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Abstract

We experimentally test a game theoretical model of researcher-evaluator in-

teraction à la Di Tillio, Ottaviani, and Sørensen (2017a). Researcher may strate-

gically manipulate sample selection using his private information in order to

achieve favourable research outcomes and thereby obtain approval from Evalua-

tor. Our experimental results confirm the theoretical predictions for Researcher’s

behaviour but find significant deviations from them about Evaluator’s behaviour.

However, comparative statics are mostly consistent with the theoretical predic-

tions. In the welfare analysis, we find that Researcher always benefits from the

possibility of manipulation, in contrast to the theoretical prediction that he some-

times is hurt by it. Consistent with theoretical predictions, Evaluator benefits

from the possibility of Researcher’s manipulation when she leans towards approval
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or is approximately neutral but is hurt by that possibility when she leans against

approval.

JEL codes: C72, C92, D83

Keywords: Persuasion bias, Research conduct, Manipulation, Sample selec-

tion, Experiment, Randomized controlled trials
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1 Introduction

Recently, across the scientific community, there has been heightened concerns about

ensuring the credibility and ethics of scientific research. This is in part prompted by in-

vestigative findings that spotlight problematic past and present practices pertaining to

research methods and conflicts of interest.1 In the effort to maintain and enhance credi-

bility of scientific research, economics has the potential to make a valuable contribution,

especially from the perspectives of incentive, information, and strategic interaction.

Conflicts of interest and career concerns are two important factors motivating re-

searchers to manipulate data collection during the experiment and misrepresent the

results and conclusions drawn from the experiments. For instance, in drug trials, a

researcher’s financial payoff is often dependent on whether or not the pharmaceutical

company’s drug gets approved. More generally, typical academic researchers would like

to produce positively significant findings, so that their research is deemed publishable

in an academic journal, a phenomenon often termed “publication bias.” Even though

much has been written on the nature of such deviation from the ideal ethical behaviour

of a truth-finding scientist,2 Di Tillio, Ottaviani, and Sørensen (2017a) are the first

to use a game theoretic model to quantify the effects of manipulations in randomized

controlled trials – how such manipulations affects the quality and usefulness of scien-

tific research. In this paper, we report results from an experiment that closely models

after their setup, and provide both optimistic and pessimistic answers to their central

question, namely, how such manipulations affect the evaluator’s and the researcher’s

expected payoffs.

Di Tillio, Ottaviani, and Sørensen (2017a) focus on randomized controlled trials

1In a New York Times article, O’Connor (2016) reported the finding by Kearns, Schmidt, and
Glantz (2016) that the sugar industry’s nutrition science funding diverted blame for heart diseases
from sugar to fat. Separately, failure to replicate results in some academic studies raised serious
questions about how journals and the whole of academia should safeguard against unreliable research
findings (Chang and Li 2017, Open Science Collaboration, 2015). Finally, studies have found evidence
of researchers manipulating data and methodology to obtain statistically significant results (Brodeur,
Lé, Sangnier, and Zylberberg 2016, Head, Holman, Lanfear, Kahn, and Jennions 2015, Simonsohn,
Nelson, and Simmons 2014). Such concerns, though serious, are distinct from other more egregious
violations of ethics of scientific research (Jump 2011, Kolata 2018).

2Glaeser (2008) offers one such discussion, who takes the view that researchers’ choosing variables
to maximize significance should not be viewed as “a great sin” and nor will it “magically disappear.”
Instead, he suggests that we should embrace what he calls the researcher initiative and in the meantime
deal with some of its negative effects uisng a variety of measures: just skepticism, subsidization of data
creation and transmission, and development of counteracting econometric techniques, citing the work
of Leamer (1983) as a promising example of the last approach.
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(RCT), which is the gold standard procedure to estimate the causal effect of an in-

tervention. They offer a concise introduction to the history of RCT, dating back to

biblical times and concluding with its modern adoption and efforts to improve its valid-

ity. In particular, much effort has been made to preserve true randomization of sample

selection and avoid researcher manipulation.3

Di Tillio, Ottaviani, and Sørensen (2017a) consider a model in which a researcher

designs a randomized controlled trial to convince an evaluator to give approval of his

finding. The evaluator must incur a cost to approve the finding and is only willing

to do so if the finding is significant enough. This cost can also be interpreted as the

level of skepticism of the evaluator or the relative desirability of a status quo option.

The researcher observes private information that enables him to vary how the trial is

run. Even though the evaluator does not observe the researcher’s private information,

she is aware of the ability of the researcher to manipulate the trial using such private

information. They consider three types of possible manipulations by the researcher in

conducting the RCT: selective sampling of subjects, selective assignment of subjects into

control and treatment groups, and selective reporting of experiment results. They find

that whether or not manipulation by a researcher would benefit the researcher and/or

the evaluator depends on the evaluator’s cost of acceptance. Therefore, manipulation

is not necessarily detrimental to the value of scientific research.

In this paper, we experimentally test a simplified version of Di Tillio, Ottaviani,

and Sørensen’s (2017a) model, where the researcher, after observing private information

about one of two sites, chooses one of them to run the trial.4 That is, our experiment

is exclusively focused on selective sampling. We follow Neyman (1923) and Rubin

(1974), who respectively pioneered and substantively developed the potential outcomes

approach adopted by Di Tillio, Ottaviani, and Sørensen (2017a). However, we deal with

an experimental setup where there is only uncertainty about the treatment outcome

but no uncertainty about the baseline outcome.

Selective sampling challenges the external validity of an experiment, in that the

outcome of the experiment is not a reliable predictor of the average treatment effect of

the population. As cited by Di Tillio, Ottaviani, and Sørensen (2017a), Allcott (2015)

shows that in the Opower energy conservation program, the initial 10 sites chosen by

the sponsoring company for the RCTs significantly overstate the average treatment

3See Imbens and Rubin (2015) and Rosenberger and Lachin (2015) for a more detailed discussion.
4Our experimental setup is also related to the theoretical framework of Hoffmann, Inderst, and

Ottaviani (2014), applied to a different context.
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effect for the next 101 sites. Thus, even with a large sample population, the outcomes

of the 10 initial trial sites are a poor indicator of the average treatment effect of the

policy on the general population.

We design our experiment to include environments both with and without the pos-

sibility of manipulation and under various acceptance costs of the evaluator. We find

that researchers’ behaviour is largely consistent with the equilibrium strategy as the-

ory predicts, but there is significant difference between evaluators’ behaviour and the

theoretical predictions. Nevertheless, comparing different treatments, the comparative

statics about evaluators’ behaviour largely bear out the theoretical predictions. Finally,

we conduct a welfare analysis and contrast our findings with the theoretical predictions

of Di Tillio, Ottaviani, and Sørensen (2017a). Our analysis is based on the subjects’

frequency of choices and the prior probabilities of our model setup, in order to have a

fair comparison across treatments.5 We find that the researcher always benefits from

manipulation, which is in contrast to the theoretical prediction that he only benefits

from manipulation from intermediate levels of acceptance cost and is hurt by manipu-

lation for low and moderately high levels of acceptance cost.6 The evaluator is better

off under manipulation for low and intermediate levels of acceptance cost but worse

off under moderately high levels of acceptance cost, which is mostly consistent with

theoretical predictions.

Other recent theoretical studies on scientific methods include those by Di Tillio,

Ottaviani, and Sørensen (2017b), Min (2017), and Yoder (2016). Di Tillio, Ottaviani,

and Sørensen (2017b) consider a more general framework of strategic sample selection

by a researcher. To the best of our knowledge, our paper is the first experimental study

on this topic.

Our paper is also related to the experimental literature on the economics of strategic

information transmission, which is based on the theoretical model initiated by Crawford

and Sobel (1982). Blume, Lai, and Lim (2017) provide an excellent survey of the liter-

ature. One recent paper that is somewhat related to ours is by Chung and Harbaugh

(2016), who evaluate whether disclosing bias of an expert would improve or worsen

the advice he provides to a decision maker. There has also been recent literature on

testing the Bayesian persuasion model of Kamenica and Gentzkow (2011) in the lab-

oratory,including papers by Au and Li (2018), Fréchette, Lizzeri, and Perego (2017)

5Because the realizations of random events are different in each session, the actual payoff is not a
good index for welfare comparison. Please refer to Section 5 for detailed explanations.

6When acceptance cost is extremely high, the evaluator would never approve the researcher’s finding.
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and Nguyen (2017).7 Fréchette, Lizzeri, and Perego (2017) design an experiment in

which a sender commits to a disclosure strategy before learning his private information

and with a certain probability gets to revise it after his private information is realized.8

Thus, they are able to encompass cheap talk, full Bayesian persuasion, as well as partial

commitment in their experiment. They show that the sender does benefit from com-

mitment, as theory predicts. However, they find that whether information is verifiable

matters for the informativeness of the sender’s messages even under Bayesian persua-

sion, which differs from theoretical predictions. This phenomenon appears to be caused

by the fact that the sender is unable to take advantage of silence or non-disclosure as

an informative message when information is verifiable. In addition, informativeness

decreases as commitment increases when information is verifiable and the opposite is

true when information is unverifiable. This is again broadly consistent with theoretical

predictions. While Fréchette, Lizzeri, and Perego (2017) instruct subjects to directly

choose an explicit strategy, Au and Li (2018) and Nguyen (2017) take the traditional

approach but design a game that is relatively easy for subjects to understand and

play. Nguyen’s (2017) design is closer to the canonical model of Bayesian persuasion

with a limited space of signals. She shows that as subjects accumulate experience, their

play approaches the theoretical predictions. Au and Li (2018), in contrast, allow the

receiver to learn the posteriors directly, so it simplifies the receiver’s inference prob-

lem. They focus on whether receiver’s response demonstrates evidence of reciprocity

concerns. A sender is punished for behaving in an “unfair” way, or tries to extract too

much surplus.

The rest of the paper proceeds as follows. In Section 2, we describe the model and

discuss the equilibrium and welfare when the sender does or does not posess private

information. In Section 3, we describe the design of the experiment. In Sections 4 and

5, we present the results on the researcher’s and the evaluator’s behaviours, and on

their welfare, respectively. In Section 6, we conclude.

7As Di Tillio, Ottaviani, and Sørensen (2017a) clearly articulate in their Conclusion section, their
theoretical model is different from the theoretical framework of Bayesian persuasion (Kamenica and
Gentzkow 2011, Rayo and Segal 2010, Kolotilin, Mylovanov, Zapechelnyuk, and Li 2017). Similarly,
our experimental setup is different from experiments on Bayesian persuasion. In particular, Bayesian
persuasion would allow Researcher to fully commit to a strategy, including one in which he reveals
nothing to Evaluator, while our experiment does not give Researcher that option.

8See also Jin, Luca, and Martin (2015) for an experiment that tests disclosure of verifiable informa-
tion. They show that the receiver does not always view the nondisclosure of information unfavourably
towards the sender. As a result, a sender with bad information may benefit from hiding it.
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2 Model

Our model is a simplified version of the selective sampling model of Di Tillio, Ottaviani,

and Sørensen (2017a). There are two players: Researcher and Evaluator.9 Researcher

conducts an experiment to test the effectiveness of a drug or a policy. There are two

sites with the same population size. Researcher’s goal is to convince Evaluator that the

average treatment effect in the whole population is sufficiently high so that Evaluator

is willing to grant acceptance of the drug or the policy. Following Di Tillio, Ottaviani,

and Sørensen (2017a), we simplify Researcher’s experiment to one on a single subject.

Researcher’s choice reduces to that between two sites on which to run the experiment.

Before making his choice, he has the potential to observe private information about the

treatment effect of one of the sites. Researcher’s use of such private information in his

choice of the experimental site, or selective sampling, challenges the external validity

of the experiment. In this section, we present a concise analysis of the effect of such

manipulation along the lines of Di Tillio, Ottaviani, and Sørensen (2017a), assuming

that Evaluator is fully rational.

Now, we introduce our formal theoretical model, closely following that of Di Tillio,

Ottaviani, and Sørensen (2017a) with simplifications. Let t ∈ {L,R} denote a site,

with the same population size on each site. Assume that the treatment effect of each

individual is homogeneous within each site, which we denote by βt, t ∈ {L,R}. The

average treatment effect on the whole population is therefore

βATE =
βL + βR

2
.

Assume that treatment effects are iid in each site and follow the Bernoulli distribution,

where βt = 1 (t ∈ {L,R}) with probability q and βt = 0 with probability 1− q.
Researcher always prefers that his request be accepted – his payoff is 1 if Evaluator

accepts his request and 0 if Evaluator rejects it. Evaluator’s payoff from acceptance is

equal to the difference between the average treatment effect and an acceptance cost,

βATE − k, and that from rejection is normalized to 0. The cost of acceptance can be

interpreted as an opportunity cost – in the case of a new drug, the effectiveness of the

currently available alternative, or a real cost – in the case of a new policy project, the

monetary cost of funding it.

Researcher chooses a site to conduct an experiment, the outcome of which is then

9To avoid confusion, we will use male pronouns for Researcher and female pronouns for Evaluator.
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observed by Evaluator. We also refer to the outcome of the experiment as evidence, v ∈
{0, 1}. We assume that evidence is precisely equal to the treatment effect of Researcher’s

chosen experimental site: v = 0 if βt = 0 and v = 1 if βt = 1. It follows that Evaluator’s

best response given experimental evidence v is to accept Researcher’s request if and

only if E(βATE|v) ≥ k, where the expectation is based on Evaluator’s belief about the

treatment effect on the site not chosen by Researcher after observing the experimental

evidence. A conflict of interest emerges between Researcher and Evaluator because

under complete information there exist instances where Evaluator finds it optimal to

not accept Researcher’s request.

In our theoretical analysis below, following Di Tillio, Ottaviani, and Sørensen (2017a),

we also assume that Evaluator observes neither the site where the experiment is con-

ducted nor the site about which Researcher has obtained private information. Thus,

in forming an expectation about the average treatment effect, Evaluator only has the

experimental evidence available.10

We consider two environments: No Manipulation and Manipulation. In the Manip-

ulation environment, the timing of the game is as follows:

1. Researcher and Evaluator observe Evaluator’s cost of acceptance, k ;

2. Researcher receives a private message from nature, βI ∈ {βL, βR}, which reveals

the true treatment effect on site I ∈ {L,R};

3. Researcher chooses one site t ∈ {L,R} to conduct the experiment;

4. Both Researcher and Evaluator observe the experimental evidence v;

5. Evaluator chooses whether to accept or reject Researcher’s request.

In the No-Manipulation environment, everything is the same as in the Manipulation

environment except for the absence of Step 2. So, when Researcher chooses the experi-

mental site, he does not have any private information about the treatment effect in any

site.

10This assumption is made to simplify the analysis. If Evaluator does not observe from which site
Researcher has obtained private information, then as long as Researcher obtains private information
from each site with equal probability, whether or not Evaluator observes the experimental site is
inconsequential and does not affect the analysis. Even if Evaluator does observe from which site
Researcher has obtained private information, as long as she does not observe the experimental site,
the analysis is not affected.
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In the two following subsections, we consider the characterization of the pure-

strategy equilibrium in each of the two environments. Since Evaluator’s optimal strat-

egy consists of acceptance if and only if her expectation of the average treatment effect

(weakly) exceeds her acceptance cost k, to characterize Evaluator’s optimal strategy

it is enough to determine E(βATE|v) in the different environments, under different as-

sumptions of her rationality.

2.1 No-Manipulation Case

First, we consider the No-Manipulation case, where Researcher has no private informa-

tion. The characterization of equilibria is straightforward. Note that Evaluator does

not observe the experimental site. Thus, Researcher’s decision has no effect on his ex-

pected payoff regardless of Evaluator’s strategy; he may randomly choose between Left

and Right site to conduct the experiment.11 Evaluator forms expectations about the

average treatment effect conditional on evidence v from the experimental site. Given

that Researcher does not observe any private information, Evaluator’s belief about the

treatment effect on the site not chosen is the same as her prior belief about it. Therefore,

E(βATE|v = 0) =
q

2

and

E(βATE|v = 1) =
1 + q

2
.

2.2 Manipulation Case

In the case where Researcher receives private information prior to choosing the experi-

ment site, we focus on the equilibrium in which Researcher plays the Intuitive Strategy

proposed by Di Tillio, Ottaviani, and Sørensen (2017a):

• If βI = 1, then conduct the experiment on site t = I;

• If βI = 0, then conduct the experiment on site t = −I,

where I and −I are respectively the sites about which Researcher does and does not

have private information. The Intuitive Strategy simply states that if the private in-

formation reveals a positive treatment effect of a site, then Researcher should conduct

11Any probability in [0, 1] of choosing site L can be part of an equilibrium.
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the experiment in the observed site. Otherwise, if the private information reveals zero

treatment effect, then Researcher should switch to the other site to conduct the ex-

periment.Given Researcher’s strategy, Evaluator forms expectations about the average

treatment effect conditional on the experimental evidence v:

E(βATE|v = 0) = 0

and

E(βATE|v = 1) =
1

2− q
.

When v = 0, if Evaluator is fully rational, she will be able to deduce that Researcher

must have received private information that the treatment effect in the observed site is

zero and consequently has chosen to conduct the experiment on the other site, βI = 0

and t = −I. Therefore, the average treatment effect is 0. When v = 1, there are two

possible situations: 1) Researcher has received private information βI = 1 and chosen to

conduct the experiment on site t = I; or 2) Researcher has received private information

βI = 0 and chosen to conduct the experiment on site t = −I. By Bayes’ rule, her

conditional expectation of βATE is 1/(2− q) (see Appendix).

Thus, we show that Evaluator’s conditional expectation of βATE is monotonic in

experimental evidence v, and therefore, given any k, the probability for Evaluator to

accept Researcher’s request is weakly monotonic in experimental evidence v. Given

this, Researcher has no incentive to deviate from the Intuitive Strategy since the distri-

bution of experimental evidence under the Intuitive Strategy first order stochastically

dominates the one under the deviation. Therefore, the Intuitive Strategy is indeed a

best response.

Notice that, if we focus on responsive equilibrium, where Evaluator chooses different

actions after observing evidence realizations v = 0 and v = 1, the Intuitive Strategy

constitutes the unique pure-strategy equilibrium. See Appendix A for the detailed

proof. Following Di Tillio, Ottaviani, and Sørensen (2017a), our paper focuses on this

strategy.12

12However, there exist other equilibria in which Evaluator’s action is not responsive to evidence v.
In particular, for k small enough, an equilibrium exists where Researcher adopts a “Counterintuitive
Strategy,” whereby he switches to the other site for conducting the experiment after observing a
positive treatment effect and sticks to the site after observing zero treatment effect. For very large k,
where Evaluator always finds it optimal to reject, the No Manipulation strategy, where Researcher’s
choice is independent of his private information, constitutes an equilibrium.
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Table 1: Distribution of Evidence and Conditional Expectation of Average Treatment
Effect

v No Manipulation Manipulation Manipulation
(rational Evaluator) (näıve Evaluator)

0 Pr = 1− q (1/2) Pr = (1− q)2 (1/4) Pr = (1− q)2 (1/4)

E(βATE|v) = q/2 (1/4) E(βATE|v) = 0 E(βATE|v) = q/2 (1/4)

1 Pr = q (1/2) Pr = 2q − q2 (3/4) Pr = 2q − q2 (3/4)

E(βATE|v) = 1 + q/2 (3/4) E(βATE|v) = 1/2− q (2/3) E(βATE|v) = 1 + q/2 (3/4)
Notes: The values in parentheses are calculated with q = 1/2.

2.3 Comparison of Experimental Outcomes under Manipula-

tion and No Manipulation

In light of the equilibrium characterization above, we may summarize the probability

distribution of evidence in the experiment and the expected average treatment effect

associated with each evidence realization. Table 1 provides one such summary. In the

table, we list the outcomes under No Manipulation and Manipulation (when Researcher

employs the Intuitive Strategy) with a rational Evaluator, who makes Bayesian infer-

ences based on Researcher’s equilibrium strategy. In addition, in the last column, we

present the Manipulation case with a näıve Evaluator, where Evaluator makes infer-

ences under the (erroneous) assumption that Researcher’s choice of experimental site

is random. In this case, Evaluator’s perceived expected average treatment effect condi-

tional on evidence v is the same as in the case of No Manipulation, but the distribution

of evidence is the same as in the case of Manipulation with a rational Evaluator.

From Table 1, we see that compared with No Manipulation, Manipulation (coupled

with a rational Evaluator) has two effects. On the one hand, Manipulation increases

the probability for Evaluator to observe positive experimental evidence. On the other

hand, it decreases Evaluator’s conditional expectation of the average treatment effect,

regardless of the evidence realization. The second effect is due to a rational Evaluator’s

ability to make inferences that take into account Researcher’s manipulation. In contrast,

this effect is absent with a näıve Evaluator.
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2.4 Welfare Analysis

Following Di Tillio, Ottaviani, and Sørensen (2017a), we provide a welfare analysis of

Researcher’s manipulation of the experiment in the form of strategic sample selection.

In the top panel of Figure 1, we present the change in Researcher’s expected payoff under

Manipulation versus that under No Manipulation, where the left panel assumes rational

Evaluator and the right assumes näıve Evaluator.13 In the bottom panel, we present

the same comparisons for Evaluator. In the figure and in the remaining theoretical

analysis and our experiment, we will focus on the case where q = 1/2. In this case, it

is inconsequential whether or not Evaluator observes the site on which Researcher has

private information (see Footnote 10).

We first study the welfare comparison of Manipulation versus No Manipulation

with a rational Evaluator. The effect of manipulation on the payoffs of Researcher

and Evaluator is non monotonic in k. To see this, recall the two contrasting effects

on the random distribution of evidence and the associated expected treatment effect,

which we identify at the end of the previous subsection. Consider Researcher’s welfare

(top-left panel). For very low and intermediately high cost of acceptance, k < 1/4 and

k ∈ (2/3, 3/4), Researcher is worse off under Manipulation, even if Manipulation is his

voluntary choice in equilibrium. When k < 1/4, this is because, after observing negative

evidence the rational Evaluator revises her expectations downward and always rejects,

while she always accepts under No Manipulation. When k ∈ (2/3, 3/4), Researcher

is hurt by Manipulation because a rational Evaluator always rejects his request, while

under No Manipulation she would have accepted it after observing positive evidence.

Consider now Evaluator’s welfare (bottom-left panel). Since, under Manipulation,

Researcher’s strategy is conditional on his private information, his choice transmits

information to Evaluator. This can be strictly beneficial to Evaluator when the cost of

acceptance is not too high, k < 1/2 and can hurt her for intermediately high acceptance

cost, k ∈ (1/2, 3/4). Under Manipulation, a rational Evaluator never incorrectly accepts

when the actual average treatment effect is βATE = 0 (βL = βR = 0), as Evaluator will

observe negative evidence and correctly infer the true βATE = 0. This completely

accounts for the positive effect of manipulation on Evaluator for k < 1/4. For higher k,

under both Manipulation and No Manipulation, Evaluator accepts only after observing

positive evidence v = 1. For k ∈ (1/4, 1/2), under perfect information, it is optimal for

Evaluator to accept except when βATE = 0. Under manipulation, it is exactly what the

13See Appendix 6.3 for details on the calculation of welfare in the different situations.
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Figure 1: Welfare comparison between Manipulation and No Manipulation for the case
q = 1/2. Note: The top row is for Researcher and the bottom one for Evaluator; the
left panel is for rational Evaluator and the right one for Näıve Evaluator.

rational Evaluator does in equilibrium. However, under No Manipulation, Evaluator

rejects whenever evidence is negative v = 0, but when the other site’s treatment effect

is 1 and therefore βATE = 1/2, this results in incorrect rejection. In contrast, for

k ∈ (1/2, 2/3), when βATE = 1/2, it is optimal for Evaluator to reject, which Evaluator

does when she observes negative evidence v = 0 under No Manipulation. However,

under Manipulation, for k ∈ (1/2, 2/3) Evaluator always accepts after observing positive

evidence v = 1, which results in incorrect acceptance. The negative payoff difference

for k ∈ (2/3, 3/4) comes from the fact that a rational Evaluator always rejects under

Manipulation, which is correct when βATE = 1/2 but incorrect when βATE = 1 (βL =

βR = 1).

We now turn to the welfare comparison of Manipulation versus No Manipulation,
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with a näıve Evaluator. Evaluator uses the same acceptance rule conditional on evidence

in the two situations. Thus, Researcher is always weakly better off under Manipulation.

For low and high level of k, Evaluator’s acceptance rule is independent of evidence,

prescribing to always accept for k ≤ 1/4 and to always reject for k > 3/4. There is no

change in payoffs for either Researcher or Evaluator. Researcher is strictly better off

for intermediate levels of k, k ∈ (1/4, 3/4), where Evaluator accepts only conditional

on positive evidence, because under Manipulation the probability of observing positive

outcomes is higher. Perhaps surprisingly, a näıve Evaluator under manipulation can do

better than under No Manipulation for k < 1/2. This is because in states where the

real average treatment effect is 1/2, under No Manipulation there is a 0.5 probability

(when she observes negative evidence) that Evaluator incorrectly rejects, while under

Manipulation she always accepts, as in the corresponding states she always observes

positive evidence. The opposite holds for higher k, where under Manipulation, it is the

näıve Evaluator who incorrectly accepts in these states.

Note that Evaluator potentially suffers a loss from being näıve when Researcher

engages in manipulation. Consider the bottom right and left panels. For low levels

of acceptance cost, k < 1/4, a rational Evaluator takes into account the manipulation

incentives of Researcher, who, despite the conflicts of interest, transmits useful infor-

mation to Evaluator. A rational Evaluator correctly deduces that negative evidence

implies that both sites have treatment effects of zero and revises her expectation ac-

cordingly. In contrast, a näıve Evaluator fails to take manipulation into account and

always accepts regardless of evidence. For acceptance cost k ∈ [1/4, 2/3), a rational

Evaluator and a näıve Evaluator employ the same acceptance rule conditional on ev-

idence, and therefore have the same payoff. The same holds for high acceptance cost

k > 3/4, where both reject regardless of evidence. However, for k ∈ [2/3, 3/4) after

positive evidence a rational Evaluator rejects while a näıve Evaluator accepts. A näıve

Evaluator fails to infer that the expected treatment effect on the site not chosen for the

experiment should be revised lower than the ex ante expectation, because Researcher

may have observed negative information about the other site, and therefore incorrectly

accepts.

To summarize our welfare analysis, note that (1) Researcher may benefit or get hurt

from manipulation through strategic sample selection when he faces a rational Evalu-

ator, while he always weakly benefits from such manipulation when he faces a näıve

Evaluator; (2) a rational Evaluator benefits from manipulation when the acceptance

cost is relatively low but is hurt by it when the acceptance cost is intermediately high
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(up to the level of expected value of the average treatment effect after observing positive

evidence under No Manipulation); however, a näıve Evaluator gives up the gain when

acceptance cost is low and suffers worse damages for the upper range of intermediately

high cost.

3 Experimental Design

In our experiment, we fix q = 1/2 and choose the other parameters as follows. We first

calculate the cutoffs of the value of k for Evaluator’s equilibrium strategy by assuming

that players are risk neutral and Researcher follows the Intuitive Strategy as in the

model.

rational Evaluator’s equilibrium strategy =


accept if k ≤ 0.67 & v = 1;

reject if k ≤ 0.67 & v = 0;

always reject if k > 0.67.

näıve Evaluator’s equilibrium strategy =



always accept if k ≤ 0.25;

accept if 0.25 < k ≤ 0.75 & v = 1;

reject if 0.25 < k ≤ 0.75 & v = 0;

always reject if k > 0.75;

Recall that Evaluator’s equilibrium strategy under No Manipulation is the same as

under Manipulation with a näıve Evaluator. In addition, given that previous experi-

mental studies show that most people are risk averse, we also calculate the cutoffs for

k by assuming that both players have a constant relative risk aversion (CRRA) utility

function u(m) = mr with r = 0.5, where m is the monetary payment received by an

agent.14

14As summarized by Holt and Laury (2002), estimates for relative risk aversion in the literature vary
between 0.3-0.7 in different decision tasks.
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Table 2: Predictions

k1 = 10 k2 = 40 k3 = 70

v = 1 rational E accept rational E accept rational E reject
näıve E accept näıve E accept näıve E accept

v = 0 rational E reject rational E reject rational E reject
näıve E accept näıve E reject näıve E reject

rational Evaluator’s equilibrium strategy =


accept if k ≤ 0.65 & v = 1;

reject if k ≤ 0.65 & v = 0;

always reject if k > 0.65.

näıve Evaluator’s equilibrium strategy =



always accept if k ≤ 0.125;

accept if 0.125 < k ≤ 0.73 & v = 1;

reject if 0.125 < k ≤ 0.73 & v = 0;

always reject if k > 0.73;

Based on these calculations, we choose values of k, as in Table 2, leading to different

Evaluator’s best responses and welfare outcomes.

In our theoretical model, Evaluator observes neither the experiment site nor the site

on which Researcher has received private information. Therefore, Evaluator’s strategy

only depends on the experimental evidence v. In our experiment, the probability for

Researcher to observe private information from Left site is set to m = 1/2, but it

is not explained in the instructions, as from a theoretical point of view the value of

such probability is irrelevant. The theoretical analysis would not change if Evaluator

observed the site where the experiment takes place when m = 1/2. However, this may

no longer be true if m takes other values, where, among other things, a pure-strategy

equilibrium may fail to exist.

Our experiment uses both between-subject and within-subject design. Within each

session, we varied the value of acceptance cost k and whether Researcher receives private

information that enables him to manipulate sample selection. Each session started with

a No Manipulation treatment, followed by a Manipulation treatment.
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Structure of Each Session

Non-Manipulation 

(30 rounds)

Manipulation 

(30 rounds)

Cohort 1 of E         k1 k2 k3 k1 k2                k3  

Cohort 2 of E         k2 k3 k1 k2 k3                k1  

Cohort 3 of E         k3 k1 k2 k3 k1                k2  

Figure 2: Structure of Sessions

We chose this order on purpose to allow subjects to first learn to play the game in

the easier environment (No Manipulation) and then switch to the more complicated

one (Manipulation). Each treatment consisted of 30 rounds. There were 3 practice

rounds before each treatment started. Subjects only received the instructions for the

Manipulation treatment right before it started, but they were informed at the beginning

of the session that there would be two parts of the experiment. For each session,

Evaluators made decisions under all the three levels of acceptance cost, k, in both No

Manipulation and Manipulation treatments. In order to facilitate Evaluator’s learning

process, each Evaluator experienced the same value of k for a duration of 10 consecutive

rounds before switching to a new value of k. At the same time, we kept the distribution

of Evaluators possessing different values of k constant in every round, as shown in

Figure 2.

In order to identify the possible effect of other-regarding preferences and/or strategic

uncertainty on Evaluators’ behaviour, we introduce in our experimental design a third

treatment variable, namely, whether the role of Researcher is played by human subjects

who make conscious decisions or robots who always follow the intuitive strategy. We

refer to these two treatments as Human Researcher treatment and Robot Researcher

treatment, respectively. In the Human Researcher treatment, there were 12 subjects

in each session, who were randomly assigned as Researcher (Player A) and Evaluator

(Player B) at the beginning of the session and remained in the same role until the end

of the experiment.

During a session, in each round Evaluators and Researchers were randomly and
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anonymously paired with each other. Then, each pair of matched Evaluator and Re-

searcher were both told the value of k of the Evaluator in their match. In order to

remove framing effects, we described the game in each round using a neutral context:

“There are two bins, LEFT BIN and RIGHT BIN. In each bin there are 50 balls of a

same colour, RED or BLUE. The computer will randomly draw the colour of the balls in

each bin at the beginning of each round, with 50% chance being RED and 50% chance

being BLUE......The two bins together represent a project. Each RED ball has a value

of 1 point and each BLUE ball has no value. Therefore, the value of the project is equal

to the total number of RED balls in the two bins......Player A will have to choose one

bin, LEFT BIN or RIGHT BIN. Then the computer will reveal the colour of the balls in

the chosen bin to the matched Player A and Player B. After that, Player B will have to

make a decision on whether to IMPLEMENT or NOT IMPLEMENT the project.” In

addition, we described the cost of acceptance for Evaluator, k, as Evaluator’s endowed

income, which she will have to forgo if choosing IMPLEMENT and will keep if choosing

NOT IMPLEMENT.

At the end of each session, two rounds from each of the No Manipulation and

Manipulation treatments were randomly chosen for the actual payment. Although in

each round subjects were shown the history of play and payoffs from each previous

round in that treatment, they were only informed of which rounds were chosen after

both treatments were finished. We chose this design to control for income effects. We

conducted the experiment at the Bell experimental economics lab at the research centre

CIRANO (Montreal, Canada). At the end of the session, subjects were paid privately,

in cash, their earnings from the four chosen rounds as well as a show-up fee of $10, using

an exchange rate of 10 points=$1CAD. In the rare case where a subject’s total earnings,

including the show-up fee, is less than $15, the subject receives $15 per CIRANO lab

regulations.

4 Results

We conducted 3 sessions under the Human Researcher treatment, with 18 pairs of

Researchers and Evaluators, and 1 session under the Robot Researcher treatment, with

18 Evaluators. Rigorously speaking, with random matching between Researchers and

Evaluators in each round, data from each session is considered to be an independent

observation. In what follows, we present statistical tests using individual-level data
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Table 3: Subjects’ Payment

Average Earnings Min Max No. of Obs. Session

Human Researcher $25 $0 $40 18 1-3
Evaluator (Human) $25.39 $14 $34 18 1-3
Evaluator (Robot) $23.72 $10 $35 18 4

as independent observations. Although this choice of approach relaxes the criterion

on independent observation to some extent, we consider it to be acceptable since in

our experiment subjects were anonymous throughout the session, randomly matched

to each other in each period, and interact with each other in a finite horizon.15

Table 3 summarizes the payment for Researchers and Evaluators, excluding the

show-up fee.16 The average earnings between Researchers and Evaluators are not sig-

nificantly different, by two-tailed Wilcoxon Mann-Whitney test (p = 0.51, 18 vs. 36

obs.). Neither is there a significant difference in Evaluators’ earnings between Human

Researcher treatment and Robot Researcher treatment, by two-tailed Wilcoxon Mann-

Whitney test (p = 0.48, 18 vs. 18 obs.).

Figure 3 presents the distribution of earnings for the subjects. The distribution of

Evaluators’ earnings is more skewed compared to the distribution of Researchers’ earn-

ings, which is probably due to the fact that Evaluators have an endowment of income

but Researchers do not, so Researchers’ payoff is more dependent on the realization of

random events.

4.1 Human Researchers’ behaviour

First, we calculate Researchers’ frequency of choosing Left Bin and Right Bin and

find that there is no systematic preference for one of the two bins due to the different

positions of the left and right button on the computer screen.17

15Kandori (1992) shows that cooperation is possible to achieve in equilibrium when a finite popu-
lation is anonymously and randomly paired to each other to play a Prisoner’s Dilemma game in an
infinite horizon. Our game differs from the Prisoner’s Dilemma game and, in addition, finite interac-
tions should prevent the folk-theorem type of results like those shown by Kandori (1992).

16Notice that by the experimental design, Researcher’s earnings can only take the value of $0, $10,
$20, $30, or $40.

17In the No Manipulation treatment, the average frequency of choosing the Left Bin is 47.6%, and in
the Manipulation treatment it is 52.6%. We further calculate these two frequencies for each Researcher
and find no significant difference between the Manipulation and No Manipulation treatments (two
tailed matched-pair signed-rank test, p = 0.5, 18 obs.).
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Figure 3: Distribution of Payment (Evaluators vs. Researchers)

We then calculate Researchers’ frequency of following the Intuitive Strategy in the

Manipulation treatment as defined before. First, the average frequency is as high as

83.9%. Second, we calculate the individual frequency for each Researcher and find that

the majority of Researchers behave closely to the equilibrium predictions. Figure 4

shows the distribution of Researchers’ individual frequency of following the equilibrium

strategy. We see that one-third of Researchers follow the Intuitive Strategy in all the 30

rounds, and two-thirds of them follow the Intuitive Strategy at least 90% of time. Third,

we further calculate Researchers’ average frequency of following the Intuitive Strategy

given different contents shown in the message, as presented in Table 4. We see that the

conditional frequency is between 80% and 86%, indicating that the message content

is not an important factor in influencing whether Researchers follow the equilibrium

strategy or not.18 We also examine Researchers’ behaviour across rounds, which is

presented in Figure 8 in Appendix B. From the graph we do not observe obvious learning

effects over repetitions of the game.

Finally, we conduct a random-effects Probit regression on whether or not Researcher’s

choice is consistent with the intuitive strategy by using Researchers’ choice data in the

Manipulation treatment of the Human Researcher sessions (i.e., sessions 1-3). The re-

18The frequency of each different message is between 23.9% and 26.5%, not far from the mean of
25%.
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Figure 4: Distribution of Researchers’ Individual Frequency of Following Intuitive Strat-
egy in Manipulation Treatment

Table 4: Researchers’ Frequency of Following the Intuitive Strategy Conditional on
Message Content in the Manipulation Treatment

All Message= Message= Message= Message=
Periods Left Red Left Blue Right Red Right Blue

Freq. of Message N/A 25.2% 24.4% 23.9% 26.5%
Conditional Freq. 83.9% 84.6% 84.1% 80.6% 86.0%

of Intuitive Strategy

sult is consistent with Table 4 and Figure 8 in Appendix B. Since we adopted random

matching between Researchers and Evaluators in each session, the standard errors have

been adjusted to allow for clustering of observations by session, and are calculated

using the gllamm package in Stata. Our focus is on examining the effect of the accep-

tance cost k, the content of the private message shown to the Researchers (whether the

balls in Left/Right Bin are Red/Blue), and the learning effect (period number) on the

probability that Researchers follow the Intuitive Strategy. The dependent variable is

a dummy variable which is equal to 1 if Researcher’s choice of the bin in a period is

consistent with the prediction by the Intuitive Strategy given the content of the private

message he receives. In the specification, we include the variables Period, k, a dummy
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Table 5: Random-Effect Probit Regression on Individual Researcher’s Choice of Using
Intutive Strategy

Dependent variable Coefficient
Period 0.002 (0.019)
k 0.002 (0.002)
LeftBin -0.501 (0.598)
RevealRed -0.354 (0.813)
LeftRed 0.469 (1.131)
Constant 1.743 (0.518)
No. of Obs. 540

Notes: Robust standard errors clustered at session level are provided in parentheses.

variable LeftBin, which equals 1 if the private message shows the colour of the LEFT

bin and 0 if the private message shows the colour of the RIGHT bin, a dummy variable

RevealRed, which equals 1 if the private message shows the colour is Red and 0 if the

private message shows the colour is Blue, and an interactione dummy variable LeftRed,

which equals 1 if the private message shows the colour in the LEFT bin is Red, i.e., if

both LeftBin=1 and RevealRed=1. Consistent with other analysis, the marginal effects

of the Probit regression in Table 5 shows that none of the independent variables in the

regression has a significant effect at the 10% significance level.

Finding 1 Researchers follow the Intuitive Strategy in the Manipulation treatment to

a large extent. Furthermore, the likelihood that Researchers follow the Intuitive Strategy

in the Manipulation treatment is not significantly affected by the message content, the

value of k, or experience.

4.2 Evaluators’ behaviour

We now turn to the analysis of Evaluators’ behaviour. Table 6 shows the average

frequencies with which an Evaluator chooses Implement. The top part of the table

corresponds to the Human Researcher treatment and the bottom part the Robot Re-

searcher treatment. Within each part, the average frequencies are reported for each

realized experimental evidence v (Red or Blue), each value of k (10, 40, or 70) , and

each environment (No Manipulation or Manipulation). To facilitate comparisons, we

list the theoretically predicted frequency (“Model”) alongside the one calculated from

the experiment (“Data”) and provide the p-value of the two-tailed matched-pair signed

rank test between these two frequencies in each (k, v) cell. We see that, in general,
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Table 6: Average Frequency of Implementation

Human Researcher Treatment
No Manipulation (Part One)

k = 10 k = 40 k = 70
Data Model p Data Model p Data Model p

v = 1 (Red) 0.917 1 0.046 0.906 1 0.046 0.510 1 0.001
v = 0 (Blue) 0.600 1 0.001 0.273 0 0.003 0.075 0 0.026

Manipulation (Part Two)
k = 10 k = 40 k = 70

Data Model p Data Model p Data Model p
v = 1 (Red) 0.915 1 0.084 0.903 1 0.084 0.461 0 0.000
v = 0 (Blue) 0.431 0 0.002 0.125 0 0.084 0.085 0 0.084

Robot Researcher Treatment
No Manipulation (Part One)

k = 10 k = 40 k = 70
Data Model p Data Model p Data Model p

v = 1 (Red) 0.981 1 0.317 0.942 1 0.084 0.654 1 0.002
v = 0 (Blue) 0.875 1 0.026 0.209 0 0.005 0.102 0 0.084

Manipulation (Part Two)
k = 10 k = 40 k = 70

Data Model p Data Model p Data Model p
v = 1 (Red) 0.974 1 0.084 0.994 1 0.317 0.463 0 0.002
v = 0 (Blue) 0.373 0 0.005 0.162 0 0.026 0.020 0 0.317

Note: p−values less than 0.01 are in italics.

Evaluators’ behaviour is significantly different from the theoretical prediction (p < 10%

for all tests), and in some cases, very significantly so (p < 1%, in italics). In the

Robot Researcher treatment, with the absence of strategic uncertainty on Researchers’

behaviour and Evaluators’ other-regarding preferences about Researchers’ payoffs, we

find very similar patterns in Evaluators’ behaviour to that under the Human Researcher

treatment.

Analysing in Table 6 Evaluator’s behaviour in each cell and across cells, we identify

the following four types of deviations by Evaluators from the theoretical predictions:

• Case 1: Given Blue evidence, Evaluators exhibit over-implementation when the

model predicts no implementation, in all treatments (Manipulation or No Ma-

nipulation, Robot or Human Researcher). The extent of over-implementation

decreases with the value of k, in both frequency of implementation and p-value.
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• Case 2: Given Blue evidence, in the only cell where the model predicts implemen-

tation (k = 10 and No Manipulation) Evaluators exhibit under-implementation.

• Case 3: Given Red evidence, Evaluators exhibit significant under-implementation

only under No Manipulation and k = 70.

• Case 4: For the same level of acceptance cost k and evidence v, Evaluators can

exhibit over-implementation and under-implementation in the two different ma-

nipulation treatments, both in the Human and Robot Research treatments. In

particular, when k = 70, there is under-implementation after Red in the No

Manipulation treatment but over-implementation after Red in the Manipulation

treatment. Similarly, when k = 10 there is under-implementation after Blue

evidence in the No Manipulation but over-implementation after Blue in the Ma-

nipulation treatment.

When we compare the frequencies of implementation in Table 6 within treatments

(Red vs. Blue) and across treatments (No Manipulation vs. Manipulation), we find

that the comparative statics go in the same direction as the theoretical predictions. To

address this point formally, using Evaluators’ individual frequency of choosing Imple-

ment given the value of k, we conduct two-tailed matched-pair signed rank tests for

within-treatment comparison and across-treatment comparison, as presented in Table

7 (18 observations for each test). The p-values are put in italics when the comparative

statics is inconsistent with the theory. We find that the comparative statics results of

Evaluators’ behaviour are mostly consistent with the theoretical predictions and that in

the Robot Researcher treatment they deviate much less from the theoretical predictions

than in the Human Researcher treatment. We summarize our findings on Evaluators’

behaviour as follows.

Finding 2 Compared with the theoretical predictions, Evaluators exhibit both over-

implementation and under-implementation (Table 6). However, the overall compar-

ative statics are consistent with the model predictions, especially in the Robot treatment

(Table 7).

To summarize our analysis of Evaluators’ behaviour in the experiment, we find

significant deviations from the theoretical predictions in terms of the levels of the fre-

quency Evaluators choose Implement, as shown in Table 6. We should note, however,

that when the theory predicts a certain acceptance or rejection decision, it is inevitable
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Table 7: p-value of Matched-pair Signed Rank Tests on Evaluators’ Frequency of Im-
plementation

Human Researcher treatment
k = 10 k = 40 k = 70

Red vs. Blue (No Manipulation) 0.003 0.000 0.002
Red vs. Blue (Manipulation) 0.002 0.000 0.002

No Manipulation vs. Manipulation (Red) 0.979 0.968 0.184
No Manipulation vs. Manipulation (Blue) 0.274 0.036 0.547

Robot Researcher treatment
k = 10 k = 40 k = 70

Red vs. Blue (No Manipulation) 0.105 0.000 0.002
Red vs. Blue (Manipulation) 0.001 0.000 0.003

No Manipulation vs. Manipulation (Red) 0.564 0.084 0.037
No Manipulation vs. Manipulation (Blue) 0.004 0.407 0.564

Note: entries in italics indicate inconsistency from theory predictions.

that the experimental outcomes will differ from the theoretical predictions, due to a

variety of factors, including initial learning through experimentation and possible cog-

nitive errors. In contrast, the changes in the levels of the frequency of implementation

are in the most part consistent with theory, as demonstrated by Table 7.

To shed further light on these differences, recall our theoretical discussion on rational

and näıve Evaluators in the Manipulation treatment. Note that, as shown in Table 2,

these two types of Evaluators behave differently only in two configurations: (k = 10,

v = Blue) and (k = 70, v = Red).19 A rational Evaluator should behave as theory

predicts, but a näıve Evaluator cannot anticipate that Researcher will use the Intuitive

Strategy under the Manipulation treatment. Thus, her behaviour will be similar to that

under the No Manipulation treatment, in which she believes that Researcher chooses

the site randomly. The comparative statics for the Human Researcher treatment in

Table 7 is consistent with some subjects in the Evaluator role behaving in a näıve way.

Specifically, the tests that compare the No Manipulation and Manipulation treatments

for the configurations (k = 10, v = Blue) and (k = 70, v = Red) show that their

differences are not significant at the 10% level, which is inconsistent with a rational

Evaluator but consistent with a näıve Evaluator. Interestingly, the p-value of these two

tests in the Robot Researcher treatment do become significant, p = 0.004 and p = 0.037

19Recall that both types of Evaluators are predicted to have the same behaviour under No Manip-
ulation anyway.
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Table 8: p-value from Two-tailed Mann-Whitney Tests on Evaluators’ Frequency of
Implement (Human vs. Robot Researcher Treatments)

No Monipulation (Part One)

k = 10 k = 40 k = 70
v = 1 (Red) 0.171 0.598 0.325
v = 0 (Blue) 0.008 0.572 0.528

Manipulation (Part Two)
k = 10 k = 40 k = 70

v = 1 (Red) 0.865 0.258 0.732
v = 0 (Blue) 0.631 0.432 0.324

respectively, more consistent with the model prediction for rational Evaluators. The

different effects of manipulation between the Human Researcher and Robot Researcher

treatments in the (k = 10, v = Blue) and (k = 70, v = Red) cells suggest that

uncertainty about Researcher’s strategy may also play a role, in addition to any played

by näıveté of Evaluator. Strategic uncertainty may also explain the other differences

in the comparative statics tests in Table 7 between the Human and Robot Researcher

Treatment.

Finally, we conduct a two-tailed Mann-Whitney test on the individual Evaluator’s

frequency of implementation between Human Researcher and Robot Researcher treat-

ments. Overall, on the basis of this test we find no significant differences between

Evaluators’s frequency of implementation in the two treatments. Combined with the

analysis above, we summarize the following finding.

Finding 3 Evaluators’ frequency of implementation is not significantly different be-

tween Human Researcher and Robot Researcher treatments (Table 8). However, the

difference in Evaluator’s behaviour between Manipulation and No Manipulation is more

consistent with a rational player in Robot Researcher treatment than in Human Re-

searcher treatment.

5 Welfare Analysis

An important objective of our research is to experimentally test the effect of Re-

searcher’s strategic sample selection on Researcher’s and Evaluator’s payoffs. In this

section, we conduct an analysis of subjects’ welfare based on their behaviour in the
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experiment, in the hope of answering experimentally whether the possibility of manip-

ulations by Researcher is welfare-enhancing/hurting to Researcher and Evaluator. We

then compare our findings with the theoretical predictions we drew in Subsection 2.4,

which follows similar analysis by Di Tillio, Ottaviani, and Sørensen (2017a). Difficul-

ties arise in our welfare comparisons as players’ actual actions and payoffs depend on

random realizations, which differ across treatments and sessions. In order to conduct

a fair comparison, we first propose a procedure for calculating a welfare index which

relies on individuals’ actual choice frequencies but the ex ante probability of random

realizations instead of the actual realizations. Then, we compare this welfare index

between the No Manipulation and Manipulation treatments for both Researchers and

Evaluators.

5.1 Construction of Welfare Measures

To construct welfare measures for Evaluator and Researcher, we use a two-step ap-

proach. First, based on the experimental data, we calculate Researcher’s individual

frequency of following the Intuitive Strategy and Evaluator’s individual frequency of

implementation given k and v, as well as the session averages of these individual frequen-

cies. Second, based on these frequencies, we compute the expected payoff of Researcher

and Evaluator, using the ex ante distribution of Red (v = 1) and Blue (v = 0). So

our constructed index provides a welfare measure that is not influenced by the random

realizations in a specific session, but is determined by the behaviour of other subjects

in his/her session, which is not always consistent with theoretical predictions.

5.1.1 Measuring Researcher’s Welfare

We start by constructing a measure of Researcher’s welfare. In each session, given

the data for each possible realized pair of acceptance cost and evidence (k, v), we can

calculate the session-level individual Evaluators’ average frequency of implementation.

Denote them as q(k , Red, No), q( k, Blue, No), q( k, Red, Man), q( k, Blue, Man),

where No and Man are shorthands for No Manipulation and Manipulation treatments,

respectively.

Under No Manipulation, the ex ante probability that a colour is drawn from a Bin

is

p(Red |No) = p(Blue |No) = 0.5.
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Therefore, under No Manipulation the expected frequency of implementation for each

Researcher i given Evaluator’s acceptance cost k is

UR
i ( k, No) = p(Red |No) ∗ q( k, Red, No) + p(Blue |No, ) ∗ q( k, Blue, No)

= 0.5q( k, Red, No) + 0.5q( k, Blue, No).

Since in the experiment Researcher’s payoff is simply 100*(frequency of implementa-

tion), we can use this ex ante frequency of implementation as an index of welfare that

removes the effect of random realizations from Researcher’s actual payoff in the exper-

iment. Note that UR
i ( k, No) is the same for every Researcher in one session since it is

based on the ex ante realization and the session level frequency of implementation.

Under Manipulation, a Researcher’s expected payoff also depends on the probability

that he adopts the Intuitive Strategy, which is denoted by γi.
20 Then, using the ex ante

probability of the realization of each colour, we can calculate for each Researcher i the

probability of v = Red and v = Blue, given γi:

pi(Red |Man) = p(Red)γi + p(Red)(1− γi)p(Red) + p(Blue)γip(Red)

= 0.5γi + 0.25,

pi(Blue |Man) = p(Blue)(1− γi) + p(Red)(1− γi)p(Blue) + p(Blue)γip(Blue)

= 0.75− 0.5γi.

Therefore, under Manipulation the expected frequency of implementation for each Re-

searcher i, given k is

UR
i ( k,Man) = pi(Red |Man) ∗ q( k,Red, Man) + pi(Blue |Man) ∗ q( k,Blue, Man)

= (0.5γi + 0.25) ∗ q( k,Red, Man) + (0.75− 0.5γi) ∗ q( k,Blue, Man).

To summarize, UR
i ( k, No) and UR

i ( k,Man) are our constructed welfare indices for

Researcher under No Manipulation and Manipulation, respectively.

20This probability can also be calculated conditional on k and/or the message content. However,
since our regression confirms that the likelihood for Researcher to adopt the Intuitive Strategy does not
significantly depend on these variables, we calculate only one probability for each individual Researcher
for simplicity.
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5.1.2 Measuring Evaluator’s Welfare

Now, we turn to Evaluator’s welfare. To the extent that in some economic environments,

like the drug approval process, Evaluator is acting on behalf of a constituency, it is

important to compare Evaluator’s welfare under No Manipulation and Manipulation.

Under No Manipulation, Researcher’s Strategy does not affect Evaluator’s expected

payoff. Under Manipulation, we take the session-level average of individual Researchers’

frequency of using the Intuitive Strategy, which we denote by γ. Then, to measure

each Evaluator’s expected payoff, for each possible realized pair of acceptance cost and

evidence (k, v), we take the Evaluator’s average frequency of implementation based on

the data in each session. In particular, for each Evaluator j, we denote her individual

frequency of implementation given (k, v) for the No Manipulation and the Manipulation

treatment by qj( k, v, No) and qj( k, v, Man), respectively.

Based on the above construction, we calculate the expected payoffs of each Evaluator

j. Under No Manipulation, conditional on the evidence observed by Evaluator, they

can be written as

UE
j ( k, Red, No) = 75 ∗ qj( k, Red, No) + k ∗ (1− qj( k, Red, No));

UE
j ( k, Blue, No) = 25 ∗ qj( k, Blue, No) + k ∗ (1− qj( k, Blue, No)).

Therefore, Evaluator j’s ex ante expected payoff under No Manipulation is

UE
j ( k, No) = 0.5UE

j ( k, Red, No) + 0.5UE
j ( k, Blue, No),

where we used the prior probability of evidence Blue and Red.

Under Manipulation, Evaluator j’s expected payoff conditional on evidence v = Red

and v = Blue are respectively:

UE
j ( k, Red, Man) = β(Red, γ) ∗ qj( k, Red, Man) + k ∗ (1− qj( k, Red, Man));

UE
j ( k, Blue, Man) = β(Blue, γ) ∗ qj( k, Blue, Man) + k ∗ (1− qj( k, Blue, Man)),

where β(Red, γ) and β(Blue, γ) are the expected numbers of red balls given that

Researcher’s estimated frequency of using the Intuitive Strategy is γ and evidence is
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v = Red or v = Blue, respectively. They can be calculated as follows:

β(Red, γ) =
100p(Red)p(Red) + 50p(Red)γp(Blue) + 50p(Blue)γp(Red)

0.5γ + 0.25
,

=
100 + 100γ

2γ + 1
;

β(Blue, γ) =
50p(Red)(1− γ)p(Blue) + 50p(Blue)(1− γ)p(Red) + 0p(Blue)p(Blue)

0.75− 0.5γ
,

=
100(1− γ)

3− 2γ
.

Therefore, Evaluator j’s payoff under Manipulation is

UE
j ( k,Man) = p(Red |Man)UE

j (Red, Man, k) + p(Blue |Man)UE
j (Blue, Man, k)

= (0.5γ + 0.25)UE
j (Red, Man, k) + (0.75− 0.5γ)UE

j (Blue, Man, k),

where p(v |Man) is the ex ante probability that evidence v is observed given that

Researcher follows the Intuitive strategy with average probability γ.

To summarize, UE
j ( k, No) and UE

j ( k,Man) are our constructed welfare indices for

Evaluator under No Manipulation and Manipulation, respectively.

5.2 Results of Welfare Comparison

Now, we conduct our welfare analysis using the welfare measures we constructed above.

Table 9 reports the average of Researcher’s welfare and the p-value of two-tailed matched-

pair signed rank tests which compare Researcher’s welfare index between No Manipu-

lation and Manipulation treatments. We find that Researcher is better off by manipu-

lation when k = 40 and k = 70 and is not worse off when k = 10. This is inconsistent

with the theoretical model with a rational Evaluator, which predicts that Researcher

becomes worse off by manipulation when k = 10 and k = 70. It is however consistent

with the prediction of the theory with a näıve Evaluator. As we have shown in Tables 6

and 7, Evaluators do not sufficiently discount positive evidence in the Manipulation

treatment when k is large. Neither do they sufficiently take into account the implica-

tion of negative evidence in the Manipulation treatment; that is, they frequently fail to

observe either of these two facts: (1) Researcher engages in manipulation; (2) manipu-

lation by Researcher in the form of the Intuitive Strategy means that the observation of

negative evidence on the experimental site implies that the treatment effect on the other
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Table 9: Researcher’s Welfare Comparison

k = 10 k = 40 k = 70

No Manipulation 75.87 58.95 29.23
Manipulation 75.48 64.51 33.65
p-value 0.53 0.03 0.05
Number of Obs. 18 18 18

Table 10: Evaluator’s Welfare Comparison

Human and Robot Researcher Treatment
k = 10 k = 40 k = 70

No Manipulation 46.15 54.22 69.93
Manipulation 48.22 57.32 68.36
p-value 0.005 0.001 0.004
Number of Obs. 35 35 35

Human Researcher Treatment
k = 10 k = 40 k = 70

No Manipulation 44.30 53.79 69.60
Manipulation 46.25 56.17 67.97
p-value 0.221 0.009 0.098
Number of Obs. 18 18 18

Robot Researcher Treatment
k = 10 k = 40 k = 70

No Manipulation 48.38 54.74 70.32
Manipulation 50.59 58.69 68.83
p-value 0.002 0.028 0.021
Number of Obs. 17 17 17

site is also zero. This offsets any theoretically predicted negative effect on Researcher.

Similarly, Table 10 reports the Evaluator’s average welfare and the p-value of two-

tailed matched-pair signed rank tests for Evaluator’s welfare between No Manipulation

and Manipulation treatments. We find that Evaluator becomes better off under the

Manipulation treatment than under the No Manipulation treatment when k = 10 and

k = 40, but becomes worse off when k = 70. This finding is consistent with the the-

oretical prediction. We summarize in the following finding the results of our welfare

analysis.

Finding 4 Researcher’s welfare significantly improves under the Manipulation treat-
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ment compared with the No Manipulation treatment. Evaluator’s welfare significantly

improves for acceptance cost levels k = 10 and k = 40 but decreases for acceptance

cost k = 70 under the Manipulation treatment compared with the No Manipulation

treatment.

6 Conclusion

Scientists’ manipulation during the procedure of data collection and analysis in experi-

ments is generally viewed unfavourably – it challenges the validity of their experimental

findings. The history of RCTs is a history of the struggle to keep them truly random-

ized.21

In their simple yet insightful theoretical analysis, Di Tillio, Ottaviani, and Sørensen

(2017a) offer a cautionary tale on such received wisdom. In their model, Researcher

tries to persuade Evaluator to accept the finding of a scientific study by convincing her

that the treatment effect is large enough, where Researcher and Evaluator are both

fully rational. They show that Researcher is hurt by the possibility of manipulation

through strategic sample selection, when Evaluator’s acceptance cost is very low or

very high, or in other words, Evaluator is ex ante strongly for or against acceptance.

In these instances, one might expect to see conscious efforts by Researcher to refrain

from engaging in it, if he could. Evaluator, on the other hand, may benefit from Re-

searcher’s manipulation, when she has low or medium cost of acceptance. In contrast,

both Evaluator and Researcher may be hurt when Evaluator has a high cost of accep-

tance, as manipulation would make Evaluator discount positive findings so much that

it eliminates the possibility of convincing Evaluator.

In this paper, we report results of an experiment directly based on Di Tillio, Ot-

taviani, and Sørensen’s (2017a) theoretical model. Our experimental design tests the

theoretical predictions when such manipulation is feasible and not feasible to the Re-

searcher, and when Researcher is played by a human subject or a robot. Our results

largely confirm the theoretical predictions of Researcher’s behaviour: that they engage

in manipulation in the form of an “Intuitive Strategy.” However, Evaluator’s behaviour

demonstrates significant deviations from the theoretical predictions, even though the

comparative statics is consistent with the theoretical predictions. Our welfare analy-

21 As mentioned in the Introduction, please refer to Di Tillio, Ottaviani, and Sørensen’s (2017a)
historical account, and the references they cite, which include Chalmers (1999); Fisher (1925, 1926,
1935); Hart (1999); Neyman (1923), among others.
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sis offers a mixed message on the consequences of manipulation. First, we find that

Researcher always benefits from the possibility of manipulation, in contrast to the the-

oretical prediction that he is hurt by it with a low or high acceptance cost of Evaluator.

Second, consistent with theoretical predictions, Evaluator is hurt by the possibility of

Researcher’s manipulation when her acceptance cost is high but benefits from that

possibility with a low or medium acceptance cost.

Our study is a first step in experimentally testing the effect of manipulation on the

research evaluation process. The natural next step is to test other forms of manipulation

and provide further guidance on related public policy.

7 Appendix A: Proof for Equilibrium

In this Appendix, we prove that the Intuitive Strategy by Researcher is an equilibrium

strategy.

7.1 Intuitive Strategy

We first discuss how the evaluator calculates E(βATE|v) if Researcher follows the Intu-

itive Strategy:

1. If v = 0, then

βI = 0 and βt = β−I = 0 with probability (1− q)2.

Therefore,

Pr(v = 0) = (1− q)2,

E(βATE|v = 0) = 0.

2. If v = 1, then there are two possible cases:

case 1 βI = βt = 1 β−I ∈ {0, 1} with probability q

case 2 βI = 0 βt = β−I = 1 with probability q(1− q),
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Therefore,

Pr(v = 1) = q(2− q),

E(βATE|v = 1) =
q(1 + q)/2 + q(1− q)/2

q(2− q)
=

1

2− q
.

It is straightforward to verify that E(βATE|v = 1) > E(βATE|v = 0) = 0. This means

that, for any given k, the evaluator’s strategy is weakly monotone in experimental

evidence v, and strictly so if k < 1/(2− q).
We now show that the proposed Intuitive Strategy for Researcher is indeed an equilib-

rium strategy, given the strategy of Evaluator. In order to show this, we check that

Researcher has no incentives to deviate from the Intuitive Strategy given any possible

experiment evidence.

• when βA = 1 the probability distribution of the possible outcomes is:

Intuitive Strategy: t = I Deviation: t = −I
w.p. w.p.

v = 0 0 1− q
v = 1 1 q

Therefore, the distribution of outcomes under the Intuitive Strategy first-order

stochastically dominates the one under the deviation. So Researcher does not want

to deviate.

• when βI = 0 the probability distribution of the possible outcomes is:

Intuitive Strategy: t = −I Deviation: t = I

w.p. w.p.

v = 0 1− q 1

v = 1 q 0

Therefore, the distribution of outcomes under the Intuitive Strategy first-order

stochastically dominates the one under the deviation. So again Researcher does not

want to deviate.
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7.2 Uniqueness of Intuitive Strategy (in Responsive Equilib-

rium)

Definition 5 A Strategy is Responsive when Evaluator’s action differs conditional on

different evidence v. A Responsive equilibrium is one where Evaluator plays a Respon-

sive Strategy.

We now show that in a Responsive equilibrium Researcher cannot adopt an alter-

native strategy to the Intuitive Strategy. Namely, he cannot adopt a Counter-intuitive

Strategy or Non-manipulative Strategy. Thus, the Intuitive Strategy is the unique

Responsive equilibrium strategy.

Definition 6 The Counter-intuitive Strategy is as follows:

• If βI = 1, then conduct the experiment in −I, i.e., t = −I.

• If βI = 0, then conduct the experiment in I, i.e., t = I.

We now discuss how Evaluator calculates E(βATE|v) if Researcher follows this Counter-

intuitive Strategy:

1. If v = 0, then there are two possible cases:

Case 1 βI = βt = 0 β−I ∈ {0, 1} w.p. 1− q
Case 2 βI = 1 βt = β−I = 0 w.p. q(1− q)

Therefore,

Pr(v = 0) =
1− q
1 + q

,

E(βATE|v = 0) =
(1− q)(q/2) + q(1− q)/2

(1− q)(1 + q)
=

q

1 + q
.

2. If v = 1, then

βI = 1 βt = β−I = 1 w.p. q2

Therefore,

Pr(v = 1) = q2,

E(βATE|v = 1) = 1.
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It is easy to check that also in this case for any given k, Evaluator’s strategy is weakly

monotone in experimental evidence v since E(βATE|v = 1) = 1 > E(βATE|v = 0) =

q/(1 + q) and is strictly so in evidence for k ∈ (q/(1− q), 1).

We now show that, when Evaluator plays a Responsive Strategy, the Counter-intuitive

strategy is not an equilibrium strategy, as we can find a deviation that makes Researcher

better off. In particular, Researcher would want to deviate when his private information

is βI = 0. The probability distribution of the possible outcomes in this case is:

Counter-intuitive Strategy: t = I Deviation: t = −I
w.p. w.p.

v = 0 1 1− q
v = 1 0 q

Since the distribution of outcomes under the deviation first-order stochastically dom-

inates the one under the Counter-intuitive Strategy and Evaluator uses a responsive

strategy, which is increasing in evidence, Researcher’s expected payoff from the devia-

tion would be greater than the one from the Counter-intuitive Strategy. Therefore, he

would want to deviate.

Definition 7 A Non-manipulative Strategy is one where Researcher’s choice is inde-

pendent of his private information.

Since we are considering only pure strategies, a Non-manipulative Strategy is one where

Researcher always chooses a specific experiment site, regardless of the private informa-

tion.

Again, Evaluator’s strategy is weakly monotone in experimental evidence v since E(βATE|v =

1) = 1+q
2
> E(βATE|v = 0) = q

2
, strictly when k ∈ ( q

2
, 1+q

2
).

It is easy to show, that for the same argument as for the Counter-intuitive Strategy,

Researcher would want to deviate when his private information is βI = 0. The same

argument would also apply to the case Researcher chooses the experiment site randomly.

7.3 Welfare Analysis

The graphs in Figure 4 are constructed using the information in Table 1. Similarly the

graphs in Figures 5-6 are constructed using the Researcher’s and Evaluator’s strategies
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Figure 5: The distribution of the expected value of average treatment effect, βATE.

in the different situations and the information contained in Table 1 about the probability

of evidence and on the posterior beliefs in the different situations.
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Figure 7: Evaluator’s expected payoff, VE.

Let us analyze first Researcher’s (expected) payoff under No Manipulation, Manip-
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ulation with rational Evaluator, and Manipulation with a näıve Evaluator:

No Manipulation Manipulation Manipulation

(rational Evaluator) (näıve Evaluator)

VR = 1 If k ≤ 1
4

VR = 1 If k ≤ 1
4

VR = 1/2 If k ∈ (1
4
, 3
4
] VR = 3/4 If k ≤ 2

3
VR = 3/4 If k ∈ (1

4
, 3
4
]

VR = 0 If k > 3
4

VR = 0 If k > 2
3

VR = 0 If k > 3
4

For example, under No Manipulation (the left part of the table), the Evaluator

posterior beliefs are E(β|0) = 1/4 and E(β|1) = 3/4. Therefore she always accepts,

independent of evidence, for k ≤ 1/4, which gives a payoff 1 to Researcher. Similarly,

she accepts only after good evidence for k ∈ (1/4, 3/4], which gives Researcher a payoff

of 1 with probability 1/2 (v = 1) and 0 with probability 1/2 (v = 0). Evaluator always

rejects for higher k, which gives Researcher a 0 payoff.

When Researcher uses the Intuitive Strategy and faces a näıve Evaluator (the right

part of the table), Evaluator has the same posterior beliefs as under No Manipula-

tion and therefore uses the same strategy: she always accepts for k ≤ 1/4, accepts

after positive evidence for k ∈ (1/4, 3/4], and always rejects for k > 3/4. However,

now Researcher’s expected payoffs must be calculated using the probability of observ-

ing positive or negative evidence induced by the Intuitive Strategy. So what changes

with respect to No Manipulation is that for intermediate k, Evaluator accepts with

probability 3/4 (v = 1 under Manipulation).

When Researcher uses the Intuitive Strategy and faces a rational Evaluator (middle

part of the table), Evaluator posterior beliefs are E(β|0) = 0 and E(β|1) = 2/3.

Therefore, she now always rejects after negative evidence, independent of k, and accepts

after positive evidence only for k ≤ 2/3. It follows that Researcher payoff is 1 with

probability 3/4 (the probability of v = 1 under manipulation) and 0 with probability

3/4 (the probability of v = 0 under manipulation). For higher k Researcher’s expected

payoff is zero.

Let us now analyze Evaluator’s (expected) payoffs under No Manipulation, Manip-

ulation with rational Evaluator, and Manipulation with Näıve Evaluator:
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No Manipulation Manipulation Manipulation

(rational Evaluator) (näıve Evaluator)

VE = 1
2
− k If k ≤ 1

4
VE = 1

2
− k If k ≤ 1

4

VE = 1
2
(3
4
− k) If k ∈ (1

4
, 3
4
] VE = 3

4
(2
3
− k) If k ≤ 2

3
VE = 3

4
(2
3
− k) If k ∈ (1

4
, 3
4
]

VE = 0 If k > 3
4

VE = 0 If k > 2
3

VE = 0 If k > 3
4

Consider the No Manipulation environment (the left part of the table). Evaluator

always accepts when k ≤ 1/4, so she always pays the cost k, and obtains the ex-ante

expected value of the project E(β) = 1/2. When k ∈ (1/4, 3/4], Evaluator accepts only

after positive evidence, which happens with probability 1/2. Conditional on this, she

pays the cost k and obtains E(β|1) = 3/4. For higher k, she always rejects so his payoff

is zero.

Consider the situation with Manipulation and rational Evaluator (the middle part

of the table). Evaluator accepts if and only if k ≤ 2/3 and evidence is positive. Her

expected payoff is therefore zero for k > 2/3. For k ≤ 2/3, conditional on positive

evidence, which happens with probability 3/4 under manipulation, she pays the cost k

and obtains E(β|1) = 2/3.

Consider now the situation with Manipulation and näıve Evaluator (the right part

of the table). Evaluator uses the same acceptance strategy as in the left part of the

table, so there are three cases to consider: k ≤ 1/4, k ∈ (1/4, 3/4], and k > 3/4.

When k is small or large, she always accepts or always rejects, respectively, like under

No Manipulation. Her payoffs do not depend on the evidence and are therefore the

same as under No Manipulation. For intermediate k, Evaluator accepts conditional on

positive evidence, which happens with probability 3/4 under Manipulation, so she pays

the cost k and obtains E(β|1) = 2/3.

8 Appendix B: Additional Results

See Figure 8.

9 Appendix C: Instructions

Welcome

Welcome to this experiment on economic decision making. There will be two parts

in today’s experiment, each consisting of 30 rounds. Your earnings will depend on
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your own decisions, other participants’ decisions and some random events which will

be explained later. Before reading the details of the experiment, as general guidelines,

please

• read the instructions carefully as they explain how you earn money from the

decisions that you make;

• do not talk with other participants. In particular, do not discuss your decisions

or your results with anyone at any time during the experiment;

• silence your mobile device during the experiment.

Part One Instructions

General Information

At the beginning of the experiment, half of the participants in the room will be

randomly assigned as Player A and the other half as Player B. Your role will appear

on the screen and will remain the same throughout the experiment. At the beginning

of each round you will be randomly paired with another person who is assigned to the

other role from your own. That is, if you are a Player A (Player B), in each round you

will be randomly paired with a Player B (Player A) with all possible pairings being

equally likely.

Specifics

In each round, you and your matched player will play a game as follows. There are

two bins, LEFT BIN and RIGHT BIN. In each bin there are 50 balls of a same colour,

RED or BLUE. The computer will randomly draw the colour of the balls in each bin

at the beginning of each round, with 50% chance being RED and 50% chance being

BLUE. The colour of the balls in each bin is drawn independently, that is, the colour

of the balls in the LEFT BIN will not affect the colour of the balls in the RIGHT BIN,

and vice versa. Therefore, although all the balls in the same bin are always in the same

colour, balls in different bins can be in different colours. There are in total four possible

outcomes for the colour of the balls in the two bins. For your convenience, the four

outcomes and the total number of RED balls in each case is provided in the following

table.
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LEFT BIN RIGHT BIN Total RED balls in the two bins Value of the project

RED RED 100 100 points

RED BLUE 50 50 points

BLUE BLUE 0 0 points

BLUE RED 50 50 points

The two bins together represent a project. Each RED ball has a value of 1 point

and each BLUE ball has no value. Therefore, the value of the project is equal to the

total number of RED balls in the two bins.

In each round, Player B will be assigned by the computer a K value, which is his

endowed income for the round. The value of K can be equal to 10, 40, or 70 and it may

vary across rounds and across players. Each Player B’s value of K for the round will be

shown on the screen of the matched Player A and Player B before they make decisions.

Right after the computer randomly draws the colour of the balls in each bin and

prior to Player A and Player B making decisions, neither player will observe the colour

of the balls in the two bins. Before Player B makes a decision, Player A will have to

choose one bin, LEFT BIN or RIGHT BIN. Then the computer will reveal the colour

of the balls in the chosen bin to the matched Player A and Player B. After that, Player

B will have to make a decision on whether to IMPLEMENT or NOT IMPLEMENT

the project by clicking one of the two buttons.

If Player B chooses IMPLEMENT, Player A will receive 100 points, and Player B

will forgo his endowed income and his earnings for the round will be equal to the value

of the project. Alternatively, if Player B chooses NOT IMPLEMENT, Player A will

receive 0 points, and Player B will receive his endowed income K points.

At the end of each round, the computer will display the outcome of the round,

including the K value of Player B, your choice, the colour of the balls in Player A’s

chosen bin, the total number of RED balls, the points you earn in the round. You click

the “OK” button to proceed to the next round.

There are three practice rounds, where the objective is to get you familiar with the

computer interface and the earnings calculation. Please note that the practice rounds

are entirely for this purpose, and any earnings in the practice rounds will not contribute

to your final payment at all. Once the practice rounds are over, the experimenter will

announce “The official experiment begins now!” after which the official experiment

starts. In the official experiment, there are in total 30 rounds for Part One.

A Brief Summary
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First, your role as a Player A or a Player B will be randomly assigned at the

beginning of the experiment. Your role will not change during the experiment.

Second, remember that after each round you will be matched randomly with a player

whose role is different from yours. Therefore, the probability of you being matched with

the same individual in two consecutive rounds is low.

Third, in each round the following events will happen in sequence for each pair of

Player A and Player B:

1. The computer will randomly draw the colour of the balls in each bin, without

informing either player of the colour;

2. Player B will be assigned a K value, which will be shown to both players;

3. Player A will choose one bin;

4. The colour of the balls in the bin chosen by Player A will be shown to both

players;

5. Player B will choose whether or not to implement the project;

6. The results for the round will be displayed.

Earnings

You will receive $10 for showing up in the session. At the end of the experiment,

the computer will randomly choose FOUR rounds, TWO out of 30 from part one and

TWO out of 30 from part two, to determine your actual earnings. Each round has an

equal probability to be chosen. Your earnings in each round are calculated in points,

which will be converted to Canadian dollars at the exchange rate of 10 Points = 1

Dollar. Your final payment will be the summation of the earnings in the four randomly

chosen rounds, plus the show-up fee. Please note that you will not be told which rounds

are chosen before the end of the experiment, so you should make careful decisions in

every round. You will be paid in cash, individually and privately, at the end of the

experiment.

In the rare case, if your total payment is less than $15 including the show-up fee,

you will receive $15 instead.

Questions?

Now is the time for questions. If you have any question, please raise your hand.

Our experimenter will come to answer your question individually.

Part Two Instructions

From now on until the end of today’s experiment, everything is the same as in the

original instruction except the following part.
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Before Player A makes the decision, the computer will randomly choose a bin, each

bin being chosen with 50% chance. The computer will reveal the TRUE colour of the

balls in that bin to Player A by sending a private message. The message will take the

following form:

The balls in the LEFT/RIGHT BIN are RED/BLUE

The content of the message depends on the computer’s choice between the two bins

and the colour of the balls. Player B will not observe the content of the message.

Accordingly, in each round the following events will happen in sequence for each

pair of Player A and Player B:

1. The computer will randomly draw the colour of the balls in each bin, without

informing either player of the colour;

2. Player B will be assigned a K value, which will be shown to both players;

3. The computer will randomly choose one bin and inform Player A of the colour

of the balls in that bin by sending a private message;

4. Player A will choose one bin;

5. The colour of the balls in the bin chosen by Player A will be shown to both

players;

6. Player B will choose whether or not to implement the project;

7. The results for the round will be displayed.

There are 3 practice rounds and in total 30 official rounds in Part Two.
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Brodeur, A., M. Lé, M. Sangnier, and Y. Zylberberg (2016): “Star Wars:

The Empirics Strike Back,” American Economic Journal: Applied Economics, 8(1),

1–32. 1

44



Chalmers, I. (1999): “Why transition from alternation to randomisation in clinical

trials was made,” British Medical Journal, 319(7221), 1372. 21

Chang, A. C., and P. Li (2017): “A Preanalysis Plan to Replicate Sixty Eco-

nomics Research Papers That Worked Half of the Time,” American Economic Review,

107(5), 60–64. 1

Chung, W., and R. Harbaugh (2016): “Biased Recommendations from Biased and

Unbiased Experts,” Discussion paper. 1

Crawford, V., and J. Sobel (1982): “Strategic Information Transmission,” Econo-

metrica, 50(6), 1431–1452. 1

Di Tillio, A., M. Ottaviani, and P. N. Sørensen (2017a): “Persuasion bias

in science: Can economics help?,” The Economic Journal, 127(605), F266–F304.

(document), 1, 7, 2, 2.2, 2.4, 5, 6, 21

(2017b): “Strategic sample selection,” Discussion paper. 1

Fisher, R. A. (1925): Statistical methods for research workers. Oliver and Boyd.

Edinburgh, Scotland. 21

(1926): “The arrangement of field experiments,” Journal of the Ministry of

Agriculture of Great Britain, 33, 503–513. 21

(1935): The Design of Experiments. Oliver and Boyd. Edinburgh, Scotland.

21
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