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Definition of monotone additive statistics.

Characterization.

Applications.

» Posted prices for sacks of potatoes.
» Fishburn-Rubinstein time preferences.
» Rabin-Weizsécker preferences over gambles.

@ Monotone additive costs of Blackwell experiments

» Different paper: “From Blackwell Dominance in Large Samples to
Rényi Divergences and Back Again.”

» Same authors.

> Related ideas.

@ Work in progress.
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@ A statistic is a way of capturing distributions by a single number.

» Expectation.

» Median.

» Value at risk.

» Certainty equivalent.

Let L* be the set of all bounded random variables.

A statistic is a map ®: L*™ — R such that

Q@ P(c)=c
@ If X and Y have the same distribution then ®(X) = ®(Y).

It is monotone if X >; Y implies ®(X) > &(Y).

Equivalently: it is monotone if X > Y implies ®(X) > ®(Y).
» Because X >; Y iff 3X ~ XY Yst. X>Y a

o A statistic is additive if ®(X +Y) = &(X) + ®(Y) whenever X and Y
are independent.
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Examples of Monotone Additive Statistics

e E[X].
@ max[X| =sup{c e R : P[X > ¢| > 0}.
@ min[X].
@ For a #0,
S.(X) = élogE [eax].

@ By continuity
> So(X) =E[X],
> Soo(X) = max[X],
» S_oo(X) = min[X].
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Characterization

@ Is there anything beside the S,’s?
@ Main result: this is it.
@ Well... we can also take weighted averages.

Theorem

Let ® be a monotone additive statistic. Then there is a probability measure m
on RU {400, —c0} such that

B(X) = / S.(X) dm(a).

@ {S,} are the extreme points of the set of additive monotone statistics.
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@ Take X,Y that are not ranked under FOSD.

@ Is it possible that there is a independent R such that X + R >; Y + R?

o Example: X ~ B(1/3),Y ~

U(l-

3/5,2/5]).

e Works for P[R = +1/5] =1/2.
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@ Pomatto, Strack, Tamuz (2019): If E[X] > E[Y] then X+ R>; Y + R
for some independent R.

@ Under what conditions on X,Y is there a bounded independent r.v. R
such that X + R>1 Y + R?

o If S,(X) < S,(Y) for some a this is impossible, since

Sa(X 4+ R) = So(X) 4+ Sa(R) < Sa(Y) 4+ Sa(R) = So(Y + R).

Theorem

For X, Y € L=, if So(X) > S.(Y) for all a, then there exists an R € L™
such that X + R >1 Y + R.

@ Corollary: if S (X) > S, (Y) for all a, then ®(X) > ®(Y), because

®(X) + P(R) = (X + R) > ®(Y + R) = B(Y) + ®(R)

@ Rest of the proof: exercise in analysis.
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Proof ideas

Theorem

For X, Y € L*, if So(X) > S, (Y) for all a, then there exists an R € L™
such that X + R >1 Y + R.

Let F, G be the cdfs of X,Y, supported on [—N, NJ.
We will find an R with pdf h such that G« h > F x h.
Let h(z) = e~ /2V. Then

(G~ F)«hlty) = [ [Ga) = Fl@))- by~ o) ds

—N

@ Works because
22
Q ¢ 2 ~ 1 for x € [-N,N] and large V.

a o - azx _ aX aYy
ea/ [G(z) — F(2)] - e**dz =E [e**] — E [¢*'] > 0.
-N

@ Need to truncate, worry about uniformity over V.



Application: Posted Prices for Sacks of Potatoes

@ Consider a buyer who posts her prices for potatoes.



Application: Posted Prices for Sacks of Potatoes

@ Consider a buyer who posts her prices for potatoes.

@ Farmers come and sell her their crops.

Potatoes

Price

N O U W N

$1
$2
$3.10
$4
$5
$6
$5




Application: Posted Prices for Sacks of Potatoes

@ Consider a buyer who posts her prices for potatoes.

@ Farmers come and sell her their crops.

@ Price P: Ry — R,.

Potatoes

Price

N O U W N

$1
$2
$3.10
$4
$5
$6
$5




Application: Posted Prices for Sacks of Potatoes

@ Consider a buyer who posts her prices for potatoes.

@ Farmers come and sell her their crops.

Potatoes | Price
$1
$2
$3.10
$4
$5
$6
$5

N O U W N

@ Price P: Ry — R,.
@ Free disposal: z > y implies P(z) > P(y).



Application: Posted Prices for Sacks of Potatoes

@ Consider a buyer who posts her prices for potatoes.

@ Farmers come and sell her their crops.

Potatoes | Price
$1
$2
$3.10
$4
$5
$6
$5

N O U W N

@ Price P: Ry — R,.
@ Free disposal: z > y implies P(z) > P(y).
@ No mergers: P(z+y) < P(z) + P(y).



Application: Posted Prices for Sacks of Potatoes

@ Consider a buyer who posts her prices for potatoes.

@ Farmers come and sell her their crops.

Potatoes | Price
1 $1

2 $2

3 $3.10
4 $4

5 $5

6 $6

7 $5

@ Price P: Ry — R,.

@ Free disposal: z > y implies P(z) > P(y).
No mergers: P(z +y) < P(z) + P(y).
No splits: P(z +y) > P(x) + P(y).



Application: Posted Prices for Sacks of Potatoes
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@ Farmers come and sell her their crops.
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@ Price P: Ry — R,.

@ Free disposal: z > y implies P(z) > P(y).
No mergers: P(z +y) < P(z) + P(y).
No splits: P(z +y) > P(x) + P(y).
Theorem: P(z) = P(1) - z.
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Application: Posted Prices for Sacks of Potatoes

Consider a buyer who posts her prices for sacks of potatoes.

Farmers come and sell her their crops.

Price P: LT — R,.

Free disposal: X >; Y implies P(X) > P(Y).

No mergers: P(X +Y) < P(X)+ P(Y).

No splits: P(X +Y) > P(X)+ P(Y).

So P(X) = P(1) - ®(X) for some monotone additive statistic ®.
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Application: Fishburn-Rubinstein Time Preferences

@ A pair (z,t) is a (positive) amount of money z at (non-negative) time
t. The set of such pairsis 2 =R, x Ry.

@ Fishburn and Rubinstein consider preferences > over ).

Axiom
Q Ifx >y then (z,t) > (y,t).
Q Ift < s then (z,t) > (z,s).
Q If (z,t) = (y,s) then (z,t+7) > (y,s+ 7).

@ Upper and lower contour sets are closed.

@ All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that = is represented by f(x,t) = u(zx)e™"" for some r >0,
and an increasing u: Ry — Ry .
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@ A pair (z,T) is a (positive) amount of money z at a random
(non-negative) time 7.
Axiom
@ Keep FR’s axioms for deterministic times.
© IfT <y S then (z,T) >~ (x,95).

@ If (=, T) - (y,5) then (z,T + R) > (y,S + R) for all bounded random
independent R.

Q for all (x,T) there is a t such that (z,T) ~ (x,t).

@ All such preferences come from exponential discounting of a monotone
additive statistic applied to the random time.

Theorem

The azioms imply that = is represented by f(x, T) = u(z)e ") for some
r >0, an increasing u: Ry — Ry and a monotone additive statistic ©.
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Application: Fishburn-Rubinstein Time Preferences

o Example: f(z,T) = u(z)E [e”""].

» Expectation of the Fishburn-Rubinstein utility.
» Agents are risk seeking over time.

e Example: f(z,T) = ]Eu[(egf;]

> f(2,T) = u(z)e ™D for &(T) = %logE [e™T].

» Agents are risk averse over time: ®(T) > E[T].
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Application: Rabin-Weizsacker Preferences

@ Let L™ be the set of bounded gambles.

@ Consider an expected utility agent with an increasing utility function u
for money.

@ Write X > YV if E [u(X)] > E [u(Y)].

Axiom

Suppose X1, Xo are independent, Y1,Ys are independent. If X7 > Y7 and
Xo = Y5 then Y1 4+ Yo does not stochastically dominate X1 + Xo.

@ What does this tell us about u?
Theorem (Rabin-Weizsécker)

The aziom implies that either u(z) = ae®® for some a # 0, or u(z) =z (up to
affine transformations).

@ So CARA agents are the only ones that satisfy the axiom.
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Application: Rabin-Weizsacker Preferences

@ What about general (non-expected utility) preferences?

@ Write X > Y if the agent strictly prefers X to Y.

Axiom

@ Rabin-Weizsacker. Suppose X1, Xs are independent, Y1,Ys are
independent. If X1 =Y, and Xs = Ys then Y7 + Y5 does not
stochastically dominate X7 + Xs.

Q X+e>X.
© for all X there is a c € R such that X ~ c.

@ Such preferences can be represented by a monotone additive statistic.

Proposition

The azioms imply that >~ is represented by some monotone additive statistic.

1
@ & is the average of CARA certainty equivalents S,(X) = —logE [e“X }
a
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Monotone Additive Costs of Blackwell Experiments

@ Binary state of the world 6 € {0,1}.
o A Blackwell Experiment is a pair g = (o, 1) of probability

measures on some measurable space €.

d
@ We say that it is bounded if log d—'uo is bounded.
H1

@ The collection of bounded experiments is B.

@ The Blackwell order captures a strong sense of when one experiment is
more informative than another.

@ The product experiment p ® v is given by (ug X vg, p1 X v1).
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Monotone Additive Costs of Blackwell Experiments

@ Large recent literature on the cost of information. How do we assign
costs to experiments?

@ A monotone additive cost function is a map C': B — R such that
» If i Blackwell dominates v then C(u) > C(v).
» C(pev)=Cu) +C).

o Examples.
» Kullback-Leibler divergence:

dpo
log — (w) dpp(w).
[ 108 F2 @ an(e)

» Rényi a-divergence:

Dalp) = 5 og [ (jﬁj(w))a_l djio ().

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Every monotone additive cost is a weighted sum of the KL-divergences and
the Rényi divergences.




