
Interim Rationalizable (and Bayes-Nash)

Implementation of Functions: A full

Characterization∗

R Jain† M Lombardi‡

April 19, 2022
Preliminary draft: Please do not circulate

Abstract

Interim Rationalizable Monotonicity, due to Oury and Tercieux (2012), fully

characterizes the class of social choice functions that are implementable in in-

terim correlated rationalizable (and Bayes-Nash equilibrium) strategies.

JEL classification: C79, D82

∗We thank Anujit Chakraborty and John Levy for useful comments. Ritesh Jain greatly ac-
knowledges financial support from the Ministry of Science and Technology Grant, Taiwan under the
grant: 107- 2410-H-001-113-MY2. All remaining errors are ours.

†Institute of Economics, Academia Sinica, e-mail: ritesh@econ.sinica.edu.tw.
‡University of Liverpool Management School. E-mail: michele.lombardi@liverpool.ac.uk. De-

partment of Economics and Statistics and CESF, University of Napoli Federico II.

1



I. Introduction

II. The Implementation Model

Preliminaries

Throughout the paper, if X is a topological space, we treat it as a measurable space

with its Borel sigma field, and the space of Borel probability measures onX is denoted

by ∆ (X). Spaces ∆ (X) are endowed with the topology of weak convergence of

measures. Throughout the paper, we treat each countable set as a topological space

endowed with the discrete topology. A subset Y of a topological space X is a dense

subset of X if the closure of Y in X is equal to X. With abuse of notation, given a

space X, let δx denote a degenerate distribution in ∆ (X) assigning probability 1 to

{x}.
We consider a finite set of players I = {1, ..., I}. Each player i has a bounded

utility function ui : ∆ (A) × Θ → R where A is the set of (pure) outcomes and Θ is

the set of states (of nature). For each θ ∈ Θ, ui (·, θ) satisfies the expected utility

hypothesis. We assume that Θ and A are separable metric spaces.

Throughout the paper, if, for each i ∈ I, there is a space Xi, we write X as an

abbreviation for Πi∈IXi and, for each i ∈ I, X−i for Πj∈I\{i}Xj.

A model (of incomplete information) is a pair T ≡ (T, κ), where T = Πi∈ITi is a

countable type space and, for each i ∈ I, κ (ti) ∈ ∆ (Θ× T−i) denotes the associated

beliefs for each type ti ∈ Ti of player i satisfying the following condition: For all

ti ∈ Ti, Supp(κ (ti)) = ∆ (Θ× T−i).
A typical type profile of T (resp., T−i) is denoted by t (resp., t−i). Throughout the

paper, we rule out the case that T is a model of complete information, for the sake

of simplicity.

A (stochastic) mechanism is a pair M ≡ (M, g), where M ≡i∈I Mi is a message

space and the outcome function g : M → ∆ (A) assigns to every m ∈ M an element

of ∆ (A). For each i ∈ I, Mi is player i’s message space, which is assumed to be a

(nonempty) countable set. A message profile m ∈ M is often written as (mi,m−i),

where m−i ∈M−i.
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Solution concepts

Given a mechanismM and a model T , U (M, T ) denotes the induced game of incom-

plete information. In this game, a (behavioral) strategy of player i is any measurable

function σi : Ti → ∆ (Mi). We write σi (ti) [mi] for the probability that σi assigns to

mi when player i is of type ti. Player i’s strategy σi is a pure strategy if σi : Ti →Mi.

Given a mechanismM, for each i ∈ I, player i’s best response correspondence BRi

from ∆ (Θ×M−i) to Mi be defined, for all πi ∈ ∆ (Θ×M−i), by

BRi (πi|M) = arg max
mi∈Mi

 ∑
(θ,m−i)∈Θ×M−i

πi [θ,m−i] [ui (g (mi,m−i) , θ)]

 .

Since we allow for infinite mechanisms, the correspondence may be empty. For all

i ∈ I, all ti ∈ Ti and all σ−i ≡ (σj)j∈I\{i}, we write πi (ti, σ−i) ∈ ∆ (Θ×M−i) for the

joint distribution on the underlying uncertainty and the messages of other players

induced by ti and σ−i.1

Definition 1. Let U (M, T ) be any game of incomplete information. A profile of

pure strategies σ = (σi)i∈I is a pure strategy Bayes-Nash equilibrium of U (M, T ) if,

for all i ∈ I and all ti ∈ Ti,

mi ∈ Supp (σi (ti)) =⇒ mi ∈ BRi (πi (ti, σ−i) |M) .

We denote by BNE (U (M, T )) the set of all pure strategy Bayes-Nash equilibria of

U (M, T ).

Next, let us define the solution concept of interim correlated rationalizability (ICR,

henceforth), which was introduced by Dekel et al. (2007). Before introducing it, we

need additional notation. Fix any pair (M, T ). For all i ∈ I, let Σi be a nonempty

correspondence from Ti to 2Mi\ {∅}, and let SM,T
i denote the set of all nonempty

correspondences from Ti to 2Mi\ {∅}. Let SM,T = Πi∈IS
M,T
i , with Σ as a typical

1Formally, πi (ti, σ−i) ∈ ∆ (Θ×M−i) is defined by πi (ti, σ−i) =∑
t−i∈T−i

κ (ti) [θ, t−i]σ−i (t−i) [m−i], where κ (ti) [θ, t−i] is the probability attached to [θ, t−i]

under κ (ti), and σ−i (t−i) [m−i] is the probability attached to m−i under σ−i (t−i).
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profile of SM,T . For all i ∈ I and all ti ∈ Ti, let ∆κ(ti) (Θ× T−i ×M−i) be defined by

∆κ(ti) (Θ× T−i ×M−i) =
{
πi ∈ ∆ (Θ× T−i ×M−i) |margΘ×T−iπi = κ (ti)

}
,

and, for all Σ−i ∈ SM,T
−i , let ∆Σ−i (Θ× T−i ×M−i) be defined by

∆Σ−i (Θ× T−i ×M−i) =

 πi πi ∈ ∆ (Θ× T−i ×M−i) and

πi [θ, t−i,m−i] > 0 =⇒ m−i ∈ Σ−i (t−i)

 .

For all (M, T ) and all Σ ∈ SM,T , Σ is a best-reply set in U (M, T ) if, for all i ∈ I,
all ti ∈ Ti and all mi ∈ Σi (ti), there exists

πi ∈ ∆κ(ti) (Θ× T−i ×M−i) ∩∆Σ−i (Θ× T−i ×M−i)

such that

mi ∈ BRi

(
margΘ×M−iπi|M

)
.

Definition 2. For all (M, T ), all i ∈ I and all ti ∈ Ti, the set of interim correlated

rationalizable messages at type ti, denoted by SM,T
i (ti), is defined by

SM,T
i (ti) = {mi ∈ Σi (ti) |for some best-reply set Σ in U (M, T )} .

For all t ∈ T , we write SM,T (t) for Πi∈IS
M,T
i (ti).

Alternatively, we can compure the set of interim correlated rationalizable strategies

interatively as follows. For all i and all ti ∈ Ti, let S0,M,T
i (ti) = Mi, and for all integers

k ≥ 1, let Sk,M,T
i (ti) be defined by

Sk,M,T
i (ti) =


There exists πi ∈ ∆κ(ti) (Θ× T−i ×M−i)

mi ∈ Sk−1,M,T
i (ti) such that πi ∈ ∆Sk−1,M,T

−i (Θ× T−i ×M−i)
and that mi ∈ BRi

(
margΘ×M−iπi|M

)

(1)
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Implementation

Let T be given. A (stochastic) social choice function (SCF, henceforth) is a function

f : T → ∆ (A). Following Oury and Tercieux (2012), we assume that the planner

cares about all profiles of types in T . To avoid trivialities, throughout the paper, we

focus on minimally responsive SCFs.

Definition 3. Let T be any model. f : T → ∆ (A) is minimally responsive on T if

for all i ∈ I, there exist t−i ∈ T−i and ti, t′i ∈ Ti such that f (ti, t−i) 6= f (t′i, t−i).

If f is minimally responsive on T , f is a nonconstant SCF.2 Moreover, if f is not

a minimally responsive SCF on T and the planner’s objective is to implement f , he

can, equivalently, focus on the implementation of f ′ : Πi∈I\I∗Ti → ∆ (A), where I∗ is
the of players for whom f is not a minimally responsive SCF on T , and ϕ is defined,

for all t ∈ Πi∈I\I∗Ti, by ϕ (t) = f (t, t′) for all t′ ∈ Πi∈I∗Ti.3

Definition 4. A mechanism M implements f : T → ∆ (A) in interim correlated

rationalizable strategies (ICR-implements, henceforth) on T if the following two con-

ditions are satisfied.

(i) For all i ∈ I and all ti ∈ Ti, SM,T
i (ti) 6= ∅.

(ii) For all t ∈ T , m ∈ SM,T (t) =⇒ g (m) = f (t).

If such a mechanism exists, f is interim correlated rationalizably (ICR, henceforth)

implementable, or simply, ICR-implementable on T .

A mechanismM implements f : T → ∆ (A) on T in (pure strategy) Bayes-Nash

equilibria if BNE (U (M, T )) 6= ∅ and for all σ ∈ BNE (U (M, T )), g ◦ σ = f .

Moreover, a mechanismM satisfies the Equilibrium Best-Response Property (EBRP)

2f is constant if for all t, t′ ∈ T , f (t) = f (t′).
3Formally, I∗ can be defined as follows:

I∗ = {i ∈ I|f (ti, t−i) = f (t′i, t−i) for all ti, t′i ∈ Ti and all t−i ∈ T−i}
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on T if there exists a pure strategy profile σ such that for all t ∈ T ,

σ (t) ∈ SM,T (t) ,

and for all i ∈ I and all ti ∈ Ti,

BRi (πi (ti, σ−i) |M) 6= ∅.

Any SCF that is ICR-implementable on T by a mechanism satisfying the EBRP is

also implementable on T in Bayes-Nash equilibria.

Lemma 1. Assume that M ICR-implements f on T . M implements f on T in

Bayes-Nash equilibria if and only ifM satisfies the EBRP.

Proof. Assume thatM ICR-implements f on T . Assume thatM satisfies the EBRP

on T . Let us show thatM implements f on T in Bayes-Nash equilibria. To this end,

we need only to show that BNE (U (M, T )) 6= ∅. SinceM ICR-implements f andM
satisfies the EBRP, it follows that there exists a pure strategy profile σ such that for

all t ∈ T , σ (t) ∈ SM,T (t), and for all i ∈ I and all ti ∈ Ti, BRi (πi (ti, σ−i) |M) 6= ∅.
Let us show that σ ∈ BNE (U (M, T )).

For all i ∈ I and all ti ∈ Ti, sinceBRi (πi (ti, σ−i) |M) 6= ∅, let σ̂i (ti) ∈ BRi (πi (ti, σ−i) |M)

for all ti ∈ Ti and all i ∈ I. Fix any i ∈ I. By construction, we see that for all t ∈ T ,
(σ̂i (ti) , σ−i (t−i)) ∈ SM,T (t). Moreover, since M ICR-implements f on T , we also

have that for all t ∈ T , f (t) = g (σ̂i (ti) , σ−i (t−i)). Thus, we can replace σ̂i with σi
and see that σi (ti) ∈ BRi (πi (ti, σ−i) |M) for all ti ∈ Ti. Since the choice of i was

arbitrary, we have that σ ∈ BNE (U (M, T )).

For the converse, assume that M implements f on T in Bayes-Nash equilibria.

This implies that BNE (U (M, T )) 6= ∅. Thus,M satisfies the EBRP on T .

III. Interim Iterative Monotonicity

In the following section, we present our necessary condition. Let T be any model. For

every player i ∈ I, let us call any map βi : Ti → 2Ti\ {∅} as player i’s deception. A

6



special deception for player i is the truth-telling deception, βti , defined by βti (ti) = {ti}
for all ti ∈ Ti. Another special deception for player i is denoted by β̄i and defined by

β̄i (ti) = Ti. For any βi and β′i we write βi ⊆ β′i if βi (ti) ⊆ β′i (ti) for all ti ∈ Ti. Let

Bi be the set of all player i’s deceptions containing the truth-telling deception; that

is,

Bi =
{
βi : Ti → 2Ti\ {∅} |βti ⊆ βi

}
.

Let Bt = Πi∈IBti , with β = (βi)i∈I as a typical deception profile of B.
For every i ∈ I, let Y f

i be the set of mappings from T−i to ∆ (A) satisfying the

following requirement. Whatever is player i’s actual type, he would never prefer the

outcome to be selected by a mapping Y f
i to the outcome he could obtain under f if

all his opponents were reporting truthfully. Formally,

Y f
i =


For all t̃i ∈ Ti,

y : T−i → ∆ (A)
∑

(θ,t−i)∈Θ×T−i κ
(
t̃i
)

[θ, t−i]ui
(
f
(
t̃i, t−i

)
, θ
)
≥∑

(θ,t−i)∈Θ×T−i κ
(
t̃i
)

[θ, t−i]ui (y (t−i) , θ).

 (2)

Note that Y f
i is a metrizable separable space.4 We write Y f for Πi∈IY

f
i . For all i ∈ I,

let Y f
i,s be the set of all mappings in Y f

i satisfying the inequality in (2) strictly for all

t̃i ∈ Ti.5 Similarly, we write Y f
s for Πi∈IY

f
i,s.

For the sake of clarity, in what follows, for every i ∈ I, we write T−i × T̂−i for

T−i× T−i. In the context of a mechanism, our interpretation of
(
t−i, t̂−i

)
∈ T−i× T̂−i

is that player i’s opponents are of types t−i but they are playing as if they were of

types t̂−i.

4To see it, observe that ∆ (A) is a separable metric space under the Prohokorov metric given
that A is a separable metric space Aliprantis and Border (2006); Theorem 14.15). Moreover, a
countable product of the space ∆ (A) is separable metric space under the standard metric (see, e.g.,
Ok (2011), p. 196). Thus, since Y fi is a subset of a separable metric space, it follows that it is a
separable metric space.

5Formally, for all i ∈ I,

Y fi,s =


For all t̃i ∈ Ti,

y : T−i → ∆ (A)
∑

(θ,t−i)∈Θ×T−i
κ
(
t̃i
)

[θ, t−i]ui
(
f
(
t̃i, t−i

)
, θ
)
>∑

(θ,t−i)∈Θ×T−i
κ
(
t̃i
)

[θ, t−i]ui (y (t−i) , θ).


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A deception profile β ∈ B is acceptable on T for f if for all t, t′ ∈ T , t′ ∈ β (t) =⇒
f (t) = f (t′). The following condition is due to Oury and Tercieux (2012).

Definition 5. f : T → ∆ (A) is interim (correlated) rationalizable monotonic (IRM,

henceforth) on T if for every unacceptable deception profile β ∈ B on T for f , there

exists (i, ti, t
′
i) ∈ I × Ti × βi (ti) such that for all ψi (ti) ∈ ∆κ(ti)

(
Θ× T−i × T̂−i

)
∩

∆β−i
(

Θ× T−i × T̂−i
)
, there exists y∗i ∈ Y

f
i such that

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iψi (ti)

[
θ, t̂−i

])
ui
(
y∗i
(
t̂−i
)
, θ
)

>∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iψi (ti)

[
θ, t̂−i

])
ui
(
f
(
t′i, t̂−i

)
, θ
)
.

(3)

Remark 1. Observe that if f is IRM on T , then it is strict IRM on T . f is strict

IRM on T if y∗ ∈ Y f
i satisfying (3) is such that it satisfies the inequality in (2)

strictly for t′i = t̃i. However, it can be shown that the two conditions are equivalent

(see Supplementary Appendix).

A condition, which is equivalent to IRM, can be expressed in terms of the limit

point of an iterative sequence of deception profiles. To define the sequence, we need

additional notation. For all i ∈ I and all ti ∈ Ti, let ∆κ(ti)
(

Θ× T−i × T̂−i
)
be defined

by

∆κ(ti)
(

Θ× T−i × T̂−i
)

=
{
νi ∈ ∆

(
Θ× T−i × T̂−i

)
|margΘ×T−iνi = κ (ti)

}
,

and, moreover, for all β ∈ B, let ∆β−i
(

Θ× T−i × T̂−i
)
be defined by

∆β−i
(

Θ× T−i × T̂−i
)

=

 νi νi ∈ ∆
(

Θ× T−i × T̂−i
)
and

νi
[
θ, t−i, t̂−i

]
> 0 =⇒ t̂−i ∈ β−i (t−i)

 .

The iterative sequence defined on Y f , denoted by
(
βk
)
k≥0

, is defined as follows.

The starting value is

β0 = β̄,
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and, for all k ≥ 1 and all i ∈ I, βki is defined, for all ti ∈ Ti, by

βki (ti) =



t̂i ∈ βk−1
i (ti) and there exists

νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
such

that νi (ti) ∈ ∆βk−1
−i

(
Θ× T−i × T̂−i

)
and

t̂i
∑

(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
f
(
t̂i, t̂−i

)
, θ
)
≥∑

(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
yi
(
t̂−i
)
, θ
)
,

for all yi ∈ Y f
i .


(4)

Observe that ti ∈ βki (ti) for all i ∈ I, all ti ∈ Ti and all k ≥ 0. If the limit point

of the sequence
(
βk
)
k≥0

exists, the sequence is called convergent and its limit point

is denoted by β∗. A sequence
(
βk
)
k≥0

is monotonic decreasing if βk+1 ⊆ βk for all

k ≥ 0.

Lemma 2. Let T be any model.
(
βk
)
k≥0

is a monotonic decreasing sequence con-

verging in B.

Proof. Let T be any model. Let
(
βk
)
k≥0

be given. By definition
(
βk
)
k≥0

, it holds

that βt ⊆ βk for all k ≥ 0. Thus, βk ∈ B for all k ≥ 0. Therefore, to show that the

limit point of
(
βk
)
k≥0

exists, it suffices to show that βk+1 ⊆ βk for all k ≥ 0. To this

end, let us proceed by induction. Let k = 0. By (4), we see that β1 ⊆ β0. Suppose

that βk+1 ⊆ βk for some k ≥ 0. Let us show that βk+2 ⊆ βk+1. Fix any i ∈ I and

any ti ∈ Ti. Fix any t̂i ∈ βk+2
i (ti). (4) implies that t̂i ∈ βk+1

i (ti) and that there exists

νi ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆βk+1

−i

(
Θ× T−i × T̂−i

)
such that the inequality in (4)

is satisfied for all yi ∈ Y f
i .

Since νi ∈ ∆βk+1
−i

(
Θ× T−i × T̂−i

)
, it follows that for all

(
θ, t−i, t̂−i

)
∈ Θ×T−i×T̂−i,

νi
[
θ, t−i, t̂−i

]
> 0 =⇒ t̂−i ∈ βk+1

−i (t−i). By the inductive hypothesis, it holds that(
θ, t−i, t̂−i

)
∈ Θ × T−i × T̂−i, νi

[
θ, t−i, t̂−i

]
> 0 =⇒ t̂−i ∈ βk−i (t−i). Moreover,

since t̂i ∈ βk+1
i (ti), the inductive hypothesis implies that t̂i ∈ βki (ti). Thus, we have

established that t̂i ∈ βk+1
i (ti) and that there exists νi ∈ ∆κ(ti)

(
Θ× T−i × T̂−i

)
∩

∆βk−i

(
Θ× T−i × T̂−i

)
such that the inequality in (4) is satisfied for all yi ∈ Y f

i . This

implies that t̂i ∈ βk+1
i (ti). Since the above arguments hold for all i ∈ I and all
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ti ∈ Ti, we have that βk+2 ⊆ βk+1. The principle of mathematical induction implies

that βk+1 ⊆ βk for all k ≥ 0.

Our condition can be stated as follows.

Definition 6. f : T → ∆ (A) satisfies Interim Iterative Monotonicity (IIM, hence-

forth) on T if β∗ is an acceptable deception on T for f .

Theorem 1. If f : T → ∆ (A) is ICR-implementable on T by a mechanism satisfying

the EBRP, then it satisfies IIM on T .

Proof. Let T be any model. Let f : T → ∆ (A) be any SCF. Assume that M
satisfies the EBRP and it ICR-implements f . Lemma 1 implies that there exists a

pure strategy σ ∈ BNE (U (M, T )). This implies that for all i ∈ I and all ti ∈ Ti,

(θ,t−i)∈Θ×T−iκ (ti) [θ, t−i]ui (g (σ (t)) , θ) ≥

(θ,t−i)∈Θ×T−iκ (ti) [θ, t−i]ui (g ((mi, σ−i (t−i))) , θ)

for all mi ∈ Mi. Since M ICR-implements f , it follows that for all i ∈ I and all

ti ∈ Ti,
(θ,t−i)∈Θ×T−iκ (ti) [θ, t−i]ui (f (t) , θ) ≥

(θ,t−i)∈Θ×T−iκ (ti) [θ, t−i]ui (g ((mi, σ−i (t−i))) , θ)
(5)

for all mi ∈Mi.

Lemma 2 implies that the sequence
(
βk
)
k≥0

converges to β∗ ∈ B. Fix any t, t′ ∈ T .
Assume that t′ ∈ β∗ (t). Assume, to the contrary, that f (t) 6= f (t′). For all i ∈ I and

all ti ∈ Ti, Σi (ti) = {σi (t′i) ∈Mi|t′i ∈ β∗i (ti)}. Then, Σi is a correspondence from Ti to

2Mi\ {∅}, and so Σi ∈ SM,T
i . SinceM ICR-implements f , it follows that Σ ∈ SM,T

cannot be a best-reply set in U (M, T ). Then, for some
(
i, ti, σ

(
t̂i
))
∈ I×Ti×Σi (ti)

and all πi (ti) ∈ ∆κ(ti) (Θ× T−i ×M−i) ∩∆Σ−i (Θ× T−i ×M−i), it holds that

σi
(
t̂i
)
/∈ BRi

(
margΘ×M−iπi (ti) |M

)
,
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and so

∑
(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi (ti) [θ,m−i]

)
[ui (g (mi,m−i) , θ)] >∑

(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi (ti) [θ,m−i]

) [
ui
(
g
(
σi
(
t̂i
)
,m−i

)
, θ
)] (6)

for some mi ∈Mi.

For all i ∈ I and all ti ∈ Ti, let νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆β∗−i

(
Θ× T−i × T̂−i

)
be any distribution. For all i ∈ I, all ti ∈ Ti, let π̄i (ti) ∈ ∆ (Θ× T−i ×M−i) be de-

fined, for all (θ, t−i,m−i) ∈ Θ× T−i ×M−i, by

π̄i (ti) [θ, t−i,m−i] =
∑

t̂−i∈σ−1
−i (m−i)

νi (ti)
[
θ, t−i, t̂−i

]
,

where σ−1
−i (m−i) = Πj∈I\{i}σ

−1
j (mj) and σ−1

j (mj) = {tj ∈ Tj|mj = σj (tj)}. Since

νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
, we have that margΘ×T−iνi (ti) = κ (ti). Moreover, by

construction, margΘ×T−iνi (ti) =margΘ×T−i π̄i (ti).6 Moreover, since νi (ti) ∈ ∆β∗−i

(
Θ× T−i × T̂−i

)
,

it also follows that for all (θ, t−i,m−i) ∈ Θ × T−i ×M−i, π̄i (ti) [θ, t−i,m−i] > 0 =⇒
m−i ∈ Σ−i (t−i). Thus, we have that π̄i (ti) ∈ ∆κ(ti) (Θ× T−i ×M−i)∩∆Σ−i (Θ× T−i ×M−i)
for all i ∈ I and all ti ∈ Ti. Moreover, by construction, we also have that for all i ∈ I

6Observe that for all (θ, t−i) ∈ Θ× T−i,

margΘ×T−i
π̄i (ti) [θ, t−i] =

∑
m−i∈M−i

π̄i (ti) [θ, t−i,m−i]

=
∑

m−i∈M−i

 ∑
t̂−i∈σ−1

−i (m−i)

νi (ti)
[
θ, t−i, t̂−i

]
=

∑
t̂−i∈T̂−i

νi (ti)
[
θ, t−i, t̂−i

]
= margΘ×T−i

νi (ti) [θ, t−i] .

11



and all mi ∈Mi,7

∑
(θ,m−i)∈Θ×M−i

(
margΘ×M−i π̄i (ti) [θ,m−i]

)
ui (g (mi,m−i) , θ) =∑

(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)
.

(7)

Since π̄i (ti) ∈ ∆κ(ti) (Θ× T−i ×M−i) ∩∆Σ−i (Θ× T−i ×M−i) for all i ∈ I and all

ti ∈ Ti, from (6) and (7), we have that for some
(
i, ti, σ

(
t̂i
))
∈ I × Ti × Σi (ti),

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)

>∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
g
(
σi
(
t̂i
)
, σ−i

(
t̂−i
))
, θ
)
.

(8)

Since M ICR-implements f , it also follows that g
(
σi
(
t̂i
)
, σ−i

(
t̂−i
))

= f
(
t̂i, t̂−i

)
.

Since margΘ×T̂−iνi (ti)
[
θ, t̂−i

]
= κ (ti), we have that (8) is equivalent to

∑
(θ,t̂−i)∈Θ×T̂−i κ (ti)

[
θ, t̂−i

]
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)

>∑
(θ,t̂−i)∈Θ×T̂−i κ (ti)

[
θ, t̂−i

]
ui
(
f
(
t̂i, t̂−i

)
, θ
)
,

which contradicts (5). Thus, f satisfies IIM.

Theorem 2. f : T → ∆ (A) satisfies IIM on T if and only if f is IRM on T .

Proof. Assume that f : T → ∆ (A) satisfies IIM on T . Take any unacceptable
7To see it, observe that∑

(θ,m−i)∈Θ×M−i

(
margΘ×M−i

π̄i (ti) [θ,m−i]
)
ui (g (mi,m−i) , θ)

=
∑

(θ,t−i,m−i)∈Θ×T−i×M−i

π̄i (ti) [θ, t−i,m−i]ui (g (mi,m−i) , θ)

=
∑

(θ,t−i,m−i)∈Θ×T−i×M−i

 ∑
t̂−i∈σ−1

−i (m−i)

νi (ti)
[
θ, t−i, t̂−i

]
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)

=
∑

(θ,m−i)∈Θ×M−i

 ∑
t̂−i∈σ−1

−i (m−i)

(
margΘ×T̂−i

νi (ti)
[
θ, t̂−i

])
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)

=
∑

(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−i

νi (ti)
[
θ, t̂−i

])
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)
.
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deception profile β ∈ B on T for f . Assume, to the contrary, that for all (i, ti, t
′
i) ∈

I × Ti × βi (ti), there exists ψi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆β−i

(
Θ× T−i × T̂−i

)
such that for all y∗i ∈ Y

f
i , (3) is violated.8 To derive a contradiction, let us first show

that β ⊆ βk for all k ≥ 0. Let us proceed by induction.

Since β ⊆ β̄ = β0, by definition, let us suppose that for some k ≥ 0, it holds that

it follows that β ⊆ βk. Let us show that β ⊆ βk+1. By the inductive hypothesis, it

holds that ψi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆βk−i

(
Θ× T−i × T̂−i

)
for all i ∈ I and

all ti ∈ Ti. Fix any i ∈ I and any ti ∈ Ti. Take any t̂i ∈ βi (ti). It follows from the

inductive hypothesis that t̂i ∈ βki (ti). Since (3) is violated for y∗i ∈ Y
f
i , (4) implies

that t̂i ∈ βk+1
i (ti). Since the triplet

(
i, ti, t̂i

)
∈ I × Ti × βi (ti) was chosen arbitrarily,

we conclude that β ⊆ βk+1. By the principle of mathematical induction, it holds

that β ⊆ βk for all k ≥ 0. Since
(
βk
)
k≥0

converges to β∗ ∈ B, and from the proof

of Lemma 2 we know that βk+1 ⊆ βk for all k ≥ 0, we have that β ⊆ β∗. Since f

satisfies IIM on T , it follows that β∗ is an acceptable deception profile on T for f ,

and so β is also an acceptable deception profile on T for f , which is a contradiction.

Assume f is IRM on T . Assume, to the contrary, that β∗ ∈ B is not acceptable on

T for f . Since f is IRM, it follows that there exists (i, ti, t
′
i) ∈ I×Ti×β∗i (ti) such that

for all ψi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆β∗−i

(
Θ× T−i × T̂−i

)
, there exists y∗i ∈ Y

f
i

such that (3) is satisfied. Recall that in the proof of Lemma 2 we have shown that

βk+1 ⊆ βk for all k ≥ 0 and that β∗ is the limit point of
(
βk
)
k≥0

. Since t′i ∈ β∗i (ti),

(4) implies that there exists νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆β∗−i

(
Θ× T−i × T̂−i

)
such that

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
f
(
t̂i, t̂−i

)
, θ
)
≥∑

(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
y∗i
(
t̂−i
)
, θ
)

for all y∗i ∈ Y
f
i , yielding a contradiction.

Any SCF satisfying our condition on T is incentive compatible on T . The condition
can be stated as follows.

8Recall that Y f is a nonempty metrizable subspace.
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Definition 7. f : T → ∆ (A) incentive compatible on T if for all i ∈ I and all ti ∈ Ti,

∑
(θ,t−i)∈Θ×T−i

κ (ti) [θ, t−i]ui (f (ti, t−i) , θ) ≥
∑

(θ,t−i)∈Θ×T−i

κ (ti) [θ, t−i]ui (f (t′i, t−i) , θ)

for all ti ∈ Ti.

Theorem 3. f : T → ∆ (A) satisfies IIM on T implies that f is incentive compatible

on T .

Proof. It follows from Theorem 2 and Lemma 3 of Oury and Tercieux (2012).

IV. A full characterization

Before stating and proving our characterization result, let us briefly discuss why our

condition is sufficient for f to be ICR-implementable on T . To this end, we need

additional notation. Let T be any model. Fix any β ∈ B, and any i ∈ I. Let

∆β−i
(

Θ× T̂−i
)
be defined by

∆β−i
(

Θ× T̂−i
)

=

 ψi There exists νi (ti) ∈ ∆β−i
(

Θ× T−i × T̂−i
)

such that margΘ×T̂−iνi (ti) = ψi.

 (9)

Since for all t−i ∈ T−i, β̄−i (t−i) = T−i, it follows that ∆β̄−i
(

Θ× T̂−i
)

= ∆
(

Θ× T̂−i
)
.

The following definition is critical in the construction of our implementing mecha-

nism.

Definition 8. Let T be any model. For all β ∈ B and all i ∈ I, i ∈ I (β) if and only

if for all ψi ∈ ∆β−i
(

Θ× T̂−i
)
, there exist yi, ȳi ∈ Y f

i such that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
yi
(
t̂−i
)
, θ
)
>

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)
. (10)

The above definition says that i ∈ I (β) provided that for every belief ψi of player

i over Θ × T̂−i, there are mappings yi, ȳi ∈ Y f
i that may depend on his belief ψi

such that yi is strictly preferred to ȳi, given his belief ψi. A stronger, though more

14



desirable, definition would be to require that the mapping ȳi does not depend on

player i’s belief. The definition can be stated as follows.

Definition 9. Let T be any model. For all β ∈ B and all i ∈ I, i ∈ I∗ (β) if and only

if there exists ȳi ∈ Y f
i such that for all ψi ∈ ∆β−i

(
Θ× T̂−i

)
, there exists yi ∈ Y f

i

such that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
yi
(
t̂−i
)
, θ
)
>

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)
. (11)

Observe that Definition 9 is equivalent to Assumption 1 of Oury and Tercieux

(2012) when β = β̄. We show below that Definition 8 and Definition 9 are equivalent.

Lemma 3. Let T be any model. For all β ∈ B, I∗ (β) = I (β).

Proof. Let T be any model. Fix any β ∈ B. Since it is clear that I∗ (β) ⊆ I (β),

let us show that I (β) ⊆ I∗ (β). Assume that i ∈ I (β). Definition 8 implies that

for all ψi ∈ ∆β−i
(

Θ× T̂−i
)
, there exist yψii , ȳ

ψi
i ∈ Y f

i such that (11) is satisfied.

Since ∆β−i
(

Θ× T̂−i
)
is a separable metric space, let ∆̂

(
Θ× T̂−i

)
= ∪k∈N {ψi,k} be

a countable, dense subset of ∆β−i
(

Θ× T̂−i
)
. Let ỹi ∈ Y f

i be a mapping defined by

ỹi =
∞∑
k=1

1

2k
ȳ
ψi,k
i .

For all k̄ ∈ N, let yψi,k̄i ∈ Y f
i be a mapping defined by

yk̄i =
∑
k 6=k̄

1

2k
ȳ
ψi,k
i +

1

2k̄
y
ψi,k̄
i .

Thus, for all k ∈ N, we have that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi,k
[
θ, t̂−i

]
ui
(
yki
(
t̂−i
)
, θ
)
>

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ỹi
(
t̂−i
)
, θ
)
,

where the strict inequality is guaranteed by (10). Since player i’s preference over
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lotteries are continuous and since, moreover, ∆̂
(

Θ× T̂−i
)
is a countable, dense subset

of ∆β−i
(

Θ× T̂−i
)
, it follows that i ∈ I∗ (β). Since the choice of i ∈ I (β) was

arbitrary, it follows that I (β) ⊆ I∗ (β).

In what follows, to avoid trivialities, we assume that I
(
β̄
)
6= ∅. Moreover, we will

also assume that I (β∗) = I. The reason is that if I (β∗) 6= I, part (ii) of the above

lemma implies that the planner’s objective is constant on Πi∈Ic(β∗)Ti ≡ TIc(β∗), where

Ic (β∗) is the complement of Ic (β∗). Therefore, the planner can, equivalently, focus

on the implementation of an SCF f̂ : Πi∈I(β∗)Ti → ∆ (A) defined, for all t ∈ Πi∈I(β∗)Ti,

by f̂ (t) = f (t, t′) for all t′ ∈ TIc(β∗). This is justified by the following lemmata.

Lemma 4. Assume that f : T → ∆ (A) satisfies IIM on T . For all k ≥ 0 and all

i ∈ I, i ∈ Ic
(
βk
)

=⇒ βk+1
i = βki = β̄i.

Proof. Assume that f : T → ∆ (A) satisfies IIM on T . Fix any k ≥ 0. Assume

that i ∈ Ic
(
βk
)
. Assume, to the contrary, βk+1

i 6= βki . Since Lemma 2 implies

that
(
βk
)
k≥0

is a monotonic decreasing sequence, it follows that there exists
(
ti, t̂i

)
such that t̂i ∈ βki (ti) and t̂i /∈ βk+1

i (ti). It follows from (4) that for all νi (ti) ∈
∆κ(ti)

(
Θ× T−i × T̂−i

)
∩∆βk−i

(
Θ× T−i × T̂−i

)
,

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
f
(
t̂i, t̂−i

)
, θ
)

<∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
ȳi
(
t̂−i
)
, θ
)

for some ȳi ∈ Y f
i . Therefore, for all ψi ∈ ∆βk−i

(
Θ× T̂−i

)
,

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
f
(
t̂i, t̂−i

)
, θ
)
<

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)

for some ȳi ∈ Y f
i . Let yi

(
t̂i, ·
)

= f
(
t̂i, ·
)
. Since f satisfies IIM on T , Theorem 2 and

Theorem 3 imply that f is incentive compatible on T . This implies that yi
(
t̂i, ·
)
∈ Y f

i .

Definition 8 implies that i ∈ I
(
βk
)
, yielding a contradiction.

Finally, let us show that βk+1
i = βki = β̄i. Assume, to the contrary, that βk+1

i =

βki 6= β̄i. Since Lemma 2 implies that
(
βki
)
k≥0

is a decreasing monotonic sequence, it
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follows that there exists k̂ such that 0 < k̂ ≤ k such that β k̂i ⊆ β k̂−1
i and β k̂i 6= β k̂−1

i .

It follows that β k̂i (ti) ⊆ β k̂−1
i (ti) and β k̂i (ti) 6= β k̂−1

i (ti) for some ti ∈ Ti, and so

t̂i ∈ β k̂−1
i (ti) and ti /∈ β k̂i (ti) for some t̂i, ti ∈ Ti. (4) implies that there exists ȳi ∈ Y f

i

such that

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
f
(
t̂i, t̂−i

)
, θ
)

<∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
ȳi
(
t̂−i
)
, θ
)

for all νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩ ∆βk̂−1

−i

(
Θ× T−i × T̂−i

)
. By definition of

∆βk̂−1
−i

(
Θ× T̂−i

)
in (9), it follows that there exists ȳi ∈ Y f

i such that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
f
(
t̂i, t̂−i

)
, θ
)
<

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)

for all ψi ∈ ∆βk̂−1
−i

(
Θ× T̂−i

)
. Let yi

(
t̂i, ·
)

= f
(
t̂i, ·
)
. Since f satisfies IIM on T ,

Theorem 2 and Theorem 3 imply that f is incentive compatible on T . This implies

that yi
(
t̂i, ·
)
∈ Y f

i . Definition 8 implies that i ∈ I
(
β k̂−1

)
. Since Lemma 2 implies

that
(
βki
)
k≥0

is a decreasing monotonic sequence and since, moreover, k̂ is such that

0 < k̂ ≤ k, it follows that there exist ȳi, yi
(
t̂i, ·
)
∈ Y f

i such that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
f
(
t̂i, t̂−i

)
, θ
)
<

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)

for all ψi ∈ ∆βk−i

(
Θ× T̂−i

)
⊆ ∆βk̂−1

−i

(
Θ× T̂−i

)
. Defintion 8 implies that i ∈ I

(
βk
)
,

which is a contradiction. Thus, βk+1
i = βki = β̄i.

Lemma 5. Assume that f : T → ∆ (A) satisfies IIM on T .

(i) If I
(
β̄
)

= ∅, then f is constant.9

(ii) If I (β∗) 6= I, then for all i ∈ Ic (β∗), all t−i ∈ T−i and all ti, t′i ∈ Ti, f (ti, t−i) =

f (t′i, t−i).

9f is constant if for all t, t′ ∈ T , f (t) = f (t′).
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Proof. Assume that f : T → ∆ (A) satisfies IIM on T . To show part (i), assume

that I
(
β̄
)

= ∅. If β∗ = β̄, then β̄ is an acceptable deception profile on T for f .

This implies that f is constant. Thus, the complete the proof, let us show that

β∗ = β̄. Assume, to the contrary, that β∗ 6= β̄. Then, there exists (i, ti) ∈ I × Ti
such that β∗i (ti) 6= Ti = β̄i (ti). Since β∗i (ti) ⊆ β̄i (ti) = Ti, it follows that there

exists t̂i ∈ β̄i (ti) = Ti such that t̂i /∈ β∗i (ti). Since β∗ is the limit point of
(
βk
)
k≥0

and since, by Lemma 2, β∗ ⊆ βk for all k ≥ 0, it follows from (4) and the fact that

β0
i (ti) = β̄i (ti) that there exists k + 1 such that t̂i /∈ βk+1

i (ti), t̂i ∈ βki (ti) and for all

νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆βk−i

(
Θ× T−i × T̂−i

)
,

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
f
(
t̂i, t̂−i

)
, θ
)

<∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
ȳi
(
t̂−i
)
, θ
)

for some ȳi ∈ Y f
i . Since ∆βk−i

(
Θ× T−i × T̂−i

)
⊆ ∆β̄−i

(
Θ× T−i × T̂−i

)
= ∆

(
Θ× T−i × T̂−i

)
,

we can write that for all ψi ∈ ∆
(

Θ× T̂−i
)
,

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
f
(
t̂i, t̂−i

)
, θ
)
<

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)

for some ȳi ∈ Y f
i . Let yi

(
t̂i, ·
)

= f
(
t̂i, ·
)
. Since f satisfies IIM on T , Theorem 2 and

Theorem 3 imply that f is incentive compatible on T . This implies that yi
(
t̂i, ·
)
∈ Y f

i .

Definition 8 implies that i ∈ I
(
β̄
)
, yielding a contradiction. This completes the proof

of part (i).

Let us show part (ii). Assume that I (β∗) 6= I. Suppose that β∗i = β̄i for all

i ∈ Ic (β∗). Since f satisfies IIM on T , it follows that β∗ is an acceptable deception

profile on T for f . Fix any i ∈ Ic (β∗) and any ti ∈ Ti. Since β∗i = β̄i, we have that

β∗i (ti) = β̄i (ti) = Ti. Since f satisfies IIM on T , we have that for all t−i ∈ T−i,

f (t′i, t−i) = f (t′′i , t−i) for all t′i, t′′i ∈ β∗i (ti) = β̄i (ti) = Ti. Since the choice of i ∈
Ic (β∗) was arbitrary, the statement of part (ii) follows if we show that β∗i = β̄i for

all i ∈ Ic (β∗). To this end, fix any i ∈ Ic (β∗). Assume that β∗i 6= β̄i. Then, there

exists ti ∈ Ti such that β∗i (ti) 6= Ti = β̄i (ti). A contradiction can be derived by using
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the same reasoning used in part (i). This completes the proof of part (ii).

The following result is useful in defining Rule 3 of the mechanism.

Lemma 6. Let T be any model. For all i ∈ I (β∗), there exists ŷi ∈ ∆ (A) such that

for all φi ∈ ∆ (Θ), there exists yi ∈ ∆ (A) such that

∑
θ∈Θ

φi (θ)ui (yi, θ) >
∑
θ∈Θ

φi (θ)ui (ŷi, θ) . (12)

Proof. Fix any i ∈ I (β∗). Lemma 3 implies that i ∈ I∗ (β∗). Definition 9 implies

that there exists ȳi ∈ Y f
i such that for all ψi ∈ ∆β∗−i

(
Θ× T̂−i

)
, there exists yi ∈ Y f

i

such that (11) holds. Since βt ⊆ β∗, it follows that there exists ȳi ∈ Y f
i such that for

all ψi ∈ ∆βt−i

(
Θ× T̂−i

)
, there exists yi ∈ Y f

i such that (11) holds. Fix any ti ∈ Ti.

Observe that φi ◦
(
margT−iκ (ti)

)
∈ ∆βt−i

(
Θ× T̂−i

)
for all φi ∈ ∆ (Θ). Therefore, it

holds that

∑
(θ,t̂−i)∈Θ×T̂−i

(
φi [θ]

(
margT−iκ (ti)

[
t̂−i
])) [

ui
(
yi
(
t̂−i
)
, θ
)
− ui

(
ȳi
(
t̂−i
)
, θ
)]
> 0.

By setting

yi =
∑

t̂−i∈T̂−i

(
margT−iκ (ti)

[
t̂−i
])
yi
(
t̂−i
)

and

ŷi =
∑

t̂−i∈T̂−i

(
margT−iκ (ti)

[
t̂−i
])
ȳi
(
t̂−i
)
,

and by noting that yi, ŷi ∈ ∆ (A), the inequality in (12) follows for i. Since the choice

of i ∈ I (β∗) was arbitrary, the statement follows.

Let T be any model. Since I (β∗) = I and since Lemma 6 guarantees the existence

of the lottery ŷi ∈ ∆ (A) for all i ∈ I, let us define the lottery ŷ by

ŷ =
1

I

∑
i∈I

ŷi.
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Given the sequence
(
βk
)
k≥0

, for every i ∈ I, let k (i) be the lowest integer such

that i ∈ I∗
(
βk(i)

)
\I∗

(
βk(i)−1

)
. For player i ∈ I∗

(
βk(i)

)
\I∗

(
βk(i)−1

)
, Definition

11 implies that there exists ȳi ∈ Y f
i satisfying (11). Let us denote ȳi by ȳβ

k(i)

i .

Since ȳβ
k(i)

i ∈ Y f
i,s, we can choose an ε > 0 sufficiently small such that the mapping

yβ
k(i)

i : T−i → ∆ (A) defined by

yβ
k(i)

i (t−i) = (1− ε) ȳβ
k(i)

i (t−i) + εŷ (13)

is such that yβ
k(i)

i ∈ Y f
i,s.

Let us now define the mechanismM. For all i ∈ I, let

Mi = M1
i ×M2

i ×M3
i ×M4

i ,

where

M1
i = Ti, M2

i = N, M3
i = Y ∗i and M4

i = ∆∗ (A) ,

where N is the set of natural numbers, Y ∗i is a countable, dense subset of Y f
i , and

∆∗ (A) is a countable, dense subset of ∆ (A). For all m ∈ M , let g : M → ∆ (A) be

defined as follows.

Rule 1 : If m2
i = 1 for all i ∈ I, then g (m) = f (m1).

Rule 2 : For all i ∈ I, if m2
j = 1 for all j ∈ I\ {i} and m2

i > 1, then

g (m) = m3
i

(
m1
−i
)(

1− 1

1 +m2
i

)
⊕ yβ

k(i)

i

(
m1
−i
)( 1

1 +m2
i

)
, (14)

where yβ
k(i)

i ∈ Y f
i,s is defined in (13).

Rule 3 : Otherwise, for each i ∈ I, m4
i is picked with probability 1

I

(
1− 1

1+m2
i

)
and ŷi

is picked with probability 1
I

(
1

1+m2
i

)
; that is,

g (m) =
1

I

[
m4
i

(
1− 1

1 +m2
i

)
⊕ ŷi

(
1

1 +m2
i

)]
, (15)
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where ŷi is specified by Lemma 6.

Suppose that f satisfies IIM on T . In what follows, we prove that M ICR-

implements f on T and that M satisfies the EBRP. The following lemmata will

help us to complete the proof.

Lemma 7. BNE (U (M, T )) 6= ∅.

Proof. For all i ∈ I, let σi : Ti → Mi be defined by σi (ti) = (ti, 1, ·, ·). For all i ∈ I
and all ti ∈ Ti, let πi (ti) ∈ ∆ (Θ× Ti ×M−i) be defined by

πi (ti) [θ, ti,m−i] = κ (ti) [θ, t−i] δσ−i(t−i) [m−i] ,

where δσ−i(t−i) is the dirac measure on {σ−i (t−i)}. By construction, for all ti ∈ Ti

and all (θ, t−i,m−i) ∈ Θ × Ti × M−i, πi (ti) [θ, ti,m−i] > 0 =⇒ m−i = σ−i (t−i).

Moreover, by construction and Rule 1, for all i ∈ I and all ti ∈ Ti,

∑
(θ,m−i)∈Θ×M−i

margΘ×M−iπi (ti) [θ,m−i]ui (g (σi (ti) ,m−i) , θ)

=
∑

(θ,t−i)∈Θ×T−i

κ (ti) [θ, t−i]ui (f (ti, t−i) , θ) .

Finally, by definition of g and the fact that f is incentive compatible on T (Theorem

3), it follows that for all i ∈ I and all ti ∈ Ti, Supp(σi (ti)) ⊆ BRi

(
margΘ×M−iπi|M

)
,

and so σ ∈ BNE (U (M, T )).

Before proving the following lemma, let us introduce the following definitions. For

all β ∈ B and all i ∈ I, define Σβi
i : Ti → 2Mi\ {∅} by

Σβi
i (ti) =

{
mi ∈Mi|m1

i ∈ βi (ti)
}
, (16)

and define Σ̃βi
i : Ti → 2Mi\ {∅} by

Σ̃βi
i (ti) =

{
mi ∈ Σβi

i (ti) |m2
i = 1

}
. (17)

It can be checked that Σβ, Σ̃β ∈ SM,T .
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Lemma 8. For all k ≥ 0, all i ∈ I
(
βk
)
and all πi ∈ ∆ (Θ× T−i ×M−i), if

mi ∈ BRi

(
margΘ×M−iπi|M

)
(18)

and

πi ∈ ∆Σ
βk−i
−i (Θ× T−i ×M−i) ,

then m2
i = 1 and

πi ∈ ∆Σ̃
βk−i
−i (Θ× T−i ×M−i) .

Proof. Fix any k ≥ 0 and any i ∈ I
(
βk
)
. Suppose that πi ∈ ∆Σ

βk−i
−i (Θ× T−i ×M−i)

and that mi ∈ BRi

(
margΘ×M−iπi|M

)
. Let us first show that m2

i = 0. Assume, to

the contrary, that m2
i > 0. Let us proceed according to whether Rule 2 applies or

Rule 3 applies. Before we begin the proof we argue that πi ∈ ∆Σ
βk−i
−i (Θ× T−i ×M−i)

implies that

∑
θ∈Θ

∑
t−i∈T−i

∑
m−i∈Σ̃

βk−i
−i (t−i)

πi(ti)[θ, t−i,m−i]

︸ ︷︷ ︸
Prob[Rule2]

+
∑
θ∈Θ

∑
t−i∈T−i

∑
m−i∈Σ̃

βk−i,c
−i (t−i)

πi(ti)[θ, t−i,m−i]

︸ ︷︷ ︸
Prob[Rule3]

= 1

(19)

For every i, ti, define νi(ti) ∈ ∆(Θ× T−i ×M1
−i) as follows:

νi(ti)[θ, t−i,m
1
−i] =

∑
m−i∈Σ̃

βk−i
−i (t−i)[m1

−i]

πi(ti)[θ, t−i,m−i]

Prob[Rule2]
(20)

Notice that since πi ∈ ∆Σ
βk−i
−i (Θ× T−i ×M−i) implies that νi(ti) ∈ ∆βk−i(Θ× T 1

−i×
M1
−i). Let ψi = margΘ×M1

−i
νi(ti). Since νi(ti) ∈ ∆βk−i(Θ× T 1

−i ×M1
−i), it holds that

ψi ∈ ∆βk−1

(Θ×M1
−i) (21)

Define φi(θ) ∈ ∆(Θ) as follows:
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φi(θ) =

∑
t−i∈T−i

∑
m−i∈Σ̃

βk−i,c
−i (t−i)

πi(ti)[θ, t−i,m−i]

Prob[Rule3]
(22)

The utility of mi under the beliefs margΘ×M−iπi denoted by Ui(mi, πi) is given by

Ui(mi, πi) = α
∑
θ,t−i

ψi(θ, t−i)ui

[(
1− 1

m2
i + 1

)m3
i (t−i)⊕

1

m2
i + 1

y
βki
i (t−i)

)
, θ
]

+ (1− α)
∑
θ

φi(θ)ui

[(
1− 1

m2
i + 1

)m4
i ⊕

1

m2
i + 1

ŷi

)
, θ
] (23)

where α = Prob[Rule2]. Since ψi ∈ ∆βk−i(Θ × T̂−i). By Definition 10, there exists

y(·) ∈ Yi such that

∑
θ,t̂−i

ψi(θ, t̂−i)ui(y(t̂−i), θ) >
∑
θ,t̂−i

ψi(θ, t̂−i)ui(y
βi
i (t̂−i), θ). (24)

Lemma 6 implies that there exists yi ∈ ∆(A) such that

∑
θ∈Θ

φi(θ)ui(yi, θ) >
∑
θ∈Θ

φi(θ)ui(ŷi, θ) (25)

Since mi ∈ BRi(margΘ×M−iπi), we can conclude that

∑
θ,t̂−i

ψi(θ, t̂−i)ui(m
3
i (t̂−i), θ) ≥

∑
θ,t̂−i

ψi(θ, t̂−i)ui(y(t̂−i), θ) >
∑
θ,t̂−i

ψi(θ, t̂−i)ui(y
βi
i (t̂−i), θ).

(26)

∑
θ∈Θ

φi(θ)ui(m
4
i , θ) ≥

∑
θ∈Θ

φi(θ)ui(yi, θ) >
∑
θ∈Θ

φi(θ)ui(ŷi, θ). (27)

26 and 26 implies that Ui(mi, πi) is strictly increasing in m2
i , which is a contradic-

tion. Thus, we have that m2
i = 1.

Now we show that πi ∈ ∆Σ̃
βk−i
−i (Θ× T−i ×M−i). Suppose not then either Rule 2
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applies with some other agent j 6= i or Rule 3 applies. We focus on the case when

only Rule 2 applies. By the definition of g, for every (θ,m−i) ∈ supp(marg
Θ×M−i

πi), it

holds that

g(·,m−i) = (1− 1

m2
j + 1

)m3
j(m

1
−j) +

1

m2
j + 1

y
βj
j (m1

−j) (28)

for some j 6= i, where

yβ
j(i)

j (j−i) = (1− ε) ȳβ
k(j)

j (t−j) + εŷ (29)

Define g̃ as

g̃(·,m−i) = (1− 1

m2
j + 1

)m3
j(m

1
−j) +

1

m2
j + 1

ỹ
βj
j (m1

−j) (30)

where ỹβ
j(i)

j (t−j) = (1− ε) ȳβ
k(j)

j (t−j) + εyi. Define m̂4
i as follows

m̂4
i =

∑
margΘ×M−iπi(θ,m−i)g̃(·,m−i). (31)

Since the agent obtains strictly higher utility under g̃(·,m−i) than g(·,m−i) for

every (θ,m−i) ∈ supp(marg
Θ×M−i

πi), agent i can announce a message m̂i with m̂4
i as

defined above and m̂2
i > 1. In this case Rule 3 is triggered and the agent obtains

strictly higher utility. Since the gain is obtained point wise in the supp(marg
Θ×M−i

πi), we

arrive at a contradiction.

Lemma 9. For all k ≥ 0, all i ∈ I
(
βk
)
and all ti ∈ Ti, if mi ∈ Sk+1,M,T

i (ti), then

m2
i = 1 and m1

i ∈ βk+1
i (ti).

Proof. Let us proceed by induction over k. Let k = 0. Assume that i ∈ I (β0)

and fix any ti ∈ Ti. Assume that mi ∈ S1,M,T
i (ti). We show that m2

i = 1 and

m1
i ∈ β1

i (ti). Since mi ∈ S1,M,T
i (ti), it follows from (1) that there exists πi ∈

∆κ(ti) (Θ× T−i ×M−i) ∩ ∆Σ
β0
−i
−i (Θ× T−i ×M−i), where Σ

β0
−i
−i = S0,M,T

−i = M−i, such

that mi ∈ BRi

(
margΘ×M−iπi|M

)
. Since mi ∈ BRi

(
margΘ×M−iπi|M

)
and πi ∈
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∆Σ
β0
−i
−i (Θ× T−i ×M−i), Lemma 8 implies that m2

i = 1 and

πi ∈ ∆Σ̃
β0
−i
−i (Θ× T−i ×M−i) .

Thus, we have that

∑
t−i∈T−i

∑
m−i∈Σ̃

β0
−i
−i (t−i)

πi [θ, t−i,m−i] = 1.

Let us define νi (ti) ∈ ∆
(

Θ× T−i × T̂−i
)
be defined by

νi (ti)
[
θ, t−i,m

1
−i
]

=
∑

m−i∈Σ̃
β0
−i
−i (m1

−i)

πi [θ, t−i,m−i] . (32)

By definition, we can see that νi (ti) ∈ ∆κ(ti)
(
Θ× T−i ×M1

−i
)
∩∆β0

−i
(
Θ× T−i ×M1

−i
)
.

Since m2
1 = 1, then Rule 1 applies with probability 1, and so

∑
(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi [θ,m−i]

)
ui (g (mi,m−i) , θ) =∑

(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi [θ,m−i]

)
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)
,

(33)

and so, by (32),

∑
(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi [θ,m−i]

)
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)

=∑
(θ,m1

−i)∈Θ×M1
−i

(
margΘ×M1

−i
νi (ti)

[
θ,m1

−i
])
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)
.

(34)

Moreover, since mi ∈ BRi

(
margΘ×M−iπi|M

)
and since, moreover, player i can never

induce Rule 3, it follows from the definition of g that

∑
(θ,m1

−i)∈Θ×M1
−i

(
margΘ×M1

−i
νi (ti)

[
θ,m1

−i
])
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)
≥∑

(θ,m1
−i)∈Θ×M1

−i

(
margΘ×M1

−i
νi (ti)

[
θ,m1

−i
])
ui
(
m3
i

(
m1
−i
)
, θ
)
,

(35)

for all m3
i ∈ Y ∗i . Since Y ∗i is a countable, dense subset of Y f

i and since ui is contin-
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uous, we have that the inequality in (35) holds for all m3
i ∈ Y f

i . Since νi (ti) ∈
∆κ(ti)

(
Θ× T−i ×M1

−i
)
∩ ∆β0

−i
(
Θ× T−i ×M1

−i
)
and since, moreover, the inequal-

ity in (35) holds for all m3
i ∈ Y f

i and m1
i ∈ β0

i (ti) = Ti, it follows from (4) that

m1
i ∈ β1

i (ti). Since the choice of (i, ti) was arbitrary, we have that the stament holds

for all i ∈ I
(
βk
)
and all ti ∈ Ti when k = 0.

Suppose that for some k ≥ 0, and for all i ∈ I
(
βk
)
and all ti ∈ Ti, if mi ∈

Sk+1,M,T
i (ti), then m2

i = 1 and m1
i ∈ βk+1

i (ti). Fix any i ∈ I
(
βk+1

)
and any ti ∈ Ti.

Suppose that mi ∈ Sk+2,M,T
i (ti). We show that m2

i = 1 and m1
i ∈ βk+2

i (ti).

Sincemi ∈ Sk+2,M,T
i (ti), it follows from (1) that there exists πi ∈ ∆κ(ti) (Θ× T−i ×M−i)∩

∆Sk+1,M,T
−i (Θ× T−i ×M−i) such that mi ∈ BRi

(
margΘ×M−iπi|M

)
. To apply Lemma

8, we need to show that πi ∈ ∆Σ
βk+1
−i
−i (Θ× T−i ×M−i). This can be done by showing

that

Sk+1,M,T
−i ⊆ Σ

βk+1
−i
−i . (36)

Fix any j ∈ I\ {i}. We proceed according to whether j ∈ I
(
βk
)
or not.

Suppose that j ∈ I
(
βk
)
. Fix any tj ∈ Tj and any mj ∈ Sk+1,M,T

j (tj). The

inductive hypothesis implies that m2
j = 1 and m1

j ∈ βk+1
j (tj). It follows from (16)

that mj ∈ Σ
βk+1
j

j (tj). Since the choice of (j, tj) ∈ I
(
βk
)
× Tj was arbitrary, it follows

that Sk+1,M,T
j ⊆ Σ

βk+1
j

j for all j ∈
(
I ∩ I

(
βk
))
\ {i}.

Suppose that j ∈ Ic
(
βk
)
. Since f satisfies IIM on T , Lemma 4 implies that

βk+1
j = βkj = β̄j. Then, it follows from (16) that mj ∈ Σ

βk+1
j

j (tj). Again, since the

chocie of j ∈ Ic
(
βk
)
was arbitrary, we conclude that (36) holds.

Sincemi ∈ BRi

(
margΘ×M−iπi|M

)
and since πi ∈ ∆Σ

βk+1
−i
−i (Θ× T−i ×M−i), Lemma

8 implies that m2
i = 1 and

πi ∈ ∆Σ̃
βk+1
−i
−i (Θ× T−i ×M−i) .

Thus, we have that

∑
t−i∈T−i

∑
m−i∈Σ̃

βk+1
−i
−i (t−i)

πi [θ, t−i,m−i] = 1.
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Let us define νi (ti) ∈ ∆
(

Θ× T−i × T̂−i
)
be defined by

νi (ti)
[
θ, t−i,m

1
−i
]

=
∑

m−i∈Σ̃
βk+1
−i
−i (m1

−i)

πi [θ, t−i,m−i] . (37)

By definition, we can see that νi (ti) ∈ ∆κ(ti)
(
Θ× T−i ×M1

−i
)
∩∆βk+1

−i
(
Θ× T−i ×M1

−i
)
.

Sincem2
1 = 1, then Rule 1 applies with probability 1, and so the equality in (33) holds,

and so, by (37),

∑
(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi [θ,m−i]

)
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)

=∑
(θ,m1

−i)∈Θ×M1
−i

(
margΘ×M1

−i
νi (ti)

[
θ,m1

−i
])
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)
.

Moreover, since mi ∈ BRi

(
margΘ×M−iπi|M

)
and since, moreover, player i can never

induce Rule 3, it follows from the definition of g that

∑
(θ,m1

−i)∈Θ×M1
−i

(
margΘ×M1

−i
νi (ti)

[
θ,m1

−i
])
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)
≥∑

(θ,m1
−i)∈Θ×M1

−i

(
margΘ×M1

−i
νi (ti)

[
θ,m1

−i
])
ui
(
m3
i

(
m1
−i
)
, θ
)
,

(38)

for all m3
i ∈ Y ∗i . Since Y ∗i is a countable, dense subset of Y f

i and since ui is con-

tinuous, we have that the inequality in (38) holds for all m3
i ∈ Y f

i . Since νi (ti) ∈
∆κ(ti)

(
Θ× T−i ×M1

−i
)
∩ ∆βk+1

−i
(
Θ× T−i ×M1

−i
)
and since, moreover, the inequal-

ity in (38) holds for all m3
i ∈ Y f

i , and m1
i ∈ βk+1

i (ti), it follows from (4) that

m1
i ∈ βk+1

i (ti), as we sought. Since the choice of (i, ti) was arbitrary, we have that

the stament holds for all i ∈ I
(
βk+1

)
and all ti ∈ Ti.

By the principle of mathematical induction, we conclude that the statement holds

for all k ≥ 0.

Let us show thatM ICR-implements f on T . Lemma 7 implies that for all i ∈ I
and ti ∈ Ti, SM,T

i (ti) 6= ∅. Thus, part (i) of Definition 4 is satisfied. Moreover,

Lemma 7 also implies that M satisfies the EBRP. Recall that by Lemma 5, we are

under the assumption that I (β∗) = I. Moreover, recall that Lemma 2 implies that(
βk
)
k≥0

is a monotonic decreasing sequence converging to β∗ ∈ B. Fix any t ∈ T and
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any m ∈ SM,T (t). Lemma 9 implies that m2
i = 1 and m1

i ∈ β∗i (ti) for all i ∈ I (β∗).

Rule 1 implies that g (m) = f (m1). Since f satisfies IIM on T , it follows that β∗ is an
acceptable deception on T for f . This implies that f (m1) = f (t). Since the choice

of (t,m) ∈ T × SM,T (t) was arbitrary, we conclude that part (ii) of 4 is satisfied.

Thus, f is ICR-implementable on T .
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