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Abstract

We study a dynamic contracting problem in which the principal

can allocate his limited capacity between seeking evidence that con-

firms or that contradicts the agent’s effort, as the basis for reward or

punishment. Such flexibility calls for jointly designed monitoring and

compensation schemes practically relevant but novel in the literature.

When the agent’s continuation value is low, the principal seeks only con-

firmatory evidence, but when the agent’s continuation value exceeds a

threshold, the principal switches to seeking mainly contradictory evi-

dence. Moreover, the agent’s effort can be perpetuated if and only if

both synergy and flexibility in monitoring are suffi ciently large.
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1 Introduction

In a principal-agent relationship, rather than passively relying on existing

performance indicators, the principal (“he") must often actively investigate

whether the agent (“she") is taking his desired action.12 This is especially

the case when the agent’s action has only a long-run impact that is not well

reflected by existing indicators. For example, consider a firm that requires

its manager’s effort in the process of building up the firm’s intangible assets

or long-run reputation. Since the benefit of such effort is realized only in

the long run, whether the manager is exerting effort may not be reflected in

current sales, output or stock prices. How should the principal allocate his

limited resources in such an investigation? Should he focus more on confirm-

ing or refuting the fact that the agent is taking his desired action? What

should the associated reward or penalty be? How does his decision depend on

their past interaction? These are common issues in real life, such as in hu-

man resource management, corporate governance, bureaucratic systems and

educational practices.

To tackle these issues, we need a dynamic framework that features the joint

design of monitoring and compensation schemes, which allows the principal to

flexibly allocate his limited monitoring capacity between seeking confirmatory

and contradictory evidence of the agent’s effort. However, the existing lit-

erature either assumes a single exogenous performance indicator, or focuses

on how much monitoring capacity should be devoted to a given performance

indicator. This paper fills that gap. With our framework, we find that the

flexibility of the principal in allocating monitoring capacity, together with the

magnitude of the latent benefit, plays an important role in shaping the optimal

contract and determining whether the project can be long lasting.

To establish a conceptual framework, consider a continuous-time setup, in

which the principal (“he") has a project that requires an agent (“she") to op-

erate. The agent is less patient than the principal and can work or shirk at

1We do not intentionally associate the players with particular genders.
2The literature on this issue dates back to (Townsend 1979).

2



each instant. From the perspectives of both the principal and social welfare,

it is optimal for the agent to work, but the agent enjoys a private benefit from

shirking. To incentivize the agent, at each instant, the principal chooses a

combination of “carrot-based search" (“C-search" hereafter) and “stick-based

search" (“S-search”hereafter). That is, he can allocate his fixed amount of

monitoring capacity to seek two types of evidence, and can determine how

much to reward or punish the agent upon its receipt. C-evidence confirms

the agent’s effort as it emerges only if the agent has worked, while S-evidence

refutes the agent’s effort as it emerges only if the agent has shirked. The prin-

cipal can also terminate the project at any time, which is socially ineffi cient.

In addition to the standard incentive versus interest tradeoff in (DeMarzo

and Sannikov 2006) and (Sannikov 2008), the principal faces a tradeoff be-

tween C-search and S-search as a means to incentivize the agent. On one

hand, C-search generates greater variation than S-search in the agent’s con-

tinuation value, and are thus less advantageous to the principal, who is effec-

tively risk averse in the relevant range of the agent’s continuation value. This

is because, given that the agent indeed works, there would be no S-evidence

and thus no adjustment to the agent’s continuation value is required; while

C-evidence does emerge in equilibrium, which necessarily involves a reward

upon its receipt (“carrots" hereafter) and the downward adjustment of the

agent’s continuation value in the absence of C-evidence. On the other hand,

for S-search alone to be an effective incentive, a suffi ciently high continuation

value is required as the agent’s stake in the project, whereas the effectiveness

of C-search does not depend on the agent’s continuation value. Moreover,

even if S-search can work alone, a high continuation value for the agent has

to be maintained, which involves interest expenditure for the principal, mak-

ing S-search less advantageous than C-search. This tradeoff between C-search

and S-search, together with the incentive versus interest tradeoff, shapes the

optimal incentive scheme.

When the agent’s continuation value is low, the principal allocates all his

monitoring capacity to C-search. Instead of paying the agent immediately

upon receiving C-evidence, the principal adds the whole reward to the agent’s

3



continuation value, in order to build a buffer against ineffi cient termination

and to make S-search effective in the future. In addition, since the arrival rate

of C-evidence is set to its maximum, carrots should be just enough to deter

shirking.

When the agent’s continuation value has reached a level suffi cient for S-

search to be effective, but is not enough for S-search alone to deter shirking,

the optimal incentive scheme features a “phase change". That is, instead

of the carrot-only mode, the principal now relies mainly on S-search, and

sets the penalty for observing S-evidence (“sticks" hereafter) to its maximum:

confiscation of the whole stake promised to the agent, resulting in termination

of the project. C-search are still used to make up for the S-search, but carrots

are larger to minimize the reliance on C-search. Carrots decrease as the agent’s

continuation value grows further.

When the agent’s continuation value grows beyond the payout boundary,

the conflict of interest between the principal and the agent is so small that

there is little need to further incentivize the agent. But the interest accrued

from deferred payment is large. Thus, it is optimal for the principal to make

payment at once, so as to reduce the agent’s continuation value back to the

payout boundary.

A novel feature of our model relative to the existing literature concerns the

perpetuation of the agent’s effort and the convexity of the value function. The

flexibility of combining C-search with S-search offers the principal the option

of first building up the agent’s stake in the game (i.e., her continuation value)

with C-search, and then perpetuating the agent’s effort mainly with S-search,

which avoids ineffi cient termination. We show that such an option is optimal

if and only if the latent benefit from the agent’s effort and the principal’s

maximum feasible reliance on S-search are both suffi ciently large. Moreover,

when perpetuation of the agent’s effort is optimal, the value function is convex

in the vicinity of the (absorbing) payout boundary if public randomization is

not allowed. This is due to a new economic force in addition to the standard

incentive versus interest tradeoff. That is, the higher the agent’s continuation

value, not only is it the less likely to reach the (ineffi cient) termination bound-
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ary as in existing models, but it is also more likely to reach the absorbing

payout boundary, where the project becomes completely immune to ineffi cient

termination. The latter fact makes the marginal benefit of raising the agent’s

continuation value increasing instead of decreasing in the continuation value

in the vicinity of the payout boundary.

Our model also yields empirically plausible predictions. First, a firm’s ju-

nior employees are incentivized mainly based on evidence that confirms their

contribution to their employer, while senior employees are incentivized mainly

based on evidence that refutes their contribution. Second, concerning the com-

pensation scheme, the reward for each piece of evidence that confirms a contri-

bution to the employer varies little among junior employees, but decreases with

seniority for senior employees, and features an upward jump when a junior em-

ployee becomes senior. The penalty for each piece of evidence that contradicts

a contribution to the employer increases with seniority for both junior and se-

nior employees. Third, except for those hired permanently, all employees are

more prone to unemployment in the absence of evidence that confirms their

contribution, and more so if the employees are less senior. Lastly, employers

offer permanent positions if and only if both their flexibility in adjusting moni-

toring schemes and the potential synergy created by employees are suffi ciently

large.

1.1 Literature Review

Our work is related mainly to the continuous-time dynamic contracting liter-

ature, pioneered by (DeMarzo and Sannikov 2006), (Biais, Mariotti, Plantin,

and Rochet 2007) and (Sannikov 2008). Both (DeMarzo and Sannikov 2006)

and (Biais, Mariotti, Plantin, and Rochet 2007) study continuous-time variants

of the discrete-time dynamic security design model in (DeMarzo and Fishman

2007). (DeMarzo and Sannikov 2006) directly apply the martingale representa-

tion technique developed in (Sannikov 2008) in a continuous-time setup, while

(Biais, Mariotti, Plantin, and Rochet 2007) is based on the continuous-time

limit of a discrete-time model. Early work on dynamic moral hazard models
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also includes (Biais, Mariotti, Rochet, and Villeneuve 2010). Like our model,

(Biais, Mariotti, Rochet, and Villeneuve 2010) use a Poisson process instead of

Brownian motions to model discrete losses in continuous time, whose arrival

rate depends on the hidden action of the agent. (Myerson 2015) considers

a similar problem under a political economics framework where a political

leader uses randomized punishment to motivate governors to work. In con-

trast to the discrete losses in (Biais, Mariotti, Rochet, and Villeneuve 2010),

(Sun and Tian 2017) use Poisson processes to model arrivals of discrete rev-

enue. Similarly, (He 2012) considers a risk-averse agent who can save privately

and whose hidden effort affects the arrival rate of discrete revenue. In those

models, monitoring technologies are exogenous. In other words, the output

processes, which are functions of hidden actions and other random factors,

are exogenously assumed, and play dual roles as both direct determinants of

physical payoff and bases for monitoring and contracting. The essence of our

model is to separate these two roles in order to study the interaction between

the design of monitoring technology and that of contracts.

Recent work also endogenizes the monitoring scheme in dynamic moral

hazard models. On top of the framework of (DeMarzo and Sannikov 2006),

(Piskorski and Westerfield 2016) allow the principal to monitor the agent at a

cost that increases with his monitoring intensity. Based on a framework simi-

lar to that of (Biais, Mariotti, Rochet, and Villeneuve 2010), (Chen, Sun, and

Xiao 2017) consider the timing decision of monitoring, where monitoring is

modeled as paying a fixed cost for a credible guarantee of the agent taking the

desired action. (Varas, Marinovic, and Skrzypacz 2019) consider a problem

where monitoring serves as an incentive device and also provides information

to the principal. In (Orlov 2018), the principal can change his monitoring in-

tensity. While these papers probe into how much monitoring capacity should

be devoted to a given monitoring technology and its optimal timing, our fo-

cus is on the principal’s optimal allocation of monitoring capacity to multiple

information sources, as the basis for both his monitoring activities and the

design of his incentive scheme.

In a static setup, (Li and Yang 2019) and (Georgiadis and Szentes 2019)
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also study the impact of the principal’s flexibility on the design of his monitor-

ing scheme. Based instead on a dynamic setup, we are able to explore when it

is optimal for the principal to perpetuate the agent’s effort. In addition, our

notion of flexibility is different from that in (Georgiadis and Szentes 2019).

The information source in (Georgiadis and Szentes 2019) is a single exogenous

(conditional on the agent’s effort) linear diffusion process, and the flexibility

that they consider refers to the freedom of the principal to stop observing that

process earlier if existing observations are suffi cient to prove the agent’s devi-

ation from the desired action. Instead, the notion of flexibility in our paper

refers to the freedom of the principal to allocate different levels of monitoring

capacity to various processes (interpreted as different performance indicators)

contingent on the whole history summarized by the agent’s continuation value.

Our work is also related to the literature on problems of dynamic atten-

tion allocation. (Nikandrova and Pancs 2018) analyze a dynamic problem in

which an investor decides how to allocate his limited attention between seek-

ing confirmatory evidence of the profitability of one project and seeking that

of another project. Also in a dynamic setting, (Che and Mierendorff 2019)

study an individual’s decision among immediate action, confirmatory learning

(i.e., seeking evidence that would confirm the state he finds relatively more

likely) and contradictory learning (i.e., seeking evidence that would confirm

the state he finds relatively less likely), before taking actions that affect his

state-contingent payoff. Similar to (Che and Mierendorff 2019), (Kuvalekar

and Ravi 2019) consider how a principal should incentivize an agent, who is to

allocate limited attention between seeking evidence that confirms and evidence

refutes the quality of a project. While the monitoring capacity allocation be-

tween C-search and S-search in our model is similar to the learning problems in

these papers, the problem that we study is fundamentally different. While the

fact to be learned is exogenous in their models, our model features strategic

interaction with moral hazard, in which the fact to be learned (i.e., whether

the agent is shirking) is endogenous to the choice of monitoring technologies,

and in turn, to the principal’s design of an incentive scheme by the principal.
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2 The Model

2.1 Setup

Time is continuous and infinite. There is a principal (“he") and an agent

(“she"). Both are risk neutral. The principal has a discount rate r > 0

and unlimited access to capital. The agent has a discount rate ρ > r and

is protected by limited liability. The principal owns a project that requires

operation by the agent, which involves an action at ∈ [0, 1] taken by the agent.

The action can be understood as the level of shirking. If action at is taken at

instant t, in the period [t, t+ dt], the agent enjoys a private benefit of λ · atdt,
while the benefit to the principal is z · (1− at) dt > 0. The principal can

terminate the project at any time, and the project then generates a payoff of

zero for both players.

Here, we interpret z as the latent progress of a project or the reputation of

an entity that is lost without the agent’s due diligence and is not discernible

immediately. Therefore, contracts cannot be made contingent on whether z

is accrued. We interpret z this way for two reasons. First, it captures the

reality, mentioned in the Introduction, that the agent’s hidden actions are fre-

quently not reflected in existing indicators, such as current output, sales or

stock prices. This is because, the outcome of such actions (e.g., the accumu-

lation of intangible assets or reputation) may be realized only in the long run.

Second, it separates the role of output as a component of physical payoff from

that as a given performance indicator; the latter being well studied in the

literature. This allows us to focus on the principal’s active acquisition of in-

formation regarding the agent’s action. For ease of presentation, we hereafter

refer to z as the “synergy" (between the principal and the agent).

To model the principal’s capacity-allocation decision, we assume that at

each instant the principal can choose how to allocate his µ units of monitor-

ing capacity between “carrot-based search" (“C-search" hereafter) and “stick-

based search" (“S-search" hereafter); i.e., to seek one of two types of evidence

as the basis for reward and penalty. The receipt of C-evidence confirms the

effort exerted by the agent, while the receipt of S-evidence contradicts it.

8



Specifically, if the principal allocates a fraction αt ∈ [0, ᾱ] of his µ units of

monitoring capacity to seeking S-evidence and the remaining 1 − αt fraction
of his monitoring capacity for the C-evidence, he receives S-evidence at the

arrival rate µ · αt · at, and C-evidence at the arrival rate µ · (1− αt) · (1− at).
Hence, the agent’s chance of being caught shirking is proportional to at, the

level of shirking, and µ · αt, the capacity allocated to monitoring shirking. In-
tuitively, if the agent does not shirk, no evidence of shirking exists, and the

principal cannot find S-evidence no matter how much capacity is allocated to

seeking such evidence; if the principal allocates no capacity to monitor shirk-

ing, he receives no S-evidence regardless of the agent’s level of shirking. The

arrival rate of C-evidence can be interpreted similarly. More specifically, the

cumulative number of arrivals of S-evidence, Y1, and that of C-evidence, Y0,

satisfy

dY1,t =

{
1, with probability µαtatdt
0, otherwise

,

and

dY0,t =

{
1, with probability µ (1− αt) (1− at) dt
0, otherwise

,

respectively. To save the notation, we write Y = (Y0, Y1).

It is worth noting that upper bound ᾱ measures the flexibility of the prin-

cipal in allocating his capacity across C-search and S-search. To highlight the

role of this flexibility, we assume ᾱ to be close to 1. However, if ᾱ = 1, we

show in the Appendix that the optimal reward to the agent upon the arrival

of C-evidence would be infinity with positive probability, and thus we exclude

this case in the text.3 Formally, we assume that

Assumption 1 ᾱ ∈ [1− ρ
µ
, 1).

We also assume that the principal is more patient than the agent, and that

the principal has enough capacity to monitor the agent in this contractual

relationship.

Assumption 2 r < ρ < µ.

3See the discussion following Equation (14) for details.
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Moreover, we assume that z is large enough so that shirking (action 1)

is ineffi cient even taking into account the agent’s private benefit. Then it is

optimal for the principal to always implement at = 0 and thus it is without

loss of generality to focus on such contracts.4

Assumption 3 z > λ > 0.

A contract X specifies the recommended action a taken by the agent, the

monitoring scheme α,5 the cumulative payment I to the agent and the time

of termination τ as functions of the history of past evidence. As mentioned

before, we focus on contracts that implement at = 0 for all t, so that we

suppress a and write X = (α, I, τ).

Given the contract X and an action process a, the expected discounted

utility of the agent is

Ea
[∫ τ

0

e−ρt (dIt + λatdt)

]
,

and that of the principal is

Ea
[∫ τ

0

e−rt (z (1− at) dt− dIt)
]
. (1)

For notational convenience, we hereafter suppress all time subscripts when no

confusion can be caused.
4This is formally established in Section 7.4 in the Appendix.
5The capacity µ in our model should be understood generically as resources available

to the principal for monitoring the agent. In reality, this corresponds to the total budget
for hiring quality control team, installing call recorders or surveillance cameras, etc. By
including the monitoring scheme α (i.e., the allocation of capacity) in the contract, we are
studying the benchmark in which the focus of the evaluation of the agent’s performance
at different stages of the contractual relationship is explicitly specified at the beginning,
and is implemented throughout the relationship. This benchmark is realistic under many
circumstances, especially for firms, organizations or bureaucratic systems that specify the
details of their routine monitoring practice for employees at different positions with different
seniority in contracts, charters or code of conducts. Situations where the principal cannot
commit to a monitoring scheme is also realistic and worth studying, but beyond the scope
of this paper.
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While contracts involving randomization are of theoretical interest, they

are typically not practical in reality. Therefore, we postpone the discussion of

public randomization to Section 5, and consider only deterministic contracts

for the rest of this paper unless otherwise mentioned.

2.2 Incentive Compatibility and Limited Liability

To characterize the incentive compatibility condition, we rely on martingale

techniques similar to those introduced by (Sannikov 2008). When choosing

her action at time t, the agent considers how it will affect her continuation

value, defined as

wt (X, a) = Ea
[∫ τ

t

e−ρu (dIu + λaudu)
∣∣Ft] 1{t<τ},

where {Ft} is the filtration generated by Y . Martingale representation theorem
yields the following lemma.

Lemma 2.1 For any contract X that implements at = 0 for all t ≤ τ , there

exist predictable processes (β0, β1) such that wt evolves before termination

(t ≤ τ) as

dwt = ρwtdt− dIt + β0,t [dY0,t − µ (1− αt) dt]− β1,tdY1,t . (2)

The contract is incentive compatible if and only if

µαtβ1,t + µ(1− αt)β0,t ≥ λ . (IC)

And the contract satisfies the limited liability constraint of the agent if and

only if

β1,t ≤ wt (3)

and

β0,t + wt ≥ 0 . (4)
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The proofs of this lemma and of all the other lemmas and propositions are

relegated to the Appendix unless otherwise specified. Intuitively, β0 refers to

the reward to the agent upon the receipt of C-evidence, and β1 refers to the

punishment to her upon the receipt of S-evidence. Hereafter, we refer to β0

as "carrots", and β1 as "sticks". Inequality (IC) highlights the key feature of

our model. Its left-hand side consists of the two instruments, C-search and

S-search, that the principal uses to incentivize the agent, which must sum to

at least λ, the agent’s private benefit from shirking. The principal can choose

not only the allocation of his monitoring capacity α, but also β0 and β1, the

carrots and sticks associated.

Two limited liability constraints in Lemma 2.1 restrict the magnitudes of

reward and punishment. Inequality (3) requires that sticks should be no more

than the whole stake promised to the agent. The other constraint (4) says that

carrots plus the stake already promised to the agent has to be non-negative,

which will be shown slack.

3 Basic Properties of the Optimal Contract

This section provides a heuristic derivation of some basic properties of the

optimal contract. Theorem 3.1 at the end of this section verifies that this

contract is indeed optimal.

Let B(w) denote the principal’s value function. We have the Hamilton—

Jacobi—Bellman (HJB) equation in the continuation region (t < τ)

rB (w) = max
α,β0,β1

z+(1− α)µ [B (w + β0)−B (w)]+[ρw − β0µ (1− α)]B
′
(w) ,

(5)

subject to

µαβ1 + µ(1− α)β0 ≥ λ ; (IC)

β1 ≤ w ; (6)

β0 + w ≥ 0 ; (7)
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and

α ∈ [0, ᾱ] . (8)

The left-hand side of equation (5) is the principal’s expected flow of value.

The first term on the right-hand side, z, is the flow of synergy. The second term

is due to the carrots β0 he gives to the agent if C-evidence is obtained, which

happens with probability (1− α)µdt conditional on a = 0 being implemented

from t to t + dt. The third term arises from the drift of w, where ρw is the

rate at which interest accrues, and −β0µ(1 − α) is the flip side of carrots

due to promise keeping: if there is no C-evidence, the principal reduces the

agent’s continuation value at this rate to balance against carrots, so that the

continuation value wt net of a drift ρwtdt is a martingale, and thus the contract

does deliver wt in expectation to the agent.

Note that there is no term in equation (5) that corresponds to sticks (i.e.,

no term containing β1), because S-evidence is never obtained if the agent

follows the contract and takes a = 0 at each instant. In this sense, sticks serve

only as an off-equilibrium threat. Therefore, the limited liability constraint (6)

must be binding: If S-evidence were obtained, the principal would maximize

the penalty by terminating the project and confiscating the whole stake w

promised to the agent.

Notationally, superscript * hereafter denotes items in the optimal contract.

Property 1 β∗1 (w) = w.

Instead of B (w), it is equivalent but more convenient to continue our

analysis based on V (w) = B(w) +w, the sum of the principal’s value function

and the agent’s continuation value, or their joint surplus. Equation (5) then

becomes

rV (w) = max
α,β0

z+[ρw−β0µ(1−α)]V ′ (w)+(1−α)µ[V (w+β0)−V (w)]−(ρ−r)w .
(9)

Next, since r < ρ, we guess and later verify that there is a payout boundary

w̄ as standard in existing dynamic contracting models, e.g., (DeMarzo and

Sannikov 2006) and (Biais, Mariotti, Rochet, and Villeneuve 2010). If w >
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w̄, the principal will simply pay dI = w − w̄ immediately and reduce the

continuation value to w̄. Otherwise, the principal will use backloading; i.e.,

wait for the agent’s continuation value w to increase instead of paying her

immediately (i.e., dI = 0). By construction, V (w̄+ β0) = V (w̄), so that when

w = w̄, the third term on the right-hand side of equation (9) equals zero, and

V ′ (w̄) = 0 if it exists. If V ′ (w̄) does not exist; i.e., the left and the right

derivatives are not equal, equation (9) is not defined at w = w̄, which means

that the coeffi cient in front of V
′
(w) is zero at w̄. Notice that this coeffi cient

is the drift of the continuation value. Hence, when V ′ (w̄) does not exist, w̄ is

an absorbing payout boundary. As a result, regardless of whether the payout

boundary w̄ is absorbing or not, the second term in equation (9) must also

equal zero when w = w̄, so that

V (w̄) =
z

r
− (ρ− r)w̄

r
(10)

and

B(w̄) =
z

r
− ρ

r
w̄ . (11)

Moreover, we must have w̄ ≤ λ
ρ+µᾱ

. If not, then once the continuation

value reaches w̄ > λ
ρ+µᾱ

, the principal could always incentivize the agent with

the following contract: paying out w̄− λ
ρ+µᾱ

immediately to reduce the agent’s

continuation value to λ
ρ+µᾱ

; setting α = ᾱ, β1 = λ
ρ+µᾱ

and β0 = ρλ
µ(1−ᾱ)(ρ+µᾱ)

,

so that (IC) is binding, and that β0µ(1 − ᾱ) = ρ λ
ρ+µᾱ

; i.e., the drift of the

agent’s continuation value is zero, and thus w = λ
ρ+µᾱ

is an absorbing state.6

Then the principal’s payoff becomes

z

r
− ρ

r
· λ

ρ+ µᾱ
− (w̄ − λ

ρ+ µᾱ
) >

z

r
− ρ

r
w̄ = B(w̄) ,

where the inequality follows w̄ > λ
ρ+µᾱ

, contradicting the optimality of B(w̄).

As a standard result in this literature, the optimality of B implies B′ (w) > −1

6More precisely, under this contract, once w = λ
ρ+µᾱ , the continuation value never drifts

away and the agent receives discrete payments of β0 = ρλ
µ(1−ᾱ)(ρ+µᾱ) at the arrival rate

µ (1− ᾱ) forever.
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for w < w̄ and B′ (w) = −1 for w ≥ w̄. Then by definition, V ′ (w) > 0 for

w < w̄ and V ′ (w) = 0 for w ≥ w̄. We summarize these results in the following

property.

Property 2 There exists a w̄ ∈ (0, λ
ρ+µᾱ

] such that i) dI∗ = (w − w̄)+ ; ii) V

is increasing in [0, w̄]; iii) if w ≥ w̄,

V (w) = z/r − (ρ− r)w̄/r ; (12)

and iv) either V ′ (w̄) = 0, or ρw̄ − µ(1− α∗ (w̄))β∗0 (w̄), the drift at w = w̄, is

0.

Together with Assumption 1 and Property 1, we have β∗1 (w) = w < w̄ ≤
λ

ρ+µᾱ
< λ/µ for w < w̄; i.e., by the (IC) constraint, sticks alone are not

suffi cient to incentivize the agent to work. Moreover, (IC) and Property 1

imply that wα∗ + β∗0(1 − α∗) ≥ λ/µ, thus β∗0 (w) ≥ λ/µ ≥ λ
ρ+µᾱ

≥ w̄ for

w < w̄. This, together with Property 2, implies

Property 3 w + β∗0 ≥ w̄ for all w < w̄.

That is, a single piece of C-evidence suffi ces to make the continuation value

w jump to the payout region [w̄,+∞), so that V (w+β∗0) = V (w̄); i.e., β∗0, the

carrots, raises their joint surplus only from V (w) to V (w̄), and the remaining

reward, β∗0− (w̄ − w), is an immediate transfer from the principal to the agent

and has no impact on their joint surplus. Also, the limited liability constraint

(7) slacks as conjectured.

Property 3 plays a crucial role in the derivation of the optimal contract,

given that the value function V may not always be concave.7 To see this, note

that according to Property 3, equation (9) becomes

rV (w) = max
β0,α

z+[ρw − β0µ(1− α)]V
′
(w)+(1− α)µ[V (w̄)−V (w)]−(ρ−r)w ,

(13)

7This possibility is discussed in Subsection 4.2. We also concavify the value function via
public randomization in Section 5.

15



whose right-hand side is always decreasing in β0. This has two important

implications. First, it indicates the advantage of using S-search rather than

C-search, regardless of the concavity of V . In equilibrium, S-evidence is never

obtained, and thus S-search incentivizes the agent without causing variation

in her continuation value w. But if C-search is used (i.e., α < 1), C-evidence is

obtained in equilibrium and generates variation in w. Property 3 implies that

effectively, the upward jump in w upon the receipt of C-evidence is always

w̄ − w (after the bonus payment), which is independent of α and β0. But the

magnitude of the downward drift of w in the absence of C-evidence, β0µ(1−α),

is increasing in both the capacity allocated to C-search, µ(1 − α), and the

associated carrots, β0. Therefore, the more the principal resorts to C-search,

the more adverse variation in w is generated, making it detrimental relative

to sticks.

Second, the fact that the right-hand side of equation (13) is decreasing in

β0 implies a binding incentive compatibility constraint (IC) in the no-payment

region [0, w̄], i.e.;

Property 4 µ [α∗w + (1− α∗)β∗0] = λ.

The incentive compatibility constraint (IC) plays a central role in this

model. Property 4 establishes that the combination of C-search and S-search

should be just enough to overcome the agent’s private benefit from shirking.

Note that the principal still has two degrees of freedom to adjust the sen-

sitivities of the agent’s continuation value to news reflecting her actions. As

mentioned in the literature review, this contrasts with the counterpart in mod-

els without choice among multiple performance indicators; e.g., in (Sannikov

2008) and (Biais, Mariotti, Rochet, and Villeneuve 2010), where there is no

such degree of freedom.

Now we are ready to derive the central piece of the model – the optimal

allocation of monitoring capacity, α, and the optimal carrots, β0, in the no-

payment region [0, w̄]. Given Properties 1 and 4,

β∗0 =
λ− µα∗w
µ (1− α∗) . (14)
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Equation (14) highlights the substitution between the capacity allocated to

C-search, 1− α, and the associated carrots, β0, which is peculiar to our setup

with flexibility in monitoring practice. The more capacity is allocated to C-

search, the higher is the probability of obtaining C-evidence that confirms

the agent’s effort, and thus less reward is needed to incentivize the agent.

Conversely, higher carrots provide a stronger incentive for the agent, and thus

reduce the reliance of the principal on obtaining C-evidence, enabling him to

utilize S-search. Note that β∗0 →∞ as α∗ → 1, and thus we assume ᾱ < 1 in

Assumption 1 to preclude this situation.

In the no-payment region, we have dI = 0 by definition and V (w + β0) =

V (w̄) from Property 2. As a result of equation (14), the HJB equation (9)

becomes

rV (w) = max
α∈[0,ᾱ]

z− (ρ− r)w+ (1−α)µ[V (w̄)−V (w)] + (ρw−λ+µαw)V
′
(w).

(15)

Notice that α affects the right-hand side of equation (15) through the last

two terms. As explained before, the third term reflects its impact through

carrots; i.e., raising α reduces the arrival rate of C-evidence and that of the

contingent increment V (w̄)−V (w) in their joint surplus. This in turn reduces

the expected instantaneous joint surplus (1− α)µ[V (w̄)− V (w)]. The impact

is linear in α, and the marginal impact is −µ[V (w̄) − V (w)], whose absolute

value decreases monotonically with w.

The last term on the right-hand side of equation (15) reflects the impact

of α through the flip side of carrots; i.e., a lower arrival rate of C-evidence

also reduces the downward drift of the agent’s continuation value w due to

promise keeping.8 This increases the expected instantaneous joint surplus

(ρw− λ+ µαw)V
′
(w). This effect is also linear in α, with a marginal impact

µwV
′
(w), which could be non-monotonic in w. Since the total impact of α is

8Note that ρw− λ+µαw ≤ 0 since w̄ ≤ λ
ρ+µᾱ . Raising α thus reduces the magnitude of

the downward drift.
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linear, with marginal impact

µ
[
wV

′
(w) + V (w)− V (w̄)

]
, (16)

we have the following corner solution.

Property 5 If wV ′(w) + V (w) < V (w̄), then α∗ = 0 and β∗0 = λ/µ;

If wV
′
(w) + V (w) = V (w̄), then α∗ ∈ [0, ᾱ] and β∗0 = λ−µα∗w

µ(1−α∗) ;

If wV
′
(w) + V (w) > V (w̄), then α∗ = ᾱ and β∗0 = λ−µᾱw

µ(1−ᾱ)
.

The following theorem verifies that the contract that we derive is indeed

optimal.

Theorem 3.1 Under Assumptions 1, 2 and 3, the solution V to HJB equation
(9) is the principal and the agent’s joint surplus under the optimal contract.

Moreover, the optimal contract is characterized by Property 5.

4 The Role of Flexible Monitoring

This section highlights the critical role of flexible monitoring, which is central

to this paper. Section 4.1 shows that such flexibility is indeed utilized by and

thus valuable to the principal. Section 4.2 further articulates that such flexi-

bility allows a long-term contractual relationship that perpetuates the agent’s

effort with positive probability when the synergy, z, is suffi ciently large, and

that the value function is convex in the vicinity of the payout boundary w̄ if

and only if such perpetuation is optimal. Section 4.3 summarizes these results

with a graphic illustration using the narrative of career path and provides a

few empirically plausible predictions.

4.1 Flexibility in Monitoring is Utilized

Property 5 establishes that other than in knife-edge cases, the optimal mon-

itoring capacity allocated to S-search, α∗, is either 0 or ᾱ.9 This subsection
9Lemma 7.2 in the Appendix shows that there does not exist an interval of continuation

values such that the principal is indifferent between 0 and ᾱ. Thus the knife-edge cases are
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further establishes that an optimal contract necessarily involves both possibili-

ties. Specifically, Proposition 4.1 establishes that α∗ (w) = 0 when the agent’s

continuation value w is close to 0, and α∗ (w) = ᾱ when w is close to the

payout boundary w̄. This indicates that flexibility in allocating monitoring

capacity between C-search and S-search allows the principal to incentivize the

agent differently at different stages of her career, and is thus valuable to the

principal.

Proposition 4.1 There exists a ŵ0 ∈ (0, w̄) and a ŵᾱ ∈ [ŵ0, w̄), such that

α∗ (w) = 0 and β∗0 (w) = λ/µ if w ∈ (0, ŵ0), and that α∗ (w) = ᾱ and β∗0 (w) =
λ−µᾱw
µ(1−ᾱ)

if w ∈ (ŵᾱ, w̄].

From Property 5, the optimal contract only involves α = 0 and α = ᾱ

except for the knife-edge case featuring indifference. From equation (15) we

know that for each w ∈ (0, w̄), either α = 0 and

rV (w) = z + [ρw − λ]V
′
(w) + µ[V (w̄)− V (w)]− (ρ− r)w , (17)

or α = ᾱ and

rV (w) = z+ (1− ᾱ)µ[V (w̄)−V (w)] + [ρw−λ+µᾱw]V
′
(w)− (ρ− r)w . (18)

Both equations can be solved in closed form, and interested readers are referred

to the Appendix. It can be verified that V ′ (0) is finite. This implies 0 ·
V
′
(0) + V (0) = 0 < V (w̄), and by continuity, there is a neighborhood of

w = 0 such that wV
′
(w) + V (w) < V (w̄). Thus, by Property 5, the principal

relies completely on C-search when the agent’s continuation value w is low.

The statement for (ŵᾱ, w̄) can also be proved with the closed-form solutions

similarly.

Intuitively, when the agent’s continuation value w is low, the principal

should not rely on S-search at all, because the agent has little to lose even if

she is known to have shirked. Relying on C-search, on the other hand, also

non-generic.
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maximizes the chance of obtaining C-evidence (i.e., evidence confirming the

agent’s effort). This helps the principal quickly raise the agent’s "skin in the

game", which makes S-search (which is costless to the principal) more effective

in the future, and pushes the project away from termination (which is socially

ineffi cient). When the agent’s continuation value w is higher, the principal

can impose a large penalty if he obtains S-evidence. Since such a penalty is

just an off-equilibrium threat, making S-search less costly than C-search, the

principal should rely on S-search as much as possible.

The flexibility of combining C-search and S-search allows the principal to

exploit their respective advantages. On one hand, C-search generates greater

variation than S-search in the agent’s continuation value, and is thus less

advantageous to the principal. This is because, given that the agent does

work, no S-evidence would be obtained, and thus, no adjustment to the agent’s

continuation value would be required. However, in equilibrium, C-evidence

would be obtained, which would necessarily involve a reward and the downward

adjustment to the agent’s continuation value in the absence of C-evidence. On

the other hand, a suffi ciently high continuation value is required as the agent’s

skin in the game for sticks alone to be an effective incentive device, whereas the

effectiveness of C-search does not depend on the agent’s continuation value.

Moreover, even if S-search could work alone, a high continuation value for

the agent has to be maintained, which involves interest expenditure for the

principal, making S-search less advantageous than C-search. This tradeoff

between C-search and S-search induces the principal to rely only on C-search

when w is low, and on S-search, as much as possible, when w is high.

Concerning the carrots, β0, recall that the right-hand side of equation (13)

is decreasing in β0, since an increase in β0 makes the drift of the agent’s

continuation value, ρw − β0µ(1 − α), more negative due to promise keeping,

and thus makes the project more prone to termination. Hence, given the

optimal capacity allocation α∗, β∗0 should be set as low as possible – such

that the incentive compatibility constraint (IC) is binding. Thus, for agents

facing α∗ = 0, including those with w ∈ (0, ŵ0), we have β∗0 (w) = λ/µ, and

the resulting drift of w is ρw − λ< 0. For agents facing α∗ = ᾱ, including
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those with w ∈ (ŵᾱ, w̄], we have β∗0 (w) = λ−µᾱw
µ(1−ᾱ)

, and the resulting drift of w

is ρw − λ+ µᾱw ≤ 0.10

Note first that β∗0 (w) is constant in the region of α∗ (w) = 0, but is

decreasing in the region of α∗ = ᾱ. This is because in the latter case,

sticks increase with w, partially substituting carrots that are required by the

incentive compatibility constraint (IC). Second, β∗0 (w) features an upward

jump when α∗ switches from 0 to ᾱ. To see this, notice the fact that any

switching point w < λ
ρ+µᾱ

≤ λ
µ
implies that the size of the upward jump is

λ−µᾱw
µ(1−ᾱ)

− λ
µ
>

λ−µᾱ·λ
µ

µ(1−ᾱ)
− λ

µ
= 0. Third, the drift of w increases (i.e., becomes less

negative) with w, due to the interest accrued (i.e., due to the term ρw) and the

increasing reliance on S-search in lieu of C-search (i.e., due to the term µᾱw).

Lastly, the drift of w is negative, which moves w towards 0, the termination

boundary, unless w reaches the payout boundary w̄ and w̄ = λ
ρ+µᾱ

, where the

drift is zero; i.e., the project and the agent’s effort are perpetuated. Section

4.2 characterizes when such perpetuation is optimal.

4.2 Possibility of Perpetuating the Agent’s Effort

This subsection discusses whether the optimal contract involves the perpetua-

tion of the agent’s effort with positive probability. Mathematically, this refers

to whether the payout boundary w̄ is an absorbing state. We show that this

is related to the (local) convexity of the value function, which is in turn deter-

mined by the flexibility of the principal’s capacity allocation as captured by ᾱ,

and by the magnitude of the synergy z to that of the agent’s private benefit

from shirking, λ. Specifically, 1) w̄ is absorbing if and only if w̄ = λ
ρ+µᾱ

; 2) w̄

is absorbing if and only if the value function V is not universally concave11.

More precisely, w̄ is absorbing if and only if V is convex in (ŵᾱ, w̄) given

by Proposition 4.1; and 3) w̄ is absorbing if and only if ᾱ > r−ρ+µ
2µ

and z is

suffi ciently large.

Again, the role of flexibility in capacity allocation is worth highlighting.

10This is because w ≤ w̄ ≤ λ
ρ+µᾱ .

11Recall from Section 2 that we will discuss public randomization in Section 5 and preclude
it in the rest of the paper unless otherwise mentioned.
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We show that without such flexibility, perpetuation of the agent’s effort is not

optimal.

Recall from Property 2 that w̄ ≤ λ
ρ+µᾱ

. We have in addition

Lemma 4.1 w̄ is absorbing if and only if w̄ = λ
ρ+µᾱ

.

Proof. First consider the “if” statement. If w̄ = λ
ρ+µᾱ

, we show that the

following strategy is feasible and optimal, and makes w̄ absorbing: α = ᾱ,

β0 = ρλ
µ(1−ᾱ)(ρ+µᾱ)

and β1 = w̄ = λ
ρ+µᾱ

. Feasibility results from the binding (IC)

constraint. To see why w̄ is absorbing, when w = w̄, the positive component

of the drift of the agent’s continuation value due to accrued interest is ρw̄dt =
ρλ

ρ+µᾱ
dt, and the negative component as the flip side of carrots is µ(1− ᾱ)β0dt,

which also equals ρλ
ρ+µᾱ

dt, so that w remains constant when there is no C-

evidence, and when it is obtained, the whole reward β∗0 is paid out immediately

so that w remains at λ
ρ+µᾱ

.

To see the optimality of this strategy, observe that the principal’s expected

payoff at w = λ
ρ+µᾱ

is E(
∫ +∞

0
ze−rtdt−β0

∫ +∞
0

e−rtdY0,t). Since Y0,t−µ(1− ᾱ)t

is a martingale,

E(

∫ +∞

0

ze−rtdt− β0

∫ +∞

0

e−rtdY0,t) =
z

r
− β0µ(1− ᾱ)

r
=
z

r
− ρ

r
· λ

ρ+ µᾱ
.

Thus, the expected joint surplus is

z

r
− ρ

r
· λ

ρ+ µᾱ
+ w̄ =

z

r
− ρ− r

r
· w̄ .

From equation (10), this strategy achieves the optimal joint surplus at the

payout boundary.

Now consider the “only if”statement. From Property 2, it suffi ces to show

that any w̄ < λ
ρ+µᾱ

cannot be absorbing. Any contract respecting the (IC)

constraint satisfies

β0µ(1− ᾱ) ≥ λ− w̄µᾱ > ρ · λ

ρ+ µᾱ
> ρw̄ .
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Thus, when there is no C-evidence, the agent’s continuation value always has

a downward drift term ρw̄ − β0µ(1 − ᾱ) < 0. This implies that the payout

boundary w̄ < λ
ρ+µᾱ

is reflective.

Notice the role of flexibility in capacity allocation here. If w̄ = λ
ρ+µᾱ

, the

way for the principal to perpetuate the agent’s effort is to set α = ᾱ; i.e.,

to rely on S-search as much as possible. But if w0 < ŵ0, such a monitoring

scheme is not viable since the agent has too little to lose if caught shirking.

To avoid ineffi cient termination, the principal must first rely on C-search to

build up the agent’s skin in the game while keeping her working, and then

switch to stick-dominant mode when the continuation value is high enough.

This approach is impossible without flexibility in capacity allocation.

As the main proposition of this subsection, Proposition 4.2 further estab-

lishes the connection between the possibility of perpetuating the agent’s effort,

the (local) convexity of the value function, and the conditions on exogenous

parameters.

Proposition 4.2 Let ŵ0 and ŵᾱ be given by Proposition 4.1. Then, w̄ = λ
ρ+µᾱ

(i.e., absorbing) if and only if V is convex in (ŵᾱ, w̄), which holds if and only if

ᾱ > r−ρ+µ
2µ

and z is suffi ciently large. Moreover, when w̄ is absorbing, ŵ0 = ŵᾱ.

That is, the agent’s effort can be perpetuated if and only if both the prin-

cipal enjoys suffi cient flexibility in capacity allocation and the synergy of the

contractual relationship is large enough. In other words, no matter how large

is the synergy, the contractual relationship would terminate in probability one

as long as the principal does not have suffi cient flexibility of capacity allo-

cation. This again stresses the importance of such flexibility in shaping the

optimal contract.

Proposition 4.2 also establishes the equivalence relation between w̄ being

absorbing and the local convexity of the value function V . Moreover, if the

agent’s effort could be perpetuated, there is only one switching point ŵᾱ ∈
(0, w̄) for capacity allocation; i.e., the optimal α = 0 in (0, ŵᾱ), and α = ᾱ in

(ŵᾱ, w̄).
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We explain the role of flexibility in capacity allocation (i.e., in combining

C-search with S-search) in three steps. First, we argue that it is possible for

the optimal contract to have an absorbing payout boundary while satisfying

(IC) for all w only if the principal is able to combine C-search with S-search

(i.e., to have α ∈ (0, 1)). To see this, consider first the situation where only C-

search is viable (i.e., α is fixed to 0) as in (Sun and Tian 2017). From Property

4, β∗0 (w) = λ/µ for all w ≤ w̄, and the value function V satisfies equation (17).

It is straightforward from (Sun and Tian 2017) that V must be concave, so

that w̄ is reflective. This reflects the standard incentive versus interest tradeoff

in the literature. That is, an increase in w pushes the continuation value away

from the termination boundary 0, whose marginal benefit decreases with w,

but whose marginal cost, due to an increase in accrued interest, is constant.

Such a tradeoff is also featured in (Biais, Mariotti, Rochet, and Villeneuve

2010) and (DeMarzo and Sannikov 2006). In this case, the agent receives a

lumpy bonus of β0 − (w̄ − w) and a jump of w̄ − w in her continuation value
upon the receipt of each piece of C-evidence, but her continuation value will

still drift downward from w̄ until the next piece of C-evidence is obtained,

and will eventually reach zero in probability one, resulting in termination of

the project. In the opposite situation, where only S-search is viable (i.e., α is

fixed to 1), if w < λ/µ, it is impossible to satisfy the incentive compatibility

constraint (IC), and thus no contract implements the desired action; otherwise,

it is optimal to choose an absorbing payout boundary w̄ = λ/µ by making a

flow payment ρw̄ forever. Therefore, it is the feasibility of combining C-search

with S-search that enables the combination of the incentive compatibility of

effort for all w from C-search and the absorbing payout boundary from S-search

in the optimal contract.

Second, we argue that flexibility in capacity allocation allows the principal

to optimally decide whether to make the payout boundary w̄ absorbing. On

one hand, doing so perpetuates the agent’s effort when her continuation value

w is high. On the other hand, doing so also leads to the accrual of higher

interest frommaintaining the continuation value at w̄ and a lower arrival rate of

C-evidence when w is low. To see this, suppose α is fixed to ᾱ, so that the value
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function V satisfies equation (18) in (0, w̄]. Its closed-form solution implies that

V is convex and thus that the payout boundary w̄ is absorbing if and only if

ᾱ > r−ρ+µ
2µ

and z is suffi ciently large. In other words, although the option of an

absorbing payout boundary is readily available even if α is fixed to ᾱ, such an

option is optimal for the principal if and only if he is able to rely on S-search

and the synergy is large enough. This is because, while the absorbing payout

boundary makes it possible to permanently avoid ineffi cient termination, it

also requires maintaining a high constant continuation value of w̄ as potential

sticks, resulting in a high constant flow of interest and a reduction of surplus

due to the difference in discount rates between the principal and the agent.

Therefore, it is advisable to make the payout boundary absorbing if and only

if the continuation value w̄ can be suffi ciently utilized (i.e., ᾱ is large) and

perpetuating the contractual relation is suffi ciently beneficial. Moreover, once

the principal has the flexibility in adjusting α, he has another option to avoid

termination, which is to set α = 0 so as to maximize the arrival rate of C-

evidence and upward jumps of w for low values of w (see Proposition 4.1).

This makes an absorbing payout boundary even less attractive. Therefore, for

values of z not high enough, although it is optimal to make w̄ absorbing if α

is fixed to ᾱ, it is no longer optimal if α can be flexibly adjusted in [0, ᾱ].

Lastly, notice the novel feature of our model that the value function V

is convex in the vicinity of the payout boundary w̄ when w̄ is absorbing.

While the concavity of V in (0, ŵᾱ) still reflects the standard incentive versus

interest tradeoff, new economic forces come into play in (ŵᾱ, w̄), where α∗ = ᾱ.

There, the reliance on S-search reduces the downward drift of the continuation

value, µ (1− α) β0, that balances carrots. This raises the marginal benefit

of increasing w without affecting the marginal cost, and thus makes V less

concave. Moreover, a fundamental change is brought about when w̄ becomes

absorbing. In that case, the marginal benefit of increasing w results not only

from the fact that w is further away from the ineffi cient absorbing state 0, but

also from the fact that w is closer to the effi cient absorbing state w̄. The latter

fact, together with the constant marginal cost due to accrued interest, makes

the marginal benefit increasing instead of decreasing in w and thus the value
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function V convex in (ŵᾱ, w̄).

4.3 A Career Path Narrative

Using the narrative of career path, this subsection employs a graphic illustra-

tion to summarize the role of flexibility in monitoring practice, which is the

core of this paper, and provides a few empirically plausible predictions.

Proposition 4.1 establishes that the optimal monitoring and compensation

schemes for junior employees (i.e., agents with continuation value w ∈ (0, ŵ0))

are qualitatively different from those for senior employees (agents with con-

tinuation value w ∈ (ŵᾱ, w̄)). Concerning monitoring schemes, incentives for

junior employees are in carrot-only mode (i.e., α = 0), since they need to accu-

mulate a cushion against unemployment (i.e., termination) and have little to

lose even if caught shirking. Senior employees are instead incentivized in stick-

dominant mode (i.e., α = ᾱ), since they have enough skin in the game, and

sticks are off-equilibrium penalties, which are less costly than on-equilibrium

carrots. Thus, our model predicts that

Prediction 1 Incentives for junior employees are based mainly on confirma-
tory evidence of their contribution to their employer, while incentives for senior

employees are based mainly on contradictory evidence of their contribution, but

are compensated by higher rewards upon the receipt of confirmatory evidence.

Concerning compensation schemes, as an off-equilibrium threat, sticks are

always the whole continuation value w and thus increase with the seniority of

employees. For junior employees, carrots are set to the minimum level required

to induce effort, and is constantly λ/µ, while carrots for senior employees,
λ−µᾱw
µ(1−ᾱ)

, decrease with seniority, since they are replaced by sticks at higher

continuation values. For super-senior employees; i.e., agents with continuation

value w > w̄, their promised stakes are so large that a payment w−w̄ to reduce
accrued interest is urgent enough to dominate their incentive problems. Hence,

Prediction 2 The reward for each piece of evidence confirming a contribu-
tion to the employer varies little among junior employees, but decreases with
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seniority for senior employees. The penalty for each piece of evidence contra-

dicting a contribution to the employer increases with seniority for both junior

and senior employees.

Concerning the possibility of being fired (i.e., termination), in the absence

of C-evidence, the drift of the continuation value of junior employees is ρw−λ,
and that of senior employees is ρw − λ + µᾱw. Both are negative unless

w = w̄ = λ
ρ+µᾱ

; i.e., unless the (senior) employee is permanently hired. They

become less negative as the continuation value w increases, for two reasons.

First, larger stakes in the game carry a larger interest income. Second, larger

stakes also allow for larger sticks and less reliance on C-search, and thus less

downward drift in the continuation value to balance in-equilibrium carrots.

Therefore,

Prediction 3 Except for those hired permanently, in the ansence of evidence
confirming their contribution, an employee becomes more prone to unemploy-

ment, and more so if the employee is less senior.

Figure 1: Reflective Payout Boundary w̄

When is it possible for employees to be hired permanently? Proposition 4.2

shows that it is the case if and only if both the flexibility in adjusting moni-
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toring schemes and the potential synergy created by employees are suffi ciently

large.

First, consider the case ᾱ ≤ r−ρ+µ
2µ

as illustrated in Figure 1; i.e., the

flexibility in monitoring is not large enough. The solid blue line corresponds

to the value function V (in terms of the joint surplus), and the dash-dotted

red line corresponds to the principal’s value function B (w) = V (w)−w. The
value function V is strictly concave in (0, ŵ0), reflecting the standard incentive

versus interest tradeoff. V is also strictly concave in (ŵᾱ, w̄), where the fact

that carrots decrease with the agent’s stake in the game makes V less concave.

However, since ᾱ is low, the principal does not have enough flexibility to rely

on S-search to the extent that he wants, so that w̄ is reflective and is thus

given by V ′ (w̄) = 0. That is, senior employees who receive carrots still face a

downward drift in their promised stakes and thus the risk of being fired. This

is the case no matter how large the synergy z is.

Now fix an ᾱ > r−ρ+µ
2µ

, so that the principal does have enough flexibility in

adjusting the monitoring scheme. If z is small, the synergy is too low to jus-

tify perpetuation of the agent’s effort, so the optimal contract is qualitatively

similar to that of the case ᾱ ≤ r−ρ+µ
2µ

. Once z grows large enough, the optimal

contract changes fundamentally, as shown in Figure 2. – Now the principal

has both the flexibility and the desire to perpetuate the agent’s effort, so now

the payout boundary w̄ becomes absorbing. That is, the agent is "tenured"

once her effort is confirmed by the receipt of C-evidence. In addition, the

possibility of completely avoiding termination creates a new marginal benefit

of increasing continuation value, and thus makes the value function V convex

in (ŵᾱ, w̄). Moreover, ŵ0 = ŵᾱ, so that α, the capacity allocated to S-search,

only switches once as the agent’s continuation value rises from 0 to w̄. Thus,

we have

Prediction 4 Employers offer permanent positions if and only if both their
flexibility in adjusting monitoring schemes and the potential synergy created

by employees are suffi ciently large.
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Figure 2: Absorbing Payout Boundary w̄

5 Public Randomization

So far, we have been focusing on deterministic contracts, on the basis that

random contracts are of little practical relevance in reality. This is also the-

oretically without loss of generality if the resulting value function is globally

concave as in the case illustrated in Figure 1 and as in most models in the

literature. However, as established in Proposition 4.2, our value function is

convex in the vicinity of the payout boundary w̄ if it is absorbing (Figure 2).

For this situation, this section discusses the extension in which public ran-

domization of the following form is allowed. At time 0, in addition to starting

the contractual relationship with a deterministic continuation value w0, the

principal can choose a mean-preserving spread of w0 as the basis for random

contracts, but no further randomization is allowed for t > 0. Since B = V −w,
and the linear term has no effect on the concavification operation, we can work

with the joint surplus function V without loss of generality.

Proposition 5.1 With public randomization, the principal’s value function is
B∗ = V ∗ − w, where V ∗ is the concavification of V .
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Proof. Proposition 4.2 establishes that when V is not globally concave, we

must have w̄ = λ
ρ+µᾱ

, and V (w̄) is uniquely determined by Property 2. In

addition, V is concave in (0, ŵ) and convex in (ŵ, w̄), where ŵ ≡ ŵ0 = ŵᾱ.

Therefore, the concavification of V must be over w̄ and some w′ ∈ (0, ŵ) as

shown with the yellow broken line in Figure 2.12

We check that the values of non-randomized states are not changed. First,

V (w̄) does not change because w̄ = λ
ρ+µᾱ

is absorbing and its value does

not depend on the values of other states. For w ∈ (0, w′), notice that the

continuation value may only drift downward or jump upward over w̄. Since

V (w̄) remains the same and V ∗ = V for w ∈ (0, w′), the values of these states

satisfy the same HJB equation and thus remain the same.

6 Conclusion

This paper studies a continuous-time moral hazard problem in which the prin-

cipal can flexibly combine C-search with S-search to incentivize the agent.

That is, he can flexibly allocate his limited monitoring capacity between con-

firmatory and contradictory evidence concerning the agent’s effort as the basis

for reward and punishment. We find that such flexibility generates rich dy-

namics, which differ qualitatively from the situation where only one of the two

methods is feasible. When the agent has little skin in the game, the principal

resorts only to C-search; when the agent has a large skin in the game, the

principal instead assigns the highest possible weight to S-search. Moreover,

only with such flexibility can the agent’s effort be perpetuated with positive

probability when the agent is less patient than the principal.
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7 Appendix

7.1 Proofs in Section 2

7.1.1 Proof of Lemma 2.1

Proof. The proof is a standard application of the martingale representation
theorem. For any given contract X = (α, I, τ) and effort process a, define

M1,a
t = Y 1

t − µ
∫ t

0

αsasds

and

M0,a
t = Y 0

t − µ
∫ t

0

(1− αs)(1− as)ds .

If the agent follows the effort process a, her lifetime expected payoff, condi-

tional on information at time t, is

Ut =

∫ t∧τ

0

e−ρs(dIs + λasds) + e−ρtWt .

Let ã be an arbitrary effort process. Let Ũt denote the agent’s lifetime expected

payoff conditional on information at time t if she follows ã until time t and

then reverts to a. Then by the martingale representation theorem, Ut can be
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written as

Ut = U0 −
∫ t∧τ

0

e−ρsβ1,sdM
1,a
s +

∫ t∧τ

0

e−ρsβ0,sdM
0,a
s

For each t ≥ 0,

Ũt =Ut +

∫ t∧τ

0

e−ρsλ(ãs − as)ds

=U0 −
∫ t∧τ

0

e−ρsβ1,sdM
1,a
s +

∫ t∧τ

0

e−ρsβ0,sdM
0,a
s +

∫ t∧τ

0

e−ρsλ(ãs − as)ds

=U0 −
∫ t∧τ

0

e−ρsβ1,sdM
1,ã
s +

∫ t∧τ

0

e−ρsβ0,sdM
0,ã
s +

∫ t∧τ

0

e−ρsλ(ãs − as)ds

−
∫ t∧τ

0

e−ρsµαsβ1,s(ãs − as)ds−
∫ t∧τ

0

e−ρsµ(1− αs)β0,s(ãs − as)ds

Hence, at = 0 for all t is incentive compatible if and only if the drift term of

the above expression is non-positive for any effort process ã 6= 0; i.e.,

λ ≤ µαtβ1,t + µ(1− αt)β0,t

for all t before termination.

7.2 Proofs in Section 3

Here we provide proofs for Property 2 and Theorem 3.1 here. Those of all the

other properties are straightforward from the text and are therefore omitted.

7.2.1 Proof of Property 2

Proof. Note that the joint value function V must be nondecreasing in contin-
uation value w. This is because in any region where V is strictly decreasing

in w, the principal can benefit from paying out to the agent, contradicting

the optimality of V . Let A ⊂ R+ denote the region of continuation values in

which V is strictly increasing. Then the principal does not make any payment

when w ∈ A and R+\A is the payout region. Since ρ > r, deferring pay-
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ment becomes infinitely costly as w → +∞. Thus the payout region R+\A is
nonempty and there exists a w̄ = inf(R+\A).

By construction, V is strictly increasing for w ∈ [0, w̄] and is constant in a

right neighborhood of w̄, (w̄, w̄ + ∆). Then, if V ′ (w̄) exists, it must be zero.

If V ′ (w̄) does not exist, i.e., the left and the right derivatives are not equal,

equation (9) is not defined at w = w̄ and the coeffi cient in front of V
′
(w) must

be zero at w̄. Notice that this coeffi cient is the drift of the continuation value.

Hence, when V ′ (w̄) does not exist, w̄ is an absorbing payout boundary. As a

result, no matter whether V ′ (w̄) exists or not, the second and the third terms

on the right-hand side of equation (9) must be zero when w = w̄, leading to

V (w̄) = z
r
− ρ−r

r
w̄.

By definition, the payout region is a subset of (w̄,+∞). Actually, the

payout region is (w̄,+∞). Otherwise, there exists an interval (w̄′ −∆, w̄′) ⊂
(w̄,+∞) such that V is strictly increasing on [w̄′ −∆, w̄′] and is constant in

a right neighborhood of w̄′. It must be the case that w̄′ <∞, since ρ > r and

deferring payment is infinitely costly as w → +∞. Then a similar argument
regarding the existence of V ′ (w̄) also applies here: no matter whether V ′ (w̄′)

exists or not, the second and the third terms on the right-hand side of equation

(9) must be zero when w = w̄′, and thus V (w̄′) = z
r
− ρ−r

r
w̄′ < z

r
− ρ−r

r
w̄ = V (w̄)

, a contradiction to the non-decreasing property of V . Hence, the above defined

w̄ is the payout boundary and the payout region is (w̄,+∞). As an immediate

implication, the optimal payment is dI∗ = (w − w̄)+ and for w ∈ [w̄,+∞),

V (w) = V (w̄).

The above proof has already shown that either V ′ (w̄) = 0, or V ′ (w̄) does

not exist and ρw̄ − µ(1− α∗ (w̄))β∗0 (w̄), the drift at w = w̄, is 0.

The proof for w̄ ≤ λ
ρ+µᾱ

is straightforward from the text.

7.2.2 Proof of Theorem 3.1

Lemma 7.1 For any w̄ ∈ (0, λ
ρ+µᾱ

], let V̄ ≡ z
r
− ρ−r

r
w̄. Then the ODE

rV (w) = max
α∈[0,α]

z−(ρ−r)w+ρwV
′
(w)+(1−α)µ[V̄ −V (w)]−(λ−µαw)V

′
(w)

(19)
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with boundary condition V (0) = 0 has a unique solution on [0, w̄].

Proof. For any w < λ
ρ+ᾱµ

, since λ−µαw−ρw > 0, we can rearrange equation

(19) to obtain

V
′
= max

α∈[0,α]

z − (ρ− r)w + (1− α)µ[V̄ − V ]− rV
λ− µαw − ρw .

Let

F (w, V ) = max
α∈[0,α]

z − (ρ− r)w + (1− α)µ[V̄ − V ]− rV
λ− µαw − ρw .

For any fixed ε > 0, for any (w1, V1), (w2, V2) ∈ [0, λ
ρ+ᾱµ

− ε] × [0, V̄ ], there

exists an M such that |F (w1, V1) − F (w2, V2)| ≤ M |V1 − V2|. Then, by the
Cauchy-Lipschitz theorem, the initial value problem has a unique solution

over [0, λ
ρ+ᾱµ

− ε]. Further, notice that V is increasing and upper bounded,

and therefore V does not explode as w → w̄. Then the maximum interval of

existence reaches the boundary w̄ for all w̄ ≤ λ
ρ+ᾱµ

. When w̄ = λ
ρ+ᾱµ

, taking

ε→ 0, we can extend the solution over
[
0, λ

ρ+ᾱµ

]
.

Proposition 7.1 Consider two ODEs

rV1 = maxα∈[0,ᾱ]z − (ρ− r)w + ρwV
′

1 + (1− α)µ[V̄1 − V1]− (λ− µαw)V
′

1

and

rV2 = maxα∈[0,ᾱ]z − (ρ− r)w + ρwV
′

2 + (1− α)µ[V̄2 − V2]− (λ− µαw)V
′

2 ,

where V̄1 = z
r
− ρ−r

r
w̄1, V̄2 = z

r
− ρ−r

r
w̄2, w̄1 < w̄2 ≤ λ

ρ+ᾱµ
; and V1(0) = V2(0) =

0. Then V1 > V2 for w ∈ (0, w̄1).

Proof. Suppose the opposite holds. Note that V ′1 (0) > V
′

2 (0). Then, there ex-

ists aw ∈ (0, w̄1) such that V1(w) = V2(w). Define w̃ = inf {w ∈ (0, w̄1) : V1(w) = V2(w)}.
By the continuity of V1 and V2, we have V1(w̃) = V2(w̃). Let α2 be the α that

solves the maximization problem for V2 at w̃. Taking the difference between
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the two ODEs at w = w̃, we obtain

(ρw̃ + µα2w̃ − λ) · (V1 − V2)
′
+ (1− α2)µ(V̄1 − V̄2) ≤ 0 .

Since α2 < 1 and V̄1 − V̄2 > 0,

(ρw̃ + µα2w̃ − λ) · (V1 − V2)
′
< 0 .

Since w̄1 <
λ

ρ+ᾱµ
, ρw̃ + µα2w̃ − λ < 0. Thus, V

′
1 (w̃) − V ′2 (w̃) > 0. Note that

this inequality holds whenever V1 = V2. Since V1 (w)−V2 (w) is continuous and

the inequality is strict, it also holds for w close to w̃; i.e., V
′

1 (w)− V ′2 (w) > 0

in (w̃ − δ, w̃) for some δ > 0. By the definition of w̃, V1 (w) − V2 (w) > 0 for

w ∈ (w̃ − δ, w̃). Then, it is impossible to have V1(w̃) = V2(w̃), a contradiction.

According to the above results, the candidate for the optimal payout bound-

ary is the smallest w̄ ∈ (0, λ
ρ+ᾱµ

] such that the solution of ODE (15) satisfies

V (w̄) = z
r
− ρ−r

r
w̄. The existence of such w̄ is guaranteed by the continuity of

V . Now we are ready to prove Theorem 3.1.

Proof. Here, we show that the contract that we derive is optimal among all
contracts that always implement a = 0. Section 7.4 further establishes that

such implementation is indeed optimal for the principal.

Let τ denote the first time that wt hits zero. We first verify that the

principal’s value function can be induced by the proposed control processes in

Property 5 and the proposed payment process dIt = (β0 +w− w̄)+dY 0
t . Note

that by Property 3, β0 + w > w̄, so that dIt = (β0 + w − w̄)dY 0
t . By Ito’s

Formula for jump processes,

e−r(t∧τ)B(wt∧τ ) =B(w0) +

∫ t∧τ

0

e−rs[(ρws − β0,sµ(1− αs))B
′
(ws)− rB(ws)]ds

+

∫ t∧τ

0

e−rs[B(w̄)−B(ws)]dY
0
s .
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Under the optimal control processes, the HJB equation becomes

rB(w) = z+(ρw−β0µ(1−α))B
′
(w)+(1−α)µ[B(w̄)−B(w)− (w+β0− w̄)] .

Thus,

B(w0) =

∫ t∧τ

0

e−rs[z + (1− αs)µ(B(w̄)−B(ws)− (ws + β0,s − w̄))]ds

−
∫ t∧τ

0

e−rs[B(w̄)−B(ws)]dY
0
s − e−r(t∧τ)B(wt∧τ ) .

Due to the fact that Y 0
s − (1 − αs)µs is a martingale and wτ = 0, letting

t → ∞ and taking expectation on the right hand side of the above equation,

we obtain

B(w0) = E(

∫ τ

0

e−rs[zds− (ws + β0,s − w̄)dY 0
s ]) ,

which verifies that the principal’s expected payoff given by equation (1) is

indeed achieved with the proposed control and payment processes.

We then verify that the proposed contract is optimal. Since the cumulative

payment process is increasing in time, without loss of generality, we write a

general payment process as

It = Ict + Idt ,

where Ict is a continuous increasing process and I
d
t includes discrete upward

jumps. By Ito’s Formula for jump processes,

e−r(t∧τ)B(wt∧τ ) =B(w0) +

∫ t∧τ

0

e−rs[(ρws − β0,sµ(1− αs))B
′
(ws)− rB(ws)]ds

−
∫ t∧τ

0

e−rsB
′
(ws)dI

c
s +

∫ t∧τ

0

e−rs[B(ws + β0,s)−B(ws)]dY
0
s

+
∑

s∈[0,t∧τ ]

e−rs[B(ws + β0,s∆Y
0
s −∆Ids )−B(ws + β0,s∆Y

0
s )] ,
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where ∆Y 0
s ≡ Y 0

s − Y 0
s−. We then rearrange the terms to get

B(w0) =e−r(t∧τ)B(wt∧τ )

+

∫ t∧τ

0

e−rs{rB(ws)− (ρws − β0,sµ(1− αs))B
′
(ws)− (1− αs)µ[B(w + β0,s)−B(w)]}ds

+

∫ t∧τ

0

B
′
(ws)e

−rsdIcs +

∫ t∧τ

0

[B(w + β0,s)−B(w)][(1− αs)µds− dY 0
s ]

−
∑

s∈[0,t∧τ ]

e−rs[B(ws + β0,s∆Y
0
s −∆Idt )−B(ws + β0,s∆Y

0
s )] .

Taking expectation on both sides and using the fact that Y 0
t −

∫ s
0

(1− αs)µds
is a martingale, we obtain

B(w0) =E(e−r(t∧τ)B(wt∧τ ))

+ E

( ∫ t∧τ
0

e−rs{rB(ws)− (ρws − β0,sµ(1− αs))B
′
(ws)

−(1− αs)µ[B(w + β0,s)−B(w)]}ds

)

+ E(

∫ t∧τ

0

B
′
(ws)e

−rsdIcs)

− E(
∑

s∈[0,t∧τ ]

e−rs[B(ws + β0,s∆Y
0
s −∆Idt )−B(ws + β0,s∆Y

0
s )]) .

Notice that

rB(w) ≥ z+ (ρw−β0µ(1−α))B
′
(w) + (1−α)µ[B(w̄)−B(w)− (w+β0− w̄)]

and for any incentive compatible contract,

B(w + β0,s) = B(w̄)− (w + β0,s − w̄) .

Moreover, since B
′
(w) ≥ −1,

B (w0) ≥ E(e−r(t∧τ)B(wt∧τ ))+E(

∫ t∧τ

0

ze−rsds−
∫ t∧τ

0

e−rsdIcs)−E(
∑

s∈[0,t∧τ ]

e−rs∆Idt ) .

38



Letting t→∞ and using the fact that B(w) is bounded, we obtain

B(w0) ≥ E(

∫ τ

0

e−rs(zds− dIs)) .

Therefore, any function satisfying all these conjectured properties is indeed

the value function for the principal.

7.3 Proofs in Section 4

7.3.1 Proof of Proposition 4.1

Proof. Recall from Property 2 that w̄ ≤ λ
ρ+µᾱ

. If w = w̄ = λ
ρ+µᾱ

, equation

(18) is exactly equation (10), so α∗ (w) = ᾱ.

For w ∈
(

0, λ
ρ+µᾱ

)
, equation (15) is equivalent to

V ′ (w) = max
α∈[0,ᾱ]

z − (ρ− r)w + (1− α)µ[V (w̄)− V (w)]− rV (w)

λ− ρw − µαw . (20)

Let G (α;w) = z−(ρ−r)w+(1−α)µ[V (w̄)−V (w)]−rV (w)
λ−ρw−µαw , which is obviously continuous

in both α and w. Property 5 establishes that the maximizer of the right-hand

side (RHS) of equation (20) must be 0 or ᾱ. So to figure out α∗ (w), it suffi ces

to compare G (0;w) with G (ᾱ;w), taking as given V (0) = 0 and V (w̄).

For w ∈
(

0, λ
ρ+µᾱ

)
, G (ᾱ;w) ≥ G (0;w) is equivalent to

w [z − (ρ− r)w − rV ] ≥ [λ− (µ+ ρ)w] (V (w̄)− V (w)) . (21)

Let ŵ0 = min
{
w̄, λ

ρ+µ

}
. For any w ∈ (0, ŵ0), the left-hand side of inequal-

ity (21) is negative, but its right-hand side is positive. So it fails, establishing

the optimality of α (w) = 0 in this range.

Now we establish the optimality of α (w) = ᾱ for w in the vicinity of w̄.

Note that by equation (10), inequality (21) is equivalent to

w (ρ− r) (w̄ − w) ≥ [λ− (µ+ ρ+ r)w] (V (w̄)− V (w)), (22)
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which holds for all w ≥ λ
ρ+µ+r

. So if w̄ ∈ ( λ
ρ+µ+r

, λ
ρ+µᾱ

], α∗ (w) = ᾱ for all

w ∈ ( λ
ρ+µ+r

, w̄].

Note that inequality (22) is equivalent to w̄−w
V (w̄)−V (w)

≥ λ−(µ+ρ+r)w
(ρ−r)w . If w̄ ≤

λ
ρ+µ+r

< λ
ρ+µᾱ

, by Lemma 4.1 (whose proof does not require Proposition 4.1),

w̄ is reflective so that V ′ (w̄) = 0. Then by L’Hôpital’s rule, lim
w→w̄−

w̄−w
V (w̄)−V (w)

=

lim
w→w̄−

1
V ′(w)

= +∞, while lim
w→w̄−

λ−(µ+ρ+r)w
w(ρ−r) = λ−(µ+ρ+r)w̄

(ρ−r)w̄ < +∞. Hence, there
also exists a ŵᾱ < w̄, such that α (w) = ᾱ for all w ∈ (ŵᾱ, w̄].

β∗0 (w) for w ∈ (0, ŵ0) ∪ (ŵᾱ, w̄] results from equation (14).

Here we provide the closed-form solutions to equations (17) and 18). As a

first-order linear ODE, equation (17) has general solutions

V (w) =
ρ− r

r + µ− ρ(
λ

ρ
− w) +

µV (w̄) + z − (ρ− r)λ
ρ

r + µ
+K(

λ

ρ
− w)

r+µ
ρ , (23)

which are all strictly concave in (0, w̄). From V (0) = 0, we can pin down for

w ∈ (0, ŵ0) that K = − ρ(ρ−r)
(r+µ)(r+µ−ρ)

· λ
ρ

− r+µ−ρ
ρ − µV (w̄)+z

r+µ
· λ
ρ

− r+µ
ρ .

Also as a first-order linear ODE, equation (18) has general solutions

V (w) =
ρ− r

r + (1− ᾱ)µ− (ρ+ ᾱµ)
(

λ

ρ+ µᾱ
− w) +

(1− ᾱ)µV (w̄) + z − (ρ− r) λ
ρ+ᾱµ

r + µ(1− ᾱ)

+K(
λ

ρ+ µᾱ
− w)

r+(1−ᾱ)µ
ρ+µᾱ (24)

if r + (1− ᾱ)µ 6= ρ+ ᾱµ, and

V (w) = − ρ− r
ρ+ µᾱ

(
λ

ρ+ µᾱ
− w) ln(

λ

ρ+ µᾱ
− w) +

(1− ᾱ)µV (w̄) + z − (ρ− r) λ
ρ+ᾱµ

r + µ(1− ᾱ)

+K(
λ

ρ+ µᾱ
− w) (25)

if r + (1 − ᾱ)µ = ρ + ᾱµ. It is shown later in the proof of Proposition 4.2

that the solutions that are increasing in (0, w̄) are strictly convex in (0, w̄) if

r+ (1− ᾱ)µ < ρ+ ᾱµ and K < 0 , linear if r+ (1− ᾱ)µ < ρ+ ᾱµ and K = 0,

and strictly concave in (0, w̄) otherwise.
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With the closed-form solutions and their concavity properties discussed

above, we show the following proposition:

Proposition 7.2 If w̄ ≥ λ
ρ+µ+r

, then ŵ0 = ŵᾱ.

To prove Proposition 7.2, we first prove Lemma 7.2, which articulates that

the optimal α takes values in {0, α} almost surely.

Lemma 7.2 There does not exist an interval (w1, w2) such that w · V ′ (w) =

V (w̄)− V (w) for all w ∈ (w1, w2).

Proof. Suppose the contrary. Then w · V ′ (w) = V (w̄)− V (w) implies

V (w) =
c

w
+ V (w̄) (26)

in (w1, w2) for some constant c. Plugging w · V ′ (w) = V (w̄)− V (w) into the

HJB equation (9) we obtain

V (w) =
z − (ρ− r)w + (ρ+ µ− λ/w)V (w̄)

r + ρ+ µ− λ/w . (27)

It is straightforward to verify that equations (26) and (27) cannot both be

satisfied in any interval.

Lemma 7.3 shows that the convexity of V in an interval below the payout

boundary w̄ is "contagion" up to w̄.

Lemma 7.3 If there exists an interval [w1, w2) ⊂ (0, w̄) such that w1·V
′
(w1) ≥

V (w̄)−V (w1) and V is convex in (w1, w2), then α∗ (w) = ᾱ for all w ∈ (w1, w̄]

and V is convex in [w1, w̄].

Proof. If V is convex in (w1, w2), since V is continuously differentiable in

(0, w̄), w · V ′ (w) + V (w) is strictly increasing in [w1, w2). Given that w1 ·
V
′
(w1) ≥ V (w̄) − V (w1), we have w · V ′ (w) > V (w̄) − V (w) for all w ∈

(w1, w2). So there exists w3 ∈ (w2, w̄) such that w ·V ′ (w) > V (w̄)−V (w) for

all w ∈ (w1, w3). Iteration of this argument yields w · V ′ (w) > V (w̄)− V (w)
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and thus α∗ (w) = ᾱ for all w ∈ (w1, w̄). By Proposition 4.1, α∗ (w̄) = ᾱ as

well.

Given that α∗ (w) = ᾱ for all w ∈ (w1, w̄], the specific solution to equation

(18) that matches the value function V in [w1, w2) must also match V in

[w1, w̄]. Since V is convex in [w1, w2), that specific solution must be given by

equation (24) withK ≤ 0 and r+(1−ᾱ)µ < ρ+ᾱµ. This proves the convexity

of V in [w1, w̄].

With Lemmas 7.2 and 7.3, we can now prove Proposition 7.2.

Proof. Let Ŵ ≡
{
w ∈ (0, w̄) : w · V ′ (w) = V (w̄)− V (w)

}
. We are to show

that Ŵ is a singleton if w̄ ≥ λ
ρ+µ+r

. By Proposition 4.1, Ŵ is non-empty and

has a maximum. Without loss of generality, assume ŵᾱ = max Ŵ . Then V

must be strictly concave in (0, ŵᾱ]. To see this, Lemma 7.2 and the properties

of the general solutions to equations (17 ) and 18) imply that V must be

piecewise concave or convex in (0, ŵᾱ]. If there is an interval (w1, w2) ⊂ (0, ŵᾱ]

such that V is convex in it, then by Lemma 7.3, α∗ (w) = ᾱ for all w ∈ (w1, w̄],

contradicting the fact that ŵᾱ = max Ŵ .

Note that equation (27) holds forw = ŵᾱ. Plug it into V
′
(ŵᾱ) = V (w̄)−V (ŵᾱ)

ŵᾱ
,

we have V
′
(ŵᾱ) = ρ−r

r+ρ+µ
(1−

λ
r+µ+ρ

−w̄
λ

r+µ+ρ
−ŵᾱ

). Similarly, if there exists ŵ′ ∈ Ŵ such

that ŵ′ < ŵᾱ, then V
′
(ŵ′) = ρ−r

r+ρ+µ
(1−

λ
r+µ+ρ

−w̄
λ

r+µ+ρ
−ŵ′ ). If w̄ ≥

λ
ρ+µ+r

, then we have

V ′ (ŵ′) ≤ V ′ (ŵᾱ), contradicting the concavity of V in (0, ŵᾱ].

7.3.2 Proof of Proposition 4.2

Proof. By Proposition 4.1, α∗ (w) = ᾱ if w ∈ (ŵᾱ, w̄], so here we focus on the

solutions to equation (18) when studying the property of the payout boundary

w̄. Let VK be the solution with constant K in equation (24) or (25).

Case 1: If r + (1 − ᾱ)µ > ρ + ᾱµ, we must have w̄ < λ
ρ+µᾱ

, and thus w̄ is

reflective by Lemma 4.1. To see this, equation (24) yields

V
′

K = − ρ− r
r + (1− ᾱ)µ− (ρ+ ᾱµ)

−Kr + (1− ᾱ)µ

ρ+ µᾱ
(

λ

ρ+ µᾱ
− w)

r+(1−ᾱ)µ
ρ+µᾱ

−1.

(28)

Since the first term of the right-hand side of equation (28) is negative, K must
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be negative, otherwise V
′
K < 0 for all w ≤ λ

ρ+µᾱ
, contradicting the optimality of

α∗ (w) = ᾱ for w ∈ (ŵᾱ, w̄]. Since r+(1−ᾱ)µ
ρ+µᾱ

− 1 > 0, VK is concave. Moreover,

as w → λ
ρ+µᾱ

, V
′
K → − ρ−r

r+(1−ᾱ)µ−(ρ+ᾱµ)
< 0, contradicting the optimality of

α∗ (w) = ᾱ for w ∈ (ŵᾱ, w̄] if w̄ = λ
ρ+µᾱ

.

Case 2: If r + (1− ᾱ)µ = ρ+ ᾱµ, we have

V
′

K = −K +
ρ− r
ρ+ µᾱ

+
ρ− r
ρ+ µᾱ

ln(
λ

ρ+ µᾱ
− w) .

Regardless of the value of K, VK is concave and as w → λ
ρ+µᾱ

, V
′
K → −∞.

Thus, analogous to the previous case, it must be that w̄ < λ
ρ+µᾱ

and w̄ is

reflective.

Case 3: If r+(1− ᾱ)µ < ρ+ ᾱµ, since − ρ−r
r+(1−ᾱ)µ−(ρ+ᾱµ)

> 0, K in equation

(24) can be either positive or negative. Equation (28) yields

V
′′

K = K
r + (1− ᾱ)µ

ρ+ µᾱ
(
r + (1− ᾱ)µ

ρ+ µᾱ
− 1)(

λ

ρ+ µᾱ
− w)

r+(1−ᾱ)µ
ρ+µᾱ

−2 .

If K > 0, since r+(1−ᾱ)µ
ρ+µᾱ

− 1 < 0 , V
′′
K < 0 so that VK is concave. Moreover,

as w → λ
ρ+µᾱ

, V
′
ᾱ → −∞. Again, it must be that w̄ < λ

ρ+µᾱ
, and w̄ is reflective.

If K = 0, then V
′
K (w) = − ρ−r

r+(1−ᾱ)µ−(ρ+ᾱµ)
> 0 for all w ∈ (ŵᾱ, w̄]. Thus

we must have w̄ = λ
ρ+µᾱ

as an absorbing state.

If K < 0, V
′′
K > 0 so that VK is strictly convex. Thus, the value function

V satisfies V
′
> 0 for all w < λ

ρ+µᾱ
. This implies that w̄ = λ

ρ+µᾱ
, and w̄ is

absorbing by Lemma 4.1.

To summarize all the cases above, we have w̄ is absorbing (i.e., w̄ = λ
ρ+µᾱ

)

if and only if r+(1− ᾱ)µ < ρ+ ᾱµ and K ≤ 0; i.e., if and only if V is (weakly)

convex in (ŵᾱ, w̄).

For the “if" claim, it is suffi cient to show that when ᾱ > r−ρ+µ
2µ

and z is

large enough, it must be the case that K ≤ 0. Suppose the contrary that K

is strictly positive for an arbitrarily large z. Let ŵ denote the smallest w at
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which the principal switches from α = 0 to α = ᾱ. Then equation (24) implies

V (ŵ) ≤ ρ− r
r + (1− ᾱ)µ− (ρ+ ᾱµ)

λ

ρ+ µᾱ
+

(1− ᾱ)µV̄ + z − (ρ− r) λ
ρ+ᾱµ

r + µ(1− ᾱ)
.

(29)

Further notice that from the solution to the ODE with α = 0 control,

V (ŵ) = [1−(1− ρ
λ
ŵ)

r+µ
ρ ][

ρ− r
(r + µ)(r + µ− ρ)

λ+
µV̄ + z

r + µ
]− ρ− r

r + µ− ρŵ . (30)

Since ŵ < w̄ ≤ λ
ρ+ᾱµ

, the coeffi cient in front of z
r
on the right-hand side of

equation (30) is smaller then 1.13 On the other hand, the coeffi cient in front of
z
r
on the right-hand side of inequality (29) is 1. Thus, when z is large enough,

inequality (29) cannot be satisfied, which is a contradiction. As a result, when

z is suffi cently large, V is (weakly) convex in (ŵᾱ, w̄) and w̄ is absorbing.

Now we prove the “only if" claim; i.e., w̄ is absorbing only if ᾱ > r−ρ+µ
2µ

and z/λ ≥ θ (r, ρ, µ, ᾱ), where θ (r, ρ, µ, ᾱ) is defined by (34).

From equation (23), we have

V
′
(ŵ) =

ρ− r
r + µ− ρ(1− ρ

λ
ŵ)

r+µ
ρ
−1 +

µV (w̄) + z

λ
(1− ρ

λ
ŵ)

r+µ
ρ
−1 − ρ− r

r + µ− ρ .
(31)

On the other hand, by Property 5, we have V ′ (ŵ) = V (w̄)−V
ŵ

. Plugging this

into equation (17), we have

V
′
(ŵ) =

ρ− r
r + ρ+ µ

(1−
λ

r+µ+ρ
− w̄

λ
r+µ+ρ

− ŵ
) . (32)

As ŵ increases from 0 to λ
r+µ+ρ

, the right-hand side of equation (31) is de-

creasing from µV (w̄)+z
λ

, and that of equation (32) is increasing from z−V (w̄)
λ

to

+∞. Thus, there exists a unique ŵ ∈ (0, λ
r+µ+ρ

) such that both equations hold

simultaneously.

Next, we show that VK is convex if and only if ŵ ≥ λ
2(ρ+µᾱ)

. Observe that

13Note that V̄ = z
r −

ρ−r
r w̄.
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V (ŵ) should also satisfy equation (24), and thus

V
′
(ŵ) = − ρ− r

r + (1− ᾱ)µ− (ρ+ ᾱµ)
−Kr + (1− ᾱ)µ

ρ+ µᾱ
(

λ

ρ+ µᾱ
− ŵ)

r+(1−ᾱ)µ
ρ+µᾱ

−1 .

(33)

We have shown that VK is convex if and only if r + (1 − ᾱ)µ < ρ + ᾱµ and

K ≤ 0. From equations (32) and (33),

K ≤ 0 =⇒ ρ− r
r + ρ+ µ

(1−
λ

r+µ+ρ
− w̄

λ
r+µ+ρ

− ŵ
) ≥ − ρ− r

r + (1− ᾱ)µ− (ρ+ ᾱµ)
,

where w̄ = λ
ρ+ᾱµ

. This reduces to ŵ ≥ λ
2(ρ+µᾱ)

. Notice that if r + (1 − ᾱ)µ <

ρ+ ᾱµ, λ
2(ρ+µᾱ)

< λ
r+µ+ρ

.

Therefore, VK is convex only if r + (1 − ᾱ)µ < ρ + ᾱµ (i.e., ᾱ > r−ρ+µ
2µ

)

and the right-hand sides of equations (31) and (32) intersect at some ŵ ∈
[ λ
2(ρ+µᾱ)

, λ
r+µ+ρ

). The second condition holds if and only if

(
ρ− r

r + µ− ρ +
µV̄ + z

λ

)
(1−ρ

λ
· λ

2(ρ+ µᾱ)
)
r+µ
ρ
−1− ρ− r

r + µ− ρ ≥
ρ− r

r + ρ+ µ
(1−

λ
r+µ+ρ

− λ
ρ+µᾱ

λ
r+µ+ρ

− λ
2(ρ+µᾱ)

) ,

which is equivalent to

z

λ
≥ r(ρ− r)

µ+ r

{
2(ρ+ µᾱ)

ρ+ 2µᾱ

2µᾱ

(r + µ− ρ)[(ρ+ µᾱ)− (r + µ(1− ᾱ))]
− 1

r + µ− ρ +
µ

ρ+ µᾱ

}
≡ θ (r, ρ, µ, ᾱ) . (34)

Finally, if w̄ is absorbing, w̄ = λ
ρ+µᾱ

> λ
ρ+µ+r

, so we have ŵ0 = ŵᾱ by

Proposition 7.2. (We write ŵ = ŵ0 = ŵᾱ in this case.)

7.4 The Optimality of No Shirking

In the proof of Theorem 3.1 in Section 7.2, we show that among contracts

that always implement a = 0, the contract that we derive is optimal. This

subsection further establishes the optimality of such implementation.

First, if z > λ, it is suboptimal for the principal to implement a > 0 in the
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payout region, [w̄,+∞). To see this, consider any contract that implements

at > 0 for some wt > w̄. This implies that in [t, t+ dt], the agent receives a

private benefit of λatdt. Instead, the principal could implement at = 0 (which

generates additional synergy z · atdt), and increases the payment to the agent
by λatdt in [t, t+ dt], without altering the contract afterwards. This raises the

principal’s payoff by (z − λ) atdt > 0, while leaving the dynamics of the agent

continuation value unchanged. Iteration of this argument rules out profitable

deviation from a = 0 in the payout region. Thus, we only need to consider the

possibility of shirking in the no-payment region henceforth. We will rule out

the profitability of deviation of a = 1 and a ∈ (0, 1), respectively.

7.4.1 Shirking with a = 1

If the principal implements a = 1 for some wt ∈ (0, w̄), then the agent’s IC

constraint is µαβ1 + µ(1− α)β0 ≤ λ, and her continuation value follows

dwt = ρwtdt− λdt− β1,t[dY1,t − µαtdt] .

Thus, to rule out the profitability of such deviation, we need to show that

for any w ∈ (0, w̄),

rV (w) ≥ max
α,β1

λ+[ρw−λ+αµβ1]V
′
(w)+αµ[V (w−β1)−V (w)]−(ρ−r)w . (35)

If β1 ≥ 0, then

RHS of inequality (35) ≤ max
α

z + (ρw − λ+ αµw)V
′
(w)− (ρ− r)w

< max
α

z + (ρw − λ+ αµw)V
′
(w) + µ (1− α) [V (w̄)− V (w)]− (ρ− r)w

≤ rV (w) ,

where the first two inequalities follow the fact that V is increasing in w, and the

third inequality holds because its LHS is the flow value achieved with β1 = w

when implementing a = 0 and thus the LHS is dominated by the optimal flow

value rV . Hence, it suffi ces to show inequality (35) holds for β1 < 0.
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Denote the objective function of the RHS of inequality (35) by D. If

β1 ≤ 0, we show that D can achieve its maximum only when β1 = 0 or

β1 = −(w̄−w). In particular, for β1 < −(w̄−w), we have V (w−β1) = V (w̄)

and ∂D/∂β1 = αµV
′
(w) > 0. Thus D can achieve its maximum only when

β1 ∈ [−(w̄ − w), 0]. For β1 > −(w̄−w), ∂D/∂β1 = αµ
[
V
′
(w)− V ′(w − β1)

]
.

If V
′
(w) ≥ V ′(w − β1) for all β1 ∈ [−(w̄ − w), 0], then ∂D/∂β1 > 0 and D is

maximized with β1 = 0. If V
′
(w) < V ′(w − β1) for some β1 ∈ [−(w̄ − w), 0],

then V is not globally concave. By Proposition 4.2, V is concave in (0, ŵ0) and

convex in [ŵ0, w̄]. This implies the existence of β̂ such that w − β̂ ∈ [ŵ0, w̄]

and that ∂D/∂β1 = αµ
[
V
′
(w)− V ′(w − β1)

]
< 0 if and only if β1 < β̂.

Therefore, if D is maximized with β1 ∈ [−(w̄ − w), β̂), then the maximizer

is β1 = −(w̄ − w). If D is instead maximized with β1 ∈
[
β̂, 0
]
, then the

maximizer is β1 = 0. Since we have already shown that inequality (35) holds

for β1 ≥ 0, we only needs to show that it holds for β1 = −(w̄ − w).

Note also that D is linear in α, so D is maximized with either α = 0 or

α = ᾱ.14 If D is maximized with β1 = −(w̄ − w) and α = 0, then the RHS of

inequality (35) equals

λ+ (ρw − λ)V
′
(w)− (ρ− r)w ;

If D is maximized with β1 = −(w̄−w) and α = ᾱ, then the RHS of inequality

(35) equals

λ+ (ρw − λ)V
′
(w) + ᾱµ[V (w̄)− V (w)− (w̄ − w)V

′
(w)]− (ρ− r)w .

For both cases, we have

RHS of inequality (35) < z+(ρw−λ)V
′
(w)+µ[V (w̄)−V (w)]−(ρ−r)w ≤ rV (w) ,

where the last inequality results from equation (15). Therefore, deviation to

a = 1 is never profitable.

14If D is maximized at some interior value of α, the coeffi cient of α must be zero and thus
it is equivalent to evaluating D at α = 0.
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7.4.2 Shirking with a ∈ (0, 1)

If the principal instead implements a ∈ (0, 1) for some wt ∈ (0, w̄), then the

agent’s continuation value follows

dwt = ρwtdt− aλdt+ β0,t [dY0,t − µ (1− αt) (1− a)dt]− β1,t[dY1,t − µαtadt] .

To guarantee that the agent does not choose either a = 0 or a = 1, her IC

constraint is

µαβ1 + µ(1− α)β0 = λ.

To rule out the profitability of such deviation, we need to show that for

any w ∈ (0, w̄),

rV (w) ≥ max
α,β0,β1

z(1− a) + aλ+ [ρw − aλ− β0µ(1− α)(1− a) + µαβ1a]V
′
(w)

+ (1− α)µ(1− a)[V (w̄)− V (w)] + αµa[V (w − β1)− V (w)]− (ρ− r)w .
(36)

From the IC condition, the RHS of inequality (36) equals

max
α,β0,β1

z(1− a) + aλ+ [ρw − β0µ(1− α)]V
′
(w)

+ (1− α)µ(1− a)[V (w̄)− V (w)] + αµa[V (w − β1)− V (w)]− (ρ− r)w .

If β1 ≥ 0, then equation (15) implies that inequality (36) holds. If β1 < 0,

then due to the IC constraint, the RHS of inequality (36) equals

max
α,β1

z(1− a) + aλ+ [ρw − λ]V
′
(w) + (1− α)µ(1− a)[V (w̄)− V (w)]

+ αµa[V (w − β1)− V (w)] + µαβ1V
′
(w)− (ρ− r)w

< max
α

z + [ρw − λ]V
′
(w) + [(1− α)(1− a) + aα]µ[V (w̄)− V (w)]− (ρ− r)w

< z + [ρw − λ]V
′
(w) + µ[V (w̄)− V (w)]− (ρ− r)w ≤ rV (w) ,

where the last inequality again results from equation (15). Thus, deviation to
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a ∈ (0, 1) is never profitable either.
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