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1 Introduction

We propose an extensive-form game that generalizes Rubinstein (1982) and provides strategic foundations

to both the generalized Nash (1950) solution and the proportional solution of Kalai (1977) for environments

with pairwise meetings and liquidity constraints commonly used in search-theoretic models. For instance,

our game can describe a negotiation between a worker and a firm over the terms of an employment contract,

hours of work and compensation, subject to the cash constraint of the firm. Another example is when

two traders in an over-the-counter (OTC) market negotiate the size of a security trade financed with a

collateralized loan.1

Two axiomatic solutions have been routinely used to tackle these bargaining problems: the generalized

Nash solution and the Kalai (proportional) solution.2 The Nash solution has the considerable advantage

of having well-established strategic foundations (see, e.g., Osborne and Rubinstein, 1990). It has several

disadvantages: the buyer’s surplus from trade is non-monotone in his payment capacity, which makes the

assumption that the buyer cannot under-report his asset holdings critical; it does not guarantee the concavity

of the players’ surpluses, which reduces its tractability in general equilibrium settings. In contrast, the

proportional solution is highly tractable and it has the natural prediction that traders’surpluses increase as

gains from trade expand (e.g., Aruoba et al., 2007). However, the proportional solution is not scale invariant

and it does not have solid strategic foundations, such as an extensive-form game with alternating offers. This

lack of strategic foundations is problematic for a literature that thrives on rigorous micro-foundations.

In this paper, we propose a unified extensive-form game indexed by a single parameter and show that

it can rationalize both the Nash and the Kalai solutions for two particular values of that parameter. Such

common strategic foundations will allow us to identify the underlying agenda of the negotiation as the

fundamental difference between the two solutions. Formally, we describe a bargaining game between a buyer

with a payment capacity (e.g., liquid wealth, borrowing limit) z ∈ R+ and a producer. The consumption

good, y, is perfectly divisible and the gains from trade are maximized for some y = y∗. The game is composed

of N ∈ N rounds. In each round, the amount of goods up for negotiation is y∗/N , and the players bargain

according to a Rubinstein (1982) alternating-offer game with exogenous risk of termination (or, equivalently,

a stochastic horizon). We show that for all N this game admits a (essentially) unique subgame-perfect

1Examples of these different applications include: Lehmann (2012) or Gu et al. (2019) for a labor search model where wages
are negotiated subject to the cash constraint of the firm; Lagos and Zhang (2019) for a model of an OTC market where traders’
purchases are constrained by their cash holdings; Dugast et al. (2019) where OTC traders are constrained by a market trading
capacity; Rocheteau et al. (2018) for a corporate finance model where loan contracts are negotiated bilaterally between a bank
and an entrepreneur; and all the New Monetarist literature surveyed in Rocheteau and Nosal (2017) and Lagos et al. (2017).

2The Kalai solution should not be confused with the Kalai-Smorodinsky (1975) solution that is scale invariant but not
strongly monotone.
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equilibrium (SPE) and the terminal allocation can be solved in closed form. When the risk of termination

goes to zero in each round, the game implements the generalized Nash solution when N = 1, all the output

is sold at once, and the Kalai solution when N = +∞, the output is sold one infinitesimal bundle at a

time. The limiting case N = +∞ also implements the axiomatic ordinal solution O’Neill et al. (2004) for

bargaining problems with an agenda. If we allow one of the two players to set the agenda of the negotiation,

N , then the buyer chooses N = 1 (Nash) whereas the producer chooses N = +∞ (Kalai). Intuitively, the

producer prefers to sell his output gradually to delay the time at which the liquidity constraint of the buyer

binds, thereby avoiding distorting surplus sharing in a way that is favorable to the buyer.

We generalize our model by allowing output limits to vary across N rounds. Hence, the agenda of the

negotiation is an arbitrary sequence of output levels, {∆ȳn}Nn=1, that are negotiated sequentially. We show

that the insights from the game with constant limits are robust to this extension. In particular, the final

allocation is obtained from a recursion that involves solving a generalized Nash bargaining problem in each

iteration. For a given payment capacity, we give a full characterization of the set of agendas that implement

the Kalai solution. The only agendas that generate the Kalai outcome uniformly for all payment capacities

are obtained at the limit when N becomes large and the quantities negotiated in each round, ∆ȳn, become

arbitrarily small.

In order to illustrate some implications of our model in general equilibrium, we endogenize the buyer’s

payment capacity by assuming the buyer can borrow z at some interest rate before the negotiation starts.

Even if the interest rate is zero, and hence liquidity is costless, the buyer’s choice of z is such that the

liquidity constraint binds for all N < +∞ and output is less than its first-best level, y∗, which generalizes

a key result of Lagos and Wright (2005) obtained for N = 1. Moreover, the choice of z is not monotone

in N . It is only at the limit, when N = +∞, that a zero interest rate implements y∗. An increase in the

interest rate can have a dramatic effect on the buyer’s payment capacity for relatively low N due to strategic

considerations in the negotiation.

Finally, we endogenize both the agenda of the negotiation and the buyer’s payment capacity. If we

restrict the agenda to have constant bundle sizes across rounds, and if the agent setting the agenda is chosen

at random before the negotiation starts, then the optimal payment capacity of the buyer decreases with

the probability that she sets the agenda. If the agenda is set unilaterally by the seller and can specify

different bundle sizes across rounds, any subgame perfect equilibrium implements the proportional solution.

Moreover, if the buyer’s payment capacity is not observed at the time the seller chooses the agenda, then

the only agenda that is part of an equilibrium is gradual.
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Related literature

Extensive-form bargaining games with alternating offers a la Rubinstein (1982) have been applied to the

description of decentralized markets by Rubinstein and Wolinsky (1985). A risk of breakdown between

consecutive offers was introduced by Binmore et al. (1986). A survey of this literature can be found in

Osborne and Rubinstein (1990). The first application to models with liquidity constraints came from Shi

(1995) and Trejos and Wright (1995) in economies where the buyer’s payment capacity is indivisible. Versions

with divisible payments have been developed by Shi (1997) and Lagos and Wright (2005) and are surveyed

in Lagos et al. (2017).

There are strategic foundations for the proportional solution, e.g., Bossert and Tan (1995) and Dutta

(2012), but they are based on the Nash demand game and they assume interpersonal utility comparisons

through penalties for incompatible demands or revoking costs.3 In contrast to those approaches, we propose

an extensive-form game with alternating offers, in the spirit of Rubinstein (1982), that generates a unique SPE

allocation invariant to rescaling of players’utilities. Our approach allows us to provide unified foundations

for both the Nash and the Kalai solutions where the scaling factor of the proportional solution is determined

endogenously.

Fershtman (1990) describes a two-round game where agents negotiate sequentially the split of two pies

of different sizes. The negotiation in each round is conducted according to the Rubinstein game, like in our

setting. The agenda consists in the order according to which the two pies are negotiated. In our model,

the agenda is identified with the number of rounds or, equivalently, the bundle size to be negotiated in each

round, and the total gains from trade are endogenous due to a liquidity constraint. Similar to Fershtman

(1990) we also find that players can disagree on the agenda with implications for effi ciency.4

Our game is also related to the Stole and Zwiebel (1996) game in the literature on intra-firm wage

bargaining where a firm bargains sequentially with N workers. See Brugemann et al. (2018) for a recent

re-examination of this game. In contrast to this literature, in our model the buyer negotiates repeatedly

with the same seller who supplies a divisible commodity. Hence, contracts are two-dimensional and specify

a price and a quantity. In our game, if the agents fail to reach an agreement in one round, they move to

the next round, but the agreements of earlier rounds are preserved. In the Stole-Zwiebel game, all previous

agreements are erased. In Smith (1999) the firm treats each worker as the marginal worker. It is also the

3Bossert and Tan (1995) adopts a multi-stage arbitration game where incompatible demands are penalized for the player
who asks a higher surplus. Dutta (2012) introduces another stage after the Nash demand game where players face revoking
costs, and obtained the proportional solution when such cost approaches infinity.

4Fershtman (1990) shows that the players disagree on the agenda (the ordering of the pies) if they value the pies differently,
i.e., each player would like to negotiate first the pie that she values the least and her opponent values the most.
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case in our model that in each round agents are effectively negotiating over the marginal surplus but the

disagreements points of both players are endogenous and determined recursively.

2 Basic setting

We describe a bargaining game whereby two players negotiate the sale of a divisible commodity in exchange

for a payment subject to a liquidity constraint. This game is consistent with a wide class of search-theoretic

models where buyers and sellers are matched pairwise at random and negotiate the terms of a mutually

beneficial trade subject to some payment constraints.5

2.1 Allocations and preferences

The two players are called buyer and seller. The quantity of the divisible commodity produced by the seller

for the buyer is denoted y ∈ R+. The payment made by the buyer is denoted p ∈ R+. It is subject to a

liquidity constraint, p ≤ z, where z is the payment capacity. Preferences over outcomes of the negotiation,

(y, p) ∈ R+ × [0, z], are represented by the following quasi-linear utility functions:

ub = u(y)− p, (1)

us = −υ(y) + p, (2)

where the superscripts b and s stand for buyer and seller. As is standard in search-theoretic models, payoffs

are linear in the payment.6 The function u(y) is the buyer’s utility from his consumption y. The quantity

υ(y) is the seller’s disutility from producing y. We assume u′(y) > 0, u′′(y) < 0, u′(0) = +∞, u(0) = υ(0) =

υ′(0) = 0, υ′(y) > 0, υ′′(y) > 0, and u′(y∗) = υ′(y∗) for some y∗ > 0. The no-trade allocation, (y, p) = (0, 0),

yields ub = us = 0.

2.2 Two axiomatic solutions

The generalized Nash solution A common approach to the above bargaining problem is to impose the

generalized Nash solution, i.e., (y, p) ∈ arg max(ub)θ(us)1−θ, where θ ∈ [0, 1] is the buyer’s bargaining power,

subject to individual rationality constraints, ub ≥ 0 and us ≥ 0, and the feasibility constraint, p ≤ z. The

solution is p = pGNθ (y) = min
{
z, pGNθ (y∗)

}
where

pGNθ (y) ≡ [1−Θ(y)]u(y) + Θ(y)v(y), (3)

5The commodity can be a consumption good (e.g., Lagos and Wright, 2005), hours of work (e.g., Pissarides, 2000), or
an over-the-counter security (e.g., Duffi e et al., 2005), and the payment can be interpreted as money, collateralized loan, or
unsecured debt.

6 In a general equilibrium setting, the payoffs of the buyer and seller would be given by u(y) + W b(ωb − p) and −υ(y) +
W s(ωs + p) where W b and W s are continuation value functions and ωb and ωs represent wealth levels. Under quasi-linear
preferences, the value functions are linear in wealth, hence the payoffs in (1)-(2).
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and where the share of the surplus accrued to the buyer is

Θ(y) =
θu′(y)

θu′(y) + (1− θ)v′(y)
. (4)

Note that Θ(y) is decreasing in y with Θ(y∗) = θ. Agents trade y∗ if it is feasible, z ≥ pGNθ (y∗), or the buyer

exhausts his payment capacity to consume as much as possible, pGNθ (y) = z.

The Kalai solution Alternatively, the proportional solution of Kalai (1977) selects the allocation (y, p)

that maximizes ub = u(y) − p, subject to ub = θus/(1 − θ) and p ≤ z for some θ ∈ [0, 1], interpreted as

the buyer’s bargaining share. The choice of the units for ub and us matters as the Kalai solution is not

scale invariant. Here payoffs are expressed in terms of the payment good, i.e., ∂us/∂p = 1 = −∂ub/∂p. The

solution is p = pKθ (y) = min
{
z, pKθ (y∗)

}
where

pKθ (y) ≡ (1− θ)u(y) + θυ(y), (5)

The Kalai solution coincides with Nash when the liquidity constraint does not bind, but it differs from it

when it binds. The Kalai solution is strongly monotone, i.e., ub = u(y) − pKθ (y) = θ [u(y)− υ(y)] increases

with y and hence with z. This result does not hold under Nash bargaining where ub = Θ(y) [u(y)− υ(y)]

decreases with y when y is close to y∗ (e.g., Aruoba et al., 2007). A second advantage of the Kalai solution

is its tractability: it preserves the concavity of the surpluses with respect to z and it generates simple

closed-form expressions.7 Relative to Nash, however, the Kalai solution is not scale invariant and lacks solid

strategic foundations.

3 The Rubinstein game with sliced bundles

We propose an extensive-form game that implements the Nash and Kalai solutions as two polar cases. The

game is composed of N ≥ 1 rounds. In each round, n ∈ {1, ..., N}, there are (potentially) infinitely many

stages during which the two players bargain over the sale of at most ∆yn units of consumption good following

an alternating-offer protocol as in Rubinstein (1982).8 Here we assume that ∆yn = y∗/N for all n but we

will relax this assumption in Section 6. So, over the N rounds the two players have the possibility to trade

7One example that showcases the tractability provided by the proportional solution is Lester et al. (2012) on costly infor-
mation acquisition. While the initial version of the paper assumed generalized Nash bargaining, the use of the Kalai solution
in later versions allowed the authors to obtain tighter characterizations of agents’problems and closed-form solutions. Another
example is Geromichalos et al. (2016) on term structure in OTC markets.

8The infinite number of stages in each round can be interpreted as an approximation for a large but finite number of stages.
Indeed, it is well known that the equilibrium of the finite horizon version of the Rubinstein game converges to the equilibrium
of the infinite horizon game as the horizon of the negotiation becomes large. For a similar formalization, Aumann and Hart
(2003) has an extensive-from game which contains infinitely many stages before another phase of action to occur in the context
of a cheap talk game.
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the effi cient quantity, y∗.9

The round-game is illustrated in Figure 1. In the initial stage, the buyer makes an offer (∆yn,∆pn) where

∆yn ≤ y∗/N is the amount of goods he is willing to purchase in exchange of some payment ∆pn ≤ z− pn−1

where pn−1 is the cumulated sum of payments that have been agreed upon over the first n − 1 rounds and

hence z − pn−1 is the remaining payment capacity of the buyer in round n. The seller either accepts the

offer or rejects it. If the offer is accepted, (∆yn,∆pn) is permanently secured (∆yn is produced and given

to the buyer in exchange for ∆pn) and the negotiation moves to round n + 1. If the offer is rejected, then

there are two possibilities. With probability 1 − ξs, round n is terminated and the players move to round

n + 1 without having reached an agreement in round n, i.e., (∆yn,∆pn) = (0, 0). With probability ξs, the

round-n negotiation continues and the seller becomes the proposer in the following stage. If the seller’s

offer is rejected, the negotiation moves to the next stage with probability ξb, in which case the buyer is the

proposer. While the game in Figure 1 assumes that the buyer makes the first offer in all rounds, we also

consider the version of the game where the seller is the first proposer in all rounds.

...

Yes

Yes

No

No

Buyer

Buyer

Buyer

Round #1 ......Round #2 Round #n Round #N

Move to
next round

Move to
next round

Trade and move
 to next round

Trade and move
 to next round

Seller

Seller
][ sξ

][ bξ

]1[ sξ−

]1[ bξ−

Round game

Figure 1: Game tree

We denote yn ≡
∑n
j=1 ∆yj the quantity of goods traded in the first n rounds and pn ≡

∑n
j=1 ∆pj the

total payment. The utility levels associated with the interim allocation, (yn, pn), are denoted ubn = u (yn)−pn
9A feature of our game is that if an offer is rejected, the y∗/N units of consumption good that are unsold cannot be

renegotiated later in the game. Alternatively, we could assume that the bundle size is y∗/N and the number of rounds is
N̄ > N , in which case if the negotiation fails in one round, agents have the option to renegotiate the bundle later. We show in
our working paper, Rocheteau et al. (2019), that the solution to our game is robust to this feature.
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and usn = −υ (yn) + pn. Interim allocations are subject to two feasibility conditions: yn ≤ yn ≡ ny∗/N and

pn ≤ z.

We define a family of Pareto frontiers, H(ubn, u
s
n, yn; z) = 0, indexed by yn and z. Each frontier is the

solution to ubn = maxy≤yn,p≤z {u (y)− p} subject to −v (y) + p ≥ usn. Hence,

H(ub, us, y; z) =

{
u(y)− υ(y)− ub − us if us ≤ z − υ(y),

z − υ[u−1
(
ub + z

)
]− us otherwise.

(6)

We illustrate the Pareto frontiers for a given z but different values for ȳ in Figure 2. As long as y is

suffi ciently small relative to z, the Pareto frontier is linear. If u(ȳ) > z, then the payment constraint binds

for us suffi ciently large, in which case the Pareto frontier is strictly concave over some range.

su

bu

0
*)

,
,

(

=
y

u
u

H

s
b

0
)

,
,

(

1 =
y

u
u

H

s
b

0
)

,
,

(

2 =
y

u
u

H

s
b

Figure 2: Pareto frontiers for ȳ ∈ {y1, y2, y
∗} and for given z

In order to build some intuition, we start with a one-round game, N = 1, where agents can trade up to

ȳ = y∗, and the liquidity constraint, p ≤ z, does not bind. The equilibrium outcome specifies y = ȳ since

otherwise there would be unexploited gains from trade, and p = pb where (pb, ps) solves

−υ(ȳ) + pb = ξs [−υ(ȳ) + ps] (7)

u(ȳ)− ps = ξb
[
u(ȳ)− pb

]
. (8)

Equation (7) states that the buyer offers (ȳ, pb) that makes the seller indifferent between accepting and

rejecting. From (8), if she rejects and if the negotiation is not terminated, the seller offers (ȳ, ps) in the next
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stage, so as to make the buyer indifferent between accepting or rejecting. The solution is

pb = pb(ȳ) ≡
ξs
(

1− ξb
)
u(ȳ) + (1− ξs)υ(ȳ)

1− ξbξs
(9)

ps = ps(ȳ) ≡

(
1− ξb

)
u(ȳ) + ξb (1− ξs) υ(ȳ)

1− ξbξs
(10)

From (9) the buyer’s payment when it is his turn to make an offer coincides with pKθ (y) for θ = (1− ξs)/(1−

ξbξs). If the seller makes the offer, the buyer’s share is reduced to ξb (1− ξs) /(1 − ξbξs). The liquidity

constraint does not bind if ps(ȳ) ≤ z.

We now turn to the N -round game and characterize the final allocation for an arbitrary number of rounds

and arbitrary probabilities of termination within each round.

Proposition 1 (SPE of the Rubinstein game with sliced bundles.) Consider a subgame of the

Rubinstein game with sliced bundles where the identity of the first proposer in each round is χ ∈ {b, s}. The

subgame starts in round n ∈ {1, ..., N} with an interim allocation (yn−1, pn−1) ∈ [0, (n − 1)y∗/N ] × [0, z).

There is a sequence,
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=n

, defined uniquely by (ybn−1, p
b
n−1) = (yn−1, pn−1) = (ysn−1, p

s
n−1),

and the following recursion:

(ybj , p
b
j) ∈ arg max

y,p
{u(y)− p} (11)

s.t. − υ(y) + p ≥ (1− ξs)
[
−v(yχj−1) + pχj−1

]
+ ξs

[
−v(ysj ) + psj

]
(12)

p ∈
[
pχj−1, z

]
, y − yχj−1 ≤

y∗

N
, (13)

and

(ysj , p
s
j) ∈ arg max

y,p
{−υ(y) + p} (14)

s.t. u(y)− p ≥ (1− ξb)
[
u(yχj−1)− pχj−1

]
+ ξb

[
u(ybj)− pbj

]
(15)

p ∈
[
pχj−1, z

]
, y − yχj−1 ≤

y∗

N
. (16)

The final allocation of any SPE is (y, p) = (yχN , p
χ
N ) where χ = b if the buyer is the first proposer in each

round and χ = s if the seller is the first proposer in each round. The whole game corresponds to n = 1 and

(yb0, p
b
0) = (0, 0) = (ys0, p

s
0).

Proposition 1 states that the SPE of the Rubinstein game with sliced bundles is computed as the sequence

of subgame perfect equilibria of one-round Rubinstein games. The termination payoffs in the j-th iteration

correspond to the payoffs in the (j − 1)-th iteration, ubj−1 = u(yχj−1) − pχj−1 and usj−1 = −υ(yχj−1) +

pχj−1, where χ ∈ {b, s} is the identity of the first proposer. There are two interpretations of the sequence
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{
(ybj , p

b
j , y

s
j , p

s
j)
}N
j=n

. To describe these interpretations, consider the game with the buyer as the first proposer,

χ = b.

According to the first interpretation, (ybj , p
b
j) is the equilibrium final allocation in the (sub)game composed

of the last j rounds with initial allocation (y0, p0) = (0, 0), i.e., no agreement has been reached in the first

N − j rounds. For instance, (yb1, p
b
1) is the equilibrium allocation of a game composed of a single round (the

N -th round) with initial allocation (0, 0). By the same logic as in Rubinstein (1982), the problem (11)-(13)

characterizes the buyer’s equilibrium offer while (14)-(16) characterizes the seller’s offer. Similarly, (yb2, p
b
2)

is the final allocation in a game composed of two rounds only (the subgame starting in round N − 1) with

initial allocation (0, 0). To see this, note that if the agents cannot reach an agreement in round N − 1 and

move to round N , the final allocation is (yb1, p
b
1). Hence, forward-looking agents negotiate over outcomes

from the two remaining rounds (N − 1 and N), that is, payoffs from H(ub, us, 2y∗/N ; z) = 0, taking (yb1, p
b
1)

as the relevant allocation in case the negotiation breaks down in round N − 1. We can continue the same

logic and conclude that (ybN , p
b
N ) is the final allocation of the whole game.

While we first interpreted the terms of
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=1

as final allocations of subgames of different

lengths, the second interpretation views the terms of the sequence as intermediate allocations along the

equilibrium path leading to the final allocation. More precisely, if the buyer is the one to make the first

offer in each round, then (ybn, p
b
n) is the equilibrium intermediate allocation achieved at the end of the n-th

round. Indeed, if (ybN , p
b
N ) is the final allocation of the entire game, then subgame perfection requires that it

is the final allocation in the subgame starting in round (n+ 1) with allocation (ybn, p
b
n). To verify this claim,

consider the sequence,
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=1
, obtained from (11)-(16) with (yb0, p

b
0) = (0, 0). Then, (ybN , p

b
N )

is the final allocation at the end of the entire game. However, if we run the program with initial allocation

(ybn, p
b
n), then we obtain the truncated sequence,

{
(ybj , p

b
j , y

s
j , p

s
j)
}N
j=n+1

, which confirms that (ybN , p
b
N ) is also

the final allocation of the subgame that start at round (n+ 1) with intermediate allocation (ybn, p
b
n).10

In our proof we extend this logic to a general subgame with arbitrary intermediate payoffs, and the key

part is to establish that, in the j-th iteration, ubj−1 = u(yχj−1)− pχj−1 and u
s
j−1 = −υ(yχj−1) + pχj−1, are the

relevant payoffs in case the negotiation terminates. The general result is obtained by backward induction.

To illustrate the logic of our proof, consider the subgame that starts at round N − 1 with some interim

allocation, (yN−2, pN−2), and assume that the buyer makes the first offer in each round. If no agreement is

reached in this round, then the game moves to the last round, N . In that subgame, which begins with interim

allocation (yN−2, pN−2), the construction and the uniqueness of the SPE follows the standard argument of

10This second interpretation requires that bundle sizes are constant across rounds. Otherwise, the intermediate payoffs need
to be computed with a different, but similar, recursion. See Section 6 for details.
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Rubinstein (1982), and the equilibrium offers, denoted by (ybN−1, p
b
N−1) and (ysN−1, p

s
N−1), are computed

according to (11)-(16) with j = N − 1. Hence, the players understand that, if the negotiation breaks down

in round N − 1, the final allocation is given by (ybN−1, p
b
N−1).

Now consider the original subgame at round N − 1 with interim allocation (yN−2, pN−2). The players’

final payoffs will lie within the Pareto frontier H(ub, us, yN−2+2y∗/N ; z) = 0. Therefore, effectively, in round

N − 1 the players are negotiating over outcomes reachable within that Pareto frontier with the endogenous

termination payoffs corresponding to the allocation (ybN−1, p
b
N−1). By the standard logic of a Rubinstein

game, its solution, (ybN , p
b
N , y

s
N , p

s
N ), is computed according to (11)-(16) starting with j = N − 1.11

While the final allocations are uniquely determined, the SPE is not unique if there is a rank J < N in the

sequence
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=n−1

such that for all j ≥ J , (ybj , p
b
j , y

s
j , p

s
j) = (ybN , p

b
N , y

s
N , p

s
N ). In that case there

is indeterminacy regarding the timing of the interim agreements. The next corollary provides a suffi cient

condition for the liquidity constraint to be slack.

Corollary 1 (Slack liquidity constraints.) If

z ≥

(
1− ξb

)
u(y∗) + ξb (1− ξs) υ(y∗)

1− ξbξs
, (17)

then the liquidity constraints never bind along the equilibrium path. The final allocation is such that y = y∗

and p = pb(y∗) if the buyer is the first proposer in all rounds and p = ps(y∗) if the seller is the first proposer

in all rounds.

If the buyer’s payment capacity is suffi ciently large, z ≥ ps(y∗), then agents trade y∗ and the payment is

identical to the one of the one-round game, i.e., the solution coincides with the proportional solution with

endogenous bargaining shares determined by termination probabilities. In contrast, if (17) does not hold,

then the liquidity constraint will be binding somewhere along the sequence constructed in Proposition 1. If

the seller makes the first offer in all rounds, then there exists N̂ ≤ N such that psn = ps(ȳn) ≤ z and pbn ≤ z

are slack for all n < N̂ . In round N̂ , the game ends with the final allocation (ys
N̂
, z).

4 The chained Nash solution

The player making the first offer in each round has an advantage that allows him to capture a larger share

of the surplus. In order to eliminate this advantage, we now assume that
(
ξb, ξs

)
=
(
e−(1−θ)ε, e−θε

)
and we

11Note that the logic of the proof only relies on the assumption that the sliced bundles have equal sizes. While we assume
that the size of the bundle is given by y∗/N for some natural number N , Proposition 1 will hold for any bundle size, ỹ ∈ (0, y∗],
as long as it remains constant across rounds. The number of rounds can be chosen to be the least N such that Nỹ ≥ y∗.
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let ε go to 0. So, the probabilities of termination of the current round following rejected offers, 1 − ξb and

1− ξs, vanish while their ratio converges to (1− θ)/θ.

Proposition 2 (The chained Nash solution.) Suppose
(
ξb, ξs

)
=
(
e−(1−θ)ε, e−θε

)
for some θ ∈ [0, 1]

and consider the limit as ε → 0. The final allocation of the Rubinstein game with sliced bundles is the last

term of the sequence {(yn, pn)}Nn=1 where (y0, p0) = (0, 0) and

(yn, pn) ∈ arg max
y,p

[u(y)− u(yn−1)− (p− pn−1)]
θ

[−υ(y) + υ(yn−1) + (p− pn−1)]
1−θ (18)

s.t. y − yn−1 ≤
y∗

N
and p ≤ z.

The solution to (18) is such that: pn = z = g(yn, ȳn−1)
pn = z and yn = ȳn
pn = pKθ (ȳn) and yn = ȳn

if
z ≤ g(ȳn, ȳn−1)
g(ȳn, ȳn−1) < z < pKθ (ȳn)
z ≥ pKθ (ȳn),

(19)

where

g(y, ȳ) ≡ [1−Θ(y)]u(y) + Θ(y)v(y) + [Θ(y)− θ] [u(ȳ)− υ(ȳ)] . (20)

If N = 1, then the limit of the Rubinstein game as the risk of breakdown vanishes coincides with the

generalized Nash solution with buyer’s bargaining power θ. We extend this result to the case where there

are multiple rounds, N > 1. In each round, the interim allocation, (yn, pn), is given by the generalized

Nash solution where the disagreement point corresponds to the interim payoffs from the previous round,

u(yn−1) − pn−1 and −υ(yn−1) + pn−1. We illustrate this solution in Figure 3 where the bargaining set in

each round is represented by a purple area and the solution is given by the tangency point between the

red curve representing the generalized Nash product and the bargaining set. In rounds where the liquidity

constraint, pn ≤ z, does not bind, y = ȳn and p = pKθ (ȳn), i.e., the solution coincides with the proportional

solution. In later rounds when pn ≤ z binds, the Nash solution differs from the proportional solution.

The function g(yn, ȳn−1) in (20) specifies the total payment for yn units of output given ȳn−1 has been

secured in previous rounds and provided that the feasibility constraint, yn ≤ ȳn, is slack. It is increasing in

both yn (for all yn < y∗) and ȳn−1. It is related to pGN and pK as follows. The function g(y, 0) ≡ pGNθ (y) is

the payment in the first round, which coincides with the payment function of the generalized Nash solution

in (3) while g(ȳ, ȳ) = pKθ (ȳ) is the payment function of the proportional solution, (5). Note also that

g(y∗, ȳ) = pKθ (y∗) = pGNθ (y∗) for any ȳ ≤ y∗.

From (19), there are three cases to distinguish regarding the determination of the interim allocations in

round n. If z < g(ȳn, ȳn−1) then the liquidity constraint binds, pn = z, and the quantity traded is less than

the size of the bundle that is up for negotiation, yn − ȳn−1 < y∗/N . If z ∈
(
g(ȳn, ȳn−1), pKθ (ȳn)

)
, then the

12
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Figure 3: Chained Nash solution

buyer’s payment capacity is suffi ciently large to finance the purchase of the whole bundle but it is not large

enough to divide the surplus according to the bargaining power, θ. In that case, both p ≤ z and yn ≤ ȳn

bind. In that regime, as z increases, output is constant at ȳn but the payment increases one-for-one with

z.12 Finally, if z ≥ pKθ (ȳn) then the liquidity constraint is slack, yn = ȳn, and the payment coincides with

the proportional solution.

From (19) the buyer’s surplus as a function of his payment capacity is:

ubN (z) =

N∑
n=1

[
I{pKθ (ȳn−1)≤z≤g(ȳn,ȳn−1)} {u [yn(z)]− z}+ I{g(ȳn,ȳn−1)<z<pKθ (ȳn)} {u (ȳn)− z}

]
(21)

+I{z≥pKθ (y∗)}θ [u(y∗)− v(y∗)] .

The first term corresponds to the first case in (19) and is equal to u(yn) − g(yn, ȳn−1), where yn(z) is

the solution to z = g(yn, ȳn−1). The second term is the surplus when all feasibility constraints bind,

corresponding to the second case in (19). Note that the second term does not exist when n = N . The last

term is the surplus when the liquidity constraint is slack.

In Figure 4 we represent the buyer’s and seller’s surpluses for different values of N . The top panel shows

that the buyer’s surplus is non-monotone in z. This non-monotonicity has two origins. First, in the absence

of output limits, the Nash solution generates non-monotone payoffs as the bargaining set expands – a well-

known property of models with liquidity constraints (e.g., Aruoba et al., 2007). This result is illustrated by

the purple curve for the case N = 1. Intuitively, the buyer’s surplus is the product of the buyer’s share,

Θ(y), and the total surplus of the match, u(y)− υ(y). As z increases and hence y increases toward y∗, Θ(y)

decreases while u(y)− υ(y) increases. Close to y∗, the first effect dominates.

12The allocations generated by our game for all N ≥ 2 do not satisfy the axiom of monotonicity of Gu and Wright (2016),
which underscores the importance of providing strategic foundations to the trading mechanisms in monetary economies.
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Figure 4: Buyer’s and seller’s surpluses. u(y) = 2
√
y, υ(y) = y, θ = 0.5

The second origin of the non-monotonicity of the buyer’s surplus comes from the output limits, yn ≤ ȳn.

In all rounds before the last, the output limit starts to bind when z reaches the threshold g(ȳn, ȳn−1), in

which case the buyer’s surplus exhibits a kink at a local maximum. As z increases above g(ȳn, ȳn−1), the

output remains unchanged at yn = ȳn while the payment by the buyer keeps increasing until it reaches

pKθ (ȳn) at which point the buyer’s share in the total surplus is exactly θ. Hence, the buyer spends more to

consume the same amount and his surplus decreases. If z increases above pKθ (ȳn), then z − pKθ (ȳn) is spent

in round n + 1 and the buyer’s surplus increases again. Both origins for the non-monotonicity are based

on the fact that the buyer can capture a share of the match surplus that is greater than his natural share

represented by θ when his liquidity constraint is binding.

5 Foundations for Kalai and Nash bargaining

We now turn to the main contribution of the paper and provide unified strategic foundations for the Nash

and Kalai solutions. We begin with the Kalai solution and show that as N goes to infinity, i.e., the size of

the bundle negotiated in each round becomes infinitesimal, the final payoffs and allocations converge to the

ones induced by the proportional solution. This result holds irrespective of the identity of the player making

the first offer in each round and whether or not the risk of termination within each round is significantly

different from zero or not. In contrast, the Nash solution is obtained when N = 1 and the risk of termination

14



vanishes.

Proposition 3 (Strategic foundations for Kalai bargaining: Infinitesimal slicing.) Consider the

limit of the Rubinstein game with sliced bundles as N tends to infinity.

1. Suppose the buyer is the first proposer. The final allocation, (ysN , p
s
N ), converges to (y, p) that solves

p = pb(y) = min{z, pb(y∗)}. (22)

2. Suppose the seller is the first proposer. The final allocation, (ysN , p
s
N ), converges to (y, p) that solves

p = ps(y) = min{z, ps(y∗)}. (23)

3. Suppose
(
ξb, ξs

)
=
(
e−(1−θ)ε, e−θε

)
for some θ ∈ [0, 1] and consider the limit as ε → 0. The final

allocation, (ysN , p
s
N ), converges to (y, p) that solves

p = pKθ (y) = min{z, pKθ (y∗)}. (24)

Moreover, as N → +∞ the sequence of buyer’s surplus functions given by (21),
{
ubN : R+ → R

}+∞
N=1

,

converges uniformly to the surplus under Kalai bargaining defined as:

ub∞(z) = θ {u [y(z)]− v [y(z)]} with y(z) =
(
pKθ
)−1

(z) for z ≤ pKθ (y∗) and y(z) = y∗ otherwise.

According to the first and the second parts of Proposition 3, the limit of the SPE of the game as N

approaches infinity coincides with the proportional solution with buyer’s share equal to (1− ξs) /(1− ξbξs)

when the buyer is the first proposer in all rounds, while that limit coincides with the proportional solution

with buyer’s share reduced to ξb (1− ξs) /(1 − ξbξs) when the seller is the first proposer. Thus, the first

proposer still has the first-mover advantage even as N approaches infinity. The third part of Proposition 3

describes the limit when the round game has no first-mover advantage and it shows that the SPE allocation

converges to the proportional solution with buyer’s bargaining share equal to θ and a scaling of the utility

functions such that both players assign the same value to the payment good.

From the third part of Proposition 3 it is easy to establish that the Rubinstein game with sliced bundles

provides unified strategic foundations to two of the most commonly used bargaining solutions in the search-

theoretic literature by changing a single parameter.

Proposition 4 (Unified strategic foundations for Nash and Kalai solutions.) Consider the Ru-

binstein game with sliced bundles where
(
ξb, ξs

)
=
(
e−(1−θ)ε, e−θε

)
for some θ ∈ [0, 1] and consider the limit

as ε→ 0. If N = 1 then the SPE coincides with the generalized Nash solution with buyer’s bargaining power

θ. If N = +∞ then the SPE coincides with Kalai’s proportional solution with buyer’s share θ.
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The key difference between the generalized Nash solution and the proportional solution is the agenda

of the negotiation in terms of the sliced output into bundles to be negotiated sequentially. If the output is

sold in a single round, then the outcome corresponds to the generalized Nash solution. If output is sliced

into infinitesimal bundles, then the outcome is the proportional solution. Interestingly, the bargaining power

of the Nash solution and the bargaining share of the proportional solution have the same microfoundations

based on the relative probabilities that a round of negotiation ends after an offer has been rejected.

Relation to bargaining games with an agenda Proposition 3 showed that the convergence to the

proportional solution as N goes to infinity is robust to some details of the game, e.g., who is making the first

offer and whether or not the risk of termination vanishes.13 We can establish the robustness of this result

more generally by turning to an axiomatic approach. O’Neill et al. (2004) formalize bargaining games with an

agenda where the agenda in our context is the collection of Pareto frontiers,
〈
H(ub, us, y; z) = 0, y ∈ [0, y∗]

〉
.

The ordinal solution of O’Neill et al. (2004) imposes five natural axioms (Pareto optimality, scale invariance,

symmetry, directional continuity, and time-consistency) and it is shown that the solution is given by the

following differential equations (See Rocheteau et al. 2019 for details):

uχ′(y) = −1

2

∂H(ub, us, y; z)/∂y

∂H(ub, us, y; z)/∂uχ
, χ ∈ {b, s}, (25)

where [ub(y), us(y)] is the path of the solution for y ∈ [0, y∗]. An increase in y by one unit expands the

bargaining set by ∂H/∂y. The maximum utility gain that the buyer could enjoy from this expansion is

− (∂H/∂y) /
(
∂H/∂ub

)
. According to (25), the buyer enjoys half of this gain. From (6), as long as the

liquidity constraint does not bind (if it binds, the game ends), ∂H(ub, us, y; z)/∂y = u′(y) − υ′(y) and

∂H(ub, us, y; z)/∂ub = −1. Hence, ub′(y) = [u′(y)− υ′(y)] /2. Integrating from y = 0, ub = [u(y)− υ(y)] /2,

which corresponds to the egalitarian solution.14 While scale invariance was imposed as an axiom, the

solution exhibits ordinality endogenously: the solution is covariant with respect to any order-preserving

transformation.

Setting the agenda In order to endogenize the choice of the bargaining solution in an internally consistent

way, we add an initial stage before the negotiation takes place where one of the players is chosen at random

to unilaterally set the number of rounds of the negotiation, N . The buyer sets the agenda with probability

λ ∈ [0, 1] while seller sets the agenda with the complement probability 1− λ.
13 In Rocheteau et al. (2019) we provide yet another game with alternating ultimatum offers that also generates the propor-

tional solution as N goes to infinity. The round-game corresponds to a two-stage take-it-or-leave-it-offer game: in the first stage
an offer is made; in the second stage the offer is accepted or rejected. The identity of the proposer alternates across rounds.
14One can relax the symmetry axiom in which case the solution of O’Neill et al. (2004) to the bargaining problem with

agenda
〈
H(ub, us, y; z) = 0, y ∈ [0, y∗]

〉
corresponds to the proportional solution for some arbitrary bargaining share.
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Proposition 5 (Endogenous bargaining solution.) Consider the Rubinstein game with sliced bundles

where
(
ξb, ξs

)
=
(
e−(1−θ)ε, e−θε

)
for some θ ∈ [0, 1] and consider the limit as ε → 0. If the buyer sets the

agenda, then N = 1 and the output ybθ solves p
GN
θ (ybθ) = min{z, pGNθ (y∗)}. If the seller sets the agenda, then

N = +∞ and the output ysθ solves p
K
θ (ysθ) = min{z, pKθ (y∗)}. If z < pKθ (y∗), then ysθ < ybθ.

If the buyer has the ability to choose the agenda of the negotiation, then he will choose to negotiate all

the output at once in a single round and the outcome will coincide with the generalized Nash solution. If

the seller is the one to choose the agenda, then he will sell one infinitesimal bundle at a time. One can build

some intuition for this result by comparing (3) and (5). If the negotiation takes place in a single round, the

buyer’s share in the match surplus is Θ(y) > θ for all y < y∗. The buyer can extract a larger surplus because

the players recognize that when the liquidity constraint binds any transfer of output generates a gain for the

buyer that is larger than the seller’s cost, u′(y) > v′(y). In contrast, by negotiating small bundles of output,

the seller can avoid binding liquidity constraints in almost all rounds, which allows the surplus to be shared

according to θ.

6 Bargaining with time-varying quantity limits

Up to now we assumed that the maximum output that the agents can negotiate is constant across rounds.

In this section, we extend our analysis to allow for heterogeneous quantity limits across rounds, and derive

conditions under which the proportional solution is implemented. We consider the limit where the risk of

breakdown between offers and counter-offers converges to zero and hence the game is equivalent to multiple

rounds of generalized Nash bargaining with endogenous disagreement points.

6.1 Two-round game

Consider the following two-round game with the buyer payment capacity equal to z. In the first round, the

quantity limit is ∆ȳ1 and in the second it is ∆ȳ2, with ∆ȳ1 + ∆ȳ2 = y∗. The game is solved by backward

induction.

We start at the beginning of the second round with the agreement from the first round being (y1, p1) ∈

[0,∆ȳ1]× [0, z]. Since the risk of breakdown is almost zero, the outcome, (y2, p2), is given by the generalized

Nash solution with disagreement payoffs equal to ub1 = u(y1)− p1 and us1 = p1 − υ(y1). Formally,

(y2, p2) ∈ arg max
y,p

[
u(y)− p− ub1

]θ
[−υ(y) + p− us1]

1−θ s.t. y − y1 ≤ ∆ȳ2 and p ≤ z. (26)

We move backward to round 1. The allocation in case of disagreement, (ŷ1, p̂1), corresponds to the round-2
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allocation given by (26) when (y1, p1) = (0, 0), i.e.,

(ŷ1, p̂1) ∈ arg max
y,p

[u(y)− p]θ [−υ(y) + p]
1−θ s.t. y ≤ ∆ȳ2 and p ≤ z. (27)

The corresponding payoffs are denoted by (ûb1, û
s
1) ∈ P(∆ȳ2), where P(y) ≡ {(ub, us) : H(ub, us, y; z) = 0}

is the Pareto frontier when the output limit is y. The first-order conditions are:

ûs1
ûb1

≥ 1−Θ(ŷ1)

Θ(ŷ1)
, " = " if ŷ1 < ∆ȳ2

ûs1
ûb1

≤ 1− θ
θ
, " = " if p̂1 < z.

If the constraint, p̂1 ≤ z, does not bind, then ŷ1 = ∆ȳ2 and ûs1/û
b
1 = (1− θ)/θ. If p̂1 ≤ z binds, then either

ŷ1 = ∆ȳ2, in which case the solution is at the kink of the frontier P(∆ȳ2), or ŷ1 < ∆ȳ2.

Since agents can perfectly foresee the final outcome following any round-1 allocation, (y1, p1), the nego-

tiation determines (y2, p2) as follows:

(y2, p2) ∈ arg max
(y,p)∈O

[u(y)− p− û1]
θ

[−υ(y) + p− ûs1]
1−θ s.t. y ≤ y∗ and p ≤ z, (28)

where O is the set of final allocations that are part of an equilibrium. We solve the game taking O =

[0, y∗]× [0, z]. Later on we will verify that this is without loss of generality by constructing round-1 payoffs

that are feasible and lead to the final payoffs, (ub2, u
s
2).

The solution to (28) can take two forms. First, if p̂1 ≤ z binds, then (ub2, u
s
2) = (ûb1, û

s
1) and a round-1

equilibrium allocation is (y1, p1) = (0, 0), which suggests that the first round of the negotiation is irrelevant.

This case is represented in the top panel of Figure 5. The second possibility is that p̂1 ≤ z does not bind, in

which case ŷ1 = ∆ȳ2 and (ûb1, û
s
1) ∈ P(∆ȳ2) is determined by

ûs1
ûb1

=
1− θ
θ

. (29)

In the bottom panels of Figure 5, (ûb1, û
s
1) is located at the intersection of the yellow frontier, P(∆ȳ2), and

the orange dashed line with slope (1 − θ)/θ. The solution (ub2, u
s
2) to (28) has two subcases. In the first

subcase, p2 ≤ z does not bind, and hence

us2 − ûs1
ub2 − ûb1

=
1− θ
θ

. (30)

This solution is depicted in the bottom left panel in Figure 5 at the intersection of the orange dashed line

with slope (1−θ)/θ and the upper Pareto frontier, P(∆ȳ1 +∆ȳ2) = P(y∗). The final outcome then coincides

with the proportional solution that implements y∗. Otherwise, the liquidity constraint binds, and

us2 − ûs1
ub2 − ûb1

=
1−Θ(y2)

Θ(y2)
, (31)
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with Θ(y) given by (4). This case is depicted in the bottom right panel in Figure 5. Using that Θ(y2) > θ

when y2 < y∗, it follows that (ub2, u
s
2) is located to the right of the red dashed line.

su su

su

bu bu

bu

bu2
bu2

=bu 2

su 2

su 2

=su2

bu1
bu1

bu1

su1

su1

su1

bs uu
θ

θ−
=

1

bs uu
θ

θ−
=

1
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θ

θ−
=

1
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)( 2y∆P
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Figure 5: Two-round game with heterogeneous output limits. Top panel: p̂1 ≤ z binds. Bottom left panel:
p̂1 ≤ z and p2 ≤ z are slack. Bottom right panel: p̂1 ≤ z is slack but p2 ≤ z binds.

The intermediate payoffs in round 1, (ub1, u
s
1), are determined such that the solution to (26) coincides

with (ub2, u
s
2). In the case where p2 ≤ z does not bind, (ub1, u

s
1) ∈ P(∆ȳ1) and us1/u

b
1 = (1 − θ)/θ. See top

panel of Figure 6. If p2 ≤ z binds, we distinguish two possibilities. First, suppose that y2 ≤ ∆ȳ1, that is,

the final allocation is feasible given the round-1 quantity limit. In this case, we can take (ub1, u
s
1) = (ub2, u

s
2).

Otherwise, y2 > ∆ȳ1 and we take y1 = ∆ȳ1. Since p2 ≤ z binds, this implies that

us2 − us1
ub2 − u1

b

=
1−Θ(y2)

Θ(y2)
=
us2 − ûs1
ub2 − ûb1

,

which uniquely pins down (ub1, u
s
1) ∈ P(∆ȳ1). The solution can be seen geometrically in Figure 6 where

(ub1, u
s
1) is located at the intersection of the green frontier, P(∆ȳ1), and the red dashed line with slope

[1 − Θ(y2)]/Θ(y2). In the bottom left panel, we assume ∆ȳ1 < ∆ȳ2 and hence the green frontier, P(∆ȳ1),

is below the yellow frontier, P(∆ȳ2); in the bottom right panel, ∆ȳ1 > ∆ȳ2 and hence P(∆ȳ1) is above

P(∆ȳ2). We can now check that p1 ∈ (0, z). It is clear from Figure 6 that us1 < us2, y1 < y2, but p2 = z.

Hence, p1 < z. When y1 = ∆ȳ1 > ∆ȳ2, the right panel shows that us1 > ûs1 ≥ 0 and hence p1 > 0; when

y1 = ∆ȳ1 < ∆ȳ2, the left panel shows that us1 > 0 and hence p1 > 0 as well.

We give two remarks before we move to the general N -round game. First, when ∆ȳ1 = ∆ȳ2, the green

and yellow frontiers, P(∆ȳ1) and P(∆ȳ2), coincide in Figure 6, and hence, (ub1, u
s
1) = (ûb1, û

s
1). Thus, the
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Figure 6: Two-round game with heterogenous output limits: determination of first-round payoffs.

disagreement payoffs in round-1 are also the intermediate payoffs at the end of round-1. Second, when

∆ȳ1 6= ∆ȳ2, the disagreement payoffs, (ûb1, û
s
1), are computed using ∆ȳ2. As a result, ∆ȳ2 can affect the

final payoffs even if round-2 is not active in equilibrium. For example, when ∆ȳ1 > y2 > ∆ȳ2, we have

(ub1, u
s
1) = (ub2, u

s
2), that is, the final allocation is achieved in round-1, but (ub2, u

s
2) is determined by ∆ȳ2

alone according to (31).

6.2 N-round game

We consider now a N -round game with time-varying quantity limits, {∆ȳn}Nn=1, where
∑N
n=1 ∆ȳn = y∗.

The following proposition characterizes the SPE final payoffs.

Proposition 6 (The chained Nash solution.) Consider the N -round game with quantity limit at round-

n equal to ∆ȳn, n = 1, 2, ..., N . The final allocation of any SPE is the last term of the sequence {(ŷn, p̂n)}Nn=1

where (ŷ0, p̂0) = (0, 0) and

(ŷn, p̂n) ∈ arg max
y,p

[u(y)− u(ŷn−1)− (p− p̂n−1)]
θ

[−υ(y) + υ(ŷn−1) + (p− p̂n−1)]
1−θ (32)

s.t. y − ŷn−1 ≤ ∆ȳN−n+1 and p ≤ z.

The proof is by induction (see Appendix). As the sequence in Proposition 1, we interpret (ŷn, p̂n) as the

final allocation in the subgame composed of the last n rounds with output limits {∆ȳN−n+j}nj=1 assuming
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the initial allocation is (0, 0), i.e., no agreement has been reached in the first N − n rounds. If (ŷn−1, p̂n−1)

is the final allocation from the last (n − 1) rounds, then (ŷn−1, p̂n−1) is also the disagreement allocation

of the last n-round game that begins at round-(N − n + 1). Hence, (ŷn, p̂n) defined by (32) is the final

allocation of a game with the last n rounds. Finally, when n = 1 the disagreement point is no trade and

hence (ŷ0, p̂0) = (0, 0).

So, as in the case with constant output limits studied earlier, the final outcome can be determined

by applying the generalized Nash solution with endogenous disagreement points N consecutive times. In

contrast to the case with constant limits, the terms of the sequence {(ŷn, p̂n)}N−1
n=1 are not the allocations in

the intermediate rounds. These are allocations capturing different levels of disagreement. Also in contrast

with the constant-limit case, (32) makes the backward-induction logic of the construction more transparent

since (ŷ1, p̂1) is obtained from the quantity limit ∆ȳN , (ŷ2, p̂2) is obtained from ∆ȳN + ∆ȳN−1, and so on.

Assuming that the constraint p ≤ z does not bind before the last round,

ûsn − ûsn−1

ûbn − ûbn−1

=
1− θ
θ

for all n < N,

usN − ûsN−1

ubN − ûbN−1

=
1−Θ(yN )

Θ(yN )
.

So for all n < N , (ûbn, û
s
n) lies at the intersection of P

(∑n
j=1 ∆ȳN−n+j

)
and the line going through the

origin with slope (1 − θ)/θ. The final outcome is at the intersection of the Pareto frontier, P(y∗), and the

line going through (ûbN−1, û
s
N−1) with slope [1−Θ(yN )] /Θ(yN ). So the outcome is identical to the one of

the N = 2 game where the output limit in the first round is ∆ȳ1 and the output limit in the second round

is
∑N
j=2 ∆ȳj . In particular, if the constraint p ≤ z does not bind in the last round of iteration in (32), then

the final allocation coincides with the proportional solution implementing y∗. This happens if and only if

z ≥ pKθ (y∗), regardless of the output limits. Finally, if the constraint p ≤ z binds before the last iteration in

(32), the final allocation can be computed using the function g analogous to (19).

6.3 Implementation of the proportional solution

We now ask under which conditions the game with time-varying output limits implements the proportional

solution. As mentioned, when z ≥ pKθ (y∗), any N -round game with output limits {∆ȳn}Nn=1 satisfying∑N
n=1 ∆ȳn = y∗ can implement the proportional solution with output level y∗. In this case, the solution

coincides with the generalized Nash solution as the liquidity constraint is slack. So we focus on the case

where z < pKθ (y∗), and denote yKθ (z) < y∗ the ouput level under the proportional solution, i.e., the solution

to z = pKθ (yKθ ).
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Proposition 7 (Implementation of the proportional solution with time-varying output limits.)

Suppose that z < pKθ (y∗). A game characterized by
〈
z, {∆ȳn}Nn=1

〉
implements the proportional solution if

and only if there exists a round NK
θ (z) ≤ N such that

NKθ∑
n=1

∆ȳN−(n−1) = yKθ (z). (33)

If N = 2, the proportional solution is implemented if and only if ∆ȳ2 = yKθ .

Proposition 7 characterizes the set of all finite sequences of output limits, {∆ȳn}Nn=1, that implement the

proportional solution. For {∆ȳn}Nn=1 to implement y
K
θ , there must be an intermediate round, denoted N

K
θ ,

such that the sum of the output limits in the last NK
θ rounds is exactly equal to yKθ . In particular, y

K
θ can

be obtained from a sequence with N = 2 terms, ∆ȳ1 = y∗ − yKθ , and ∆ȳ2 = yKθ .
15

The ‘if’part of Proposition 7 provides a condition to implement the proportional solution that is only

valid for a given z as yKθ =
(
pKθ
)−1

(z). The ‘only if’part implies that a given {∆ȳn}Nn=1 implements y
K
θ

only if z = pKθ

(∑n
j=1 ∆ȳN−j+1

)
for n = 1, ..., N . As a result, for a given agenda, there are only finitely

many payment capacities under which the proportional solution is implementable. So one cannot use a game

with a finite agenda to rationalize the use of the proportional solution in models where z is endogenous. In

order to implement the proportional solution for all z, we need to look beyond finite agendas and consider

limits of finite sequence of output limits as N becomes large.

In order to define those limits, we introduce an alternative representation of {∆ȳn}Nn=1 as a non-decreasing

step function, y : [0, 1]→ [0, y∗], such that y(0) = 0, and

y(t) =

n∑
j=1

∆ȳj for t ∈
(
n− 1

N
,
n

N

]
, n = 1, .., N. (34)

In this alternative representation, t is the virtual time of the negotiation and y(t) is the cumulative output

considered for negotiation up to t. We expand this set to include ȳ that can be expressed as the limit of

finite agendas of the form given by (34) according to the sup-norm, and we use A to denote the expanded set

of all agendas. We define the outcome from negotiation under a limiting agenda, ȳ ∈ A, as the limit of the

equilibrium outcomes from the finite agendas that converge to ȳ. See the Appendix for a precise definition

of these limits and the proof of their existence and uniqueness. The following proposition characterizes the

range of allocations achievable from agendas in A, and the set of agendas that implement the proportional

solution for all payment capacities. For any z < pGNθ (y∗) = pKθ (y∗), let yGNθ (z) solve z = pGNθ (y).

15We thank an anonymous referee for pointing out this result.
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Proposition 8 (Uniform implementation of the proportional solution.) If z ≥ pKθ (y∗), then any

y ∈ A implements the proportional solution, p = pKθ (y∗) and y = y∗. If z < pKθ (y∗), then for all y ∈ A,

p = z and y ∈
[
yKθ (z), yGNθ (z)

]
. Moreover, y ∈ A implements yKθ (z) for all z ≥ 0 if and only if it is

continuous.

Proposition 8 shows that the proportional solution is uniformly implementable across z by any continuous

agenda in A. Any such agenda can be discretized into finite agendas of N rounds and is the limit of those

finite agendas as N goes to infinity, where the output limits converge to zero uniformly.16 This result extends

part 3 of Proposition 3 to the case of heterogeneous output limits. Conversely, Proposition 8 also shows

that, for any discontinuous agenda, the final allocation differs from the proportional solution for a positive

measure of z’s. This result suggests that, in order to provide a strategic foundations to the proportional

solution based on extensive-form games with alternating offers, gradualism is necessary.

7 Bargaining with endogenous liquidity constraints

The analysis so far took the buyer’s payment capacity, z, as given. In general equilibrium, the payment

capacity of buyers (e.g., their holdings of money or liquid assets, their borrowing capacity...) is endogenous

and depends critically on the trading mechanism. In this section, we explore the implications of agenda

setting in the Rubinstein game with sliced bundles for the choice of z, allocations, and social effi ciency. For

instance, how does the payment capacity of the buyer depends on the anticipated agenda? Are there agendas

that induce buyers to raise their payment capacity so as to implement first-best allocations?

We endogenize the buyer’s payment capacity by assuming that the buyer chooses z at some cost ιz before

being matched. We think of ι ≥ 0 as the opportunity cost of holding assets in a liquid form or an interest rate

on a loan. For instance, in a model where z represents real money balances (e.g., Lagos and Wright, 2005),

ι is the nominal interest rate on illiquid bonds adjusted by the probability of entering a pairwise meeting.

Throughout the section we assume that the risk of breakdown in each round of the negotiation converges to

zero.

7.1 Endogenous liquidity constraints under an exogenous agenda

For now we consider the game with homogeneous output limits, y∗/N , and we vary N from one to infinity to

trace out the role of the agenda for the choice of z and the implied tightness of the liquidity constraint. The

agenda, which is taken as given, can be interpreted as resulting from various technological constraints: sellers

16 In the proof we show that any continuous and increasing function y : [0, 1] → [0, y∗] with y(0) = 0 and y(1) = y∗ belong
to the set A.
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produce bundles of goods sequentially, and each bundle is negotiated immediately after being produced.

Alternatively, production is continuous over time but the consumer and the seller meet infrequently but

periodically to negotiate the terms of trade. Another view is that the rules of the extensive-form game that

determine the allocations in pairwise meetings are not manipulable by the players and are a primitive of the

economy (which is the standard assumption in the literature on decentralized markets).

An optimal payment capacity is:

z∗N ∈ Z∗N ≡ arg max
z≥0

{
−ιz + ubN (z)

}
, (35)

where Z∗N is the set of all maximizers and the objective between brackets is the buyer’s surplus from an

N -round negotiation, ubN (z), net of the cost of obtaining z units of payment, ιz. For all N ≥ 1 and all ι ≥ 0,

(35) admits a solution in
[
0, pKθ (y∗)

]
.

Suppose first that buyers have "deep pockets" in that they can borrow at no cost, ι = 0. The next

proposition generalizes a key and paradoxical result from Lagos and Wright (2005) for N = 1 (generalized

Nash bargaining) according to which the buyer does not find it optimal to carry enough liquidity to purchase

y∗, i.e., z∗1 < pKθ (y∗) for all θ < 1. This means that the buyer chooses optimally to be liquidity constrained

in the pairwise meeting.

Proposition 9 (Bargaining-induced liquidity constraint.) Suppose ι = 0. For all N ≥ 1 and all

θ ∈ (0, 1), z∗N < pKθ (y∗) for all z∗N ∈ Z∗N . As N →∞, any sequence {z∗N}
+∞
N=1 such that z

∗
N ∈ Z∗N converges

to pKθ (y∗).

Proposition 9 shows that it is optimal for the buyer to invest in a payment capacity lower than what is

necessary to maximize the match surplus, pKθ (y∗), because by tightening his liquidity constraint the buyer

raises his share of the surplus in the last round of the negotiation, Θ(y).17 It is only at the limit, when

slicing is infinitesimal, that the buyer invests in a payment capacity that is large enough to finance y∗, i.e.,

the strategic effect of a binding liquidity constraint vanishes.

We illustrate this result in the top panels of Figure 7 where we plot the solution to (35) as a function of

N .18 The payment capacity necessary to purchase y∗ = 1 is pK0.5(y∗) = 1.5. The relation between z∗N and N

is non-monotone as illustrated by the top left panel of Figure 7. In order to explain this non-monotonicity, we

plot ubN (z) in Figure 8 for N ∈ {1, 2, 3, 4}. The maximum surplus of the buyer when N ∈ {2, 3} is obtained

at z = g(ȳ1, 0), when the buyer brings just enough liquidity to purchase one bundle. As the bundle size,

17For a related result in the context of an over-the-counter market where agents on both sides of the market choose how much
asset to bring in a match and bargain according to the generalized Nash solution, see Lebeau (2019).
18The examples are obtained for the following functional forms and parameter value: u(y) = 2

√
y, υ(y) = y, and θ = 1/2.
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Figure 7: Optimal payment capacity and output when ι = 0

ȳ1 = y∗/N , decreases with N , so does z∗N . As N increases above 4, ubN (z) evaluated at g(ȳ1, 0) no longer

reaches a maximum. In that case it is optimal for the buyer to hold enough liquidity to be able to purchase

multiple bundles and z∗N jumps upward closer to pK0.5(y∗).

The bottom panels plot the equilibrium final y, denoted by y(z∗N ), for different values of N . Under

generalized Nash bargaining (N = 1), y(z∗1) is slightly less than 60 percent of the first best. In the language

of monetary theory, the Friedman rule (ι = 0) fails to implement the first best when prices are determined

according to the generalized Nash solution (Lagos and Wright, 2005). Under proportional bargaining (N =

+∞), y(z∗∞) = 1, which corresponds to the first best. In-between these two polar cases, output varies in a

non-monotone fashion with N . The lowest value for y is obtained when N = 3, in which case output is about

one third of the first best. Hence, the parameter N , which distinguishes Nash from Kalai bargaining, plays

a critical role to assess the size of the ineffi ciencies in economies with bargaining under liquidity constraints.

Figure 8: Buyer’s surplus for N ∈ {1, 2, 3, 4}
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We now illustrate the effect of increasing the cost of the payment capacity, ι. In the left panel of Figure

9, we plot z∗N as a function of N when ι = 0.1. Compared against Figure 7, it shows that when N is large,

z∗N falls from about 1.5 to about 1.2. The fall in z∗ is much more dramatic for lower values of N . Suppose,

for instance, that N = 9, as illustrated in the right panel of Figure 9. If ι = 0, z∗N is close to 1.5 but as

ι rises to 10% z∗N drops to about 0.25. This result shows that N is of paramount importance to quantify

the effects of binding liquidity constraints, e.g., due to inflation (see Lagos and Wright, 2005, for such an

exercise), and the Nash solution (N = 1) does not provide a lower bound for the size of this effect.

Figure 9: Left: Optimal payment capacity when ι = 0.1; Right: Buyer’s net surplus for ι ∈ {0, 0.1}

7.2 Liquidity constraint with an endogenous agenda

If the agenda of the negotiation is endogenous and set by one of the players, it might depend on the cost

of liquidity, ι, thereby providing an additional channel through which ι affects allocations and welfare. We

endogenize the agenda in two steps. First, we assume that agendas have constant output limits across rounds

so that the choice of the agenda is reduced to a choice of N . Later, we consider the case of a general agenda

composed of time-varying output limits.

The timing of the game is as follows. First, before being matched with a seller, the buyer chooses his

payment capacity, z∗. Second, once the match is formed, the buyer sets N with probability λ; otherwise,

the seller is the one to choose the agenda. Third, agents bargain according to the agenda. From Proposition

5, the optimal payment capacity of the buyer then solves

z∗ ∈ arg max
z≥0

{
λub1(z) + (1− λ)ub∞(z)

}
. (36)

From (36) the buyer chooses his payment capacity to maximize his expected surplus where, from Proposition

5, with probability λ the buyer chooses N = 1 and with complement probability 1−λ the seller sets N = +∞.

Note that this result remains the same regardless of whether the seller observes the choice of z or not when it
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is his turn to choose N . For the next proposition, we assume that preferences are such that ub1(z) is strictly

concave over
(
0, pK(y∗)

)
. (For such conditions, see, e.g., Lagos and Wright, 2005.)

Proposition 10 (Endogenous liquidity constraint and agenda setting.) Suppose ι = 0, λ ∈ (0, 1),

and θ ∈ (0, 1). The optimal payment capacity of the buyer, z∗, decreases with the buyer’s probability to set

the agenda, λ.

Maybe surprisingly, the buyer’s payment capacity decreases as the probability that he sets the agenda

increases. If λ = 0, then z∗ = pK(y∗) and ex ante welfare, E [u(y)− v(y)], is maximum. As λ increases

above 0, the payment capacity falls below pK(y∗) and ex ante welfare is reduced.

Now we turn to endogenous agendas with time-varying output limits, and we consider the case where

the seller is the one who sets the agenda (λ = 0). The seller can choose any agenda of the form, {∆ȳn}Nn=1,

including limits of sequences of finite agendas as described in Section 6.3. The equilibrium agenda will depend

on whether or not the seller observes the payment capacity chosen by the buyer before setting the agenda.

To illustrate this, we consider two versions of the game regarding this observability. In the first version, the

buyer first chooses z, and the seller observes z before choosing an agenda y ∈ A. In the second version, the

seller chooses an agenda y ∈ A without observing z, but z is revealed when they start negotiating.

Proposition 11 (Endogenous liquidity constraint with time-varying output limits.) In either

version of the game, a SPE exists. In any SPE, the buyer chooses z ∈ arg max
{
−ιz + u

[
yKθ (z)

]
− pKθ (z)

}
.

Moreover, any continuous y ∈ A is an equilibrium agenda in either version.

1. In the version where the seller observes z before setting the agenda, any finite agenda {∆ȳn}Nn=1 that

satisfies (33) is an equilibrium agenda.

2. In the version where z is not observed before setting the agenda, no finite agenda is an equilibrium

agenda.

When output limits are parts of the design of the agenda, an agenda with N = 2 rounds exists that

implements the proportional solution, as shown in Proposition 7. However, Proposition 11 shows that such

equilibria are not robust when observability of z is dropped. The intuition for this result goes as follows. The

best response of the seller to a payment capacity z is an agenda that implements the proportional solution.

Suppose that the agenda is finite. There exists a profitable deviation by the buyer that consists in lowering

her payment capacity by a small amount so that her liquidity constraints binds in the last round, thereby

raising her surplus. In contrast, continuous agendas can implement the proportional solution and achieve
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the highest surplus for the seller for all z ≥ 0, and hence are weakly dominant strategies. Proposition 8

also shows that they are the only ones satisfying weak dominance. This result holds true even if there is

unobservable heterogeneity in buyer’s preference or cost of liquidity, ι.

8 Conclusion

We constructed an N -round game according to which a buyer who is subject to a liquidity constraint and a

seller bargain over bundles of potentially different sizes sequentially according to a Rubinstein alternating-

offer game. The game formalizes the problem of the determination of the terms of trade, both quantities and

prices, in bilateral matches commonly found in the search-theoretic literature. We characterized the SPE

analytically and show the same game admits the generalized Nash solution as the outcome when N = 1,

i.e, when the output is negotiated all at once, and the proportional solution when N = +∞ and when the

output is negotiated one infinitesimal bundle at a time. If the agenda of the negotiation, i.e., the number of

rounds and the output limit at each round, is chosen prior to the bargaining, the buyer sets N = 1 (Nash)

while the seller adopts N = +∞ and infinitesimal bundles in all rounds (proportional), thereby endogenizing

the choice of the bargaining solution internally. We also endogenized the buyer’s payment capacity and

showed the liquidity constraint binds for all N < +∞ even when liquidity is costless. These results show the

importance of going deeper into the strategic foundations of bargaining games under liquidity constraints

commonly used in the search literature, and open new ways to reconsider bargaining problems with divisible

goods and assets.
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Appendix: Proofs of Propositions

Proof of Proposition 1

Throughout the proof we assume that the buyer is making the first offer in each round, χ = b. The case

where the seller is the first proposer is analogous.

Part 1. We first show the existence of a unique joint solution to (11)-(13) and (14)-(16) for given (ybj−1, p
b
j−1).

Suppose that pbj−1 < z. Let ubj ≡ u(ybj) − pbj and usj ≡ −v(ysj ) + psj denote the values to the maximization

problems. We also show that the solution satisfies ybj > ybj−1, y
s
j > ybj−1, p

b
j > pbj−1 and p

s
j > pbj−1.

We first characterize the solution to (11)-(13) when usj is taken as given. If u
s
j = usj−1 ≡ −v(ybj−1) + pbj−1

then the set {(y, p) satisfies (12)-(13)} is nonempty and convex. See green area in figure below. From the

strict concavity of the objective, a solution exists and is unique and it is such that ubj = ūbj , the solution to

H(ūbj , u
s
j−1, y

b
j−1 + y∗/N, z) = 0, where H defined by (6) describes the Pareto frontier. With the change of

variable x ≡ p− pbj−1 and ω(y) ≡ υ(y)− v(ybj−1), the problem reduces to

ūbj = max
y

{
u(y)− ω(y)− pbj−1

}
s.t. y ≤ min

{
ω−1

(
z − pbj−1

)
, ybj−1 +

y∗

N

}
.

Using that u′(ybj−1) > ω′(ybj−1) since ybj−1 < y∗ and the fact that the upper bound on y is strictly higher than

ybj−1 (because p
b
j−1 < z), the optimal y > ybj−1 and hence ū

b
j > u(ybj−1)− pbj−1. Graphically, (ybj−1, p

b
j−1) is

located to the left of the buyer’s indifference curve in the figure below.

b
jp 1−

b
jy 1−

N
yyb

j
*

1 +−

Seller’s
acceptance rule Buyer’s

indifference curve

Set
of feasible

offers

Buyer’s optimal offer if usj = usj−1.

If usj = ūsj solves H(ubj−1, ū
s
j , y

b
j−1 + y∗/N, z) = 0, then ubj > ubj−1 as long as ξ

s < 1, where ubj solves the

buyer’s problem with usj = ūsj . To see this, note that the allocation (ȳsj , p̄
s
j) corresponding to ū

s
j ≡ −v(ȳsj )+p̄sj
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is such that u(ȳsj )− p̄sj = u(ybj−1)− pbj−1. This implies that the seller’s payoff is

−v(ȳsj ) + p̄sj = u(ȳsj )− v(ȳsj )−
[
u(ybj−1)− pbj−1

]
.

From (12) at equality, the buyer’s surplus is

ubj − ubj−1 = (1− ξs)
{
u(ȳsj )− v(ȳsj )−

[
u(ybj−1)− v(ybj−1)

]}
> 0,

where we have used that any allocation on the Pareto frontier corresponding to ybj−1 + y∗/N is such that

y > ybj−1. Graphically, ū
s
j corresponds to the upper, dashed acceptance rule of the seller in the figure below.

It is such that the dashed buyer’s indifference curve goes through (ybj−1, p
b
j−1). The actual acceptance rule

of the seller when it is the buyer’s turn to make an offer is between this upper curve and the lower dotted

curve going through (ybj−1, p
b
j−1). The buyer’s optimal offer is located to the right of (ybj−1, p

b
j−1), which

illustrates the fact that ubj > ubj−1.

b
jp 1−

b
jy 1−

N
yyb

j
*

1 +−

Seller’s
acceptance rule

Buyer’s
indifference curveSet

of feasible
offers

Buyer’s optimal offer if usj = ūsj .

For the clarity of notations, we use ubj(u
s) to denote the solution to (11)-(13) with usj = us. As mentioned,

ubj(u
s) is well defined since the solution is unique, and, by the Theorem of Maximum, the optimal buyer

offer, (yb, pb), is continuous in us. Moreover, by monotonicity, the relevant range of ubj(u
s) is

[
ubj−1, ū

b
j

]
.

Finally, the set of us for which pb = z is compact, and note that ubj(u
s) is differentiable when pb < z. The

derivitives are given by ∂ubj/∂u
s = −ξs if p ≤ z does not bind and ∂ubj/∂us = −

[
u′(yb)/v′(yb)

]
ξs whenever

differetiable. Note that although there are potentially kinks when pb = z, it will not affect our argument.

Using the same reasoning for the seller’s problem, (14)-(16), if ubj = ubj−1 then u
s
j = ūsj > usj−1 and if
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ubj = ūbj then u
s
j > usj−1. Moreover, with the same arguments as before, ∂u

s
j/∂u

b = −ξb if p ≤ z does not

bind and ∂usj/∂u
b = − [v′(ys)/u′(ys)] ξb otherwise.

Now we claim that the slope of the solution to the seller’s problem, usj(u
b) (represented in blue in the

figure below), is steeper in absolute value than the slope of the solution to the buyer’s problem, ubj(u
s)

(represented in red) within the space (us, ub) ∈
[
usj−1, ū

s
j

]
×
[
ubj−1, ū

b
j

]
. Consider two points, (usj , u

b
j) on the

blue curve (that is, usj solves the seller problem with optimal offer (ys, ps)) and (usj , u
b′
j ) on the red curve

(that is, ubj solves the seller problem with optimal offer (yb, pb)). If the constraint p ≤ z is not binding

at both, then the product of derivitives, ∂usj/∂u
b × ∂ubj/∂us evaluated at the two corresponding points, is

ξbξs < 1. If the constraint p ≤ z are binding for both the buyer’s problem and the seller’s, then it is easy to

verify that yb > ys and ∂usj/∂u
b× ∂ubj/∂us = [v′(ys)/u′(ys)]

[
u′(yb)/v′(yb)

]
ξsξb < 1. If the constraint p ≤ z

is binding for the buyer’s problem but not the seller’s, then ∂usj/∂u
b × ∂ubj/∂us =

[
u′(yb)/v′(yb)

]
ξsξb < 1.

Finally, one can verify that it cannot be the case that the constraint is binding at the seller’s problem but

not the buyer’s for such two points.

Hence, there exists a unique solution in
[
usj−1, ū

s
j

]
×
[
ubj−1, ū

b
j

]
. By monotonicity, any solution will also

line within this range and hence it is unique globally. The solution is such that: ybj = ybj−1 + y∗/N if pbj < z

and pbj = z otherwise; ysj = ybj−1 + y∗/N if psj < z and psj = z otherwise. It is also easy to check with a proof

by contradiction that pbj ≤ psj .

b
ju

s
ju

),( 11
b
j

s
j uu −−

b
ju

s
ju

Unique solution to the buyer’s and seller’s problems

Part 2. Having established that the problems (11)-(13) and (14)-(16) admit a unique solution, we now

show that these solutions can be used to construct a SPE of our game and uniqueness of the SPE payoffs.
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Let V bn (o) and V sn (o) denote the values of a buyer and a seller in a subgame starting at the beginning

of the nth round with the interim allocation o = (yn−1, pn−1) ∈ [0, (n− 1)y∗/N ] × [0, z). Let On(o) ⊆

[yn−1, yn−1 + (N − n+ 1)y∗/N ]× [pn−1, z] the set of all terminal allocations that can be achieved in a SPE

in that subgame. By backward induction, we can effectively assume that offers in round n are elements of

On(o). Then, the players’values in the subgame are V bn (o) = u(yb)− pb and V sn (o) = −υ(yb) + pb where the

buyer’s and seller’s offers,
(
pb, yb

)
and (ps, ys), solve:

(yb, pb) ∈ arg max
(y,p)∈On(o)

{u(y)− p} (37)

s.t. − υ(y) + p ≥ (1− ξs)V sn+1(o) + ξs [−v(ys) + ps] (38)

and

(ys, ps) ∈ arg max
(y,p)∈On(o)

{−υ(y) + p} (39)

s.t. u(y)− p ≥ (1− ξb)V bn+1(o) + ξb
[
u(yb)− pb

]
. (40)

According to (37)-(38) the buyer’s offer maximizes his surplus subject to the constraint that it has to be

accepted by the seller. The reservation payoff to the seller, on the right side of (38), is the weighted average

of the seller’s surplus if it is his turn to make the offer and his surplus if the negotiation in round n breaks

down where the weights are given by the probabilities of the two events. In the event of a breakdown,

the negotiation enters round n + 1 with interim allocation o, hence the seller’s payoff is V sn+1(o). The

determination of the seller’s offer according to (39)-(40) has a similar interpretation. Thus, we only need

to show that the value functions can be computed according to (11)-(13) and (14)-(16), that is, the final

allocation of a subgame starting in round n with initial allocation o = (yn−1, pn−1) is (ybN , p
b
N ) as given by

the last term of the sequence
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=n

in the statement of the proposition. Once this is proved,

by the one-stage-deviation principle, it follows that these strategies form a SPE.

The proof is by induction from n = N,N−1, and so on, and the induction base is n = N . In round N , the

subgame has a single round and o = (yN−1, pN−1). In this case, ON (o) = [yN−1, yN−1 + y∗/N ] × [pN−1, z]

and V bN+1(o) = 0 = V bN+1(o). We have shown the existence and uniqueness of a solution to (37)-(40) in Part

1, and it is given by (ybN , p
b
N , y

s
N , p

s
N ) according to the program (11)-(13) and (14)-(16). Moreover, it also

shows that V bN (o) and V sN (o) are uniquely determined, which follows from uniqueness of the one-round game

given in Rubinstein (1982) (see also Osborne and Rubinstein (1994) for how to extend the argument to the

model with risk of breakdown).

Suppose, by induction, that the statement holds for the subgame starting in round n+1. Then, V bn+1(o) =

u(ybN−1)− pbN−1 and V
s
n+1(o) = −υ(ybN−1)− pbN−1. We now move to the beginning of round n, and consider
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two cases. First, if pbN−1 = z, then the buyer can guarantee a payoff of V bn+1(o) while the seller can guarantee

V sn+1(o). Since there is no feasible allocation that can make both parties better off, it is optimal for both to

propose and accept no trade in this round. This shows that it must be the case that V bn (o) = V bn+1(o) and

V sn (o) = V sn+1(o), and this coincides with the solution to the program (11)-(13) and (14)-(16).

Second, suppose that pbN−1 < z. Suppose, for a moment, that the set of terminal allocations starting

from o is the set of all feasible allocations. This implies that the solutions to (37)-(38) and (39)-(40) coincide

with (pbN , y
b
N ) and (psN , y

s
N ). To see this, note that the maximization problems are identical to (11)-(13) and

(14)-(16) when the set of terminal allocations is

On(o) =

{
(y, p) ∈

[
ybN−1, y

b
N−1 +

y∗

N

]
×
[
pbN−1, z

]}
.

We showed in Part 1 that the constraints y ≥ ybN−1 and p ≥ pbN−1 do not bind for both the buyer and the

seller’s problems. Moreover, ybN−1 = yn−1 + (N − n)y∗/N if pbN−1 ≤ z does not bind. So, even if we allow

agents to negotiate over allocations in the largest set of feasible allocations,

O′n(o) =

[
yn−1, yn−1 +

(N − n+ 1)y∗

N

]
× [pn−1, z] .

the outcome is still (ybN , p
b
N ) and (ysN , p

s
N ). Since we know that this solution is an outcome of the SPE by

the induction hypothesis, and since O′n(o) is a superset of all achievable allocations from the SPE, it follows

that the solution is the unique final equilibrium allocation. Again, uniqueness of the SPE within the round

game (when pbN−1 < z) follows the standard argument. This completes the induction argument. Note also

that the solutions to (37)-(38) and (39)-(40) specify equilibrium strategies for all subgames, and the implied

equilibrium strategies are such that there is no trade in round n if V bn (o) = V bn+1(o) and V sn (o) = V sn+1(o).

Finally, we remark that although we have shown the uniqueness of the SPE final payoffs, there can be

multiple SPE that achieve the same payoffs. In particular, if pbn = z for some n < N in the sequence{
(ybn, p

b
n, y

s
n, p

s
n)
}N
n=1

, then there is always a SPE where agents propose no trade in the first N − N̂ rounds,

where N̂ is the smallest n such that pbn = z. However, the players can also agree on some trades in earlier

rounds that lead to the same outcome.

Proof of Corollary 1

The solution to (11)-(16), when the constraint p ≤ z is not binding in both (13) and (16), is given by

ybn = ȳn = ysn, and p
b
n and p

s
n given by

pbn = pb(ȳn)− pb(ȳn−1) + pχn−1, (41)

psn = ps(ȳn)− ps(ȳn−1) + pχn−1. (42)
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Note that pbn = pb(ȳn) when χ = b, and psn = ps(ȳn) when χ = s. Note also that psn − pbn > 0 for both

χ = b, s. Thus, as long as psn ≤ z, the liquidity constraints in both the buyer and the seller problem will be

slack, which will be the case if (17) holds.

Proof of Proposition 2

Part 1. First, we characterize the solution to (18), which can be solved recursively by considering the following

problem (where (ŷ, p̂) corresponds to the disagreement point):

max
(y,p)
{[u(y)− p]− [u(ŷ)− p̂]}θ{[−v(y) + p]− [−v(ŷ) + p̂]}1−θ,

s.t. p ≤ z, y ≤ ȳ.
(43)

The FOC (after taking log on the objective function) is given by

θu′(y)

[u(y)− p]− [u(ŷ)− p̂] −
(1− θ)v′(y)

[−v(y) + p]− [−v(ŷ) + p̂]
≥ 0, ” = ” if y < ȳ; (44)

−θ
[u(y)− p]− [u(ŷ)− p̂] +

1− θ
[−v(y) + p]− [−v(ŷ) + p̂]

≥ 0, ” = ” if p < z. (45)

The solution depends on two critical values of z. To define the thresholds, first define

p̄ = [(1− θ)u(ȳ) + θv(ȳ)]− [(1− θ)u(ŷ) + θv(ŷ)] + p̂,

and, for all 0 ≤ ŷ ≤ y ≤ y∗, define

h(y, ŷ, p̂) = {[1−Θ(y)]u(y) + Θ(y)v(y)]} − {[1−Θ(y)]u(ŷ) + Θ(y)v(ŷ)}+ p̂. (46)

Note that Θ(y) is given by (4) and h(y, ŷ, p̂) = g(y, ŷ) with p̂ = pKθ (ŷ) = (1 − θ)u(ŷ) + θv(ŷ), where the

function g is given by (20). By concavity of u and convexity of v, h(y, ŷ, p̂) < p̄ as long as y < y∗.

Then, it is straightforward to verify that, to satisfy (44) and (45),

1. if z ≥ p̄, the solution is (y, p) = (ȳ, p̄);

2. if h(ȳ, ŷ, p̂) < z ≤ p̄, the solution is (y, p) = (ȳ, z);

3. if p̂ < z ≤ h(ȳ, ŷ, p̂), the solution is p = z and y satisfying h(y, ŷ, p̂) = z.

Now, we apply these solutions iteratively to solve the sequence (18). Let N̂ satisfy

pKθ (ȳN̂−1) < z ≤ pKθ (ȳN̂ ). (47)

Then, for all n < N̂ , case 1 applies and the constraint p ≤ z never binds. By induction the payment is given

by pn = pKθ (ȳn). When n = N̂ , the solution is

(yN̂ , pN̂ ) =

{
(ȳN̂ , z) if z > g(ȳN̂ , ȳN̂−1),

(y, z) that solves g(y, ȳN̂−1) = z if z ≤ g(ȳN̂ , ȳN̂−1),
(48)
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and the sequence remains constant after N̂ . Note that the solution (yN̂ , pN̂ ) is continuous in z.

Part 2. Here we show convergence. We assume that the buyer makes the first offers, and the seller case

is analogous. The standard argument (c.f. Osborne and Rubinstein (1994), Proposition 310.3) shows that

as the risk of termination vanishes, the SPE payoff in the round-game converges to the Nash solution. We

need two modifications. First, the disagreement payoff in our round game is endogenously determined by

the outcome from the previous round; second, we allow for asymmetry. To do so, recall that ξb and ξs are

given by

ξb = e−(1−θ)ε and ξs = e−θε. (49)

Consider the sequence computed according to (11)-(16). To emphasize that the solution {(ybn, pbn, ysn, psn)}Nn=1

depends on ε through (ξb, ξs), we denote obn(ε) = (ybn, p
b
n) and osn(ε) = (ysn, p

s
n), and ub(o) = u(y) − p and

us(o) = −v(y) + p for o = (y, p).

Now, for each n, let oNn denote the solution to (18), and let ôn(ε) denote the solution to (18) but with

(yn−1, pn−1) given by obn−1(ε) for n > 1. We show by induction that

lim
ε→0

ôn(ε) = oNn = lim
ε→0

obn(ε) = lim
ε→0

osn(ε) for all n = 1, .., N. (50)

Consider n = 1. By (12) and (15) and (49), we have (note that ub[(0, 0)] = 0 = us[(0, 0)])

{ub[ob1(ε)]}θ{us[ob1(ε)]}1−θ = {ub[os1(ε)]}θ{us[os1(ε)]}1−θ. (51)

As in the standard argument, since (ub[ob1(ε)], us[ob1(ε)]) and (ub[os1(ε)], us[os1(ε)]) both lie on the Pareto

frontier H(ub, us, ȳ1; z) = 0 while oN1 maximizes (ub)θ(us)1−θ over the same frontier (which, as shown in the

main text, is strictly concave), and since ub[os1(ε)] < ub[ob1(ε)], it follows that

ub[os1(ε)] < ub(oN1 ) < ub[ob1(ε)]. (52)

Taking ε to zero, (12) and (15) imply that os1(ε) and ob1(ε) coincide at the limit and (52) implies that the

limit is oN1 .

Now, suppose, by induction, that (50) holds for n. By (12) and (15) for n+ 1, we have

ub[osn+1(ε)]− ub[obn(ε)] = ξb{ub[obn+1(ε)]− ub[obn(ε)]},

us[obn+1(ε)]− us[obn(ε)] = ξs{us[osn+1(ε)]− us[obn(ε)]},

which, together with (49), in turn imply that

{ub[osn+1(ε)]− ub[obn(ε)]}θ{us[osn+1(ε)]− us[obn(ε)]}1−θ

= {ub[obn+1(ε)]− ub[obn(ε)]}θ{us[obn+1(ε)]− us[obn(ε)]}1−θ.
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Following the same argument as n = 1, we have

ub[osn+1(ε)] ≤ ub[ôn+1(ε)] ≤ ub[obn+1(ε)]. (53)

Note that we may have equality as the constraint p ≤ z may be binding in obn(ε). Since the Nash solution is

continuous in the disagreement payoff, it follows that limε→0 ôn+1(ε) = oNn+1, and since o
s
n+1(ε) and obn+1(ε)

coincide at the limit, (53) implies that the limit is oNn+1.

Proof of Proposition 3

Part 1. First we characterize the binding payment constraint when the buyer is making the first offers. In

this case, when the constraint p ≤ z is not binding in either the buyer’s or the seller’s problem, the payment

at round n is given by p̄s(ȳn, ȳn−1), where the function p̄s(y, ȳ) is

p̄s(y, ȳ) =

(
1− ξb

)
u(y) + ξb (1− ξs) υ(y)

1− ξbξs
−

(
1− ξb

)
(1− ξs) [u(ȳ)− v(ȳ)]

1− ξbξs
.

Note that p̄s(y, y) = pb(y). Then,

1. if z ≥ p̄s(ȳm, ȳm−1) for all m ≤ n, then (ybn, p
b
n) = [ȳn, p

b(ȳn)] and (ysn, p
s
n) = [ȳn, p̄

s(ȳn, ȳn−1)];

2. otherwise, either pbn = z, or ybn = ȳn.

The payments p̄s(ȳn, ȳn−1) may not be increasing with n. However, for N suffi ciently large, p̄s(ȳn, ȳn−1)

strictly increases with n. Given these results, we show convergence. We consider two cases: first, z < pb(y∗);

second, z ≥ pb(y∗).

First consider the case where z < pb(y∗). For N large, there is a unique N̂(N) satisfying

p̄s(ȳN̂ , ȳN̂−1) ≤ z < p̄s(ȳN̂+1, ȳN̂ ). (54)

Define ŷN ≡ ȳN̂(N) for such N’s. It then follows that (ybn, p
b
n) = [ȳn, p

b(ȳn)] for all n ≤ N̂ . We can then

rewrite (54) as

p̄s(ŷN , ŷN − y∗/N) ≤ z < p̄s(ŷN + y∗/N, ŷN ).

Taking N to infinity, it follows that ŷN converges to the unique y that solves pb(y) = z. Note that p̄s(y, y) =

pb(y). This also implies that

lim
N→∞

p̄s(ŷN , ŷN − y∗/N) = z = lim
N→∞

pb(ŷN ).

The result then follows from the observation that, the final y in the whole game with N rounds, yN , satisfies

ŷN ≤ yN ≤ ŷN + v−1[z − pb(ŷN )].
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Hence, both yN and ŷN converge to the unique y < y∗ that solves pb(y) = z.

Now, consider the case where z > pb(y∗). Following the same reasoning as above, for N large, N̂(N) = N

and ŷN = y∗. The knife-edge case where z = pb(y∗) follows from continuity in z.

Part 2. If (17) holds, then p = ps(y∗) ≤ z, which is consistent with (23) when the liquidity constraint does

not bind. Suppose (17) does not hold. Then, there exists a round, N̂(N) ≤ N , such that the sequence{
(ybj , p

b
j , y

s
j , p

s
j)
}N
j=n−1

defined in Proposition 1 has the following properties. For all n < N̂ , the liquidity

constraint in every subgame where the seller makes the offer is not binding, psn = ps(ȳn) ≤ z. For all n ≥ N̂ ,

psn = z and ysn = ys
N̂
. So the final allocation is (ys

N̂
, z). Using that ȳN̂−1 < ys

N̂
≤ ȳN̂ and ȳN̂−1 − ȳN̂−1 → 0

as N → +∞, it follows that ys
N̂
→ ȳN̂ . Similarly, using that p

s(ȳN̂−1) ≤ z ≤ ps(ȳN̂ ) and the function ps

defined in (10) is continuous, as N → +∞, ps(ȳN̂ ) → z. In summary, as N → +∞, the final allocation

(ys
N̂
, ps
N̂

)→ (y, p) solution to p = ps(y) = z, in accordance with (23).

Part 3. From Proposition 2, for given N , the final allocation is the last term of the sequence {(yn, pn)}Nn=1

obtained from (18) and (y0, p0) = (0, 0). If pKθ (y∗) > z, then there exists N̂(N) ≤ N such that pn = pKθ (ȳn)

for all n < N̂ and the final allocation is (yN̂ , z). By the same logic as in Part 1 and 2, as N → +∞,

(yN̂ , pN̂ )→ (y, p) solution to p = pKθ (y) = z.

We now show the uniform convergence of the buyer’s payoff to his payoff under proportional bargaining.

Note that for z ≥ pKθ (y∗), ubN (z) = θ[u(y∗) − v(y∗)] for all N and hence we only need to show uniform

convergence over z ∈ [0, pKθ (y∗)]. For all z ∈ [pKθ (ȳn−1), pKθ (ȳn)], the buyer’s surplus defined in (21), ubN (z),

is bounded from above by

Θ(ȳn−1) {[u(ȳn)− v(ȳn)]− [u(ȳn−1)− υ(ȳn−1)]}+ θ [u(ȳn−1)− υ(ȳn−1)] .

Indeed, for z ∈ [pKθ (ȳn−1), g(ȳn, ȳn−1)], this bound is obtained since yn(z) is bounded by ȳn while Θ[yn(z)]

is bounded by Θ(ȳn−1); for z ∈ [g(ȳn, ȳn−1), pKθ (ȳn)], ubN (z) is maximized at z = g(ȳn, ȳn−1) and hence the

same bound applies. We now establish that ubN (z) converges uniformly to ub∞(z) = θ [u(y)− υ(y)], where

y(z) is defined by pKθ (y) = z, as N → +∞. First, note that ubN (z) ≥ ub∞(z) for all z. Second, for all

z ∈ [pKθ (ȳn−1), pKθ (ȳn)], ub∞(z) is bounded below by θ [u(ȳn−1)− υ(ȳn−1)]. It follows that

∣∣ubN (z)− ub∞(z)
∣∣ ≤ N∑

n=1

I{pKθ (ȳn−1)≤z≤pKθ (ȳn−1)}Θ(ȳn−1) {[u(ȳn)− v(ȳn)]− [u(ȳn−1)− υ(ȳn−1)]}

for all z ∈
[
0, pKθ (y∗)

]
. Using that Θ(y) is decreasing and u(y)− υ(y) is concave,

∣∣ubN (z)− ub∞(z)
∣∣ ≤ u(ȳ1)− v(ȳ1) = u

(
y∗

N

)
− v

(
y∗

N

)
for all z ∈

[
0, pKθ (y∗)

]
.

As N tends to ∞, the right side converges to 0. Hence, ubN converges to ub∞ uniformly.
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Proof of Proposition 4

The case where N = 1 follows from Proposition 2. Note that g(y, 0) = pGNθ (y). The case where N = +∞

follows from Proposition 3 (3).

Proof of Proposition 5

Part 1: Buyer’s optimal choice. From (19) the payment made by the buyer to purchase y ∈ [ȳn−1, ȳn] is

bounded below by g(y, ȳn−1). By the definition of the function g in (20), g(y, ȳ) > g(y, 0) for all y < y∗

and for all ȳ > 0. It follows immediately that it is weakly optimal for the buyer to choose N = 1, which

corresponds to the payment function g(y, 0).

Part 2: Seller’s optimal choice. From (20)

g(y, ȳ) = pKθ (y)− [Θ(y)− θ] {[u(y)− υ(y)]− [u(ȳ)− υ(ȳ)]} < pKθ (y) for all y ∈ (ȳ, y∗).

Hence, from (19) the payment for given y is bounded above by pKθ (y). For any y the payment corresponds

to some p ∈
[
pKθ (y − y∗

N ), pKθ (y + y∗

N )
]
. Hence, as N tends to infinity, the payment converges to its upper

bound, pKθ (y). Therefore, it is optimal for the seller to choose N = +∞.

Proof of Proposition 6

We prove the proposition, assuming only that
∑N
n=1 ∆ȳn ≤ y∗. To compute the final allocation, we show

by induction that in a subgame consisting of the last n rounds with output limits {∆ȳN−n+j}nj=1 and with

intermediate allocation (ŷ0, p̂0) = (0, 0), the equilibrium final allocation is given by the term (ŷn, p̂n) obtained

from (32). The induction base is n = 1, which corresponds to the subgame in the last round. In this case,

the disagreement point is no trade, and hence (ŷ1, p̂1) is the generalized Nash solution to the bargaining

problem with disagreement payoff (0, 0) and quantity limit ∆ȳN .

Now, suppose that the claim holds for n, and consider the subgame consisiting of the last (n+ 1) rounds

with intermediate allocation (0, 0). This subgame starts in round-(N−n), and the disagreement point follows

from the induction hypothesis: if the agents move to the next round with intermediate allocation (0, 0), the

final allocation would be (ŷn, p̂n). The agents negotiate on outcomes in the set(y, p) : y ∈

0,

n+1∑
j=1

∆ȳN−(n+1)+j

 , p ∈ [0, z]

 .

With disagreement allocation (ŷn, p̂n), the generalized Nash solution is then the term (ŷn+1, p̂n+1) obtained

from (32), and this completes the induction argument. For this argument to hold, however, we need to

ensure that the solution is sustainable as a SPE outcome, which requires existence of intermediate offers

that lead to the final allocation, an issue we deal with next.

41



Intermediate payoffs

Following the same logic as above, the final allocation for a subgame that starts in round-(n + 1) with

some arbitrary intermediate allocation (yn, pn) (and with output limits {∆ȳn+j}N−nj=1 ) is the last term of the

following sequence with j = 1, 2, ..., N − n, and with (ỹn, p̃n) = (yn, pn),

(ỹn+j , p̃n+j) ∈ arg max
y,p

[u(y)− u(ỹn+j−1)− (p− p̃n+j−1)]
θ

[−υ(y) + υ(ỹn+j−1) + (p− p̃n+j−1)]
1−θ

s.t. y − ỹn+j−1 ≤ ∆ȳN+1−j and p ≤ z. (55)

In terms of final payoffs, if the liquidity constraint p̃N ≤ z does not bind, the final payoffs, denoted by

(ubN , u
s
N ), satisfy

(ubN , u
s
N ) ∈ P

yn +

N−n∑
j=1

∆ȳn+j

 and
usN − usn
ubN − ubn

=
1− θ
θ

.

Otherwise, the constraint binds somewhere in the sequence, say at j = J ≤ N − n. The final payoffs satisfy

(ubN , u
s
N ) ∈ P

yn +

J∑
j=1

∆ȳN−j+1

 , (56)

and

ũsn+J−1 − usn
ũbn+J−1 − ubn

=
1− θ
θ

, (57)

usN − ũsn+J−1

ubN − ũbn+J−1

<
1− θ
θ

, (58)

usN − ũsn+J−1

ubN − ũbn+J−1

≥ 1−Θ(yN )

Θ(yN )
, “ = ” if yN < yn +

J∑
j=1

∆ȳN−j+1. (59)

Note that (56) and (57)-(59) uniquely pin down (ubN , u
s
N ).

We are now in the position to construct the intermediate payoffs. First, consider the case where the

liquidity constraint p̂N ≤ z does not bind in (32). In this case, the final payoffs are given by

(ubN , u
s
N ) ∈ P

 N∑
j=1

∆ȳj

 and
usN
ubN

=
1− θ
θ

. (60)

The following intermediate payoffs at the end of round-n will lead to the final allocation given by (60):

(ũbn, ũ
s
n) ∈ P

 n∑
j=1

∆ȳj

 and
ũsn
ũbn

=
1− θ
θ

. (61)

Now we turn to the case where the liquidity constraint p̂n ≤ z binds for some n in (32). With no loss of

generality, we assume that it binds only at the very end, i.e., at (yN , pN ) = (ŷN , p̂N ) when we compute the

sequence according to (32). If it binds earlier, say at (ŷn, p̂n), then we can use the same argument but assume

no trade from rounds 1 to N − n. This assumption is with no loss of generality because
∑N
n=1 ∆ȳn ≤ y∗.
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In this case, the sequence {(ûbn, ûsn)}Nn=1 satisfies

ûsn
ûbn

=
1− θ
θ

and (ûbn, û
s
n) ∈ P

 n∑
j=1

∆ȳN−n+j

 for n < N,

usN − ûsN−1

ubN − ûbN−1

<
1− θ
θ

, (62)

usN − ûsN−1

ubN − ûbN−1

≥ 1−Θ(yN )

Θ(yN )
, “ = ” if yN <

N∑
j=1

∆ȳj . (63)

Now, take θ′ ∈ (0, 1) satisying
1− θ′

θ′
=
usN − ûsN−1

ubN − ûbN−1

, (64)

the buyer’s share of surplus from the last round. Then, yN and pN = z satisfy

z = (1− θ′)

u(yN )− u

 N∑
j=2

∆ȳj

+ θ′

v(yN )− v

 N∑
j=2

∆ȳj

 (65)

+(1− θ)u

 N∑
j=2

∆ȳj

+ θv

 N∑
j=2

∆ȳj

 .

By (62) and (63), θ < θ′ ≤ Θ(yN ).

Now we claim that for each n = 1, ..., N − 1, there exist intermediate payoffs (ubn, u
s
n) with associated

allocation, (yn, pn), such that the final allocation of the subgame starting at round-(n+1) with intermediate

allocation (yn, pn) will be (yN , pN ) according to (55). We consider two cases.

(a) Suppose that
∑n
j=1 ∆ȳj ≥ yN . Then, take (yn, pn) = (yN , pN ).

(b) Suppose that
∑n
j=1 ∆ȳj < yN . Then, take yn =

∑n
j=1 ∆ȳj , and hence the payoffs (ubn, u

s
n) will lie on the

Pareto frontier P
(∑n

j=1 ∆ȳj

)
. For the final payoffs to be (ubN , u

s
N ) from (ubn, u

s
n), we need them to satisfy

(56)-(59). We do this in two steps: first we construct J and (ũbn+J−1, ũ
s
n+J−1), and from there we compute

(ubn, u
s
n).

(b.1) We use (56) to uniquely determine J and hence J satisfies

n∑
j=1

∆ȳj +

J−1∑
j=1

∆ȳN+1−j < yN ≤
n∑
j=1

∆ȳj +

J∑
j=1

∆ȳN+1−j .

To determine (ũbn+J−1, ũ
s
n+J−1), take θ′ from (64) and let (ũbn+J−1, ũ

s
n+J−1) solve

usN − ũsn+J−1

ubN − ũbn+J−1

=
1− θ′

θ′
, (ũbn+J−1, ũ

s
n+J−1) ∈ P

 n∑
j=1

∆ȳj +

J−1∑
j=1

∆ȳN+1−j

 . (66)

This implies that ỹn+J−1 =
∑n
j=1 ∆ȳj +

∑J−1
j=1 ∆ȳN+1−j . Since θ

′ ∈ (θ,Θ(yN )], it can be verified that

(ũbn+J−1, ũ
s
n+J−1) satisfy the FOCs (58)-(59).
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(b.2) From (ũbn+J−1, ũ
s
n+J−1) we can compute (ubn, u

s
n) according to (57):

ũsn+J−1 − usn
ũbn+J−1 − ubn

=
1− θ
θ

, (ubn, u
s
n) ∈ P

 n∑
j=1

∆ȳ

 . (67)

Finally, we show that pn ∈ (0, z). From (66) and (67) we can compute pn as follow:

pn = z − (1− θ′)[u(yN )− u(ỹn+J−1)]− θ′[v(yN )− v(ỹn+J−1)] (68)

− (1− θ)

u(ỹn+J−1)− u

 n∑
j=1

∆ȳj

− θ
v(ỹn+J−1)− v

 n∑
j=1

∆ȳj

 .
This implies that pn < z, because yN > ỹn+J−1 >

∑n
j=1 ∆ȳj . Moreover, by (65), after some algebra it can

be verified that pn > 0 if and only if

(1− θ)u

 n∑
j=1

∆ȳj

+ θv

 n∑
j=1

∆ȳj

 > (θ′ − θ)

S(ỹn+J−1)− S

 N∑
j=2

∆ȳj

 , (69)

where S(y) ≡ u(y)− v(y). If ỹn+J−1 ≤
∑N
j=2 ∆ȳj , S(ỹn+J−1)−S

(∑N
j=2 ∆ȳj

)
≤ 0, (69) holds immediately.

Now consider the case where ỹn+J̃−1 >
∑N
j=2 ∆ȳj , which implies that

n∑
i=1

∆ȳi > ∆ȳ1 − (∆ȳn+1 + · · ·+ ∆ȳN−J+1) = ỹn+J−1 −
N∑
j=2

∆ȳj . (70)

Now,

(1− θ)u

 n∑
j=1

∆ȳj

+ θv

 n∑
j=1

∆ȳj

 > (θ′ − θ)S

 n∑
j=1

∆ȳj


> (θ′ − θ)S

ỹn+J−1 −
N∑
j=2

∆ȳj

 > (θ′ − θ)

S(ỹn+J−1)− S

 N∑
j=2

∆ȳj

 ,
where the first inequality follows from θ′ > θ, the second from (70), and the third from the concavity of S.

This proves (69).

Proof of Proposition 7

Let z < pKθ (y∗) be given. Suppose first that there exists a round NK
θ ≤ N such that

∑NKθ
n=1 ∆ȳN−(n−1) =

yKθ (z). Then, it is straightforward to verify that the liquidity constraint in (32) never binds from term 1 to

term NK
θ , and

ûs
NKθ

ûb
NKθ

=
1− θ
θ

and (ûbNKθ
, ûsNKθ

) ∈ P[yKθ (z)],

which is the definition of the proportional solution. Conversely, suppose that no such NK
θ exists. Define

N̂ = min{n ≤ N : p̂n = z}, the first round of the sequence {(ŷn, p̂n)}Nn=1 where p̂n ≤ z binds. It follows
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that ûs
N̂−1

/ûb
N̂−1

= (1 − θ)/θ, ŷN̂−1 =
∑N̂−1
n=1 ∆ȳN−(n−1), and

∑N̂
n=1 ∆ȳN−(n−1) 6= yKθ (z). Suppose, by

contradiction, that the game still implements the proportional solution. Then, it must be the case that ŷN̂ =

yKθ (z) <
∑N̂
n=1 ∆ȳN−(n−1) ≤ y∗. This then implies that the output limit is not binding, but the liquidity

constraint is, and hence the solution (ûb
N̂
, ûs
N̂

) satisfies (ûs
N̂
− ûs

N̂−1
)/(ûb

N̂
− ûb

N̂−1
) = [1−Θ(ŷN̂ )]/Θ(ŷN̂ ) but

with Θ(ŷN̂ ) > θ since ŷN̂ < y∗, a contradiction.

Outcomes of limiting agendas

Here we define agendas in A and their outcomes more precisely. First, a function ȳ : [0, 1]→ [0, y∗] is in A

if and only if there is a sequence of finite agendas, {yk}∞k=1, such that

lim
k→∞

sup
t∈[0,1]

|yk(t)− ȳ(t)| = 0. (71)

Any finite agenda y is in A by taking the constant sequence. It also includes any continuous and increasing

y : [0, 1]→ [0, y∗] such that y(0) = 0, y(1) = y∗, which is the limit of the sequence,
{
yN
}∞
N=1

, given by

yN (t) = y
( n
N

)
for t ∈

(
n− 1

N
,
n

N

]
, n = 1, .., N.

Each yN is a finite agenda that discretizes y by N rounds of output limits {∆ȳn}Nn=1 such that ∆ȳn =

y
(
n
N

)
− y

(
n−1
N

)
. Since y is uniformly continuous, yN converges to y under the sup-norm. One instance

is ȳ(t) = ty∗, which is the limit of the sequence {yN}∞N=1 such that each y
N represents {∆ȳn}Nn=1 with

∆ȳn = y∗/N . For any agenda y ∈ A, which is the limit of a sequence of finite agendas, {yk}∞k=1, we define

the outcome for agenda y as the limit of the outcomes from those finite agendas. Denote the equilibrium

allocation from the finite agenda yk and payment capacity z by [y(yk; z), p(yk; z)]. We define

[y(y; z), p(y; z)] = lim
k→∞

[y(yk; z), p(yk; z)] (72)

to be the allocation from (y, z). The following lemma shows that the limit (72) always exists and is inde-

pendent of the sequence that converges to the limiting agenda.

Lemma 1 For any y ∈ A, y is left-continuous and the limit (72) exists and is the same for any sequence

{yk}∞k=1 that converges to y under the sup-norm:

(1) If z ≥ pKθ (y∗), then [y(y; z), p(y; z)] = [y∗, pKθ (y∗)].

(2) Otherwise, p(yk; z) = z. We have two cases.

(2a) If y is continuous, then y(y; z) = yKθ (z).

(2b) If y is discontinuous, then there exists t such that

pKθ [y∗ − y(t)] ≥ z > pKθ [y∗ − lim
t′↓t

y(t′)], (73)
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and

y(y; z) solves z = g[y, y∗ − lim
t′↓t

y(t′)] if z ≤ g[y∗ − y(t), y∗ − lim
t′↓t

y(t′)], (74)

y(y; z) = y∗ − y(t) otherwise.

Proof. Let y ∈ A and let {yk}∞k=1 converge to y under the sup-norm.

(1) Note that if z ≥ pKθ (y∗), then [y(yk; z), p(yk; z)] = [y∗, pKθ (y∗)] for all k, and hence the limit exists

and is equal to [y∗, pKθ (y∗)].

(2) Since z < pKθ (y∗), for any k we have p(yk; z) = z and hence the limit. To find the output level so

that the liquidity constraint exactly binds, the relevant output level is y∗ − y(t) from Proposition 6. If Nk,

the number of rounds in the finite agenda yk, is bounded by someM < +∞, then y must be a finite agenda.

Indeed, this implies that each yk is fully determined by the vector [yk(1/M ′),yk(2/M ′), ...,yk(M ′/M ′)],

where M ′ = 1 × 2 × ... ×M , and yk → y implies that [yk(1/M ′),yk(2/M ′), ...,yk(M ′/M ′)] converges to

[y(1/M ′),y(2/M ′), ...,y(M ′/M ′)], with y constant in between any two adjacent points. Thus, y is a finite

agenda.

(2a) y is continuous for all t ∈ [0, 1]. We prove y(y; z) = yKθ (z) by two steps. First, we claim that for

any output limits, {∆ȳn}Nn=1, and any ε > 0,

sup
n
|∆ȳn| < ε =⇒ |y

(
{∆ȳn}Nn=1; z

)
− yKθ (z)| < ε for all z < pKθ (y∗), (75)

where y
(
{∆ȳn}Nn=1; z

)
is the equilibrium output under output limits, {∆ȳn}Nn=1, and payment capacity, z. To

see this, suppose that supn |∆ȳn| < ε. For each n, let ȳn =
∑n
j=1 ∆ȳN−(j−1), and let z ∈ (pKθ (ȳn−1), pKθ (ȳn)].

Thus, yKθ (z) ∈ (ȳn−1, ȳn] and y({∆ȳn}Nn=1, z) ∈ (ȳn−1, ȳn]. This then impies that

|yKθ (z)− y({∆ȳn}Nn=1; z)| ≤ ∆ȳN−n+1 < ε.

Since this is true for all z < pKθ (y∗), (75) follows.

Second, we claim that for any ε > 0, for k large, supn ∆ȳkn < ε, where {∆ȳkn}Nkn=1 is the output limits

corresponding to yk. Given this claim, the result follows immediately from (75). To prove the claim, first

note that continuity of y implies that it cannot be a finite agenda, and hence, by the earlier argument,

Nk → ∞. Moreover, since [0, 1] is a compact set, y is uniformly continuous. Thus, for any ε > 0, for

suffi ciently small δ, |y(t)−y(t′)| < ε/3 whenever |t− t′| < δ. Since yk → y in sup-norm and since Nk →∞,

for k suffi ciently large, 1/Nk < δ and supt∈[0,1] |yk(t)− y(t)| <ε/3 and hence, for all n,

∆ȳkn = yk
(
n

Nk

)
− yk

(
n− 1

Nk

)
<

∣∣∣∣yk ( n

Nk

)
− y

(
n

Nk

)∣∣∣∣+

∣∣∣∣y( n

Nk

)
− y

(
n− 1

Nk

)∣∣∣∣+

∣∣∣∣yk (n− 1

Nk

)
− y

(
n− 1

Nk

)∣∣∣∣ < ε.
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This proves that y(y; z) exists and is equal to yKθ (z).

(2b) Suppose that y is not continuous. Since yk → y under the sup-norm for a sequence of finite agendas,

and since each yk is left-continuous, y is also left-continuous. The existence of t satisfying (73) then follows

from strict monotonicity of pKθ (y) up to y∗.

Now, if {Nk} is bounded by M , by the earlier argument, each yk can be regarded as output limits

consisting of M ′ = M ! rounds (including potentially limits of zeros in some rounds, which does not affect

the equilibrium outcome). Since the equilibrium outcome is continuous in {∆ȳn}M
′

n=1 for the fixed M
′, the

limit of the outcome sequence must coincide with the outcome of y.

So assume form now on that {Nk} is unbounded. By applying subseqeucne if necessary, we consider only

the case where Nk →∞. We consider two cases for z.

(2b.1) Suppose that z = pKθ [y∗ − y(t)] does not hold for any t, and hence

pKθ [y∗ − y(t)] > z > pKθ [y∗ − lim
t′↓t

y(t′)] for some t. (76)

Denote y+(t) ≡ limt′↓t y(t′) > y(t) by (76). For any finite k, let nk be the unique n such that

t ∈ [nk/Nk, (nk + 1)/Nk). (77)

Since both inequalities in (76) are strict, let ε > 0 be such that the middle term is at least ε away from the left

and the right. Convergence under sup-norm implies that for k large, yk[(nk + 1)/Nk] > y[(nk + 1)/Nk]− ε >

y+(t)− ε, and yk(nk/Nk) < y(nk/Nk)− ε < y(t)− ε. This then implies that

pKθ

[
y∗ − yk

(
nk + 1

Nk

)]
< z < pKθ

[
y∗ − yk

(
nk
Nk

)]
.

As a result,

y(yk; z) solves z = g

[
y, y∗ − yk

(
nk + 1

Nk

)]
if z ≤ g

[
y∗ − yk

(
nk
Nk

)
, y∗ − yk

(
nk + 1

Nk

)]
,

y(yN ; z) = y∗ − yk
(
nk
Nk

)
otherwise. (78)

Compare (78) to (74), we only need to show that

lim
k→∞

yk
(
nk + 1

Nk

)
= y+(t) and lim

k→∞
yk
(
nk
Nk

)
= y(t).

This follows form (77), which implies that nk+1
Nk

converges to t from the right and nk
Nk

converges to t from

the left, and from the uniform convergence of yk to y.

(2b.2) Suppose that z = pKθ [y∗ − y(t)] for some t. We claim that

y(y; z) = yKθ (z) = y∗ − y(t). (79)
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Let T be the set of t’s such that z = pKθ [y∗ − y(t)]. Then T = [t1, t2] or T = (t1, t2] for some t1 ≤ t2 since

y is left-continuous and increasing. Moreover, y(t) > y(t2) for all t > t2 and y(t) < y(t1) for all t < t1, and

y(t1) < y(t2) if T = (t1, t2]. For each k, let nk be the unique n such that

pKθ

[
y∗ − yk

(
nk
Nk

)]
≥ z > pKθ

[
y∗ − yk

(
nk + 1

Nk

)]
. (80)

This implies that

yk
(
nk
Nk

)
≤ y(t2) < yk

(
nk + 1

Nk

)
. (81)

We consider two cases.

First, suppose that y is continuous for all t ∈ [t1, t2]. We claim that

lim
k→∞

yk
(
nk
Nk

)
= lim
k→∞

yk
(
nk + 1

Nk

)
= y(t2). (82)

This implies that limk→∞ y(yk; z) = y∗−y(t2) because, by (80), y∗−yk
(
nk+1
Nk

)
≤ y(yk; z) ≤ y∗−yk

(
nk
Nk

)
.

Since
{
nk
Nk

}
lies in the compact set [0, 1], we may assume it converges by applying subsequences if necessary.

By uniform convergence and monotonicity, (81) implies that its limit t must be within [t1, t2]. (82) then

follows from continuity of y at t and uniform convergence of yk to y.

Second, suppose that y is discontinuous at both t1 and t2, and hence y(t1) < y+(t1) = y(t2) < y+(t2).

These inequalities, together with uniform convergence, monotonicity, and (81), imply that
{
nk
Nk

}
is bounded

above by t2 except for finitely many elements, and
{
nk+1
Nk

}
is bounded below by t1 except for finitely

many elements. Thus, by applying subsequence if necessary, we may assume that limk→∞

{
nk
Nk

}
= t =

limk→∞

{
nk+1
Nk

}
with t ∈ [t1, t 2]. We consider three subcases. First, t ∈ (t1, t 2). Using the same argument

as in the first case, we can show (82) holds. Seond, t = t1. If
{
nk
Nk

}
is bounded below by t1, then the

argument is the same and (82) holds. Otherwise, we may assume that
{
nk
Nk

}
converges to t1 from the left

and
{
nk+1
Nk

}
converges to t1 from the right. Uniform convergene of yk implies that

lim
k→∞

yk
(
nk
Nk

)
= y(t1) < y+(t1) = y(t2) = lim

k→∞
yk
(
nk + 1

Nk

)
. (83)

For each k, by (80), we can then compute y(yk; z) in the same way as in (78). Since z = pKθ [y∗− y(t2)] =

g [y∗ − y(t2), y∗ − y(t2)], it follows that for k large, y(yk; z) solves z = g
[
y, y∗ − yk

(
nk+1
Nk

)]
. Thus, by

continuity of g and (83), limk→∞ y(yk; z) = y∗− y(t2). The third subcase where t = t2 follows an analogous

argument. This proves (79). Finally, the case with y discontinuous at t1 but not t2, or the other way around,

follows analogous arguments.
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Proof of Proposition 8

The result that for any y ∈ A and any z < pKθ (y∗), p(y; z) = z and y(y; z) ≥ yKθ (z) follows from Lemma 1

(1). Lemma 1 (2) implies that only continuous agendas implement the proportional solution for all z. Indeed,

let y be discontinuous at some t ∈ [0, 1] such that y+(t) > y(t). Then, (74) implies that y(y; z) > yKθ (z) for

all z ∈ (pKθ [y∗ − y+(t)], pKθ [y∗ − y(t)]). Finally, the result that y(y; z) ≤ yGNθ (z) follows from the fact that

g(y, 0) = pGNθ (y) and g is strictly increasing in its second argument.

Proof of Proposition 9

We denote z∗N ∈ Z∗N a maximizer of ubN (z) where

Z∗N ≡ arg max
z∈[0,pKθ (y∗)]

ubN (z).

The set Z∗N is nonempty by the Extreme Value Theorem, because ubN (z) is continuous and
[
0, pKθ (y∗)

]
is

compact. We first establish that for all N ≥ 1, z∗N < pKθ (y∗). From (20),

g

(
y∗,

(N − 1)y∗

N

)
≡ (1− θ)u(y∗) + θv(y∗) = pKθ (y∗).

Hence,
[
g(y∗, (N − 1)y∗/N), pKθ (y∗)

]
=
{
pKθ (y∗)

}
. It follows from (21) that in the last round of the negoti-

ation, if z ∈
[
pKθ (ȳN−1), pKθ (y∗)

]
, then the buyer’s surplus is

ub(z) = u [y(z)]− g [y(z), ȳN−1] ,

where y(z) is implicitly defined by z = g (y, ȳN−1). From (20),

u(y)− g(y, ȳ) ≡ Θ(y) {[u(y)− v(y)]− [u(ȳ)− υ(ȳ)]}+ θ [u(ȳ)− υ(ȳ)]

It can be checked that u′(y) − ∂g(y, ȳ)/∂y < 0 when evaluated at y = y∗ for all θ < 1. Indeed, Θ′(y∗) < 0

while u′(y∗) − v′(y∗) = 0. So, the optimal z over the interval
[
pKθ (ȳN−1), pKθ (y∗)

]
is z < pKθ (y∗). For all

z ≥ pKθ (y∗), the buyer’s surplus is constant and equal to θ [u(y∗)− v(y∗)]. Hence, z∗N < pKθ (y∗).

Next we establish that any sequence, {z∗N}+∞N=1, with z
∗
N ∈ Z∗N for all N , converges to pKθ (y∗). By the

Bolzano-Weierstrass Theorem, since the sequence {z∗N}+∞N=1 is bounded, it admits a convergent subsequence.

Consider any such convergent subsequence, {z∗
Ñ
}, where z∗

Ñ
→ z∗∞ denotes the limit. We show that z∗∞ =

pKθ (y∗). To this end, we show that for any ε > 0,

ub∞(z) ≤ ub∞(z∗∞) + ε for all z ∈
[
0, pKθ (y∗)

]
, (84)

which then implies that ub∞ obtains maximum at z
∗
∞. Since Z

∗
∞ = {pKθ (y∗)}, i.e., there is a unique maximizer

under Kalai bargaining and it is pKθ (y∗). This then implies that z∗∞ = pKθ (y∗). It then follows that all

convergent subsequences of {z∗N}+∞N=1 converge to same limit p
K
θ (y∗), hence {z∗N}+∞N=1 converges to p

K
θ (y∗).
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Now we prove (84). Let ε > 0 be given. By the definition of a maximizer,

ub
Ñ

(z∗
Ñ

) ≥ ub
Ñ

(z) for all z ∈
[
0, pKθ (y∗)

]
.

By Proposition 3, as Ñ goes to infinity, ub
Ñ
converges uniformly to ub∞. Thus, there exists N̂ such that for

all Ñ ≥ N̂ , ub
Ñ

(z∗
Ñ

) ≤ ub∞(z∗
Ñ

) + ε/2. Hence,

ub∞(z) ≤ ub
Ñ

(z) ≤ ub
Ñ

(z∗
Ñ

) ≤ ub∞(z∗
Ñ

) + ε/2 for all z ∈
[
0, pKθ (y∗)

]
,

where we used that ub∞(z) ≤ ubN (z) for all N < +∞. As z∗
Ñ
converges to z∗∞ as Ñ goes to infinity, and

by the continuity of ub∞(z), there exists N̆ such that for all Ñ ≥ N̆ ,
∣∣∣ub∞(z∗

Ñ
)− ub∞(z∗∞)

∣∣∣ ≤ ε/2. This then

implies that, for all z ∈
[
0, pKθ (y∗)

]
,

ub∞(z) ≤ ub∞(z∗
Ñ

) + ε/2 ≤ ub∞(z∗∞) + ε.

This then proves (84).

Proof Proposition 10

Both ub1(z) ≡ u
[
yGNθ (z)

]
−z, where yGNθ (z) is defined implicitly by pGNθ (y) = z, and ub∞(z) ≡ u

[
yKθ (z)

]
−z,

where yKθ (z) is defined by pKθ (y) = z, are differentiable over [0, pKθ (y∗)). For all z ≥ pKθ (y∗), λub1(z) + (1 −

λ)ub∞(z) = θ [u(y∗)− v(y∗)]. The derivative of the buyer’s expected surplus, λub1(z) + (1 − λ)ub∞(z), when

evaluated at z = pKθ (y∗)− is negative for all λ > 0 and θ < 1. Hence, z∗ < pKθ (y∗). Since we assume that

ub1(z) is strictly concave (and since ub∞(z) is strictly concave by the strict concavity of u and convexity of

v), from (36) the optimal z∗ is the unique solution to the first-order condition

λub′1 (z∗) + (1− λ)ub′∞(z∗) = 0.

Using that ub′∞(z) > 0 for all z < pKθ (y∗), the optimal solution must satisfy ub′1 (z∗) < 0. By the implicit

function theorem,
∂z∗

∂λ
=

ub′∞(z∗)− ub′1 (z∗)

λub′′1 (z∗) + (1− λ)ub′′∞(z∗)
< 0.

Proof of Proposition 11

We first show that a SPE exists, where the buyer chooses z that satisfies

z ∈ arg max
{
−ιz + u

[
yKθ (z)

]
− pKθ (z)

}
. (85)

and the seller chooses a continuous y. Since by Proposition 8, for any z the seller’s payoffs are bounded

above by the proportional solution which can be achieved by a continuous y, in either version such agenda
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is optimal, regardless of the buyer’s choice. Given that the seller chooses a continuous y, z is optimal if it

solves (85). This proves the existence. Note that this also pins down the equilibrium payoffs for both agents.

Now we consider the version where z is observed by the seller before setting the agenda. Since for given

z any agenda that satisfies (33) also implements the proportional solution for z, it is also a best response for

the seller and hence an equilibrium agenda.

Finally, suppose that the seller does not observe z when setting the agenda. We claim that any finite

agenda, {∆ȳn}Nn=1, cannot be an equilibrium agenda. The proof is by contradiction and suppose that

{∆ȳn}Nn=1 is an equilibrium agenda. Moreover, suppose that z is the equilibrium payment capacity chosen

by the buyer. We claim that (i) z < pKθ (y∗) and (ii)
∑J
j=1 ∆ȳN+1−j = yKθ (z) for some J < N . To prove

(i), suppose that, by contradiction, z ≥ pKθ (y∗). Then the outcome is [y∗, pKθ (y∗)]. But then the buyer can

deviate to z′ = pKθ (y∗) − ε for some small ε > 0 and do better, which follows from the fact the buyer’s

surplus is decreasing when y is close to y∗. This proves (i). Now consider (ii). Since the seller can expect the

equilibrium z, his optimal response is to obtain the surplus according to the proportional solution, and this

requires
∑J
j=1 ∆ȳN+1−j = yKθ (z) for some J . Since equilibrium z < pKθ (y∗) by (i), this implies that J < N .

Now, if the buyer brings z − ε′ for ε′ > 0 but small, then

g

 J∑
j=1

∆ȳN+1−j ,

J−1∑
j=1

∆ȳN+1−j

 < z − ε′ < pKθ

 J∑
j=1

∆ȳN+1−j


and hence the final output would still be y =

∑J
j=1 ∆ȳN+1−j , and this is a profitable deviation for the buyer.
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