On the Value of Information Structures in Stochastic Games (Daehyun Kim, Ichiro Obara, 2021)

Report by Michael Tam Pak Hang

Content

- 2 Answer from authors
- Importance and Application
- 4 Model

Question of the Paper

• In this paper, the authors try to answer the following question: "How do the information structures affect the size of the set of limit Perfect Public Equilibrium (PPE) payoffs in stochastic games with imperfect public monitoring?"

• Rough idea:

- In stochastic games with imperfect public monitoring, each player cannot observe their opponents' actions after each stage game.
- Instead, players observe a public signal and the next state which are generated according to some "distribution function" related to players' actions and the current state after the stage game.
- This paper compares the size of the set of equilibrium payoffs when some "distribution function" is more "informative" than others.

Answer from authors

- The authors introduce a novel notion called "weighted garbling" for comparing information structures.
- They shows that if one information structure is a weighted garbling of another information structure, then the size of the set of limit PPE payoff of the former is weakly smaller than that of the latter.

Importance and Application

- Stochastic games with imperfect public monitoring are important tools for studying long-term relationships between economic agents when actions are not observable.
- e.g. Repeated partnership, Cournot oligopolists, principal-agent problem, etc. can be studied under stochastic game framework.
- The set of payoffs that can be supported by PPE under fixed information structure have been well studied in the last century.
- However, It is also important to study how the changes in information structures affect the equilibrium payoff set.
- The notion weighted garbling allows comparison of larger class of information structures. For example, some information structures are not comparable in Blackwell sense¹ are comparable by weighted garbling.

¹Check "The Economics of Uncertainty and Information" Chapter 4 by Jean-Jacques Laffont if you are interested.

Environment of Stochastic Game

- S is a finite set of states.
- $I = \{1, 2, ... N\}$ is a finte set of players.
- A_i is a finite action set of player i.
- $A = \prod_{i \in I} A_i$ is the set of action profiles.
- Each period k starts with a state s^k ∈ S. After action profile a ∈ A is chosen, the next state s^{k+1} is drawn according to q(·|s^k, a) ∈ Δ(S).
- $u_i : A \times S \rightarrow \mathbb{R}$ is player i's utility.
- Idea: At different states, players play different games. The outcome of the game in the current period affects what game to be play in the next period. So, when S is a singleton, it is a repeated game.

Information Structures

- At each period k, players cannot observe their opponents' actions.
- Instead, players observe a public signal $y \in Y$, where $|Y| < \infty$.
- y is drawn according to $f(\cdot|s^k, s^{k+1}, a) \in \Delta(Y)$.
- For examples, 2 partners cannot see whether their partner's actions e.g. works or shirks. However, they can observe a public signal depending on their actions e.g. the profit of their company.
- An Information Structure is a pair $\pi = (f, Y)$.
- π and q together defines $p \in \Delta(S \times Y)$ defined by

$$p(s^{k+1}, y|s^k, a) = f(y|s^k, s^{k+1}, a)q(s^{k+1}|s^k, a)$$

for all $(s^{k+1}, y) \in S \times Y$.

Perfect Public Equilibrium (PPE)

• A history of player i at period k is

$$h_i^k = (s^0, a_i^0, y^0, ..., s^{k-1}, a_i^{k-1}, y^{k-1}, s^k, a_i^k, y^k)$$

• A public history at period k is

$$h^{k} = (s^{0}, y^{0}, ..., s^{k-1}, y^{k-1}, s^{k}, y^{k})$$

- A strategy of player i is a mapping from the set of all possible histories to A_i (or Δ(A_i) for behavioral strategies).
- A strategy of player i is **public** if player i's private action does not affect the outcome of the strategy.
- A strategy profile is a **PPE** if it is a Nash equilibrium of the continuation game after any public histories.²

²Check Fudenberg, Levine and Maskin (1994) if you are interested.

Weighted Garbling

For simplicity, I focus on special case: |S| = 1 i.e. repeated game.The notations presented previously still applies except ignoring the states.³

Definition

An information structure $\pi = (f, Y)$ is a weighted garbling of $\pi' = (f', Y')$ if there exists $\phi : Y' \to \Delta(Y)$ and for each $y' \in Y'$, a constant $\gamma^{y'} \ge 0$ such that for all $a \in A$,

$$f(y|a) = \sum_{y' \in Y'} \gamma^{y'} \phi(y|y') f'(y'|a), \quad \forall y \in Y,$$

where
$$\sum_{y' \in Y'} \gamma^{y'} f'(y'|a) = 1.$$

³When there is no state transition, it is clear that p = f, p' = f'.

Weighted Garbling

- $\phi(\cdot|y')$ is the garbling to the public signals in Y by $y' \in Y$.
- $\gamma^{y'} f'(y'|a)$ is the weight put on the garbling by y'.
- Thus, for each y ∈ Y, f(y|a) is the weighted average of garbling by public signals in Y'.
- So, we can say $\pi(f, Y)$ is less informative than $\pi'(f', Y')$.

Example of weighted garbling

Consider a repeated 2-player partnership problem.

- $A_i = {Work(w), Shirk(s)}$ for i = 1, 2.
- $Y = \{g, b\}$ and $Y' = \{g, b, n\}$ where g, b, n stand for 'good', 'bad' and 'no' signals respectively.

•
$$f(g|ww) = f(b|\neg ww) = 0.5; f(b|ww) = f(g|\neg ww) = 0.5.$$

• $f'(g|ww) = f'(b|\neg ww) = 0.2$; $f'(b|ww) = f'(g|\neg ww) = 0.3$. So, no signal (*n*) is observed with probability 0.5.

• Let
$$\pi = (Y, f)$$
 and $\pi' = (Y', f')$.

- After some calculation, we can see π is a weighted garbling of π' .
- Intuition: Although no signal is observed half of the time under π' , π' provides strictly more informative signals than π in another half of the time.

Main Result

Theorem

Suppose $\pi = (Y, f)$ is a weighted garbling of $\pi'(Y', f')$. Then for each $\lambda \in \Lambda$, $k(\lambda, \pi) \leq k(\lambda, \pi')$ i.e. $H(\pi) \subseteq H(\pi')$.

- *H*(π) is the set of PPE payoff under information structure π when discount factor δ → 1.
- Roughly speaking, the theorem says an information structure that is a weighted garbling of another information structure has relatively fewer PPE payoffs when players are arbitrarily patient.

Discussion

- Can similar notion of garbling be extended to the information structures in repeated game with private monitoring?
- **2** Consider a principal-agent setting: 1 manager and a group of workers.
 - Manager can choose different monitoring structures (possibly costly) to induce the workers to exert effort.
 - Is it reasonable for the manager to compare monitoring structures by weighted garbling criterion?
 - What is the effect on the equilibrium payoff of the manager when he/she chooses a monitoring structure that is a weighted garbling of another monitoring structures?