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What is the question?

The techniques usedto solve stochastic gamesin discrete time often depend
crucially on the form of the underlying state process. The analysis of irreducible
games rely on convergence to a steady state distribution , whereas the analysis of

absorbing games often hinges on the fact that there is only one non-absorbing state.

Why should we care?
The techniquesinthis paper do not rely on any such properties, hence they are
applicable to stochasticgames with an arbitrary state process

A real world application?

In the global financial crisis, financial institutions were unable to raise sufficient
capital to meettheirshort-termliabilities because investors had lost confidence in
the financial sector. The past performance of the financial sector had led credit lines
to dry up and created an environmentwhere financial institutions were not able to
bridge short-term liquidity gapsin the usual way. The development of new
technologies by competingresearch institutions exhibits asimilar history-dependent
environment. The successful discovery of a new technology changes the research
environment forever: competing researchers will not be able to patentsimilarwork
anymore and any effort putinto such a discovery was exertedinvain. Itis impossible
to forecast the exact time of a financial crisis or the discovery of a new technology.
The occurrence of such a state change israndom and the likelihood depends on the
involved parties’ actions. A game-theoreticmodel thataccounts for these sudden
state changes is a stochasticgame. No deterministic-time dynamicgame can capture
these suddenand potentially drasticchangesin the environment.



What is the author’s answer?

Based on recent developmentsin continuous-time repeated games, this paper
provides a unifying framework for the analysis of stochastic games with imperfect
publicmonitoringin a continuous-time setting. The methodology is not limited to
irreducible games or absorbing gamesand it isapplicable to any stochastic game, as
long as the publicsignal satisfies Assumptions 1 and 2.

Assumption 1. For eachy €Y, every action profile a € A(y) has pairwise full rank.

Assumption 2. span M1y (a) L span M2 y(a)foreachy €Y and each a € A(y).
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How did the author get there? (1) Methodlogy

Definition 2.1. A (public) strateqgy A' of player i is an F-predictable process that takes
values in A'(S_). We denote by A = (A, A%) a (public) strategy profile.

Definition 2.2.
(i) Each player i receives an unobservable expected flow payoff ¢ : Y x A — R.6

(ii) Player i's discounted expected future payoff (or continuation value) under strategy
profile A at any time ¢ > 0 is given by
W{(S:, A) = [ re"”{”—”Eng [g*(Ss.AS) |.E] ds, (2)
J1F
where 7 > ( is the discount rate of both players and the distribution of (Ss)s>¢ is

determined uniquely by S; and (Ag)s>:-

(iii) A strategy profile A is a perfect public equilibrium (PPE) for discount rate r if for



Definition 2.3.

(i) A PPE A is a stationary Markov (perfect) equilibrium for initial state Sy if there
exists a map a* : Y — A with a.(y) € A(y) for every state y such that A = a*(S_).

(ii) A PPE is semi-stationary for initial state Sy if there exists a map a. : [J;—, V¥ — A
with a.(y1,...,yx) € A(yx) for any sequence of states of any length & such that

A= ﬂ'*(q ), where S, is the sequence of states visited up to and including time 1.

(iii) We denote by £M(r) and £9(r) the families of payoff pairs that are achievable in
stationary Markov and semi-stationary equilibria, respectively. Both of those are
without the use of a public randomization device. We denote by Ef (r) the family

of semi-stationary equilibrium payoffs with public randomization. Note that

EM(r) C E5(r) C Ef(r) C&(r)Ccyn.

every player i and all possible deviations A7,
WS, A) > Wi(S, (A, A7) ae,] (3)

where A~" denotes the strategy of player i’s opponent in profile A.

(iv) We denote the set of all payoff vectors that are achievable by a perfect public

equilibrium when the initial state is y and the discount rate is r by
Ey(r) == {-w cR? | there exists a PPE A with Wy(y, A) = w a.s.}.

We denote by £(r) the family (&,(r))

ey of equilibrium payoff sets.

7 COMPUTATION

In the terminology of Markov processes, a set of states )V, € ) is a communicating
class if each state within )}, can be reached from any other state in ), with positive
probability (either directly or indirectly). Computation of the family of equilibrium
payoff sets proceeds by communicating classes. Communicating classes of a Markov
process can be organized in a directed acyclic graph as illustrated in Figure 11."* A
communicating class ) is a direct predecessor class of Yy, denoted ), < Y, if some
state in )); can be reached directly from some state in ). If )}, < Vi, we also say that

YV, is a direct successor class of ). Consider a communicatingclass ), without direct



successor class, that is, a class at the end of the directed graph. Since no states outside

of V. can ever be reached, the subfamily (Ey(r)) of equilibrium payoff sets can be

EYe
computed from the algorithm in Proposition 4.9 \i‘izimut considering states in ). This
is particularly simple if V. = {y.} is a singleton, that is, y. is an absorbing state. The
continuation game is then just a repeated game and hence &, (r) can be computed with
Theorem 2 in Sannikov [29]. One can then proceed backwards in the directed graph:
consider a communicating class )’, for which all subfamilies of equilibrium payoff sets of
direct successor classes V,,, ..., Y., have been computed already. In the computation of
(53,(7'))y eyr incentives from state transitions to states in Vg := [J,_, V., do not need to
computed iteratively as in Proposition 4.9, but only incentives via state transitions within
the communicating class ) have to be accounted for in an iterative fashion. This becomes
again particularly simple if J' = {y'} is a singleton. Then &, (r) = B, ((£,(r)),ey,) can
be solved in a single application of Theorem 6.7 rather than an iterated application. We

refer to Section 8 in Bernard [4] for notes on the implementation of Theorem 6.7.
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Figure 11: Communicating classes of a stochastic game form a directed acyclic graph.

How did the author get there? (2) Intuition
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