Xiaosheng Mu Luciano Pomatto Philipp Strack Omer Tamuz (Princeton) (Caltech) (Yale) (Caltech)

• Definition of **monotone additive statistics**.

• Characterization.

• Applications.

- ▶ Posted prices for sacks of potatoes.
- ▶ Fishburn-Rubinstein time preferences.
- ▶ Rabin-Weizsäcker preferences over gambles.

• Monotone additive costs of **Blackwell experiments**

- Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
- ▶ Same authors.
- ▶ Related ideas.

• Work in progress.

• Definition of monotone additive statistics.

• Characterization.

- Applications.
 - ▶ Posted prices for sacks of potatoes.
 - ▶ Fishburn-Rubinstein time preferences.
 - ▶ Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
 - ▶ Same authors.
 - ▶ Related ideas.
- Work in progress.

• Definition of monotone additive statistics.

- Characterization.
- Applications.
 - ▶ Posted prices for **sacks of potatoes**.
 - ▶ Fishburn-Rubinstein **time preferences**.
 - ▶ Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
 - ▶ Same authors.
 - ▶ Related ideas.
- Work in progress.

- Definition of monotone additive statistics.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - ▶ Fishburn-Rubinstein **time preferences**.
 - ▶ Rabin-Weizsäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
 - ▶ Same authors.
 - ▶ Related ideas.
- Work in progress.

- Definition of monotone additive statistics.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - ► Fishburn-Rubinstein **time preferences**.
 - ▶ Rabin-Weizsäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
 - ▶ Same authors.
 - ▶ Related ideas.
- Work in progress.

- Definition of monotone additive statistics.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - ▶ Fishburn-Rubinstein **time preferences**.
 - ▶ Rabin-Weizsäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
 - ▶ Same authors.
 - ▶ Related ideas.
- Work in progress.

- Definition of monotone additive statistics.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - ▶ Fishburn-Rubinstein **time preferences**.
 - ▶ Rabin-Weizsäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - ▶ Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
 - ▶ Same authors.
 - ▶ Related ideas.
- Work in progress.

- Definition of monotone additive statistics.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - ▶ Fishburn-Rubinstein **time preferences**.
 - ▶ Rabin-Weizsäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
 - ▶ Same authors.
 - ▶ Related ideas.
- Work in progress.

- Definition of monotone additive statistics.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - ▶ Fishburn-Rubinstein **time preferences**.
 - ▶ Rabin-Weizsäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
 - ▶ Same authors.
 - ▶ Related ideas.
- Work in progress.

- Definition of monotone additive statistics.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - ▶ Fishburn-Rubinstein **time preferences**.
 - ▶ Rabin-Weizsäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
 - Same authors.
 - Related ideas.
- Work in progress.

- Definition of monotone additive statistics.
- Characterization.
- Applications.
 - Posted prices for sacks of potatoes.
 - ▶ Fishburn-Rubinstein **time preferences**.
 - ▶ Rabin-Weizsäcker preferences over **gambles**.
- Monotone additive costs of **Blackwell experiments**
 - Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
 - Same authors.
 - Related ideas.
- Work in progress.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - ▶ Median.
 - ▶ Value at risk.
 - ▶ Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

Φ(c) = c.
If X and Y have the same distribution then Φ(X) = Φ(Y)

- It is monotone if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.

• Because $X \ge_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \ge \tilde{Y}$ a.s.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - ▶ Median.
 - ▶ Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

Φ(c) = c.
 If X and Y have the same distribution then Φ(X) = Φ(Y)

- It is monotone if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.

• Because $X \ge_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \ge \tilde{Y}$ a.s.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - ▶ Median.
 - ▶ Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

Φ(c) = c.
 If X and Y have the same distribution then Φ(X) = Φ(Y)

- It is monotone if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.

• Because $X \geq_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - ▶ Median.
 - Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi \colon L^{\infty} \to \mathbb{R}$ such that

Φ(c) = c.
 If X and Y have the same distribution then Φ(X) = Φ(Y).

- It is monotone if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.

• Because $X \ge_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \ge \tilde{Y}$ a.s.

- A statistic is a way of capturing distributions by a single number.
 - ► Expectation.
 - ▶ Median.
 - Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi \colon L^{\infty} \to \mathbb{R}$ such that

Φ(c) = c.
 If X and Y have the same distribution then Φ(X) = Φ(Y)

- It is monotone if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.

• Because $X \ge_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \ge \tilde{Y}$ a.s.

- A statistic is a way of capturing distributions by a single number.
 - ► Expectation.
 - ▶ Median.
 - Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

Φ(c) = c.
 If X and Y have the same distribution then Φ(X) = Φ(Y).

- It is **monotone** if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.

• Because $X \ge_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \ge \tilde{Y}$ a.s.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

Φ(c) = c.
 If X and Y have the same distribution then Φ(X) = Φ(Y).

- It is monotone if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.

• Because $X \ge_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \ge \tilde{Y}$ a.s.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

 $\bullet \Phi(c) = c.$

- 2 If X and Y have the same distribution then $\Phi(X) = \Phi(Y)$.
- It is **monotone** if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.
 - Because $X \ge_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \ge \tilde{Y}$ a.s.
- A statistic is additive if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

Φ(c) = c.
If X and Y have the same distribution then Φ(X) = Φ(Y).

- It is **monotone** if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.
 - Because $X \ge_1 Y$ iff $\exists X \sim X, Y \sim Y$ s.t. $X \ge Y$ a.s.
- A statistic is additive if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

Φ(c) = c.
If X and Y have the same distribution then Φ(X) = Φ(Y).

- It is monotone if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.

• Because $X \ge_1 Y$ iff $\exists X \sim X, Y \sim Y$ s.t. $X \ge Y$ a.s.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

- It is monotone if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.

• Because $X \ge_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \ge \tilde{Y}$ a.s.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

- It is monotone if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.
 - Because $X \ge_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \ge \tilde{Y}$ a.s.
- A statistic is additive if $\Phi(X + Y) = \Phi(X) + \Phi(Y)$ whenever X and Y are independent.

- A statistic is a way of capturing distributions by a single number.
 - ▶ Expectation.
 - Median.
 - Value at risk.
 - Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \to \mathbb{R}$ such that

- It is monotone if $X \ge_1 Y$ implies $\Phi(X) \ge \Phi(Y)$.
- Equivalently: it is monotone if $X \ge Y$ implies $\Phi(X) \ge \Phi(Y)$.

• Because $X \ge_1 Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \ge \tilde{Y}$ a.s.

• Question: What are the additive monotone statistics?

• $\mathbb{E}[X]$.

- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \ge c] > 0\}.$
- $\min[X]$.
- For $a \neq 0$,

$$S_a(X) = \frac{1}{a} \log \mathbb{E}\left[e^{aX}\right].$$

- By continuity
 - $\blacktriangleright S_0(X) = \mathbb{E}[X],$
 - $\blacktriangleright S_{\infty}(X) = \max[X]$
 - $\bullet \ S_{-\infty}(X) = \min[X].$

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \ge c] > 0\}.$
- $\min[X]$.
- For $a \neq 0$,

$$S_a(X) = \frac{1}{a} \log \mathbb{E}\left[e^{aX}\right].$$

- By continuity
 - $\blacktriangleright S_0(X) = \mathbb{E}[X],$
 - $\blacktriangleright S_{\infty}(X) = \max[X],$
 - $\bullet \ S_{-\infty}(X) = \min[X].$

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \ge c] > 0\}.$
- $\min[X]$.
- For $a \neq 0$,

$$S_a(X) = \frac{1}{a} \log \mathbb{E}\left[e^{aX}\right].$$

- By continuity
 - $\blacktriangleright S_0(X) = \mathbb{E}[X],$
 - $\blacktriangleright S_{\infty}(X) = \max[X],$
 - $\blacktriangleright S_{-\infty}(X) = \min[X].$

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \ge c] > 0\}.$
- $\min[X]$.
- For $a \neq 0$,

$$S_a(X) = \frac{1}{a} \log \mathbb{E}\left[e^{aX}\right].$$

- By continuity
 - $S_0(X) = \mathbb{E}[X],$ • $S_{\infty}(X) = \max[X]$ • $S_{\infty}(X) = \min[X]$
 - $\bullet \ S_{-\infty}(X) = \min[X]$

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \ge c] > 0\}.$
- $\min[X]$.
- For $a \neq 0$,

$$S_a(X) = \frac{1}{a} \log \mathbb{E}\left[e^{aX}\right].$$

- By continuity
 - $S_0(X) = \mathbb{E}[X],$ $S_{\infty}(X) = \max[X],$ $S_{-\infty}(X) = \min[X].$

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \ge c] > 0\}.$
- $\min[X]$.
- For $a \neq 0$,

$$S_a(X) = \frac{1}{a} \log \mathbb{E}\left[e^{aX}\right].$$

- By continuity
 - $S_0(X) = \mathbb{E}[X],$ $S_{\infty}(X) = \max[X],$ $S_{-\infty}(X) = \min[X].$

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \ge c] > 0\}.$
- $\min[X]$.
- For $a \neq 0$,

$$S_a(X) = \frac{1}{a} \log \mathbb{E}\left[e^{aX}\right].$$

- By continuity
 - $S_0(X) = \mathbb{E}[X],$ $S_{\infty}(X) = \max[X],$ $S_{-\infty}(X) = \min[X].$

- $\mathbb{E}[X]$.
- $\max[X] = \sup\{c \in \mathbb{R} : \mathbb{P}[X \ge c] > 0\}.$
- $\min[X]$.
- For $a \neq 0$,

$$S_a(X) = \frac{1}{a} \log \mathbb{E}\left[e^{aX}\right].$$

- By continuity
 - $S_0(X) = \mathbb{E}[X],$ $S_{\infty}(X) = \max[X],$ $S_{-\infty}(X) = \min[X].$

Characterization

• Is there anything beside the S_a 's?

- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup \{+\infty, -\infty\}$ such that

$$\Phi(X) = \int S_a(X) \,\mathrm{d}m(a).$$

• $\{S_a\}$ are the extreme points of the set of additive monotone statistics.

Characterization

- Is there anything beside the S_a 's?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup \{+\infty, -\infty\}$ such that

$$\Phi(X) = \int S_a(X) \,\mathrm{d}m(a).$$

• $\{S_a\}$ are the extreme points of the set of additive monotone statistics.
Characterization

- Is there anything beside the S_a 's?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup \{+\infty, -\infty\}$ such that

$$\Phi(X) = \int S_a(X) \,\mathrm{d}m(a).$$

• $\{S_a\}$ are the extreme points of the set of additive monotone statistics.

Characterization

- Is there anything beside the S_a 's?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup \{+\infty, -\infty\}$ such that

$$\Phi(X) = \int S_a(X) \, \mathrm{d}m(a).$$

• $\{S_a\}$ are the extreme points of the set of additive monotone statistics.

Characterization

- Is there anything beside the S_a 's?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup \{+\infty, -\infty\}$ such that

$$\Phi(X) = \int S_a(X) \,\mathrm{d}m(a).$$

• $\{S_a\}$ are the extreme points of the set of additive monotone statistics.

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is a independent R such that $X + R \ge_1 Y + R$?
- Example: $X \sim B(1/3), Y \sim U([-3/5, 2/5]).$

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is a independent R such that $X + R \ge_1 Y + R$?
- Example: $X \sim B(1/3), Y \sim U([-3/5, 2/5]).$

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is a independent R such that $X + R \ge_1 Y + R$?
- Example: $X \sim B(1/3), Y \sim U([-3/5, 2/5]).$

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is a independent R such that $X + R \ge_1 Y + R$?
- Example: $X \sim B(1/3), Y \sim U([-3/5, 2/5]).$

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \ge_1 Y + R$ for some independent R.
- Under what conditions on X, Y is there a **bounded** independent r.v. R such that $X + R \ge_1 Y + R$?
- If $S_a(X) < S_a(Y)$ for some *a* this is impossible, since

 $S_a(X+R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y+R).$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

• Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \ge \Phi(Y)$, because

 $\Phi(X) + \Phi(R) = \Phi(X + R) \ge \Phi(Y + R) = \Phi(Y) + \Phi(R)$

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \ge_1 Y + R$ for some independent R.
- Under what conditions on X, Y is there a **bounded** independent r.v. R such that $X + R \ge_1 Y + R$?
- If $S_a(X) < S_a(Y)$ for some *a* this is impossible, since

 $S_a(X+R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y+R).$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

• Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \ge \Phi(Y)$, because

 $\Phi(X) + \Phi(R) = \Phi(X + R) \ge \Phi(Y + R) = \Phi(Y) + \Phi(R)$

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \ge_1 Y + R$ for some independent R.
- Under what conditions on X, Y is there a **bounded** independent r.v. R such that $X + R \ge_1 Y + R$?
- If $S_a(X) < S_a(Y)$ for some *a* this is impossible, since

 $S_a(X + R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y + R).$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

• Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \ge \Phi(Y)$, because

 $\Phi(X) + \Phi(R) = \Phi(X + R) \ge \Phi(Y + R) = \Phi(Y) + \Phi(R)$

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \ge_1 Y + R$ for some independent R.
- Under what conditions on X, Y is there a **bounded** independent r.v. R such that $X + R \ge_1 Y + R$?
- If $S_a(X) < S_a(Y)$ for some *a* this is impossible, since

 $S_a(X + R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y + R).$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

• Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \ge \Phi(Y)$, because

 $\Phi(X) + \Phi(R) = \Phi(X + R) \ge \Phi(Y + R) = \Phi(Y) + \Phi(R)$

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \ge_1 Y + R$ for some independent R.
- Under what conditions on X, Y is there a **bounded** independent r.v. R such that $X + R \ge_1 Y + R$?
- If $S_a(X) < S_a(Y)$ for some *a* this is impossible, since

$$S_a(X+R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y+R).$$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

• Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \ge \Phi(Y)$, because

 $\Phi(X)+\Phi(R)=\Phi(X+R)\geq \Phi(Y+R)=\Phi(Y)+\Phi(R)$

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X] > \mathbb{E}[Y]$ then $X + R \ge_1 Y + R$ for some independent R.
- Under what conditions on X, Y is there a **bounded** independent r.v. R such that $X + R \ge_1 Y + R$?
- If $S_a(X) < S_a(Y)$ for some *a* this is impossible, since

$$S_a(X+R) = S_a(X) + S_a(R) < S_a(Y) + S_a(R) = S_a(Y+R).$$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

• Corollary: if $S_a(X) > S_a(Y)$ for all a, then $\Phi(X) \ge \Phi(Y)$, because

$$\Phi(X) + \Phi(R) = \Phi(X + R) \ge \Phi(Y + R) = \Phi(Y) + \Phi(R)$$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on [-N, N].
- We will find an R with pdf h such that $G * h \ge F * h$.

• Let
$$h(x) = e^{-x^2/2V}$$
. Then

$$[(G - F) * h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) dx$$

= $e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} dx.$

• Works because

•
$$e^{-\frac{dY}{dY}} \approx 1$$
 for $x \in [-N, N]$ and large V.
• $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} dx = \mathbb{E}\left[e^{aX}\right] - \mathbb{E}\left[e^{aY}\right] > 0.$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on [-N, N].
- We will find an R with pdf h such that $G * h \ge F * h$.

• Let
$$h(x) = e^{-x^2/2V}$$
. Then

$$[(G - F) * h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) dx$$

= $e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} dx.$

• Works because

•
$$e^{-\frac{dV}{dV}} \approx 1$$
 for $x \in [-N, N]$ and large V.
• $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} dx = \mathbb{E}\left[e^{aX}\right] - \mathbb{E}\left[e^{aY}\right] > 0.$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on [-N, N].
- We will find an R with pdf h such that $G * h \ge F * h$.

• Let
$$h(x) = e^{-x^2/2V}$$
. Then

$$[(G - F) * h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) dx$$

= $e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} dx.$

• Works because

•
$$e^{-\frac{dY}{dY}} \approx 1$$
 for $x \in [-N, N]$ and large V.
• $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} dx = \mathbb{E}\left[e^{aX}\right] - \mathbb{E}\left[e^{aY}\right] > 0.$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on [-N, N].
- We will find an R with pdf h such that $G * h \ge F * h$.

• Let
$$h(x) = e^{-x^2/2V}$$
. Then

$$[(G - F) * h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) dx$$

= $e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} dx.$

• Works because

• $e^{-\frac{d}{dV}} \approx 1$ for $x \in [-N, N]$ and large V. • $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} dx = \mathbb{E} \left[e^{aX} \right] - \mathbb{E} \left[e^{aY} \right] >$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on [-N, N].
- We will find an R with pdf h such that $G * h \ge F * h$.

• Let
$$h(x) = e^{-x^2/2V}$$
. Then

$$[(G - F) * h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) dx$$

= $e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} dx.$

• Works because

•
$$e^{-\frac{x^2}{2V}} \approx 1$$
 for $x \in [-N, N]$ and large V .
• $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} dx = \mathbb{E} \left[e^{aX} \right] - \mathbb{E} \left[e^{aY} \right] > 0.$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on [-N, N].
- We will find an R with pdf h such that $G * h \ge F * h$.

• Let
$$h(x) = e^{-x^2/2V}$$
. Then

$$[(G - F) * h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) dx$$

= $e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} dx.$

• Works because

•
$$e^{-\frac{x^2}{2V}} \approx 1$$
 for $x \in [-N, N]$ and large V .
• $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} dx = \mathbb{E}[e^{aX}] - \mathbb{E}[e^{aY}] > 0$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on [-N, N].
- We will find an R with pdf h such that $G * h \ge F * h$.

• Let
$$h(x) = e^{-x^2/2V}$$
. Then

$$[(G - F) * h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) dx$$

= $e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} dx.$

Theorem

For $X, Y \in L^{\infty}$, if $S_a(X) > S_a(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X + R \ge_1 Y + R$.

- Let F, G be the cdfs of X, Y, supported on [-N, N].
- We will find an R with pdf h such that $G * h \ge F * h$.

• Let
$$h(x) = e^{-x^2/2V}$$
. Then

$$[(G - F) * h](y) = \int_{-N}^{N} [G(x) - F(x)] \cdot h(y - x) dx$$

= $e^{-\frac{y^2}{2V}} \cdot \int_{-N}^{N} [G(x) - F(x)] \cdot e^{\frac{y}{V} \cdot x} \cdot e^{-\frac{x^2}{2V}} dx.$

• Works because

•
$$e^{-\frac{x^2}{2V}} \approx 1$$
 for $x \in [-N, N]$ and large V.
• $a \int_{-N}^{N} [G(x) - F(x)] \cdot e^{ax} dx = \mathbb{E} [e^{aX}] - \mathbb{E} [e^{aY}] > 0.$

- Consider a buyer who posts her prices for **potatoes**.
- Farmers come and sell her their crops.

Potatoes	Price
1	\$1
2	\$2
3	\$3.10
4	\$4
5	\$5
6	\$6
7	\$5

- Price $P \colon \mathbb{R}_+ \to \mathbb{R}_+$.
- Free disposal: $x \ge y$ implies $P(x) \ge P(y)$.
- No mergers: $P(x+y) \le P(x) + P(y)$.
- No splits: $P(x+y) \ge P(x) + P(y)$.

• Theorem:
$$P(x) = P(1) \cdot x$$
.

- Consider a buyer who posts her prices for **potatoes**.
- Farmers come and sell her their crops.

Potatoes	Price
1	\$1
2	\$2
3	\$3.10
4	\$4
5	\$5
6	\$6
7	\$5

• Price $P \colon \mathbb{R}_+ \to \mathbb{R}_+$.

- Free disposal: $x \ge y$ implies $P(x) \ge P(y)$.
- No mergers: $P(x+y) \le P(x) + P(y)$.
- No splits: $P(x+y) \ge P(x) + P(y)$.

• Theorem:
$$P(x) = P(1) \cdot x$$
.

- Consider a buyer who posts her prices for **potatoes**.
- Farmers come and sell her their crops.

Potatoes	Price
1	\$1
2	\$2
3	\$3.10
4	\$4
5	\$5
6	\$6
7	\$5

- Price $P \colon \mathbb{R}_+ \to \mathbb{R}_+$.
- Free disposal: $x \ge y$ implies $P(x) \ge P(y)$.
- No mergers: $P(x+y) \leq P(x) + P(y)$.
- No splits: $P(x+y) \ge P(x) + P(y)$.

• Theorem:
$$P(x) = P(1) \cdot x$$
.

- Consider a buyer who posts her prices for **potatoes**.
- Farmers come and sell her their crops.

Potatoes	Price
1	\$1
2	\$2
3	\$3.10
4	\$4
5	\$5
6	\$6
7	\$5

- Price $P \colon \mathbb{R}_+ \to \mathbb{R}_+$.
- Free disposal: $x \ge y$ implies $P(x) \ge P(y)$.
- No mergers: $P(x+y) \le P(x) + P(y)$.
- No splits: $P(x+y) \ge P(x) + P(y)$.

• Theorem:
$$P(x) = P(1) \cdot x$$
.

- Consider a buyer who posts her prices for **potatoes**.
- Farmers come and sell her their crops.

Potatoes	Price
1	\$1
2	\$2
3	\$3.10
4	\$4
5	\$5
6	\$6
7	\$5

• Price $P \colon \mathbb{R}_+ \to \mathbb{R}_+$.

- Free disposal: $x \ge y$ implies $P(x) \ge P(y)$.
- No mergers: $P(x+y) \le P(x) + P(y)$.
- No splits: $P(x+y) \ge P(x) + P(y)$.

• Theorem:
$$P(x) = P(1) \cdot x$$
.

- Consider a buyer who posts her prices for **potatoes**.
- Farmers come and sell her their crops.

Potatoes	Price
1	\$1
2	\$2
3	\$3.10
4	\$4
5	\$5
6	\$6
7	\$5

- Price $P \colon \mathbb{R}_+ \to \mathbb{R}_+$.
- Free disposal: $x \ge y$ implies $P(x) \ge P(y)$.
- No mergers: $P(x+y) \le P(x) + P(y)$.
- No splits: $P(x+y) \ge P(x) + P(y)$.

• Theorem:
$$P(x) = P(1) \cdot x$$
.

- Consider a buyer who posts her prices for **potatoes**.
- Farmers come and sell her their crops.

Potatoes	Price
1	\$1
2	\$2
3	\$3.10
4	\$4
5	\$5
6	\$6
7	\$5

• Price $P \colon \mathbb{R}_+ \to \mathbb{R}_+$.

- Free disposal: $x \ge y$ implies $P(x) \ge P(y)$.
- No mergers: $P(x+y) \le P(x) + P(y)$.
- No splits: $P(x+y) \ge P(x) + P(y)$.

• Theorem:
$$P(x) = P(1) \cdot x$$
.

- Consider a buyer who posts her prices for **sacks** of potatoes.
- Farmers come and sell her their crops.
- Price $P: L^{\infty}_+ \to \mathbb{R}_+$.
- Free disposal: $X \ge_1 Y$ implies $P(X) \ge P(Y)$.
- No mergers: $P(X + Y) \le P(X) + P(Y)$.
- No splits: $P(X+Y) \ge P(X) + P(Y)$.
- So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ .

- Consider a buyer who posts her prices for **sacks** of potatoes.
- Farmers come and sell her their crops.
- Price $P: L^{\infty}_+ \to \mathbb{R}_+$.
- Free disposal: $X \ge_1 Y$ implies $P(X) \ge P(Y)$.
- No mergers: $P(X + Y) \le P(X) + P(Y)$.
- No splits: $P(X+Y) \ge P(X) + P(Y)$.
- So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ .

- Consider a buyer who posts her prices for **sacks** of potatoes.
- Farmers come and sell her their crops.
- Price $P: L^{\infty}_+ \to \mathbb{R}_+$.
- Free disposal: $X \ge_1 Y$ implies $P(X) \ge P(Y)$.
- No mergers: $P(X + Y) \le P(X) + P(Y)$.
- No splits: $P(X+Y) \ge P(X) + P(Y)$.
- So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ .

- Consider a buyer who posts her prices for **sacks** of potatoes.
- Farmers come and sell her their crops.
- Price $P: L^{\infty}_+ \to \mathbb{R}_+$.
- Free disposal: $X \ge_1 Y$ implies $P(X) \ge P(Y)$.
- No mergers: $P(X + Y) \le P(X) + P(Y)$.
- No splits: $P(X+Y) \ge P(X) + P(Y)$.
- So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ .

- Consider a buyer who posts her prices for **sacks** of potatoes.
- Farmers come and sell her their crops.
- Price $P: L^{\infty}_+ \to \mathbb{R}_+$.
- Free disposal: $X \ge_1 Y$ implies $P(X) \ge P(Y)$.
- No mergers: $P(X + Y) \le P(X) + P(Y)$.
- No splits: $P(X + Y) \ge P(X) + P(Y)$.
- So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ .

- Consider a buyer who posts her prices for **sacks** of potatoes.
- Farmers come and sell her their crops.
- Price $P: L^{\infty}_+ \to \mathbb{R}_+$.
- Free disposal: $X \ge_1 Y$ implies $P(X) \ge P(Y)$.
- No mergers: $P(X + Y) \le P(X) + P(Y)$.
- No splits: $P(X+Y) \ge P(X) + P(Y)$.

• So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ .

- Consider a buyer who posts her prices for **sacks** of potatoes.
- Farmers come and sell her their crops.
- Price $P: L^{\infty}_+ \to \mathbb{R}_+$.
- Free disposal: $X \ge_1 Y$ implies $P(X) \ge P(Y)$.
- No mergers: $P(X + Y) \le P(X) + P(Y)$.
- No splits: $P(X + Y) \ge P(X) + P(Y)$.
- So $P(X) = P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ .

Application: Fishburn-Rubinstein Time Preferences

A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is Ω = ℝ₊₊ × ℝ₊.

• Fishburn and Rubinstein consider preferences \succ over Ω .

Axiom

• All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that \succ is represented by $f(x,t) = u(x)e^{-rt}$ for some r > 0, and an increasing $u: \mathbb{R}_{++} \to \mathbb{R}_{++}$.
- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is Ω = ℝ₊₊ × ℝ₊.
- Fishburn and Rubinstein consider preferences \succ over Ω .

Axiom

- If x > y then $(x,t) \succ (y,t)$.
- If t < s then $(x,t) \succ (x,s)$
- If $(x,t) \succ (y,s)$ then $(x,t+\tau) \succ (y,s+\tau)$.
- Upper and lower contour sets are closed.
- All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is Ω = ℝ₊₊ × ℝ₊.
- Fishburn and Rubinstein consider preferences \succ over Ω .

Axiom

- If x > y then $(x,t) \succ (y,t)$.
- $If t < s then (x,t) \succ (x,s)$
- $If (x,t) \succ (y,s) then (x,t+\tau) \succ (y,s+\tau).$
- Upper and lower contour sets are closed.
- All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is Ω = ℝ₊₊ × ℝ₊.
- Fishburn and Rubinstein consider preferences \succ over Ω .

Axiom

- If x > y then $(x, t) \succ (y, t)$.
- $If t < s then (x,t) \succ (x,s)$
- $If (x,t) \succ (y,s) then (x,t+\tau) \succ (y,s+\tau).$
- Upper and lower contour sets are closed.
- All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is Ω = ℝ₊₊ × ℝ₊.
- Fishburn and Rubinstein consider preferences \succ over Ω .

Axiom

- If x > y then $(x,t) \succ (y,t)$.
- 2 If t < s then $(x, t) \succ (x, s)$.
- $If (x,t) \succ (y,s) then (x,t+\tau) \succ (y,s+\tau).$

) Upper and lower contour sets are closed.

• All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is Ω = ℝ₊₊ × ℝ₊.
- Fishburn and Rubinstein consider preferences \succ over Ω .

Axiom

- If x > y then $(x,t) \succ (y,t)$.
- 2 If t < s then $(x, t) \succ (x, s)$.
- $If (x,t) \succ (y,s) then (x,t+\tau) \succ (y,s+\tau).$

• Upper and lower contour sets are closed.

• All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is Ω = ℝ₊₊ × ℝ₊.
- Fishburn and Rubinstein consider preferences \succ over Ω .

Axiom

- If x > y then $(x, t) \succ (y, t)$.
- 2 If t < s then $(x, t) \succ (x, s)$.
- $If (x,t) \succ (y,s) then (x,t+\tau) \succ (y,s+\tau).$
- Upper and lower contour sets are closed.
 - All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is Ω = ℝ₊₊ × ℝ₊.
- Fishburn and Rubinstein consider preferences \succ over Ω .

Axiom

- If x > y then $(x,t) \succ (y,t)$.
- 2 If t < s then $(x, t) \succ (x, s)$.
- $\textbf{ if } (x,t) \succ (y,s) \ then \ (x,t+\tau) \succ (y,s+\tau).$

Upper and lower contour sets are closed.

• All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is Ω = ℝ₊₊ × ℝ₊.
- Fishburn and Rubinstein consider preferences \succ over Ω .

Axiom

- If x > y then $(x, t) \succ (y, t)$.
- 2 If t < s then $(x, t) \succ (x, s)$.
- $If (x,t) \succ (y,s) then (x,t+\tau) \succ (y,s+\tau).$

Upper and lower contour sets are closed.

• All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

• A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

- Keep FR's axioms for deterministic times.
- If $T \leq_1 S$ then $(x, T) \succ (x, S)$.
- If $(x,T) \succ (y,S)$ then $(x,T+R) \succ (y,S+R)$ for all bounded random independent R.

• for all (x,T) there is a t such that $(x,T) \sim (x,t)$.

• All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

• A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

- Keep FR's axioms for deterministic times.
- $If T <_1 S then (x,T) \succ (x,S).$
- If (x,T) ≻ (y,S) then (x,T+R) ≻ (y,S+R) for all bounded random independent R.

• for all (x,T) there is a t such that $(x,T) \sim (x,t)$.

• All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

• A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

- Keep FR's axioms for deterministic times.
- $If T <_1 S then (x,T) \succ (x,S).$
- If (x,T) ≻ (y,S) then (x,T+R) ≻ (y,S+R) for all bounded random independent R.

• for all (x,T) there is a t such that $(x,T) \sim (x,t)$.

• All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

• A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

- Keep FR's axioms for deterministic times.
- 2 If $T <_1 S$ then $(x,T) \succ (x,S)$.
- If (x,T) ≻ (y,S) then (x,T+R) ≻ (y,S+R) for all bounded random independent R.

• for all (x,T) there is a t such that $(x,T) \sim (x,t)$.

• All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

• A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

- Keep FR's axioms for deterministic times.
- 2 If $T <_1 S$ then $(x,T) \succ (x,S)$.
- If (x,T) ≻ (y,S) then (x,T+R) ≻ (y,S+R) for all bounded random independent R.

• for all (x,T) there is a t such that $(x,T) \sim (x,t)$.

• All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

• A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

- Keep FR's axioms for deterministic times.
- 2 If $T <_1 S$ then $(x,T) \succ (x,S)$.
- If (x,T) ≻ (y,S) then (x,T+R) ≻ (y,S+R) for all bounded random independent R.
- for all (x,T) there is a t such that $(x,T) \sim (x,t)$.
- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

• A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

- Keep FR's axioms for deterministic times.
- 2 If $T <_1 S$ then $(x,T) \succ (x,S)$.
- If (x,T) ≻ (y,S) then (x,T+R) ≻ (y,S+R) for all bounded random independent R.
- for all (x,T) there is a t such that $(x,T) \sim (x,t)$.
 - All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

• A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

- Keep FR's axioms for deterministic times.
- 2 If $T <_1 S$ then $(x,T) \succ (x,S)$.
- If (x,T) ≻ (y,S) then (x,T+R) ≻ (y,S+R) for all bounded random independent R.
- for all (x,T) there is a t such that $(x,T) \sim (x,t)$.
- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

• Example: $f(x,T) = u(x)\mathbb{E}\left[e^{-rT}\right]$.

- ▶ Expectation of the Fishburn-Rubinstein utility.
- Agents are **risk seeking over time**.

• Example:
$$f(x,T) = \frac{u(x)}{\mathbb{E}\left[e^{rT}\right]}$$
.

- ► $f(x,T) = u(x)e^{-r\Phi(T)}$ for $\Phi(T) = \frac{1}{r}\log \mathbb{E}\left[e^{rT}\right]$.
- Agents are risk averse over time: $\Phi(T) > \mathbb{E}[T]$.

- Example: $f(x,T) = u(x)\mathbb{E}\left[e^{-rT}\right]$.
 - ▶ Expectation of the Fishburn-Rubinstein utility.
 - Agents are **risk seeking over time**.

• Example:
$$f(x,T) = \frac{u(x)}{\mathbb{E}\left[e^{rT}\right]}$$
.

- ► $f(x,T) = u(x)e^{-r\Phi(T)}$ for $\Phi(T) = \frac{1}{r}\log \mathbb{E}\left[e^{rT}\right]$.
- Agents are risk averse over time: $\Phi(T) > \mathbb{E}[T]$.

- Example: $f(x,T) = u(x)\mathbb{E}\left[e^{-rT}\right]$.
 - Expectation of the Fishburn-Rubinstein utility.
 - Agents are **risk seeking over time**.

• Example:
$$f(x,T) = \frac{u(x)}{\mathbb{E}\left[e^{rT}\right]}$$
.

- ► $f(x,T) = u(x)e^{-r\Phi(T)}$ for $\Phi(T) = \frac{1}{2}\log \mathbb{E}\left[e^{rT}\right]$.
- Agents are risk averse over time: $\Phi(T) > \mathbb{E}[T]$.

- Example: $f(x,T) = u(x)\mathbb{E}\left[e^{-rT}\right]$.
 - Expectation of the Fishburn-Rubinstein utility.
 - Agents are **risk seeking over time**.

• Example:
$$f(x,T) = \frac{u(x)}{\mathbb{E}[e^{rT}]}$$
.

•
$$f(x,T) = u(x)e^{-r\Phi(T)}$$
 for $\Phi(T) = \frac{1}{n}\log \mathbb{E}\left[e^{rT}\right]$.

• Agents are risk averse over time: $\Phi(T) > \mathbb{E}[T]$.

- Example: $f(x,T) = u(x)\mathbb{E}\left[e^{-rT}\right]$.
 - Expectation of the Fishburn-Rubinstein utility.
 - Agents are **risk seeking over time**.

• Example:
$$f(x,T) = \frac{u(x)}{\mathbb{E}[e^{rT}]}$$
.

•
$$f(x,T) = u(x)e^{-r\Phi(T)}$$
 for $\Phi(T) = \frac{1}{r}\log \mathbb{E}\left[e^{rT}\right]$.

• Agents are risk averse over time: $\Phi(T) > \mathbb{E}[T]$.

- Example: $f(x,T) = u(x)\mathbb{E}\left[e^{-rT}\right]$.
 - Expectation of the Fishburn-Rubinstein utility.
 - Agents are **risk seeking over time**.

• Example:
$$f(x,T) = \frac{u(x)}{\mathbb{E}[e^{rT}]}$$
.

•
$$f(x,T) = u(x)e^{-r\Phi(T)}$$
 for $\Phi(T) = \frac{1}{r}\log \mathbb{E}\left[e^{rT}\right]$.

• Agents are risk averse over time: $\Phi(T) > \mathbb{E}[T]$.

• Let L^{∞} be the set of **bounded gambles**.

- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

• What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or u(x) = x (up to affine transformations).

- Let L^{∞} be the set of **bounded gambles**.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

• What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or u(x) = x (up to affine transformations).

- Let L^{∞} be the set of **bounded gambles**.
- Consider an expected utility agent with an increasing utility function *u* for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

• What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or u(x) = x (up to affine transformations).

- Let L^{∞} be the set of **bounded gambles**.
- Consider an expected utility agent with an increasing utility function *u* for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

• What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or u(x) = x (up to affine transformations).

- Let L^{∞} be the set of **bounded gambles**.
- Consider an expected utility agent with an increasing utility function *u* for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

• What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or u(x) = x (up to affine transformations).

- Let L^{∞} be the set of **bounded gambles**.
- Consider an expected utility agent with an increasing utility function *u* for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

• What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or u(x) = x (up to affine transformations).

- Let L^{∞} be the set of **bounded gambles**.
- Consider an expected utility agent with an increasing utility function *u* for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$.

Axiom

Suppose X_1, X_2 are independent, Y_1, Y_2 are independent. If $X_1 \succ Y_1$ and $X_2 \succ Y_2$ then $Y_1 + Y_2$ does not stochastically dominate $X_1 + X_2$.

• What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x) = ae^{ax}$ for some $a \neq 0$, or u(x) = x (up to affine transformations).

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

• Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

- Q Rabin-Weizsäcker. Suppose X₁, X₂ are independent, Y₁, Y₂ are independent. If X₁ ≻ Y₁ and X₂ ≻ Y₂ then Y₁ + Y₂ does not stochastically dominate X₁ + X₂.
- $X + \varepsilon \succ X.$

 \supseteq for all X there is a $c \in \mathbb{R}$ such that $X \sim c.$

• Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

- Rabin-Weizsäcker. Suppose X₁, X₂ are independent, Y₁, Y₂ are independent. If X₁ ≻ Y₁ and X₂ ≻ Y₂ then Y₁ + Y₂ does not stochastically dominate X₁ + X₂.
- $X + \varepsilon \succ X.$

) for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

• Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

Rabin-Weizsäcker. Suppose X₁, X₂ are independent, Y₁, Y₂ are independent. If X₁ ≻ Y₁ and X₂ ≻ Y₂ then Y₁ + Y₂ does not stochastically dominate X₁ + X₂.

 $X + \varepsilon \succ X.$

) for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

• Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

- Rabin-Weizsäcker. Suppose X₁, X₂ are independent, Y₁, Y₂ are independent. If X₁ ≻ Y₁ and X₂ ≻ Y₂ then Y₁ + Y₂ does not stochastically dominate X₁ + X₂.
- $2 X + \varepsilon \succ X.$

) for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

• Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

- Rabin-Weizsäcker. Suppose X₁, X₂ are independent, Y₁, Y₂ are independent. If X₁ ≻ Y₁ and X₂ ≻ Y₂ then Y₁ + Y₂ does not stochastically dominate X₁ + X₂.
- $2 X + \varepsilon \succ X.$
- **6** for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.
- Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

- Rabin-Weizsäcker. Suppose X₁, X₂ are independent, Y₁, Y₂ are independent. If X₁ ≻ Y₁ and X₂ ≻ Y₂ then Y₁ + Y₂ does not stochastically dominate X₁ + X₂.
- $2 X + \varepsilon \succ X.$
- **(a)** for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.
- Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.
Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

- Rabin-Weizsäcker. Suppose X₁, X₂ are independent, Y₁, Y₂ are independent. If X₁ ≻ Y₁ and X₂ ≻ Y₂ then Y₁ + Y₂ does not stochastically dominate X₁ + X₂.
- $2 X + \varepsilon \succ X.$
- **(a)** for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.
- Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

• Φ is the average of CARA certainty equivalents $S_a(X) = \frac{1}{2} \log \mathbb{E} \left[e^{aX} \right]$.

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

- Rabin-Weizsäcker. Suppose X₁, X₂ are independent, Y₁, Y₂ are independent. If X₁ ≻ Y₁ and X₂ ≻ Y₂ then Y₁ + Y₂ does not stochastically dominate X₁ + X₂.
- $2 X + \varepsilon \succ X.$
- **(a)** for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.
- Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

• Φ is the average of CARA certainty equivalents $S_a(X) = \frac{1}{a} \log \mathbb{E}\left[e^{aX}\right]$.

• Binary state of the world $\theta \in \{0, 1\}$.

- A Blackwell Experiment is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω .
- We say that it is **bounded** if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.
- The collection of bounded experiments is \mathcal{B} .
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.

- Binary state of the world $\theta \in \{0, 1\}$.
- A Blackwell Experiment is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω .
- We say that it is **bounded** if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.
- The collection of bounded experiments is \mathcal{B} .
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.

- Binary state of the world $\theta \in \{0, 1\}$.
- A Blackwell Experiment is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω .
- We say that it is **bounded** if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.
- The collection of bounded experiments is \mathcal{B} .
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.

- Binary state of the world $\theta \in \{0, 1\}$.
- A Blackwell Experiment is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω .
- We say that it is **bounded** if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.
- The collection of bounded experiments is \mathcal{B} .
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.

- Binary state of the world $\theta \in \{0, 1\}$.
- A Blackwell Experiment is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω .
- We say that it is **bounded** if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.
- The collection of bounded experiments is \mathcal{B} .
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.

- Binary state of the world $\theta \in \{0, 1\}$.
- A Blackwell Experiment is a pair $\mu = (\mu_0, \mu_1)$ of probability measures on some measurable space Ω .
- We say that it is **bounded** if $\log \frac{d\mu_0}{d\mu_1}$ is bounded.
- The collection of bounded experiments is \mathcal{B} .
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $(\mu_0 \times \nu_0, \mu_1 \times \nu_1)$.

- Large recent literature on the **cost of information**. How do we assign costs to experiments?
- A monotone additive cost function is a map $C \colon \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \ge C(\nu)$.
 - $\bullet \ C(\mu \otimes \nu) = C(\mu) + C(\nu).$
- Examples.
 - ► Kullback-Leibler divergence:

$$\int_{\Omega} \log \frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega) \,\mathrm{d}\mu_0(\omega).$$

▶ Rényi *a*-divergence:

$$D_a(\mu) = rac{1}{a-1} \log \int \left(rac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega)
ight)^{a-1} \mathrm{d}\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

- Large recent literature on the **cost of information**. How do we assign costs to experiments?
- A monotone additive cost function is a map $C \colon \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \ge C(\nu)$.

$$\blacktriangleright C(\mu \otimes \nu) = C(\mu) + C(\nu).$$

- Examples.
 - ► Kullback-Leibler divergence:

$$\int_{\Omega} \log \frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega) \,\mathrm{d}\mu_0(\omega).$$

▶ Rényi *a*-divergence:

$$D_a(\mu) = rac{1}{a-1} \log \int \left(rac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega)
ight)^{a-1} \mathrm{d}\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

- Large recent literature on the **cost of information**. How do we assign costs to experiments?
- A monotone additive cost function is a map $C \colon \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \ge C(\nu)$.

$$\bullet \ C(\mu \otimes \nu) = C(\mu) + C(\nu).$$

- Examples.
 - ► Kullback-Leibler divergence:

$$\int_{\Omega} \log \frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega) \,\mathrm{d}\mu_0(\omega).$$

▶ Rényi *a*-divergence:

$$D_a(\mu) = \frac{1}{a-1} \log \int \left(\frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega)\right)^{a-1} \,\mathrm{d}\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

- Large recent literature on the **cost of information**. How do we assign costs to experiments?
- A monotone additive cost function is a map $C \colon \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \ge C(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu).$
- Examples.
 - ► Kullback-Leibler divergence:

$$\int_{\Omega} \log \frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega) \,\mathrm{d}\mu_0(\omega).$$

▶ Rényi *a*-divergence:

$$D_a(\mu) = \frac{1}{a-1} \log \int \left(\frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega)\right)^{a-1} \,\mathrm{d}\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

- Large recent literature on the **cost of information**. How do we assign costs to experiments?
- A monotone additive cost function is a map $C \colon \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \ge C(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu).$
- Examples.
 - ▶ Kullback-Leibler divergence:

$$\int_{\Omega} \log \frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega) \,\mathrm{d}\mu_0(\omega).$$

Rényi a-divergence:

$$D_a(\mu) = \frac{1}{a-1} \log \int \left(\frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega)\right)^{a-1} \,\mathrm{d}\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

- Large recent literature on the **cost of information**. How do we assign costs to experiments?
- A monotone additive cost function is a map $C \colon \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \ge C(\nu)$.
 - $\bullet \ C(\mu \otimes \nu) = C(\mu) + C(\nu).$
- Examples.
 - ▶ Kullback-Leibler divergence:

$$\int_{\Omega} \log \frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega) \,\mathrm{d}\mu_0(\omega).$$

▶ Rényi *a*-divergence:

$$D_a(\mu) = \frac{1}{a-1} \log \int \left(\frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega)\right)^{a-1} \,\mathrm{d}\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

- Large recent literature on the **cost of information**. How do we assign costs to experiments?
- A monotone additive cost function is a map $C \colon \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \ge C(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu).$
- Examples.
 - ▶ Kullback-Leibler divergence:

$$\int_{\Omega} \log \frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega) \,\mathrm{d}\mu_0(\omega).$$

Rényi a-divergence:

$$D_a(\mu) = \frac{1}{a-1} \log \int \left(\frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega)\right)^{a-1} \mathrm{d}\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

- Large recent literature on the **cost of information**. How do we assign costs to experiments?
- A monotone additive cost function is a map $C \colon \mathcal{B} \to \mathbb{R}_+$ such that
 - If μ Blackwell dominates ν then $C(\mu) \ge C(\nu)$.
 - $C(\mu \otimes \nu) = C(\mu) + C(\nu).$
- Examples.
 - ▶ Kullback-Leibler divergence:

$$\int_{\Omega} \log \frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega) \,\mathrm{d}\mu_0(\omega).$$

Rényi a-divergence:

$$D_a(\mu) = \frac{1}{a-1} \log \int \left(\frac{\mathrm{d}\mu_0}{\mathrm{d}\mu_1}(\omega)\right)^{a-1} \mathrm{d}\mu_0(\omega).$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))