



Assumption 2. For each auction t € {1,...,T}, conditional on (ny, x;,¢;), the private

signals are independently and identically distributed as F,(+|n;), i.e.,
iid
Vlty « + + s Unyt| Tty Toy €0 ~ By (¢ 1), (2)

which has density f,(-|n:), differentiable and strictly positive on the support [0, 7].

Potential bidders estimate their synergy values before accessing the target’s critical in-
formation, and some submit indications of interest (Section 2). The seller evaluates demand
for the target based on these indications and the economic costs of running the auction.
Subsequently, the seller invites the most qualified n; bidders. Consequently, the signal dis-
tribution (2) is indexed by the number n, of invited bidders. However, this should not imply
that the seller can directly manipulate the signal distribution by selecting n;.

Under Assumption 2, private signals are independent across bidders, as they reflect each
bidder’s unique compatibility with the target and the opportunity costs of the takeover.
However, synergy values (1) remain correlated through auction attributes. Assumption
2—which posits that signals are identically distributed—aligns with the institutional reality
that actual bidders are unaware of each other and compete against an identical ‘average’
bidder. The zero lower bound ensures that private signals can only increase synergy values
above the liquidation value, as bidders with negative compatibility would not have progressed

to the final stage.

3.3 Bidder’s perception about competition

We use a probability distribution to represent actual bidders’ beliefs about the competition
level. Since the beliefs potentially depend on auction heterogeneity and private signals, we

start with the conditional distribution function, p(n|zy, &, vy) for n € {1,..., N;}.
Assumption 3. (i) p(n|z,e,v) = p(n|z,v) and (ii) p(n|z,v) « p(n|z) f(v|n).

Assumption 3(i) implies that bidders do not update their beliefs about the competition
level based on g;. This assumption is required for econometric identification, but we still
justify it by the fact that bidders cannot discern how ¢; influences the seller’s shortlisting rule
because €4, by definition, is not recorded in any public data. Assumption 3(ii) states Bayes
rule. Its implication as an assumption is that bidders start with identical ex-ante beliefs,
p(n|z), coherently update their beliefs after learning their idiosyncratic private signals, v,

forming ex-post asymmetric beliefs, p(n|x, v), which they use to determine their bids. Bidders

11



can infer p(n|z) from data on past M&A deals as we demonstrate in section 4, and then apply
p(+|xs, vit) to calculate their optimal bids in auction ¢.!!

The ex-ante belief, p(n|z), is a reduced-form parameter, as it reflects the statistical rela-
tionship between n and x without explicitly modeling the seller’s optimal shortlisting rule.
An alternative approach would explicitly model the seller’s decision-making process, enabling
bidders to infer the level of competition based on the seller’s choices. However, such a model
contradicts institutional practice, as actual bidders cannot observe the factors influencing
the seller’s shortlisting decisions. These factors encompass bidders’ indications of interest
and the seller’s opportunity costs of pursuing alternative business strategies. Neither these
factors nor a complete set of potential bidders are recorded in public data. Thus, any alterna-
tive approach would rely on a hypothetical and empirically unverifiable shortlisting rule. In
contrast, our reduced-form approach is robust to different shortlisting rules while effectively
serving our objective of measuring the seller’s economic costs.

As emphasized above regarding Assumption 2, the seller determines n; based on the
demand for the target company. However, the use of a probability function, p(n|z,v), in this
paper to represent bidders’ perception of competition should not be interpreted as the seller

randomly selecting n; actual bidders from the pool of potential bidders

3.4 Bidding strategy

The competition environment in the final stage induces a game with incomplete information.

For that game, we maintain the following assumption.

Assumption 4. In auction ¢ € {1,...,T}, every actual bidder is risk-neutral and maxi-
mizes her expected utility following a symmetric bidding strategy and having (x4, ;) and

{p(n|z,),8(n), F,y(v|n)}, as common knowledge.

We specify the bidding strategy in an auction with heterogeneity y (or (x,¢)) as exp(y)(1+
B(v)) for private signal v € [0,7] and optimal mapping S(v) with 8 > 0. Let F,,(v) :=

F,(v|n)"~'. Under Assumptions 1~4, a bidder with private signal v in an auction with

HTt is consistent with the popular methods of valuation, i.e., Comparable companies analysis (CCA)
conducted by the investment banks in the analysis of M&A cases; see Eaton, Guo, Liu, and Officer (2022).
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characteristics (z,¢) would choose

N
argmax ) _ p(nz, v)Fy(u){ exp(y)[1 +0(n)v] —exp(y)[1 + B(u)]}
n=1 =w, synerg;,value in (1) = bid ifgirgnal isu
Nt
= argmax ) _ p(ne, 0)F,(u)[5(n)v — B(u)], (3)
n=1
—U(B(u)vs2)

if all other actual bidders follow §(:). The objective function on the left-hand side is bidder
1’s expected utility when she behaves as if her private signal is u, and the equality holds
because multiplying the objective function by a positive constant, exp(—y), does not change
the solution. We let U(5(u),v;x) denote the expected utility multiplied by exp(—y). To

obtain the first-order condition, we take a derivative of U(f(u),v;x) with respect to u,

N

Y p(nlz,0) {fon(@)b(n)o = B(u)] = B'(u) Fyn(w)} = Epuje) ¥(n,u,v) (4)

n=1

where f,, = F, ., Y(n,u,v) = fy,.(u)[6(n)v — B(u)] — B'(u)Fyn(u), which is the marginal
net gain of choosing u for each n, and the expectation operator indicates that the probability
measure {p(n|z,v)} integrates n out. A rational bidder chooses u to equate (4) to zero. Since
B(+) is optimal, (4) is zero for v = v, resulting in the first-order condition, E,z,0) ¥ (1, v,v) =
0. That is, a rational bidder would choose a bid at which the expected marginal net gain is

zero. To represent the condition in the form that we can solve for 5(-), we define

> P2, 0) fon(0)5 ()
> nt P()a, 0)Fyn (0)

Qn(v;x,0) = and Ry(v;x) :=exp (/ Qn(a;x, 1)da) :
0
Note that Ry(v;z) is the integrating factor of the differential equation for 3, induced by the

first-order condition. Using Qy(v;x,0) and Ry (v;x), we rewrite the first-order condition as

Ry (v;2)Qn(v;x,0)v = Ry(v;2)3 (v) + Ry (v; 2)Qn (v; 2, 1) 3(v)
9,

= %RN(v;x)ﬂ(v).

Observe that Ry appears redundant on both sides around the first equality, but the sec-
ond equality holds due to %RN(U;:E) = Ry(v;z)@Qn(v;z,1). By applying the boundary
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condition, £(0) = 0, and using Ry (0;x) = 1, we have

Bn(v;x,6) = ;) /Ov aRy(a;2)Qn(a; x, 6)da, (5)

" Ry(viz

where we notify that the solution depends on (N, z,d). We can also use Sy (v;p(-|z),d) to
emphasize that Sy depends on z only through p(:|z). The strategy (5) plays a critical role
in empirical analysis. In particular, we invert (5) at every observed bid to back out latent
signals, which is necessary because signal densities, { f,(:|n)}, construct a likelihood function.
Our method then evaluates the likelihood function at many candidate parameter values
throughout the inference procedure. So, it is critical that (5) characterizes an equilibrium.
For empirical analysis, we numerically verify that U(Sy(u;z,d), v; x) is maximized at u = v
for all v and for all auctions in our sample for every parameter with a positive density under
the posterior.

Without additional assumptions, it is difficult to formalize the existence of equilibrium.

In particular, the second-order condition is hard to verify, for which we need derivatives of
p(n|z) fu(v]n)
>t P(mlz) fu(v]m
densities { f,(-|n)} appearing on both numerator and denominator in the summation oper-

p(n|z,v) with respect to v, but p(n|z,v) = ) depends on v through many
ator. The derivatives of densities can take any sign. Moreover, the probabilities {p(n|z,v)}
themselves enter the numerator and denominator of () in summation operators, and @)y
again goes into Ry. Finally, the winning probability in (3) that integrates n out is insepara-
ble from the contingent payoffs that depend on n. The complicated payoff structure makes
it difficult to find a useful sufficient condition for equilibria; see (Athey, 2001). Nevertheless,

our investigation reveals an implication of (5) when it characterizes an equilibrium.

Proposition 1. Under Assumptions 1~4, if (5) characterizes an equilibrium, we have
Cp(n\w,v){‘s(z}ln)v \D(na v, U)} > O, (6)

where Cpujzv) denotes the covariance and s(v|n) := <L log f(v|n) the score function of f(v|n).

The score s(v|n) represents how quickly v becomes plausible for each n. Therefore, (6)
has an intuitive interpretation that whenever the marginal net gain ¥ with a particular n is
positive (negative), that n should come with a higher (lower) chance in equilibrium.

Now, we conclude this section by formalizing an equilibrium with additional assumptions,
although our empirical method considers the general setting above, numerically verifying
equilibria under every relevant parameter value. We consider bidders who do not update

their beliefs about the competition by private values, i.e., p(n|z,v) = p(n|z); n and v might
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be independent conditional on n, or bidders cannot upate their beliefs. We define

p(n|$>Fv,n(U) and 0) = v — ! Fv,n(a) doy
S ey D(m] ) Fyn (v) Bnle) /o Fyn(v)

wp(v;x) =

The weight w,, (v; z) is the probability that the auction has n bidders when n — 1 have signals
below v, and f,(v) is the equilibrium bidding strategy in the sealed-bid auction where the

number n of bidders is common knowledge among bidders.
Proposition 2. Under Assumptions 1~4, if p(n|z,v) = p(n|x), (5) simplifies to

N

B (v;2,6) = wn(v; 2)3(n)Ba(v), (7)

n=1
and it characterizes a symmetric Bayesian Nash equilibrium if strictly increasing.

The bidding strategy (7) is similar to that in Harstad, Kagel, and Levin (1990). Proposi-
tion 2 shows that the bidding strategy is a weighted average of discounted standard bidding

strategies. The strict monotonicity of 3,(v) does not guarantee that (7) is also strictly in-

creasing because {w, (v; z)}_, also depend on v with 1 = SN w, (v; ), i.e., if w,(v; z) in-
creases in v for some n, some other components must decrease. Here, we offer a sufficient con-
dition for the strict monotonicity of (7). Jeong and Kim (2024) shows that if F, ,, is stochas-
tically dominant over F,, in reverse hazard rate, i.e., fun(v)/Fyn(v) < fom(v)/Fym(v) for

all v € (0,7), we have 3,(v) < Bn(v). We also use the reverse hazard rate dominance.

Proposition 3. The bidding strategy (7) is strictly increasing if F,,, is stochastically domi-

nant over F, 41 in reverse hazard rate for allmn € {1,2,...,N —1}.

4 Data, identification, and inference

4.1 Data

We collect data on the number of bidders at each stage of the takeover process and the
submitted bids from SEC filings.'? We then augment the data with the target and deal

12Since Boone and Mulherin (2007), SEC filings have been an important data source in the literature on
M&A. These filings provide detailed documentation of deal backgrounds, as required by SEC regulations.
Deal backgrounds are documented across multiple SEC filings. When multiple bidders are involved, the
Definitive Proxy Statement (DEFM14A) must disclose the competing offers, the board’s deliberations, and
the rationale behind selecting the final deal. While other filings—such as PREM14A, PREM14C, DEFM14C,
DEFS 14A, Schedule 14D-9, and Form S-4—may also contain relevant details about the merger. These filings
are publicly available at http://www.sec.gov/edgar/searchedgar/companysearch.html.
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attributes from the Center for Research in Security Prices (CRSP) and Compustat.'® Our
sample consists of 287 takeover deals between 1 Jan 2000 and 6 Sep 2008 with the following

criteria.

The target is a publicly traded non-financial US company.
The winning bid is made in cash only.
The winning bidder obtains 100% of target shares after the transaction.

The deal is not a spin-off, recap, self-tender, exchange offer, repurchase, minority stake

purchase, acquisition of remaining interest, or privatization.
(v) The deal is fulfilled by an auction, i.e., at least two buyers submit indications of interest.
(vi) Deal background is available in SDC platinum, SEC Edgar filings, or Merger Metrics.

(vii) Quarterly financial data on the target are available in Compustat.

Conditions (i)-(iv) ensure takeover deals and bids are comparable. First, we exclude
M&A deals in the financial sector because the valuation of financial firms differs from that of
non-financial firms. For example, high leverage, which is normal for financial firms, indicates
great distress for non-financial firms.!* Second, the winning payment is cash only so that
the deal value is certain. This excludes other payment arrangements whose values depend
on unobserved factors. For instance, in a “stock-for-stock” merger, the deal value depends
on unobserved winner’s characteristics and thus cannot be reliably compared to a cash-only
deal or other bids involving payments in stocks. Third, the winner eventually owns 100
percent of the target, so it is a full-scale merger rather than an equity investment. Finally,
we exclude deals with motivations other than a business combination. Condition (v) reflects

the focus of this paper. The others are associated with data availability.

Structural variables from SEC filings For each takeover deal in the sample, we collect
additional information from the background sections in the SEC filings. In particular, we
collect the number N of potential bidders in stage 3 and the number n of actual bidders in
the final stage (see Table 1), and complement the data with all reported losing cash-only
bids from the SEC documents.!®

13We thank Alexander Gorbenko and Andrey Malenko for sharing their data used in Gorbenko and
Malenko (2014) for our early draft. Following their instructions for data collection, we collect the explana-
tory variables from the commercial databases of Compustat and CRSP by a license at the University of
Queensland. Then, we collect additional information from SEC filings. See also (Kim and Zheng, 2025).

MFor this reason, it is a common practice in corporate finance to separate financial firms (SIC codes
6000-6999) from other firms. For example, see Fama and French (1992).

15SDC (Securities Data Company) platinum provides the final deal value (winning bid) for every auction,
and SEC filings often document other losing bids. We exclude fourteen anomalous losing cash-only bids
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Control variables from Compustat and CRSP We use the set of control variables of
Gorbenko and Malenko (2014). They are target-specific variables from Computstat, includ-
ing size (asset book value), leverage (debt book value + equity market value), Q-ratio
([equity market value + debt book value] <+ asset book value), cash flow (over the last four
quarters), cash (cash, short-term investments, and marketable securities), R&D (expense on
R&D), intangibles (intangible assets accounting measure), and Fama-French five-industry
classification, and economy-wide variables from CRSP, including market return (S&P 500
cumulative return over a year before the announcement date) and credit spread (Moody’s
Baa bond rate preceding the announcement date minus the ten-year Treasury bond rate on
the announcement date).'

Finally, our sample consists of T" = 287 takeover auctions with a total of 327 observed
bids and 193 auctions with winning bids only. Table 2 reports descriptive statistics of our
sample. Panel A confirms the common practice of entry restriction with invitation rates
ranging from 62 to 74 percent and substantial takeover premiums across the industries.
Panel B shows the control variables outlined above. The target firms in the hightech and
health industries appear to be growth companies, as indicated by their high Q-ratio, low
leverage, and large cash balance. They also stand out in R&D spending and intangible
assets. The vector z; for auction t € {1,...,T} includes a constant, four industry indicators
(except for others), all variables in Panel B in Table 2, and the number N; of potential
bidders.

4.2 Identification

max{N}
n=1

We study the identification of the model primitives, {F,(:|n),d(n) , and the dis-
tribution, F.(g¢|z;), of unobserved heterogeneity using the sample of takeover auctions,
{09, ..., 00, x, e}y, where {b,} are observed bids. The sample has the winning bid,
say b, for all T auctions but may not have some losing bids; so, m; < n;.!” We may use

a generic notation, P(A|B), for the conditional joint distribution of A given B, for random

from the sample because they are not comparable to other bids for various reasons: (1) bids are subject to
conditions, (2) bidders cannot provide sufficient financing proofs, (3) bidders quit after winning the auction,
etc. In some of those cases, losing cash bids are above the winning bids.

16The five-industry classification is defined by companies’ four-digit SIC code, and details can be
found in Kenneth French’s website, https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
Data_Library/det_5_ind_port.html. We encode size in $ million, and normalize cash flow, cash, R&D
and intangibles by size. Standard filters are applied to exclude unreasonable values of these covariates
that are likely coding errors. Specifically, we exclude observations with market leverage below zero and above
100 percent, Q-ratio in excess of 10, cash flow in excess of 10, and negative cash.

1"Losing bids are omitted mainly for the following reasons: (a) a bidder was invited but did not submit
a final bid; (b) a submitted bid is not comparable to the winning bid, e.g., not a cash-only bid; and (c) a
losing bid is simply not reported in the SEC filings.
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Table 2: Descriptive Statistics

All Consumer Manufacturing  HighTech Health Others
Panel A
N (potential) 4.67 [3] 5.14 [4] 6.22 [6] 4.29 [3] 3.50 [3] 4.80 [4]
n (actual) 2.70 [2] 2.77 [2] 3.06 [2] 2.63 [2] 2.45 [2] 2.71 2]
n/N 0.68 (0.29) 0.62 (0.29) 0.62 (0.32) 0.70 (0.28) 0.74 (0.29) 0.70 (0.32)
Premium 1.34 (0.29) 1.27 (0.30) 1.22 (0.21) 1.38 (0.31) 1.37 (0.30) 1.40 (0.28)
Panel B
Size ($ million) 659.011 719.599 731.599 569.504 435.818 975.482
[183.717] [287.475] [161.577] [101.391] [238.712] [380.549]
(2345.077)  (1400.810) (1898.607) (3103.150)  (528.451)  (2449.334)
Leverage 0.154 0.229 0.190 0.071 0.129 0.274
[0.045] [0.128] [0.086] [0.002] [0.016] [0.206]
(0.219) (0.265) (0.209) (0.134) (0.220) (0.257)
Q-ratio 1.530 1.138 1.283 1.526 2.695 1.167
[1.257] [0.973] [1.265] [1.325] [2.009] [0.913]
(1.170) (0.618) (0.505) (0.995) (1.987) (0.805)
Cash Flow 0.021 0.070 0.111 -0.026 -0.023 0.050
[0.074] [0.083] [0.115] [0.052] [0.053] [0.075]
(0.259) (0.101) (0.081) (0.350) (0.238) (0.207)
Cash 0.247 0.098 0.090 0.375 0.306 0.184
[0.183] [0.062] [0.042] [0.340] [0.255] [0.073]
(0.234) (0.091) (0.131) (0.223) (0.253) (0.236)
R&D 0.016 0.001 0.004 0.030 0.027 0.001
[0.000] [0.000] [0.000] [0.025] [0.015] [0.000]
(0.032) (0.005) (0.007) (0.040) (0.036) (0.005)
Intangibles 0.145 0.094 0.086 0.187 0.170 0.131
[0.058] [0.036] [0.030] [0.114] [0.088] [0.000]
(0.188) (0.145) (0.137) (0.193) (0.220) (0.205)
Credit Spread 0.022 0.021 0.022 0.022 0.024 0.022
[0.019] [0.018] [0.020] [0.018] [0.020] [0.019]
(0.007) (0.006) (0.006) (0.006) (0.009) (0.006)
Market Return 0.062 0.069 0.087 0.051 0.051 0.071
[0.095] [0.087] [0.107] [0.089] [0.108] [0.106]
(0.131) (0.134) (0.113) (0.134) (0.154) (0.113)
#. Observations \ 287 57 36 113 40 41

This table reports descriptive statistics: mean [median], and (standard deviation) of the sample across five
industries as classified by Fama and French (1997). Consumer includes consumer durables, nondurables,
wholesale, retail, and some services (laundries, repair shops). Manufacturing includes manufacturing and
energy. HighTech includes business equipment, telephone, and television transmission. Health includes
healthcare, medical equipment, and drugs. The Others includes mining, construction, construction materials,
transportation, hotels, business services, and entertainment. The sample contains 287 takeover auctions that
took place between January 1, 2000 to September 6, 2008.

quantities, A and B, when P(A|B) is not of direct interest.
We directly identify the reduced-form distributions, P(z;), p(n:|x;), and P(b%,|z¢, n;) from
the sample; among them, section 3.3 discusses p(n:|z;). To identify model primitives, we

assume that the bids are equilibrium outcomes, i.e., bidders all follow the optimal strategy
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(5). Then, we can write the observed bids as

b9, = exp(ye) (1 + bir) = exp() (1 + B, (vie; {p(nlze), 6(n)}1L1))

N¢
n=1

for some latent private signal vy, where by := B, (vit; {p(n|z:), d(n) ). Conditional on
auction-specific observables (x;,n;), the private signal v; and unobserved heterogeneity ¢,
are independent under Assumptions 2 and 3, implying conditional independence of y; and
bir. Then, we identify P(y;|x;, ny) and P(by|xs, ny) from P(b|zs, ny) and the location of by
given by 0 = B, (0; {p(n|z;),5(n)},), and using observations with m; > 2; see Kotlarski

(1966), Li and Vuong (1998), and Krasnokutskaya (2011). Since P(y|z¢,ne) = P(ye|xe)
under Assumptions 2 and 3, we identify P(zy,y;) = P(x:)P (y¢|xs). 1

Assumption 5. (i) y; = 2}y +¢; with v € R%, (ii) E[ze;] = 0, and (iii) Efz;2}] is full-rank.

That is, we consider ¢; as the error in the linear regression of 3, on z;, x; is exoge-
nous, and E|x;x}] is invertible. Although we do not observe y;, we have identified P(xy, y;)
and, therefore, can pin down v = E[zx}] ' E[zyy;] under Assumption 5. Then, we identify

P(et|xr) = P(yr — xyy|xt). We state this result as a lemma.
Lemma 1. Under Assumptions 2, 3, and 5, F.(e|x) is identified.

Now, we shall identify {F,(:|n), 5(n)}fi’1({N} from {P(b|z, n)}fi’lc{N}. Under Assumption
2, the variation of z does not affect the distribution of v (conditional on n), but it shifts
around the bid distribution, P(b|x,n). We exploit the exogenous variation of = to identify

{F,(|n), §(n)}™>™} " In particular, we use the variation of the number N of potential

bidders in the proof, following the convention of the literature; see Guerre, Perrigne, and
Vuong (2009), Gentry and Li (2014), and Aryal, Grundl, Kim, and Zhu (2018) among others.

Finally, we introduce a mild condition for the discount factor o(-).

d¢
g=1

Assumption 6. For n € {2,3}, 6(n) :==1—> °,(n— 1), with d; € N, ..

Assumption 6 governs only (§(2),d(3)), leaving 6(n) for n > 4 unspecified. Even for

(0(2),0(3)), the restriction is weak as polynomials are flexible with a moderate d.

max{N}
n=1

Proposition 4. Under Assumptions 1~/, and 6, {F,(-|n),d(n)
{P(b\:c,n) max{N}'

n=1

are identified by

18Under the stated assumptions, for each n, we have p(n|z,e,v) = p(n|z,v) = [p(n|z,&,v)f(v|n)dv =
[ p(n|z,v) f(vin)dv = p(n|z,e) = p(n|z) <= n L e|z. So, P(y|z,n) = P(y|z), as (x,) determine y.
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4.3 Inference methods
4.3.1 Perception of competition

We consider binomial distribution functions to model bidders’ perception of competition,

" ) o) [1— @) Ine {1 ND, ()

n —

p(n|z,n) = <

where ®(-) denotes the cumulative distribution function (CDF) of the standard normal dis-
tribution, A'(0,1), and n € R% is the vector of unknown coefficients. For an auction with

any value of x, then, we predict the probability of n by
plnfe) = [ plolasym,(nin @) )
n

where n = {n,}_,, @ == {&,}]_,, and 7,(nn,x) o m,(n) [1_, p(n:|zs;7) is the posterior
distribution integrating out 1. We use (9) as bidders’ common ex-ante beliefs about the

level of competition in what follows.

4.3.2 Structural parameters

We postulate that the omitted losing bids are lower than the winning bid because the target
board of directors has the fiduciary duty to accept the superior offer, and, therefore, the cash
values of the losing bids, even if not recorded, should be lower than the observed winning

bid. Given our economic model in section 3, then, we can write the likelihood as

T mg
(bln,x.e,0)=]] {G(bﬂnt,xt,et, )" [ [ 9(b%Ins, w1, e, 9)} : (10)

t=1 i=1

where b = {1, ..., b?ntt}thl, e := {g}_,, G is the bid CDF, g is the bid density, and @
collects all the model parameters. We shall elaborate on 6. For given observables, (b, n,x),
(10) is a function of the latent components (e,0). Let f.(e¢|x,0) be the density of
conditional on zy, f.(e|x,0) := [[,_, f-(c|z:,0), and 7g(8) be the prior over the parameter

space, ©. Then, the posterior density of (e,80) can be written as

Teo(€,0|b,n, x) x m(0) f-(e|z, 0)((b|n, x,e,0). (11)

9For sampling 1 from the posterior, we employ a flat prior, i.e., my(n) o< 1, and implement a standard
Metropolis-Hastings algorithm. We also consider the Logit specification in p(n|z,n) in place of ®(-). The
results are similar.
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Discount rate We specify the discount rate as

(sj(n? 0) = eXp<_(n - 1)5]’)? (12>

where j € {1,2,...,5} indicates the five industries and (&, ...,&) € R are included in 6.
We may suppress j when our discussion about 0 does not require § to be industry-specific.
The specification (12) with the exponent function is compatible with Assumptions 1 and 6.
In particular, the specification in Assumption 6 can match with (12) for §(2) and §(3) for
any & > 0. What (12) restricts beyond Assumption 6 is the pattern of §(n) for n > 4. We
take a parametric specification for §(n) here because there are few auctions with large n in

the data, and the inference on d(n) for large ns would be imprecise if unspecified.

Bid distribution We parametrize F,(-|n,0) by the scaled beta distribution instead of a
nonparametric distribution because our model has many unknown coefficients for a relatively
small sample. The beta distribution can still take many different shapes depending on its

two shape parameters. We specify the mean and variance of the beta distribution as

exp <Z A ugnl >
I +exp (Zqi1 /\#,qn(q—l))

po(n; Ayy) o=

do
and ¢2(n, \,) := exp (Z )\wn(q_l)) ) (13)
qg=1

where A\, == (Au1,--.,Aua,) and A, := (As1,...,Asq,) are included in 6. We use the
polynomials of n in (13) because economic theory is silent on how n and v are associated.
We specify the mean and variance, as they are interpretable, and yet uniquely determine the
two scale parameters, say (aq,(n, A), a2(n, A)), for all X := (A,, A\,). Then, we let F,,(-|n, 0)
be the CDF of the signals, (vy,...,v,), that follow 7 x Beta(ay (1, A), az,(n, A)).

Now, the bid distribution G is determined by the signal distribution F},, bidding strategy
Bn, and the synergy specification (1). Since [y is strictly increasing, by change of variables,
we obtain the CDF of the bid distribution,

o
Glthlmsa1,e0.0) = i (30 (ot = 1f{ptalen). o0 )24,

Ty + )

nt,0> . (14)

The bid density g(b%|n:, 4, &, 0) is then a derivative of (14) with respect to bY,. Then, we

can construct (10). Note that g(b%|ns, x4, &, 0), is zero outside the implied support,
lexp(a3y + 1), exp(apy + &) (1 + B, (@{p(n]z:), 6(n; )12y, 0)], (15)
which depends on (0, ¢y, ;) for each auction t € {1,...,7}. When the support depends
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on the parameters to estimate like (15), the Bayesian estimator is econometrically efficient,
whereas the MLE loses its efficiency; see Hirano and Porter (2003). Moreover, the Bayesian
method provides a framework that naturally handles the unobserved heterogeneity via data
augmentation. For those reasons, we develop a Bayesian method for inference.

However, the parameter-dependent support can make computation difficult for a likelihood-
based approach. For example, it can be tricky to select an initial point for (e,0) with a
nonzero likelihood, required for starting the computation. Even if the algorithm starts with
a nonzero likelihood, the algorithm must consider the restrictions imposed on the space for
the latent components (g, 8) at each iteration. Otherwise, the algorithm might have to reject
many candidate parameters if they give zero likelihood after spending much time computing
equilibria. For this reason, it is critical to devise an econometric specification to minimize

such computational difficulties arising from the theoretical restrictions.

Auction heterogeneity We mitigate the aforementioned difficulties by choosing a certain
parametric family for the distribution of y; along with a specific prior. In particular, we

specify the distribution of y; as
Y|z, 0 ~ N (m;% h;l) (16)

where h, > 0 is the normal distribution’s precision (inverse of the variance).?’ Here, (v, h.) C
0. The normal distribution is fully supported over R, but the upper bound of (15) restricts
the support of the posterior of y,(= z}y + ;). However, that restriction applies for each
auction t separately from other auctions, and y; is one dimensional, so sampling y; from
the posterior is straightforward. After we draw g, for all ¢, we draw the high-dimensional
v without any restrictions.?’ Moreover, when we have the Normal-Gamma prior for (v, h.),

the sampling of (7, h.) is computationally efficient due to the conjugacy of the prior.

Prior We employ the Normal-Gamma prior for (v, h.),

a1 e

2

he ~ Ga < 7%) and ’Y|h€ ~N (:U”Ya (hEH’Y>71) ) (17>

20The Bayesian literature often characterizes the second moment of the normal distribution by its precision
to avoid the complicated presentation of the posterior derivation. In particular, when one uses the variance
as usual, the posterior of v could have the inverse of some function of the inverse of the variance, which does
not happen when the precision takes the role instead.

21 Alternatively, one may draw &; under the implied restrictions. Then, the algorithm must also draw ~y
under the implied restrictions. Because v appears in every auction and each auction provides additional
restrictions on =, the implications of (15) on the high-dimensional coefficient, v, would be complicated with
many restrictions. The algorithm to explore the posterior would be computationally inefficient.
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where the gamma distribution Ga is characterized by its shape and rate parameters, and the
multivariate normal distribution N by its mean vector and variance-covariance matrix. Let
v=(yi,--,yr), X =[x1,..., 27, and ¥ = (X'X)"' X'y. Then, the posterior of (v, h.) is

conjugate with the same structure as (17) with the updated parameters,

Gie=o01.+T+1 and o = aoc + (v — 1)) Hy(v — p1y) + (v — X'7)' (y — X'),  (18)
H,=H,+X'X and fi, = H;" [Hu, + (X'X)7]. (19)

Then, most software packages have built-in random number generators for the normal and
gamma distributions. Thus, sampling (v, h.) is computationally efficient. In the following
sections, we report the posterior analysis, for which the prior has a minimal influence on the

empirical results.??

Outline of MCMC To explore the posterior (11) of (6, &), we employ a standard MCMC
algorithm (a Gibb sampler) that recursively draws three blocks of the latent components:
(v, he), (€,N), and {y;}. For (v, h.), we exploit the normal-gamma (17) conjugacy with (18)
and (19). For (&, ), we use a standard Metropolis-Hastings algorithm, for which we tune
the proposal function by Haario, Saksman, and Tamminen (2001) during the burn-in phase.
Finally, we simultaneously draw y; for each auction ¢ from a one-dimensional truncated

normal, where the truncation arises due to (15).
Inference For any measurable function, c(e, ), of interest, its posterior prediction is
Elc(e.0)1b.n.2) = [ cle.0)m.ofe.0lb.n.2)d(6.c). (20)

Depending on the definition of ¢(e, 8), (20) can be the Bayesian prediction on an object of
interest (e.g., density function and revenue function) or a summary (e.g., posterior standard
deviation) of uncertainty around the prediction. When (20) does not have a closed-form
expression, we evaluate (20) using the MCMC sample {e), 8915 of size S; Tierney (1994)
shows S~15°%  ¢(e®), 09)) 25 Elc(e, 0)|b,n, ], as S grows.

2We use (a1, a2.:) = (2,0.2), implying the prior mean and variance of h. are 10 and 100, respectively,
and p., is a vector of zeros and H_ 1 is the identity matrix divided by ten so that the prior variance of each
element of v is 100. Our choice of the prior parameter is diffuse relative to the variation of (v, h.) under
the posterior. For the other parameters (£, A), we use the flat prior over the theoretically relevant parameter
space, e.g., £ > 0 and (£, \) for which 8(:|{p,d(:;€)}, N, ) is strictly monotone.
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Table 3: Posterior of Coefficients for p(n|z,n)

Probit Invitation Rate Logit Invitation Rate
posterior  standard 95% posterior  standard 95%

mean deviation credible interval mean deviation credible interval
Consumer -1.047 0.350  [-1.742, -0.362] -1.758 0.573  [-2.884, -0.640]
Manufacture -0.860 0.350  [-1.567, -0.185] -1.454 0.580  [-2.578, -0.287]
HighTech -0.762 0.344  [-1.453,-0.118] -1.306 0.575  [-2.431, -0.195]
Health -0.933 0.394  [-1.713,-0.171] -1.569 0.648  [-2.856, -0.298]
Others -0.851 0.363  [-1.561, -0.147] -1.427 0.593  [-2.600, -0.285]
Size 0.159 0.034 [0.092, 0.223] 0.264 0.058 [0.149, 0.380]
Leverage 0.202 0.209 [-0.225, 0.612] 0.291 0.339 [-0.362, 0.951]
Q-ratio 0.139 0.061 [0.022, 0.258] 0.219 0.099 [0.030, 0.414]
Cash Flow -0.540 0.331 [-1.208, 0.075] -0.860 0.544 [-2.038, 0.134]
Cash -0.158 0.263 [-0.671, 0.361] -0.254 0.438 [-1.119, 0.611]
R&D 1.230 1.634 [-2.015, 4.377] 2.507 2.816 [-2.838, 8.185]
Intangibles -0.809 0.251  [-1.312, -0.312] -1.319 0.408  [-2.144, -0.535]
Credit Spread 16.636 9.384 [-1.338, 35.119] 28.723 15.824  [-1.635, 60.068]
Market Return 0.727 0.459 [-0.167, 1.606] 1.220 0.749 [-0.289, 2.640]
N of potential bidders -0.072 0.015  [-0.101, -0.043] -0.117 0.024  [-0.165, -0.072]

This table reports the posterior mean, standard deviation, and the (2.5, 97.5) percentiles (i.e., a 95 percent
credible interval) for each element in 7; see (8) for the specification of p(n|x,n). The left (right) panel shows
the results with the probit (logit) specification. The sample covers January 1, 2000 to September 6, 2008.

5 Empirical results

This section presents the posterior distribution and conducts posterior predictive analysis
for several representative target companies. Then, it performs the counterfactual analysis to

measure information and operating costs and examine alternative mechanisms.

5.1 Perception of competition

The left panel of Table 3 shows the posterior mean, standard deviation, and the (2.5, 97.5)
percentiles (i.e., a 95 percent credible interval) for each element in 7. Among the explanatory
variables, size and Q-ratio are positively associated with the number of actual bidders,
but intangible is negatively associated. In particular, intangible assets represent an
accounting measure of confidential items, such as patents and trade secrets; thus, a higher
value of intangible assets suggests the importance of confidential information.?® Target

companies with more valuable confidential information tend to invite fewer bidders.

23For example, it is well known that Coca-Cola has its own formula for its products, which is confidential.
Its market value is recorded in intangible assets.
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When we consider the posterior mean as an ‘estimator’ in the frequentist sense, the Bern-
stein and von Mises theorem argues that the Bayesian estimator is asymptotically equiva-
lent to the maximum likelihood estimator (MLE).?* Hence, for example, one may regard
the posterior mean as the MLE and the 95 percent credible interval as an asymptotic 95
percent confidence interval. Note that for the aforementioned variables, size, Q-ratio, and
intangibles, their 95 percent credible intervals do not include zero. Therefore, one may
consider the estimates statistically significant at the five percent level in the frequentist sense.

In this reduced-form analysis, we are interested in the posterior predictive mass function
(9) for each auction t € {1,...,T}. Figure 1(a) shows that (9) predicts the observed n; by
about 60 percent of the time for the auctions with N, = 2 in our data. For this exercise,
we compute the probability that (9) picks the observed number n; of actual bidders for an
auction with (n;,x;) and then we integrate z; out for its empirical distribution. Similarly,
the other panels in Figure 1 show the distribution of the prediction error, n — n,, for larger
Ns, where the prediction appears fairly unbiased. We use p(n|z;) for all t € {1,...,T} and
allow bidders to update it to p(n|xt, v;) for computing the optimal bids (5).

As a robustness check, we consider the Logit invitation rate in p(n|z,d) in place of the
Probit invitation rate. Table 3 also shows, in its right panel, the posterior of the coefficients,
where the signs and significance of the Bayesian estimates are similar to the Probit case.
Furthermore, the predictive error probabilities of the Logit case are essentially identical to the
Probit case in Figure 1, and, thereby, we avoid repeating the same figure here. We consider
the predictive distribution (9) with the Probit invitation rate as the bidders’ perception of

competition before learning their private signals for our empirical analysis.

5.2 Model Primitives
5.2.1 Posterior Distribution

Table 4 summarizes the marginal posterior distribution for each element in ~, which appears
in y; = a7y + &, by the posterior mean, standard deviation, and several percentiles. The
percentiles offer the median and alternative credible intervals, e.g., the 2.5" and 97.5%"
percentiles form a 95 percent posterior credible interval. Our empirical method runs for
every U in a discretized interval between 1.5 and 4 with the grid size of 0.1, and we report
the empirical results for ¥ = 2.5 that minimizes the Bayesian information criterion.?®

The negative effect of size has a clear prediction, i.e., the posterior puts most probability

mass on the negative values. A large size can be negatively associated with bidders’ value

24See Chapter 10 of van der Vaart (1998).
25In principle, we could include ¥ in @ and compute its posterior along with other latent components.
However, we find that this significantly increases computing time, making it impractical in practice.
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Figure 1: Posterior Predictive Analysis on the Number of Actual Bidders
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Panel (a) shows the probability mass function that is proportional to 3. n _o p(n —ny|z¢), where (ng, Ny, z¢)
are observed in the sample. Panels (b), (¢), and (d) similarly for different N;s as indicated.

(per unit size) if the technology exhibits decreasing returns to scale or if bidders’ economic
cost of financing for the cash bid gets higher with the company’s size. From the negative
sign on Q-ratio, we can infer that the companies on sale have a large debt ratio, which
should adversely be related to the bidders’ evaluation. Moreover, the negative coefficient
of market return suggests that when the market return is high, bidders would have better
business opportunities, raising the opportunity costs of acquiring the target. Finally, the
positive coefficients of R&D and intangibles suggest that technological enhancement would
generate synergy values.

Table 5 offers the posterior distribution for (A,&) in the same format as Table 4. The
negative posterior mean of \,, suggests that the takeover auctions with smaller synergy
values invite more bidders to the final stage, and the negative )\, also suggests that those

takeover deals tend to have a smaller variance; see (13) for the specification of F,(-|n, ).
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Table 4: Posterior Distribution of v; y; = x}y + &

Posterior  Standard Posterior Percentiles

Mean Deviation | 2.5% 5% 50% 95% 97.5%
Consumer 0.337 0.067 0.207 0.227 0.337 0.448  0.469
Manufacture 0.427 0.069 0.293 0.315 0.427 0.540 0.563
HighTech 0.304 0.069 0.170 0.191 0.304 0.417 0.438
Health 0.495 0.074 0.350 0.374 0.495 0.617 0.640
Others 0.316 0.078 0.163 0.188 0.317 0.446  0.470
Size -0.031 0.009 -0.048 -0.045 -0.031 -0.017 -0.014
Leverage 0.066 0.060 -0.052 -0.033 0.066 0.164 0.183
Q-ratio -0.047 0.011 -0.069 -0.065 -0.047 -0.028 -0.024
Cash Flow -0.005 0.049 -0.102 -0.086 -0.005 0.076  0.091
Cash 0.034 0.067 -0.099 -0.078 0.034 0.144 0.165
R&D 0.861 0.342 0.189 0.298 0.862 1.422 1.526
Intangibles 0.027 0.068 -0.107 -0.085 0.027 0.140 0.161
Credit Spread 0.053 0.534 -0.991 -0.827 0.051 0.929 1.100
Market Return -0.287 0.092 -0.468 -0.439 -0.287 -0.135 -0.105
N of potential bidders -0.019 0.005 -0.029 -0.027 -0.019 -0.010 -0.008
0. =/ V(e) 0.173 0.008 0.157 0.159 0.172 0.187 0.190

Table 4 summarizes the marginal posterior distribution for each element in « by the posterior mean, standard
deviation, and a few percentiles. The percentiles offer the median and alternative credible intervals, i.e., the
2.5 and 97.5'" (50 and 95'") percentiles form a 95 (90) percent credible interval.

Figure 2 visualizes the implications of A by plotting the predictive signal densities (solid)
across different numbers of actual bidders. The figure also plots the point-wise 2.5 and
97.5" percentiles (dashed), which form a 95 percent credible band. We report the predictive
mean, variance, and skewness on each diagram.

We find that auctions with one bidder have values seven percent higher than those with
two bidders (1.789/1.657 = 1.074) and two-bidder auctions five percent higher than three-
bidder auctions. This pattern suggests that the sellers invite fewer bidders when expecting
bidders would have higher synergy values.

The lower block of Table 5 presents the posterior distribution for each element of £ in
the discount factor (12). Table 6 provides the economic interpretation of the predictive £ on
the idiosyncratic elements v;; of the synergy value. For a takeover auction in the Consumer
industry, for example, each bidder lowers her idiosyncratic element by 26 percent if there
is one rival bidder, 45 percent if two, and so on. We find that the information discount is

particularly pronounced in the manufacturing and health industries.
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Table 5: Posterior Distribution of A and £ in f(+|n, A) and §(n|¢)

Posterior  Standard Posterior Percentiles
Mean Deviation | 2.5% 5% 50% 95% 97.5%
Value density, f(:|n)

Ap -0.500 0.294 -1.104 -1.005 -0.493 -0.042 0.005
A2 -0.311 0.134 -0.536 -0.522 -0.309 -0.103 -0.063
Ap3 0.024 0.013 0.000 0.003 0.024 0.045 0.047
Aol -3.607 0.374 -4.246 -4.202 -3.616 -2.961 -2.848
Ao,2 -0.092 0.158 -0.406 -0.361 -0.080 0.150 0.182
Ao,3 0.006 0.013 -0.017 -0.015 0.005 0.028 0.031

Discount rate, §(n|¢;)
Consumer, &; 0.303 0.064 0.179 0.195 0.303 0.402 0.418
Manufacture, &> 0.882 0.119 0.647 0.676 0915 1.0563 1.074
HighTech, &3 0.117 0.043 0.044 0.053 0.113 0.194 0.210
Health, &4 0.725 0.136 0.446 0.490 0.745 0.961 0.982
Others, &5 0.036 0.024 0.003 0.005 0.031 0.082 0.092

Table 5 summarizes the marginal posterior distribution for each element in (A, &) by the posterior mean,
standard deviation, and a few percentiles. The percentiles offer the median and alternative credible intervals,
i.e., the 2.5'" and 97.5'" (5'" and 95') percentiles form a 95 (90) percent credible interval.

5.2.2 Predictive Analysis

We can conduct the predictive analysis for every auction ¢ in the sample and any out-of-
sample auction if we observe its attributes x. For illustration, we select five representative
auctions in the data, one from each industry, whose observed characteristics are closest
to their industry median values. We call those five auctions the industry-median target
companies. For those companies, we first obtain the posterior predictive densities of the

transaction premium, which is the highest-order statistic of the predictive bid density,

ne
/Hg(bﬂnt,xt,st,H)Wevg(s,0|b,n,a:)d(s,0). (21)

i=1
Note that (21) is an example of (20) with c(e, 0) = [[;", g(b9|n¢, x4, 4, 0). Figure 3 shows
the predictive premium density for each industry in the top panels, indicating the observed
premiums in the data by the vertical dashed lines. The densities all predict the observed
premiums well. Table 7 shows that, for example, for the consumer industry, the predictive
premium (1.388) approximates the observed (1.326) with a small standard deviation.

The posterior distribution quantifies the uncertainty for every element in the model,
allowing us to decompose the uncertainty about the premium into the three elements of
the observed bid, i.e., b, = exp(x}y) x exp(g;) x (1 + b;). The middle panel of Figure 3
shows the predictive densities of exp(s;) by a solid line, exp(z}y) by a dashed line, and b;
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Figure 2: Posterior Predictive Analysis for f,(:|n)
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Figure 1 visualizes the implications of A by plotting the predictive densities (solid) for vy across different
numbers of actual bidders, the point-wise 2.5 and 97.5'"" percentiles (dashed), i.e., a 95 percent credible
band, and reporting the predictive mean, variance, and skewness.

by a dash-dotted line, where the densities are centered on their respective means. For these
median companies, the predictive densities of latent components, exp(e;), are more diffuse
than the explained components, exp(x}y). To be specific, the small table below Figure 3
shows that the variation of exp(e;) takes up 31.9 percent out of the total variation of the
premium, whereas the uncertainty associated with exp(z}y) is 4.2 percent for the median
auction in the consumer industry. This finding suggests that the unobserved factors play a

critical role in the bidders’ valuation process.
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Table 6: Posterior Distribution of d(n; ;) in %

Posterior  Standard Posterior Percentiles
Mean Deviation | 2.5% 5%  50%  95% 97.5%
Consumer
n=2 0.740 0.047 | 0.659 0.669 0.739 0.822 0.836
3 0.550 0.071 | 0.434 0.447 0.546 0.676  0.699
4 0.411 0.080 | 0.286 0.299 0.403 0.556  0.585
Manufacture
n=2 0.417 0.051 | 0.342 0.349 0.401 0.508 0.524
3 0.176 0.044 | 0.117 0.122 0.161 0.258 0.274
4 0.076 0.029 | 0.040 0.043 0.064 0.131 0.144
HighTech
n=2 0.890 0.038 | 0.810 0.824 0.893 0.949 0.957
3 0.794 0.067 | 0.657 0.678 0.798 0.900 0.916
4 0.709 0.089 | 0.532 0.559 0.713 0.854  0.877
Health
n=2 0.489 0.068 | 0.375 0.382 0.475 0.613 0.641
3 0.243 0.069 | 0.140 0.146 0.225 0.375 0.410
4 0.124 0.054 | 0.0563 0.056 0.107 0.230 0.263
Others
n=2 0.965 0.023 | 0.913 0.921 0.969 0.995 0.997
3 0.932 0.043 | 0.833 0.848 0.939 0.991  0.995
4 0.901 0.062 | 0.760 0.781 0.910 0.986 0.992

Table 6 shows the posterior predictive measure of the discount rate, 6(n), for n € {2, 3,4} for each industry,
along with the posterior standard deviation and the percentiles.

5.3 Counterfactual analysis

For the five industry-median companies, we consider hypothetical values of structural pa-
rameters. We first consider the case without value discount to measure information costs
and then the case where the seller considers a different number of bidders for the given signal
distribution to learn operating costs. We then study the premium implications of alternative

mechanisms.

Information cost We measure the information costs by the difference between the pre-
dictive premium with value discount and the predictive premium without discount, i.e., by
restricting 6(n) = 1 for all n. Table 7 summarizes the predictive premiums by the posterior
mean, standard deviation, and several percentiles, showing (n;, Ny, size;), for the median
companies. For the median company in the consumer industry, the predictive premium with-
out discount is 1.607, which is 16 percent higher than the predictive premium of 1.388. By
multiplying the premium difference by the book value, we obtain a loss of 40 million dollars.
We consider this premium loss as the information cost because it arises from information

disclosure. We conduct the same exercise for the other median companies. For example,
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Figure 3: Predictive Analysis for Industry-Median Target Companies
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exp(et) 0.319 0.303 0.271 0.317 0.251
exp(xt7y) 0.042 0.306 0.028 0.197 0.057
bw 0.640 0.391 0.701 0.486 0.692

The top panel shows the posterior predictive densities of the premium (winning bid) for the industry-median
target companies, indicating the observed premiums by the vertical dashed lines. The middle panel shows
the posterior predictive densities of three elements, exp(e:), exp(z;y), and b; for the selected auctions.
The densities are centered around the mean. The table below the diagrams presents the proportion as a
percentage of the variation for each element. The bottom panel plots the CDF of the premium with the
discount factor by a solid line and the CDF of the premium without the discount factor, i.e., §(n) =1, by a
dashed line.

we find 11 and 229 million dollars of information costs for the median companies in the
manufacturing and health industries, respectively. Finally, the lower panels of Figure 3 show
that the premiums with value discount are dominated by the premiums without discount for
all the median companies, and the differences are economically substantial (except for the

other industries) but with a large degree of heterogeneity.
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Table 7: Predictive Premiums with and without Value-Discount for Median Targets

Industry Observed Predictive  Standard Posterior Percentiles

(ng, N, sizey) Premium Premium Deviation 2.5 5 50 95 975
Consumer 1.326 1.388 0.172 | 1.050 1.097 1.391 1.676 1.732
(1, 4, $183.97M) | If no discount, 1.607 0.264 | 1.065 1.125 1.644 2.010 2.075
Manufacture 1.087 1.106 0.061 | 0.990 1.010 1.103 1.211 1.229
(1, 6, $27.21M) | If no discount, 1.520 0.232 | 1.020 1.062 1.577 1.813 1.850
HighTech 1.331 1.447 0.181 | 1.078 1.133 1.444 1.755 1.815
(2, 3, $222.11M) | If no discount, 1.536 0.207 | 1.094 1.167 1.540 1.874 1.947
Health 1.245 1.275 0.101 | 1.077 1.107 1.272 1.447 1.478
(1, 3, $639.59M) | If no discount, 1.633 0.248 | 1.112 1.164 1.676 1.983 2.027
Others 1.629 1.720 0.225 | 1.239 1.315 1.726 2.083 2.156
(2, 3, $380.55M) | If no discount, 1.755 0.235 | 1.248 1.326 1.764 2.134 2.214

Information Disclosure Discount
Consumer Manufacture HighTech Health Others
IDD ($M) 40.32 11.27 19.66 229.19 13.39

The first column shows the number of actual bidders, the number of potential bidders, and the book value
for the industry-median target companies. The second column shows the observed premium and the third
shows the predictive premiums with the discount in the first row and without in the second row. The fourth
column presents the standard deviations, and the others show several percentiles of predictive premiums.
The small tabular below the main table documents the dollar value of information costs.

Operating cost The operating costs include not only the accounting fees for retaining legal
and financial advisors, but also other opportunity costs for running an auction associated
with planning, carrying out, and concluding a takeover process. For example, if the target
company’s staff members assisted bidders to conduct due diligence, the operating costs arise
because the staff members could have engaged in revenue-generating business activities.

To obtain a lower bound of the operating cost, we assume that the seller could have invited
one more bidder with a signal following the same distribution, F,(:|n;). Then, the predictive
premium with 7 = n; + 1 bidders (Table 8, column (C)) would exceed the premium with
n bidders (Table 8, column (B)). However, the fact that the seller invites n; actual bidders
suggests that inviting one more bidder costs more than the premium increase. Therefore, the
operating costs must be larger than the premium differences, i.e., (C)-(B). The lower bounds
vary between 2.5 percent to 7.3 percent of the predictive premiums across the industry
median companies, which are considerably larger than the average accounting cost of 0.84
percent of the deal values documented in Hunter and Jagtiani (2003).

Moreover, for auctions with n; > 2, we can obtain the upper bound. The seller could
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Table 8: Operating Cost

Predictive Premium (StDev) operating Cost, % | operating Cost, $M
=g —1 g A=m+1 | LB%  UB% LB UB
(A) (B) (© | (C1(B) (B)(A) | (LB%, UB%)xsize,
Consumer 1.388 (0.172) 1.461 (0.145) 0.073 13.38
Manufacture 1.106 (0.061) 1.131 (0.054) 0.025 0.68
HighTech | 1.344 (0.211) 1.447 (0.181) 1.493 (0.162) | 0.046  0.103 | 10.26 22.91
Health 1.275 (0.101)  1.318 (0.089) | 0.043 27.44
Others 1.585 (0.272)  1.720 (0.225) 1.781 (0.197) | 0.062  0.134 | 23.42 51.17

Columns (A), (B), and (C) show the predictive premiums for the cases with n; —1 if n; > 1 and the observed
ng and ny + 1 actual bidders. The next columns take the difference between the premiums to compute the
lower and upper bounds to compute the operating costs in terms of the percentage points and the dollar
values. Note that the median target auctions in the high-tech and the other industries have n, = 2 actual
bidders and the other industry-median auctions have n; = 1 actual bidder.

have invited n = n; — 1, suggesting that inviting the last bidder increases premiums more
than the operating cost for that bidder, i.e., the premium increase is an upper bound of the
operating cost (Table 8, column (A)). Among those median companies, we obtain the upper
bound for the ones in the high-tech and other industries, as they have n, > 2, and we find
that the upper bounds are roughly twice larger than the lower bounds.

Ascending (English) Auction The median company in the consumer industry has n, =
1 bidder, for which the ascending auction would result in a 30.2 percentage-point (55.5
million dollars) premium decrease relative to the current sealed-bid auction; see Table 9. For
the given number, n, = 1, of bidders, the sole bidder would behave as if her signal is zero
(v = 0) in the ascending auction. To make the comparison more meaningful, we assume
that in the ascending auction, the seller can invite one more bidder who draws her signal
from the same distribution, F,(:|n;). In that case, the ascending auction would result in
a 15.1 percentage-point (27.9 million dollars) premium increase relative to the sealed-bid
auction with n, = 1 bidders. The premium increase exceeds the lower bound ($13.4M) of
the operating cost in Table 8, but since the upper bound is unknown, the comparison cannot
be decisive. The other median companies with n, = 1 bidder exhibit similar patterns.

For the median companies in the high-tech and other industries with n, = 2, the ascending
auction with the same n; bidders would result in 5.56 and 35.80 million dollars of price
decreases, respectively; thus, the seller should prefer the current mechanism. Moreover, even
if the seller can invite one more bidder to the ascending auction, the premium increments

would not exceed the upper bound of the operating costs; see Table 8.
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Table 9: First Price Auction vs Ascending Auction

First-Price Auction Ascending Auction Ascending vs FPA Premium
Predictive Standard Predictive Standard | Premium Standard Difference
Premium Deviation Premium Deviation | Difference Error x Sizey, $M
Consumer
ng=1 1.388 0.172 1.086 0.086 -0.302 0.001 -55.51
ng + 1 1.540 0.271 0.151 0.004 27.85
Manufacture
ng =1 1.106 0.061 1.005 0.039 -0.101 0.001 -2.75
ng+ 1 1.238 0.130 0.132 0.002 3.60
HighTech
ng =2 1.447 0.181 1.422 0.263 -0.025 0.004 -5.56
ng + 1 1.522 0.248 0.075 0.004 16.69
Health
ng=1 1.275 0.101 1.106 0.062 -0.168 0.001 -107.76
ng+1 1.403 0.175 0.128 0.002 81.92
Others
ng =2 1.720 0.225 1.625 0.319 -0.094 0.005 -35.80
ng + 1 1.806 0.321 0.086 0.005 32.75

This table presents the predictive premium and standard deviation under the first-price auction and ascending
auction for the industry-median target companies, but replacing the value densities to the ones associated
with n € {1, 2,3} bidders, where (1) indicates the actual ns. The table represents the premium difference in
percentage points and dollar values, which are all significant at the one percent level.

Negotiation We derive the negotiation premium upper bounds and compare them with
the current premiums, instead of predicting precise negotiation outcomes under additional
assumptions on bargaining behavior. We assume, just like in the seal-bid auction, that
the seller identifies F,(:|n;) and bidders who would draw signals from it after stage 3. We
assume that the seller initiates bargaining with one of those bidders, the seller contacts the
next bidder if the deal does not go through, and each i*® bidder knows that (i — 1) bidders
have already declined the deal and her signal follows FU(Z)() Note that Fﬁl)() = F,(|my)
and f1,,1) = E[v|n,]. We assume that the mean j, ;) = [ qugi)(v)d'U weakly decreases in i,
which all bidders know.

The first bidder would decline any premium higher than what the seller expects from
the second bidder minus the additional operating cost. Consider the case with N, = 2.
If the first bidder declines the deal, the seller’s expected payoff from the second bidder
would be 6(2)ty,2) — oc; if the second bidder has no bargaining power, as relevant to the
premium upper bound.?® If the first bidder knew (i, (2), 0c;), she would not accept any offer

above (5(2)/%,(2) — ocy. But, she does not know oc; and might not , (o), either. However,

26The seller’s expected payoff from the second bidder with no bargaining power would be §(2) Ho,(2) — 20Ct,
but we subtract out the operating cost for the first bidder for all comparisons here, as it must incur.
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§(2)Evng] — oc, > 8(2)ty,(2) — 0oct, where oc, is the lower bound of the operating cost, and
the first bidder knows E[v|n;] and can infer oc, as this paper does. Thus, she would not
accept any offer above §(2)E[v|n;| — oc,, which is a premium (upper) bound.

If Ny = 3, the second bidder, when contacted, would also decline any premium higher
than the expected premium with the third bidder minus additional operating costs — the
second bidder’s upper bound is 6(3)pty,2) — 0¢;, > 0(3) v 3) — 0c;. Knowing this, the first
bidder would not pay more than §(3)E[v|n] — 20¢,. Applying the reasoning recursively for
a general IV, the first bidder would decline any offer above §(NV;) E[v|n,] — (N; — 1)oc,, the
negotiation premium bound.

We find that for the median targets with n, = 1 in the consumer, manufacturing, and
health industries, the negotiation premium upper bounds are 1.214, 0.890, and 1.230, respec-
tively, all below the current premiums. For the median targets with n; = 2 in the high-tech
and other industries, the negotiation premium upper bounds are 1.452 and 1.724, respec-
tively, higher than their current premiums minus operating costs, 1.401(= 1.447 — 0.046)
and 1.658(= 1.720 — 0.062). However, since the lower bounds are unknown, we do not know
if the negotiation would generate higher premiums than the current mechanism.

The negotiation premium bound, §(Vy) E[v|n:]—(N;—1)oc,, remains unchanged if Efv|n;] >
Iy, (i) for all 4, relaxing the monotonicity of i, ;) in 2. If the lower bound of operating cost is
not proportional to the number of bidders, we can use a more conservative premium upper
bound, §(NV;)E[v|n] — oc,. We find that the latter does not qualitatively change our pre-
mium comparisons, i.e., for the ones with n; = 1, the current mechanism generates higher
premiums than the negotiation, but the comparison is undecisive for those with n; = 2.
Finally, if bidders do not know F,(-|n;), the expression for the negotiation premium bounds
has SN p(n), vye) Efv|n] in place of Efv|n,], where v(1); denotes the first bidder’s signal.

The perceived beliefs lower the premium bounds but do not alter our results qualitatively.

6 Concluding Remarks

This study sheds light on the substantial economic impact of information and operating
costs borne by sellers in takeover auctions, providing insight into the widespread practice
of restricting bidder participation. Our findings carry several policy implications for regu-
latory and judicial authorities. The considerable information costs underscore a potential
social welfare loss due to informational externalities and the need for reinforced regulations
governing the use of information obtained during the takeover process.

Furthermore, our quantitative approach can be used for addressing takeover-related law-

suits. The seller’s decision to limit potential bidders can be contested in court by shareholders
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who argue that this practice stifles competition and harms their interests. However, it is
essential to note that accounting costs alone cannot justify this decision. Our methodology
quantifies the information costs and offers an estimated range for the operating cost, which
can serve as a benchmark for court judgments, helping assess whether the implied operating
costs fall within reasonable bounds.

The substantial economic burden on the seller also explains why the seller might enter an
exclusivity agreement with a single bidder. Such an agreement signals to the chosen bidder
that confidential information will not be exposed to other competitors, thereby preventing
the bidder from undervaluing the target. Finally, although our analysis focuses on successful
takeovers, the impact of information costs on failed transactions is straightforward: when a
deal fails to materialize, the market value of the target company is expected to decline, as

the eventual owner, the target firm, is left to bear the information costs.
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A Proofs

A.1 Proposition 1

We use f(v) = Bn(v;x,d). The second derivative of U(B(u),v; z) with respect to u is

82

a3l Bu),vi2) = a% ;p(n!% V) {fon(u) [6(n)v = Bu)] = Fon(u)B'(u)}

p(nlz,v) { fon(w) [6(n)v = Bu)] = 2fun(w)B' (W) — Fon(w) " (u)} (22)

I
1[1]=

where the first equality holds due to (4). Moreover, (4) is zero for u = v, giving

>y P(]2,0) fon(v) [B(n)0 — B(v)] '
27]:[:1 p(n|x, U)Fv,n(v>

Then, the second derivative of the bidding strategy is

B'v) =

B'(v) = [sz(m; ST (i [Du(nl0) fun(0) [8(m) — B(0)]
p(nla, v) £,,(v) [8(m)0 — B)] = plnla, ) fon(0) ()} gpmm 0)Fyn(v)
- ép(n!%v)fv,n( g [po(n[0) Fon(0) + p(n]z, 0) fon(v H) - (23)
Evaluate (22) at u = v and plug (23) in (22), we obtain
ipwx, 0)f1(0) [B(n)v = B(o)] -2 gpwx, 0)fon(0)8 )
3 bl ) Fo 1) ! : (i [po(nl0) fun(v) [5(n)0 — B(0)]
Sl ) Fon(v)] e
Fplnl, )£, (0) [(n) = B0)] = plnla,v) fun ()3 (0)} fjlpmm 0)Fyn(v)
- ﬁ;pmm 0)fon(v) [B(n)0 = B(0)] i polnlo) Fun(0) + pln, v)fv,nw)])
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which is equivalent to

> p(nle,0) £, (0) [3(n)o = B(v)] -2 Zp(nlﬂf, v) fon(v)B'(v)

- va n[v) fon(v Zp nlz,v) £}, (0) [5(n)v = B)] + Y p(nlz,v) fon ()5 (v)
et (0], 0) fon(0) (B0 = B)]
+\ Ziv:lp(nu?U)Fv,n(U) lxnz:l[pv( | ) v,n( )+p( | ) )fv,n( )]a
—6'(v)
which simplifies to
_QZP n|xvan va n|xvan [ ( )U_ﬁ(v)]

3 0l ) an@F W) + B 0)S plrke,0) fon®) + F @) S pulnke,v) Fon(v)

N
== po(nfz,v) {fou(v) B(n)v = B(0)] = B'(v) Fon(v)} (24)
n=1
_ 4 — p(nle)f'(wln) _ p(nle)f(vln) S 1p(m|9€)f( vlm)

multiply (24) by (—1) to flip the sign of the second-order condltlon Wthh becomes

WE

(Z p(nl)f'(v]n) ) {fun(©) [8(n)o = B(v)] = B'(v) Fon(v)}

=\ N p(mlz) f(v]m)

) (0l) {Fun0) ()0 — B(0)] — B(0) F(0) x 2t D)
[N pml) felm)

=0 by FOC

pnfa)f(wlm) Y\ ( £(0ln) e B
(Z%p(mmﬂw)( P (o) 010 = 0] = H(0)Fon)

Mz

MZ (3

n=1

-

p(nlz,v)s(v|n) {fon(v) [6(n)v = B(v)] = B'(v) Fon(v)}

I
=

n

:Cp(”\%v) {8(1}’”)? \Il(nu v, U)} Z 0

where the last inequality holds due to the optimality of 8(-) (and the flipped sign).
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A.2 Proposition 2

Since p(n|z,v) = p(n|z), Ryx(v;x) = exp (fo %dt) = Zgilp(mx)ﬂw(@).
Hence, (5) becomes

(o) ) et P01 un (0)0()
/ ZP' O S plale) Pan(@)

5(n) /0 "o fon(@)da

> m|x
<n|x>

St Pm[2) Fon (v)
p(nl2)

St Pm|2) P (v)

p(n]) Fyn(v) L Rl T S evsi6 (o

- o) [o = [ ] = et i)

m= 1p(m|x) v,m(V)

Il
Mzﬁz

S
Il
—

] =

5(n) [UFM@) - /0 ) Fv,n(a)da]

S
Il
—

NE

1

3
Il

which is (7). The rest of the proof extends Proposition 2.2 in (Krishna, 2002). Suppose that
bidder i with v bids f(u) = Sy (u;x,0) in (7) with u # v. Then, her expected utility is

UB(y),v;x) =Y p(nlz) fun(u)(S(n)o — B(u))
S S S p(n]) fun (w)3(n)Ba(y)
= n|x) fon(uw)d(n)v — n|x) fon(u =
;m ) fon (1) (n) ;m ) fon (1) % S i) o)
=B(u)

M-

p(nlz) fon(Wd(n)o = p(n|a) fon(uw)d(n)B.(y)

N
Il
—_

] =

=3 pufa)ao) (Fun(w)w =)+ [ Fun(ada).

n=1

Hence, 7(B(v),v;x) — n(B(u), v; x) equals
gpmm)é(n) ( / " Fyn(@)da — fon(u)(v—y) - / ’ Fv,n(a)da)

:i (n]x)d( (/y Fyn(o )da—fvm(u)(y_y)) >0

regardless of whether y > v or y < v. We have shown that if all other bidders are following
(7), a bidder with an arbitrary value of v € [0,7] cannot benefit by deviating from it.
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A.3 Proposition 3

The derivative of (7) with respect to v is

i U:i L X 3 n|x v)o(n) |v— UFv’n(a)a
e dv{zg:1p<n|x> % Loplale) ) o | Fm@)d”

n=1

_ 4 X pfn) B (0)8(m)y - d S0 p(nf2)d(n) J Fua (25)

do SN pnfe)Fua(v)  dv XN p(n|a)F ,<v>

Consider the first term in (25).

v LAY pnfa)d(n)E, ()
nlx)F, (v X — =L ~
(Zm ) Fy >> TS 1p(n|x) -

—Zp n|z)d(n)[fon(v)v + Fyn(v Zp n|z) Fyn(v) — Zp(n|$)5(n)Fv,n(U)UZp(n|37)fv,n(v)

n=1

N N N
:Zp(n]w n) fon(v UZp m|x)F, +Z (n]x)d( ZP m|z)F
n*lN mle n=1 m=1
n=1 m=1

Consider the second term in (25).

a 2 d Yy p(nf)8(n) J§ Ful
nlx)F, (v ~
(;p( Pl )> R ST T

N N N v N
=3 PRS0 Fun(v) S plml) Fum(v) — S plnf)s( / Fyn(@)da 3 p(mle) fum(v)
n=1 m=1 n=1 m=1
2
Combining the two terms, (Zn | p(n|z)F, > X %/B(v) equals

nlz)F i nlpn|x ()Fvn(mv dZn 1pn|x fo Un
(Zp o)l > [dv SN pn|)Fon(v)  dv SN p(nfa)F, ,<v>

N N
=0 Zp(n\x n) fon(v Zp m|z)F, —va n|z)o(n)Fyn(v) Zp(m\:c)fum(v)

30 p0fa)6n) [ Funa)da Y plmlo) fone)
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Since the third term is positive, we focus on the first two terms;

v Y p(nfe)p(m]@)5 () [fon(©) Fom(v) = Fun(©) fom(v)]
=0 0y n|x)p(m|x v v)d(n fon(®) _ fom(v)
=032 3 okl Fenle) o051 )| £23 ijm(v)l

common for all terms ~~
appears twice

=03 Y ko) o (0) o (0)(600) = o) | 2228 = 2] 0 o)

Fon(v) Fym(v)

Jo,n(v)
Fv,n(v)

fv,m('U
Fym(v

because d(n) > d(m) due to Assumption 1 and > )) for n < m under the

stochastic dominance hypothesis of the proposition.

A.3. Proposition 4

Let G(b|x,n) and g(b|z,n) be the CDF and density of P(b|z,n). We suppress the dependence
of G(blz,n) and g(blx,n) and p(n|z) on x other than N. By the change of variables for b =
B(v), we rewrite the first-order condition, (4), as Y p(n|z)(n—1)G(b|n, N)*~2g(b|n, N)*(8(n)v—
b) = N p(n|z)G(b|n, N)*~g(b|n, N), which gives the inverse bidding function,

_ by p(nfa)(n — 1)G(Bln, N)"2g(bln, N) + 30, p(n|2)G(bln, N)" " g(bln, N)
> n p(nlz)(n = 1)G(bln, N)»=2g(bln, N)25(n)

[

(27)

For o € (0,1], let v, () := F; ' (a|n) and by n(a) == G ' (afp,n,N). Let also A, y(a) :=
p(n|z)a™ tg(byn(a)|n, N) and B, () := p(n|z)(n — 1)a"2g(byn(a)|n, N)2. From (27),

b () S0 Bun(a) + 320 Anv(@)
S ooy Buv(@)é(n)

vn () does not depend on N under Assumption 3. For (n, N) € {(2,2),(2,3)}, (28) gives

un(a) = (28)

Bso(a)d(2) B By 3(0)6(2) + Bss()d(3)

— 29
(@) Baa(c) + 37 Ana(@)  bap(@) 37 Bool@) £ 30, Avgle)

where the only unknowns are §(2) and 6(3). By Assumption 6, we can write §(2) and §(3)

in the form of polynomials of order d;. Consider d; = 1. Then, we have
d(n)=1—(n—1)¢ forn e {2,3} (30)
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with unknown ¢; € [0,1/2), so that d(n) € (0,1]. Under (30), then, (29) becomes

Bys(a) = Baa(a)G _ (Bas(@) + Bss(@)) — (Bas(a) +2Bs3(a))G (31)

bapa(cr) Bao(er) + 325y Anz(a) bajs(cr) Yooy Bus(@) + Y20y Aus(a)

where the only unknown is ¢; and, therefore, it is identified. For a larger d., the identification

strategy for 6(2) and §(3) remains the same. For example, consider d; = 2. Then,
S(n)=1—(n—1)¢, — (n —1)2¢, for n € {2,3} (32)
with parameters ({1, () to identify. Under (32), (29) becomes

32,2(@) - B2,2(04)<1 - Bz,Q(CY)Cz

bapp(@) Baa(@) + 30—y Ana(a)

_ (B2s(a) + Bs(@)) — (B2s(@) + 2B35(a))G — (Bas(@) +4B33(0))Ce (33)
baj3 () Zi:? By s(a) + Zi:l Aps(a)

We can construct another equation like (33) at a different quantile & to have a system of
two linear equations with two unknowns ((;,(2). The system is not homogeneous, and by
solving it for ({1, (2), we identify ((1,(2). By the same idea, we can identify ((i, ..., Cq,) for
a larger d¢. For a larger d¢, we need to construct a system of d linear equations, which is
not homogeneous under Assumption 6. By solving the system for (Ci, ..., s ), we identify
a flexible 6(n) for n € {2,3}. Once 6(k — 1) and §(k) are identified, we recursively identify
d(k + 1) without a functional form assumption for £ > 3. Using (n, N) € {(k, k), (k,k+ 1)},

we equate the two quantile-by-quantile inverse bidding functions,

> net Bur(@)é(n) _ St Bun (@)(n) + Brgyg (@)d(k + 1)
beii(@) Yoy Bua(@) + 3y Aur(@)  bugara (@) 05 B (@) + 3205 A (@)

where only §(k 4+ 1) is unknown, implying the identification of §(k+1). Finally, since {d(n)}
are all identified, we identify F,(-|n) for all n € {1,..., max{N}} by (28).
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