Monotone Additive Statistics

Xiaosheng Mu Luciano Pomatto Philipp Strack Omer Tamuz (Princeton)
(Caltech)
(Yale)
(Caltech)

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Monotone additive costs of Blackwell experiments
- Work in progress.

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Monotone additive costs of Blackwell experiments
- Work in progress.

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Posted prices for sacks of potatoes.
- Fishburn-Rubinstein time preferences.
- Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
- Work in progress.

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Posted prices for sacks of potatoes.
- Fishburn-Rubinstein time preferences.
- Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
- Work in progress.

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Posted prices for sacks of potatoes.
- Fishburn-Rubinstein time preferences.
- Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
- Work in progress.

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Posted prices for sacks of potatoes.
- Fishburn-Rubinstein time preferences.
- Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
- Work in progress.

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Posted prices for sacks of potatoes.
- Fishburn-Rubinstein time preferences.
- Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
- Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
- Same authors.
- Related ideas.
- Work in progress.

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Posted prices for sacks of potatoes.
- Fishburn-Rubinstein time preferences.
- Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
- Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
- Work in progress.

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Posted prices for sacks of potatoes.
- Fishburn-Rubinstein time preferences.
- Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
- Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
- Same authors.
- Work in progress.

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Posted prices for sacks of potatoes.
- Fishburn-Rubinstein time preferences.
- Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
- Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
- Same authors.
- Related ideas.
- Work in progress.

Talk Overview

- Definition of monotone additive statistics.
- Characterization.
- Applications.
- Posted prices for sacks of potatoes.
- Fishburn-Rubinstein time preferences.
- Rabin-Weizsäcker preferences over gambles.
- Monotone additive costs of Blackwell experiments
- Different paper: "From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again."
- Same authors.
- Related ideas.
- Work in progress.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: I^{\infty} \rightarrow \mathbb{R}$ such that
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X>Y$ implies $\Phi(X) \geq \Phi(Y)$.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a man $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X>Y$ implies $\Phi(X) \geq \Phi(Y)$.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X>Y$ implies $\Phi(X) \geq \Phi(Y)$.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X>Y$ implies $\Phi(X) \geq \Phi(Y)$.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
(2) $\Phi(c)=c$ have the same distribution then $\Phi(X)=\Phi(Y)$.
- It is monotone if $X>, Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
(1) $\Phi(c)=c$.
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X>Y$ implies $\Phi(X) \geq \Phi(Y)$.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
(1) $\Phi(c)=c$.
(2) If X and Y have the same distribution then $\Phi(X)=\Phi(Y)$.
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
(1) $\Phi(c)=c$.
(2) If X and Y have the same distribution then $\Phi(X)=\Phi(Y)$.
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
(1) $\Phi(c)=c$.
(2) If X and Y have the same distribution then $\Phi(X)=\Phi(Y)$.
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
(1) $\Phi(c)=c$.
(2) If X and Y have the same distribution then $\Phi(X)=\Phi(Y)$.
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Because $X \geq_{1} Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- A statistic is a way of capturing distributions by a single number.
- Expectation.
- Median.
- Value at risk.
- Certainty equivalent.
- Let L^{∞} be the set of all bounded random variables.
- A statistic is a map $\Phi: L^{\infty} \rightarrow \mathbb{R}$ such that
(1) $\Phi(c)=c$.
(2) If X and Y have the same distribution then $\Phi(X)=\Phi(Y)$.
- It is monotone if $X \geq_{1} Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Equivalently: it is monotone if $X \geq Y$ implies $\Phi(X) \geq \Phi(Y)$.
- Because $X \geq_{1} Y$ iff $\exists \tilde{X} \sim X, \tilde{Y} \sim Y$ s.t. $\tilde{X} \geq \tilde{Y}$ a.s.
- A statistic is additive if $\Phi(X+Y)=\Phi(X)+\Phi(Y)$ whenever X and Y are independent.

Monotone Additive Statistics

- Question: What are the additive monotone statistics?

Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max [X]=\sup \{c \in \mathbb{R}: \mathbb{P}[X \geq c]>0\}$.
- $\min [X]$.
- For $a \neq 0$

$$
S_{a}(X)=\frac{1}{a} \log \mathbb{E}\left[\mathrm{e}^{a X}\right] .
$$

- By continuity

Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max [X]=\sup \{c \in \mathbb{R}: \mathbb{P}[X \geq c]>0\}$.
- $\min [X]$.
- For $a \neq 0$,

- By continuity

Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max [X]=\sup \{c \in \mathbb{R}: \mathbb{P}[X \geq c]>0\}$.
- $\min [X]$.
- For $a \neq 0$,

- By continuity

Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max [X]=\sup \{c \in \mathbb{R}: \mathbb{P}[X \geq c]>0\}$.
- $\min [X]$.
- For $a \neq 0$,

$$
S_{a}(X)=\frac{1}{a} \log \mathbb{E}\left[\mathrm{e}^{a X}\right]
$$

- By continuity

Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max [X]=\sup \{c \in \mathbb{R}: \mathbb{P}[X \geq c]>0\}$.
- $\min [X]$.
- For $a \neq 0$,

$$
S_{a}(X)=\frac{1}{a} \log \mathbb{E}\left[\mathrm{e}^{a X}\right] .
$$

- By continuity

Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max [X]=\sup \{c \in \mathbb{R}: \mathbb{P}[X \geq c]>0\}$.
- $\min [X]$.
- For $a \neq 0$,

$$
S_{a}(X)=\frac{1}{a} \log \mathbb{E}\left[\mathrm{e}^{a X}\right]
$$

- By continuity

$$
\text { - } S_{0}(X)=\mathbb{E}[X],
$$

Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max [X]=\sup \{c \in \mathbb{R}: \mathbb{P}[X \geq c]>0\}$.
- $\min [X]$.
- For $a \neq 0$,

$$
S_{a}(X)=\frac{1}{a} \log \mathbb{E}\left[\mathrm{e}^{a X}\right] .
$$

- By continuity
- $S_{0}(X)=\mathbb{E}[X]$,
- $S_{\infty}(X)=\max [X]$,

Examples of Monotone Additive Statistics

- $\mathbb{E}[X]$.
- $\max [X]=\sup \{c \in \mathbb{R}: \mathbb{P}[X \geq c]>0\}$.
- $\min [X]$.
- For $a \neq 0$,

$$
S_{a}(X)=\frac{1}{a} \log \mathbb{E}\left[\mathrm{e}^{a X}\right] .
$$

- By continuity
- $S_{0}(X)=\mathbb{E}[X]$,
- $S_{\infty}(X)=\max [X]$,
- $S_{-\infty}(X)=\min [X]$.

Characterization

- Is there anything beside the S_{a} 's?
- Main result: this is it.
- Well... we can also take weighted averages.
- $\left\{S_{a}\right\}$ are the extreme points of the set of additive monotone statistics.

Characterization

- Is there anything beside the S_{a} 's?
- Main result: this is it.
- Well... we can also take weighted averages.
- $\left\{S_{a}\right\}$ are the extreme points of the set of additive monotone statistics.

Characterization

- Is there anything beside the S_{a} 's?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem
Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup\{+\infty,-\infty\}$ such that

$$
\Phi(X)=\int S_{a}(X) \mathrm{d} m(a) .
$$

- $\left\{S_{a}\right\}$ are the extreme points of the set of additive monotone statistics.

Characterization

- Is there anything beside the S_{a} 's?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup\{+\infty,-\infty\}$ such that

$$
\Phi(X)=\int S_{a}(X) \mathrm{d} m(a) .
$$

- $\left\{S_{a}\right\}$ are the extreme points of the set of additive monotone statistics.

Characterization

- Is there anything beside the S_{a} 's?
- Main result: this is it.
- Well... we can also take weighted averages.

Theorem

Let Φ be a monotone additive statistic. Then there is a probability measure m on $\mathbb{R} \cup\{+\infty,-\infty\}$ such that

$$
\Phi(X)=\int S_{a}(X) \mathrm{d} m(a)
$$

- $\left\{S_{a}\right\}$ are the extreme points of the set of additive monotone statistics.

Proof ideas

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is a independent R such that $X+R \geq_{1} Y+R$?
- Example: $X \sim B(1 / 3), Y \sim U([-3 / 5,2 / 5])$.

- Works for $\mathbb{P}[R= \pm 1 / 5]=1 / 2$.

Proof ideas

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is a independent R such that $X+R \geq_{1} Y+R$?
- Example: $X \sim B(1 / 3), Y \sim U([-3 / 5,2 / 5])$.

- Works for $\mathbb{P}[R= \pm 1 / 5]=1 / 2$.

Proof ideas

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is a independent R such that $X+R \geq_{1} Y+R$?
- Example: $X \sim B(1 / 3), Y \sim U([-3 / 5,2 / 5])$.

- Works for $\mathbb{P}[R= \pm 1 / 5]=1 / 2$.

Proof ideas

- Take X, Y that are not ranked under FOSD.
- Is it possible that there is a independent R such that $X+R \geq_{1} Y+R$?
- Example: $X \sim B(1 / 3), Y \sim U([-3 / 5,2 / 5])$.

- Works for $\mathbb{P}[R= \pm 1 / 5]=1 / 2$.

Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X]>\mathbb{E}[Y]$ then $X+R \geq_{1} Y+R$ for some independent R.
- Under what conditions on X, Y is there a bounded independent r.v. R such that $X+R \geq_{1} Y+R$?
- If $S_{a}(X)<S_{a}(Y)$ for some a this is impossible, since

$$
S_{a}(X+R)=S_{a}(X)+S_{a}(R)<S_{a}(Y)+S_{a}(R)=S_{a}(Y+R) .
$$

- Corollary: if $S_{a}(X)>S_{a}(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

$$
\Phi(X)+\Phi(R)=\Phi(X+R) \geq \Phi(Y+R)-\Phi(Y)+\Phi(R)
$$

- Rest of the proof: exercise in analysis.

Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X]>\mathbb{E}[Y]$ then $X+R \geq_{1} Y+R$ for some independent R.
- Under what conditions on X, Y is there a bounded independent r.v. R such that $X+R \geq_{1} Y+R$?
- If $S_{a}(X)<S_{a}(Y)$ for some a this is impossible, since

$$
S_{a}(X+R)=S_{a}(X)+S_{a}(R)<S_{a}(Y)+S_{a}(R)=S_{a}(Y+R) .
$$

- Corollary: if $S_{a}(X)>S_{a}(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

$$
\Phi(X)+\Phi(R)-\Phi(X+R) \geq \Phi(Y+R)=\Phi(Y)+\Phi(R)
$$

Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X]>\mathbb{E}[Y]$ then $X+R \geq_{1} Y+R$ for some independent R.
- Under what conditions on X, Y is there a bounded independent r.v. R such that $X+R \geq_{1} Y+R$?
- If $S_{a}(X)<S_{a}(Y)$ for some a this is impossible, since

$$
S_{a}(X+R)=S_{a}(X)+S_{a}(R)<S_{a}(Y)+S_{a}(R)=S_{a}(Y+R) .
$$

Theorem

- Corollary: if $S_{a}(X)>S_{a}(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

$$
\Phi(X)+\Phi(R)=\Phi(Y+R) \geq \Phi(Y+R)=\Phi(Y)+\Phi(R)
$$

Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X]>\mathbb{E}[Y]$ then $X+R \geq_{1} Y+R$ for some independent R.
- Under what conditions on X, Y is there a bounded independent r.v. R such that $X+R \geq_{1} Y+R$?
- If $S_{a}(X)<S_{a}(Y)$ for some a this is impossible, since

$$
S_{a}(X+R)=S_{a}(X)+S_{a}(R)<S_{a}(Y)+S_{a}(R)=S_{a}(Y+R) .
$$

Theorem

For $X, Y \in L^{\infty}$, if $S_{a}(X)>S_{a}(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X+R \geq_{1} Y+R$.

- Corollary: if $S_{a}(X)>S_{a}(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X]>\mathbb{E}[Y]$ then $X+R \geq_{1} Y+R$ for some independent R.
- Under what conditions on X, Y is there a bounded independent r.v. R such that $X+R \geq_{1} Y+R$?
- If $S_{a}(X)<S_{a}(Y)$ for some a this is impossible, since

$$
S_{a}(X+R)=S_{a}(X)+S_{a}(R)<S_{a}(Y)+S_{a}(R)=S_{a}(Y+R) .
$$

Theorem

For $X, Y \in L^{\infty}$, if $S_{a}(X)>S_{a}(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X+R \geq_{1} Y+R$.

- Corollary: if $S_{a}(X)>S_{a}(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

$$
\Phi(X)+\Phi(R)=\Phi(X+R) \geq \Phi(Y+R)=\Phi(Y)+\Phi(R)
$$

- Rest of the proof: exercise in analysis.

Proof ideas

- Pomatto, Strack, Tamuz (2019): If $\mathbb{E}[X]>\mathbb{E}[Y]$ then $X+R \geq_{1} Y+R$ for some independent R.
- Under what conditions on X, Y is there a bounded independent r.v. R such that $X+R \geq_{1} Y+R$?
- If $S_{a}(X)<S_{a}(Y)$ for some a this is impossible, since

$$
S_{a}(X+R)=S_{a}(X)+S_{a}(R)<S_{a}(Y)+S_{a}(R)=S_{a}(Y+R) .
$$

Theorem

For $X, Y \in L^{\infty}$, if $S_{a}(X)>S_{a}(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X+R \geq_{1} Y+R$.

- Corollary: if $S_{a}(X)>S_{a}(Y)$ for all a, then $\Phi(X) \geq \Phi(Y)$, because

$$
\Phi(X)+\Phi(R)=\Phi(X+R) \geq \Phi(Y+R)=\Phi(Y)+\Phi(R)
$$

- Rest of the proof: exercise in analysis.

Proof ideas

Theorem

For $X, Y \in L^{\infty}$, if $S_{a}(X)>S_{a}(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X+R \geq_{1} Y+R$.

- We will find an R with pdf h such that $G * h \geq F * h$.
- Let $h(x)=\mathrm{e}^{-x^{2} / 2 V}$. Then

$$
[(G-F) * h](y)=\int_{-N}^{N}[G(x)-F(x)] \cdot h(y-x) \mathrm{d} x
$$

- Works because

Proof ideas

```
Theorem
For X,Y\in\mp@subsup{L}{}{\infty}\mathrm{ , if S}\mp@subsup{S}{a}{}(X)>\mp@subsup{S}{a}{}(Y)\mathrm{ for all a, then there exists an }R\in\mp@subsup{L}{}{\infty} such that \(X+R \geq_{1} Y+R\).
```

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G * h \geq F * h$.
$[(G-F) * h](y)=\int_{-N}^{N}[G(x)-F(x)] \cdot h(y-x) \mathrm{d} x$
- Works because

Proof ideas

```
Theorem
For X,Y\in\mp@subsup{L}{}{\infty}\mathrm{ , if S}\mp@subsup{S}{a}{}(X)>\mp@subsup{S}{a}{}(Y)\mathrm{ for all a, then there exists an }R\in\mp@subsup{L}{}{\infty} such that \(X+R \geq_{1} Y+R\).
```

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G * h \geq F * h$.

- Works because

Proof ideas

Theorem

For $X, Y \in L^{\infty}$, if $S_{a}(X)>S_{a}(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X+R \geq_{1} Y+R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G * h \geq F * h$.
- Let $h(x)=\mathrm{e}^{-x^{2} / 2 V}$. Then

$$
\begin{aligned}
{[(G-F) * h](y) } & =\int_{-N}^{N}[G(x)-F(x)] \cdot h(y-x) \mathrm{d} x \\
& =\mathrm{e}^{-\frac{y^{2}}{2 V}} \cdot \int_{-N}^{N}[G(x)-F(x)] \cdot \mathrm{e}^{\frac{y}{V} \cdot x} \cdot \mathrm{e}^{-\frac{x^{2}}{2 V}} \mathrm{~d} x
\end{aligned}
$$

- Works because

Proof ideas

Theorem

For $X, Y \in L^{\infty}$, if $S_{a}(X)>S_{a}(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X+R \geq_{1} Y+R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G * h \geq F * h$.
- Let $h(x)=\mathrm{e}^{-x^{2} / 2 V}$. Then

$$
\begin{aligned}
{[(G-F) * h](y) } & =\int_{-N}^{N}[G(x)-F(x)] \cdot h(y-x) \mathrm{d} x \\
& =\mathrm{e}^{-\frac{y^{2}}{2 V}} \cdot \int_{-N}^{N}[G(x)-F(x)] \cdot \mathrm{e}^{\frac{y}{V} \cdot x} \cdot \mathrm{e}^{-\frac{x^{2}}{2 V}} \mathrm{~d} x
\end{aligned}
$$

- Works because

Proof ideas

Theorem

For $X, Y \in L^{\infty}$, if $S_{a}(X)>S_{a}(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X+R \geq_{1} Y+R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G * h \geq F * h$.
- Let $h(x)=\mathrm{e}^{-x^{2} / 2 V}$. Then

$$
\begin{aligned}
{[(G-F) * h](y) } & =\int_{-N}^{N}[G(x)-F(x)] \cdot h(y-x) \mathrm{d} x \\
& =\mathrm{e}^{-\frac{y^{2}}{2 V}} \cdot \int_{-N}^{N}[G(x)-F(x)] \cdot \mathrm{e}^{\frac{y}{V} \cdot x} \cdot \mathrm{e}^{-\frac{x^{2}}{2 V}} \mathrm{~d} x
\end{aligned}
$$

- Works because
(1) $\mathrm{e}^{-\frac{x^{2}}{2 V}} \approx 1$ for $x \in[-N, N]$ and large V.

Proof ideas

Theorem

For $X, Y \in L^{\infty}$, if $S_{a}(X)>S_{a}(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X+R \geq_{1} Y+R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G * h \geq F * h$.
- Let $h(x)=\mathrm{e}^{-x^{2} / 2 V}$. Then

$$
\begin{aligned}
{[(G-F) * h](y) } & =\int_{-N}^{N}[G(x)-F(x)] \cdot h(y-x) \mathrm{d} x \\
& =\mathrm{e}^{-\frac{y^{2}}{2 V}} \cdot \int_{-N}^{N}[G(x)-F(x)] \cdot \mathrm{e}^{\frac{y}{V} \cdot x} \cdot \mathrm{e}^{-\frac{x^{2}}{2 V}} \mathrm{~d} x
\end{aligned}
$$

- Works because
(1) $\mathrm{e}^{-\frac{x^{2}}{2 V}} \approx 1$ for $x \in[-N, N]$ and large V.
(2) $a \int_{-N}^{N}[G(x)-F(x)] \cdot \mathrm{e}^{a x} \mathrm{~d} x=\mathbb{E}\left[\mathrm{e}^{a X}\right]-\mathbb{E}\left[\mathrm{e}^{a Y}\right]>0$.

Proof ideas

Theorem

For $X, Y \in L^{\infty}$, if $S_{a}(X)>S_{a}(Y)$ for all a, then there exists an $R \in L^{\infty}$ such that $X+R \geq_{1} Y+R$.

- Let F, G be the cdfs of X, Y, supported on $[-N, N]$.
- We will find an R with pdf h such that $G * h \geq F * h$.
- Let $h(x)=\mathrm{e}^{-x^{2} / 2 V}$. Then

$$
\begin{aligned}
{[(G-F) * h](y) } & =\int_{-N}^{N}[G(x)-F(x)] \cdot h(y-x) \mathrm{d} x \\
& =\mathrm{e}^{-\frac{y^{2}}{2 V}} \cdot \int_{-N}^{N}[G(x)-F(x)] \cdot \mathrm{e}^{\frac{y}{V} \cdot x} \cdot \mathrm{e}^{-\frac{x^{2}}{2 V}} \mathrm{~d} x
\end{aligned}
$$

- Works because
(1) $\mathrm{e}^{-\frac{x^{2}}{2 V}} \approx 1$ for $x \in[-N, N]$ and large V.
(2) $a \int_{-N}^{N}[G(x)-F(x)] \cdot \mathrm{e}^{a x} \mathrm{~d} x=\mathbb{E}\left[\mathrm{e}^{a X}\right]-\mathbb{E}\left[\mathrm{e}^{a Y}\right]>0$.
- Need to truncate, worry about uniformity over V.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for potatoes.
- Farmers come and sell her their crops.

- Price $P: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.
- No mergers: $P(x+y) \leq P(x)+P(y)$.
- No splits: $P(x+y) \geq P(x)+P(y)$.
- Theorem: $P(x)=P(1) \cdot x$.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for potatoes.
- Farmers come and sell her their crops.

Potatoes	Price
1	$\$ 1$
2	$\$ 2$
3	$\$ 3.10$
4	$\$ 4$
5	$\$ 5$
6	$\$ 6$
7	$\$ 5$

- Price $P: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.
- No mergers: $P(x+y) \leq P(x)+P(y)$.
- No splits: $P(x+y) \geq P(x)+P(y)$.
- Theorem: $P(x)=P(1) \cdot x$.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for potatoes.
- Farmers come and sell her their crops.

Potatoes	Price
1	$\$ 1$
2	$\$ 2$
3	$\$ 3.10$
4	$\$ 4$
5	$\$ 5$
6	$\$ 6$
7	$\$ 5$

- Price $P: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.
- No mergers: $P(x+y) \leq P(x)+P(y)$.
- No splits: $P(x+y) \geq P(x)+P(y)$.
- Theorem: $P(x)=P(1) \cdot x$.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for potatoes.
- Farmers come and sell her their crops.

Potatoes	Price
1	$\$ 1$
2	$\$ 2$
3	$\$ 3.10$
4	$\$ 4$
5	$\$ 5$
6	$\$ 6$
7	$\$ 5$

- Price $P: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.
- No mergers: $P(x+y) \leq P(x)+P(y)$.
- No splits: $P(x+y) \geq P(x)+P(y)$.
- Theorem: $P(x)=P(1) \cdot x$.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for potatoes.
- Farmers come and sell her their crops.

Potatoes	Price
1	$\$ 1$
2	$\$ 2$
3	$\$ 3.10$
4	$\$ 4$
5	$\$ 5$
6	$\$ 6$
7	$\$ 5$

- Price $P: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.
- No mergers: $P(x+y) \leq P(x)+P(y)$.
- No splits: $P(x+y) \geq P(x)+P(y)$.
- Theorem: $P(x)=P(1) \cdot x$.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for potatoes.
- Farmers come and sell her their crops.

Potatoes	Price
1	$\$ 1$
2	$\$ 2$
3	$\$ 3.10$
4	$\$ 4$
5	$\$ 5$
6	$\$ 6$
7	$\$ 5$

- Price $P: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.
- No mergers: $P(x+y) \leq P(x)+P(y)$.
- No splits: $P(x+y) \geq P(x)+P(y)$.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for potatoes.
- Farmers come and sell her their crops.

Potatoes	Price
1	$\$ 1$
2	$\$ 2$
3	$\$ 3.10$
4	$\$ 4$
5	$\$ 5$
6	$\$ 6$
7	$\$ 5$

- Price $P: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $x \geq y$ implies $P(x) \geq P(y)$.
- No mergers: $P(x+y) \leq P(x)+P(y)$.
- No splits: $P(x+y) \geq P(x)+P(y)$.
- Theorem: $P(x)=P(1) \cdot x$.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for sacks of potatoes.
- Farmers come and sell her their crops.
- Price $P: L_{+}^{\infty} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $X>_{1} Y$ implies $P(X) \geq P(Y)$.
- No mergers: $P(X+Y) \leq P(X)+P(Y)$.
- No splits: $P(X+Y) \geq P(X)+P(Y)$.
- So $P(X)=P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for sacks of potatoes.
- Farmers come and sell her their crops.
- Price $P: L_{+}^{\infty} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $X \geq_{1} Y$ implies $P(X) \geq P(Y)$.
- No mergers: $P(X+Y) \leq P(X)+P(Y)$.
- No splits: $P(X+Y) \geq P(X)+P(Y)$.
- So $P(X)=P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for sacks of potatoes.
- Farmers come and sell her their crops.
- Price $P: L_{+}^{\infty} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $X \geq_{1} Y$ implies $P(X) \geq P(Y)$.
- No mergers: $P(X+Y) \leq P(X)+P(Y)$.
- No splits: $P(X+Y)>P(X)+P(Y)$.
- So $P(X)=P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for sacks of potatoes.
- Farmers come and sell her their crops.
- Price $P: L_{+}^{\infty} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $X \geq_{1} Y$ implies $P(X) \geq P(Y)$.
- No mergers: $P(X+Y) \leq P(X)+P(Y)$.
- No splits: $P(X+Y) \geq P(X)+P(Y)$.
- So $P(X)=P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for sacks of potatoes.
- Farmers come and sell her their crops.
- Price $P: L_{+}^{\infty} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $X \geq_{1} Y$ implies $P(X) \geq P(Y)$.
- No mergers: $P(X+Y) \leq P(X)+P(Y)$.
- No splits: $P(X+Y) \geq P(X)+P(Y)$.
- So $P(X)=P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for sacks of potatoes.
- Farmers come and sell her their crops.
- Price $P: L_{+}^{\infty} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $X \geq_{1} Y$ implies $P(X) \geq P(Y)$.
- No mergers: $P(X+Y) \leq P(X)+P(Y)$.
- No splits: $P(X+Y) \geq P(X)+P(Y)$.
- So $P(X)=P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.

Application: Posted Prices for Sacks of Potatoes

- Consider a buyer who posts her prices for sacks of potatoes.
- Farmers come and sell her their crops.
- Price $P: L_{+}^{\infty} \rightarrow \mathbb{R}_{+}$.
- Free disposal: $X \geq_{1} Y$ implies $P(X) \geq P(Y)$.
- No mergers: $P(X+Y) \leq P(X)+P(Y)$.
- No splits: $P(X+Y) \geq P(X)+P(Y)$.
- So $P(X)=P(1) \cdot \Phi(X)$ for some monotone additive statistic Φ.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is $\Omega=\mathbb{R}_{++} \times \mathbb{R}_{+}$.
- Fishburn and Rubinstein consider preferences \succ over Ω.
- All such preferences come from exponential discounting.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is $\Omega=\mathbb{R}_{++} \times \mathbb{R}_{+}$.
- Fishburn and Rubinstein consider preferences \succ over Ω.
- All such preferences come from exponential discounting.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is $\Omega=\mathbb{R}_{++} \times \mathbb{R}_{+}$.
- Fishburn and Rubinstein consider preferences \succ over Ω.

- All such preferences come from exponential discounting

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is $\Omega=\mathbb{R}_{++} \times \mathbb{R}_{+}$.
- Fishburn and Rubinstein consider preferences \succ over Ω.

Axiom

(1) If $x>y$ then $(x, t) \succ(y, t)$.

- All such preferences come from exponential discounting

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is $\Omega=\mathbb{R}_{++} \times \mathbb{R}_{+}$.
- Fishburn and Rubinstein consider preferences \succ over Ω.

Axiom

(1) If $x>y$ then $(x, t) \succ(y, t)$.
(2) If $t<s$ then $(x, t) \succ(x, s)$.

- All such preferences come from exponential discounting.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is $\Omega=\mathbb{R}_{++} \times \mathbb{R}_{+}$.
- Fishburn and Rubinstein consider preferences \succ over Ω.

Axiom

(1) If $x>y$ then $(x, t) \succ(y, t)$.
(2) If $t<s$ then $(x, t) \succ(x, s)$.
(3) If $(x, t) \succ(y, s)$ then $(x, t+\tau) \succ(y, s+\tau)$.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is $\Omega=\mathbb{R}_{++} \times \mathbb{R}_{+}$.
- Fishburn and Rubinstein consider preferences \succ over Ω.

Axiom

(1) If $x>y$ then $(x, t) \succ(y, t)$.
(2) If $t<s$ then $(x, t) \succ(x, s)$.
(3) If $(x, t) \succ(y, s)$ then $(x, t+\tau) \succ(y, s+\tau)$.
(1) Upper and lower contour sets are closed.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is $\Omega=\mathbb{R}_{++} \times \mathbb{R}_{+}$.
- Fishburn and Rubinstein consider preferences \succ over Ω.

Axiom

(1) If $x>y$ then $(x, t) \succ(y, t)$.
(2) If $t<s$ then $(x, t) \succ(x, s)$.
(3) If $(x, t) \succ(y, s)$ then $(x, t+\tau) \succ(y, s+\tau)$.
(1) Upper and lower contour sets are closed.

- All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

\qquad

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, t) is a (positive) amount of money x at (non-negative) time t. The set of such pairs is $\Omega=\mathbb{R}_{++} \times \mathbb{R}_{+}$.
- Fishburn and Rubinstein consider preferences \succ over Ω.

Axiom

(1) If $x>y$ then $(x, t) \succ(y, t)$.
(2) If $t<s$ then $(x, t) \succ(x, s)$.
(3) If $(x, t) \succ(y, s)$ then $(x, t+\tau) \succ(y, s+\tau)$.
(1) Upper and lower contour sets are closed.

- All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that \succ is represented by $f(x, t)=u(x) \mathrm{e}^{-r t}$ for some $r>0$, and an increasing $u: \mathbb{R}_{++} \rightarrow \mathbb{R}_{++}$.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.
- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

(1) Keep FR's axioms for deterministic times.

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

(1) Keep FR's axioms for deterministic times.
(2) If $T<_{1} S$ then $(x, T) \succ(x, S)$.

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

(1) Keep FR's axioms for deterministic times.
(2) If $T<_{1} S$ then $(x, T) \succ(x, S)$.
(3) If $(x, T) \succ(y, S)$ then $(x, T+R) \succ(y, S+R)$ for all bounded random independent R.

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

(1) Keep FR's axioms for deterministic times.
(2) If $T<_{1} S$ then $(x, T) \succ(x, S)$.
(3) If $(x, T) \succ(y, S)$ then $(x, T+R) \succ(y, S+R)$ for all bounded random independent R.
(1) for all (x, T) there is a t such that $(x, T) \sim(x, t)$.

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

(1) Keep FR's axioms for deterministic times.
(2) If $T<_{1} S$ then $(x, T) \succ(x, S)$.
(3) If $(x, T) \succ(y, S)$ then $(x, T+R) \succ(y, S+R)$ for all bounded random independent R.
(1) for all (x, T) there is a t such that $(x, T) \sim(x, t)$.

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Application: Fishburn-Rubinstein Time Preferences

- A pair (x, T) is a (positive) amount of money x at a random (non-negative) time T.

Axiom

(1) Keep FR's axioms for deterministic times.
(2) If $T<_{1} S$ then $(x, T) \succ(x, S)$.
(3) If $(x, T) \succ(y, S)$ then $(x, T+R) \succ(y, S+R)$ for all bounded random independent R.
(1) for all (x, T) there is a t such that $(x, T) \sim(x, t)$.

- All such preferences come from exponential discounting of a monotone additive statistic applied to the random time.

Theorem

The axioms imply that \succ is represented by $f(x, T)=u(x) \mathrm{e}^{-r \Phi(T)}$ for some $r>0$, an increasing $u: \mathbb{R}_{++} \rightarrow \mathbb{R}_{++}$, and a monotone additive statistic Φ.

Application: Fishburn-Rubinstein Time Preferences

- Example: $f(x, T)=u(x) \mathbb{E}\left[\mathrm{e}^{-r T}\right]$.
- Expectation of the Fishburn-Rubinstein utility.
- Agents are risk seeking over time.
- Example: $f(x, T)=\frac{u(x)}{\mathbb{E}\left[e^{r} T\right]}$

Application: Fishburn-Rubinstein Time Preferences

- Example: $f(x, T)=u(x) \mathbb{E}\left[\mathrm{e}^{-r T}\right]$.
- Expectation of the Fishburn-Rubinstein utility.
- Agents are risk seeking over time.
- Example: $f(x, T)=\frac{u(x)}{\mathbb{E}\left[\mathrm{e}^{r T}\right]}$.

Application: Fishburn-Rubinstein Time Preferences

- Example: $f(x, T)=u(x) \mathbb{E}\left[\mathrm{e}^{-r T}\right]$.
- Expectation of the Fishburn-Rubinstein utility.
- Agents are risk seeking over time.

Application: Fishburn-Rubinstein Time Preferences

- Example: $f(x, T)=u(x) \mathbb{E}\left[\mathrm{e}^{-r T}\right]$.
- Expectation of the Fishburn-Rubinstein utility.
- Agents are risk seeking over time.
- Example: $f(x, T)=\frac{u(x)}{\mathbb{E}\left[\mathrm{e}^{r T}\right]}$.
- Agents are risk averse over time: $\Phi(T)>\mathbb{E}[T]$.

Application: Fishburn-Rubinstein Time Preferences

- Example: $f(x, T)=u(x) \mathbb{E}\left[\mathrm{e}^{-r T}\right]$.
- Expectation of the Fishburn-Rubinstein utility.
- Agents are risk seeking over time.
- Example: $f(x, T)=\frac{u(x)}{\mathbb{E}\left[\mathrm{e}^{r T}\right]}$.
- $f(x, T)=u(x) \mathrm{e}^{-r \Phi(T)}$ for $\Phi(T)=\frac{1}{r} \log \mathbb{E}\left[\mathrm{e}^{r T}\right]$.

Application: Fishburn-Rubinstein Time Preferences

- Example: $f(x, T)=u(x) \mathbb{E}\left[\mathrm{e}^{-r T}\right]$.
- Expectation of the Fishburn-Rubinstein utility.
- Agents are risk seeking over time.
- Example: $f(x, T)=\frac{u(x)}{\mathbb{E}\left[\mathrm{e}^{T}\right]}$.
- $f(x, T)=u(x) \mathrm{e}^{-r \Phi(T)}$ for $\Phi(T)=\frac{1}{r} \log \mathbb{E}\left[\mathrm{e}^{r T}\right]$.
- Agents are risk averse over time: $\Phi(T)>\mathbb{E}[T]$.

Application: Rabin-Weizsäcker Preferences

- Let L^{∞} be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)]>\mathbb{E}[u(Y)]$.
- What does this tell us about u ?
- So CARA agents are the only ones that satisfy the axiom.

Application: Rabin-Weizsäcker Preferences

- Let L^{∞} be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)]>\mathbb{E}[u(Y)]$.
- What does this tell us about u ?
- So CARA agents are the only ones that satisfy the axiom.

Application: Rabin-Weizsäcker Preferences

- Let L^{∞} be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)]>\mathbb{E}[u(Y)]$.
- What does this tell us about u ?
- So CARA agents are the only ones that satisfy the axiom.

Application: Rabin-Weizsäcker Preferences

- Let L^{∞} be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)]>\mathbb{E}[u(Y)]$.

```
Axiom
Suppose X1, X2 are independent, Y1, Y2 are independent. If }\mp@subsup{X}{1}{}\succ\mp@subsup{Y}{1}{}\mathrm{ and
X2\succY
```


Application: Rabin-Weizsäcker Preferences

- Let L^{∞} be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)]>\mathbb{E}[u(Y)]$.

```
Axiom
Suppose X1, X2 are independent, Y1, Y2 are independent. If }\mp@subsup{X}{1}{}\succ\mp@subsup{Y}{1}{}\mathrm{ and
X2\succY
```

- What does this tell us about u ?

Application: Rabin-Weizsäcker Preferences

- Let L^{∞} be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)]>\mathbb{E}[u(Y)]$.

Axiom

Suppose X_{1}, X_{2} are independent, Y_{1}, Y_{2} are independent. If $X_{1} \succ Y_{1}$ and $X_{2} \succ Y_{2}$ then $Y_{1}+Y_{2}$ does not stochastically dominate $X_{1}+X_{2}$.

- What does this tell us about u ?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x)=a \mathrm{e}^{a x}$ for some $a \neq 0$, or $u(x)=x$ (up to affine transformations).

Application: Rabin-Weizsäcker Preferences

- Let L^{∞} be the set of bounded gambles.
- Consider an expected utility agent with an increasing utility function u for money.
- Write $X \succ Y$ if $\mathbb{E}[u(X)]>\mathbb{E}[u(Y)]$.

Axiom

Suppose X_{1}, X_{2} are independent, Y_{1}, Y_{2} are independent. If $X_{1} \succ Y_{1}$ and $X_{2} \succ Y_{2}$ then $Y_{1}+Y_{2}$ does not stochastically dominate $X_{1}+X_{2}$.

- What does this tell us about u ?

Theorem (Rabin-Weizsäcker)

The axiom implies that either $u(x)=a \mathrm{e}^{a x}$ for some $a \neq 0$, or $u(x)=x$ (up to affine transformations).

- So CARA agents are the only ones that satisfy the axiom.

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.
- Such preferences can be represented by a monotone additive statistic.

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.
- Such preferences can be represented by a monotone additive statistic.

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

independent.

- Such preferences can be represented by a monotone additive statistic

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

(1) Rabin-Weizsäcker. Suppose X_{1}, X_{2} are independent, Y_{1}, Y_{2} are independent. If $X_{1} \succ Y_{1}$ and $X_{2} \succ Y_{2}$ then $Y_{1}+Y_{2}$ does not stochastically dominate $X_{1}+X_{2}$.

- Such preferences can be represented by a monotone additive statistic.

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

(1) Rabin-Weizsäcker. Suppose X_{1}, X_{2} are independent, Y_{1}, Y_{2} are independent. If $X_{1} \succ Y_{1}$ and $X_{2} \succ Y_{2}$ then $Y_{1}+Y_{2}$ does not stochastically dominate $X_{1}+X_{2}$.
(2) $X+\varepsilon \succ X$.

- Such preferences can be represented by a monotone additive statistic

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

(1) Rabin-Weizsäcker. Suppose X_{1}, X_{2} are independent, Y_{1}, Y_{2} are independent. If $X_{1} \succ Y_{1}$ and $X_{2} \succ Y_{2}$ then $Y_{1}+Y_{2}$ does not stochastically dominate $X_{1}+X_{2}$.
(2) $X+\varepsilon \succ X$.
(3) for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

- Such preferences can be represented by a monotone additive statistic

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

(1) Rabin-Weizsäcker. Suppose X_{1}, X_{2} are independent, Y_{1}, Y_{2} are independent. If $X_{1} \succ Y_{1}$ and $X_{2} \succ Y_{2}$ then $Y_{1}+Y_{2}$ does not stochastically dominate $X_{1}+X_{2}$.
(2) $X+\varepsilon \succ X$.
(3) for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

- Such preferences can be represented by a monotone additive statistic.
\square
Proposition
The axioms imply that \succ is represented by some monotone additive statistic

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

(1) Rabin-Weizsäcker. Suppose X_{1}, X_{2} are independent, Y_{1}, Y_{2} are independent. If $X_{1} \succ Y_{1}$ and $X_{2} \succ Y_{2}$ then $Y_{1}+Y_{2}$ does not stochastically dominate $X_{1}+X_{2}$.
(2) $X+\varepsilon \succ X$.
(3) for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

- Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

Application: Rabin-Weizsäcker Preferences

- What about general (non-expected utility) preferences?
- Write $X \succ Y$ if the agent strictly prefers X to Y.

Axiom

(1) Rabin-Weizsäcker. Suppose X_{1}, X_{2} are independent, Y_{1}, Y_{2} are independent. If $X_{1} \succ Y_{1}$ and $X_{2} \succ Y_{2}$ then $Y_{1}+Y_{2}$ does not stochastically dominate $X_{1}+X_{2}$.
(2) $X+\varepsilon \succ X$.
(3) for all X there is a $c \in \mathbb{R}$ such that $X \sim c$.

- Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that \succ is represented by some monotone additive statistic.

- Φ is the average of CARA certainty equivalents $S_{a}(X)=\frac{1}{a} \log \mathbb{E}\left[\mathrm{e}^{a X}\right]$.

Monotone Additive Costs of Blackwell Experiments

- Binary state of the world $\theta \in\{0,1\}$.
- A Blackwell Experiment is a pair $\mu=\left(\mu_{0}, \mu_{1}\right)$ of probability measures on some measurable space Ω.
- We say that it is bounded if $\log \frac{\mathrm{d} \mu_{0}}{\mathrm{~d} \mu_{1}}$ is bounded.
- The collection of bounded experiments is \mathcal{B}.
- The Blackwell order cantures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $\left(\mu_{0} \times \nu_{0}, \mu_{1} \times \nu_{1}\right)$.

Monotone Additive Costs of Blackwell Experiments

- Binary state of the world $\theta \in\{0,1\}$.
- A Blackwell Experiment is a pair $\mu=\left(\mu_{0}, \mu_{1}\right)$ of probability measures on some measurable space Ω.
- We say that it is bounded if $\log \frac{\mathrm{d} \mu_{0}}{\mathrm{~d} \mu_{1}}$ is bounded.
- The collection of bounded experiments is \mathcal{B}.
- The Blackwell order cantures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $\left(\mu_{0} \times \nu_{0}, \mu_{1} \times \nu_{1}\right)$.

Monotone Additive Costs of Blackwell Experiments

- Binary state of the world $\theta \in\{0,1\}$.
- A Blackwell Experiment is a pair $\mu=\left(\mu_{0}, \mu_{1}\right)$ of probability measures on some measurable space Ω.
- We say that it is bounded if $\log \frac{\mathrm{d} \mu_{0}}{\mathrm{~d} \mu_{1}}$ is bounded.
- The collection of bounded experiments is \mathcal{B}.
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $\left(\mu_{0} \times \nu_{0}, \mu_{1} \times \nu_{1}\right)$.

Monotone Additive Costs of Blackwell Experiments

- Binary state of the world $\theta \in\{0,1\}$.
- A Blackwell Experiment is a pair $\mu=\left(\mu_{0}, \mu_{1}\right)$ of probability measures on some measurable space Ω.
- We say that it is bounded if $\log \frac{\mathrm{d} \mu_{0}}{\mathrm{~d} \mu_{1}}$ is bounded.
- The collection of bounded experiments is \mathcal{B}.
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $\left(\mu_{0} \times \nu_{0}, \mu_{1} \times \nu_{1}\right)$.

Monotone Additive Costs of Blackwell Experiments

- Binary state of the world $\theta \in\{0,1\}$.
- A Blackwell Experiment is a pair $\mu=\left(\mu_{0}, \mu_{1}\right)$ of probability measures on some measurable space Ω.
- We say that it is bounded if $\log \frac{\mathrm{d} \mu_{0}}{\mathrm{~d} \mu_{1}}$ is bounded.
- The collection of bounded experiments is \mathcal{B}.
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $\left(\mu_{0} \times \nu_{0}, \mu_{1} \times \nu_{1}\right)$.

Monotone Additive Costs of Blackwell Experiments

- Binary state of the world $\theta \in\{0,1\}$.
- A Blackwell Experiment is a pair $\mu=\left(\mu_{0}, \mu_{1}\right)$ of probability measures on some measurable space Ω.
- We say that it is bounded if $\log \frac{\mathrm{d} \mu_{0}}{\mathrm{~d} \mu_{1}}$ is bounded.
- The collection of bounded experiments is \mathcal{B}.
- The Blackwell order captures a strong sense of when one experiment is more informative than another.
- The product experiment $\mu \otimes \nu$ is given by $\left(\mu_{0} \times \nu_{0}, \mu_{1} \times \nu_{1}\right)$.

Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the cost of information. How do we assign costs to experiments?
- A monotone additive cost function is a map $C: B \rightarrow \mathbb{R}_{+}$such that
- Examples.

Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the cost of information. How do we assign costs to experiments?
- A monotone additive cost function is a map $C: \mathcal{B} \rightarrow \mathbb{R}_{+}$such that
- If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
- $C(\mu \otimes \nu)=C(\mu)+C(\nu)$.
- Examples.

Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the cost of information. How do we assign costs to experiments?
- A monotone additive cost function is a map $C: \mathcal{B} \rightarrow \mathbb{R}_{+}$such that
- If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
- Examples.

Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the cost of information. How do we assign costs to experiments?
- A monotone additive cost function is a map $C: \mathcal{B} \rightarrow \mathbb{R}_{+}$such that
- If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
- $C(\mu \otimes \nu)=C(\mu)+C(\nu)$.
- Examples.

Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the cost of information. How do we assign costs to experiments?
- A monotone additive cost function is a map $C: \mathcal{B} \rightarrow \mathbb{R}_{+}$such that
- If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
- $C(\mu \otimes \nu)=C(\mu)+C(\nu)$.
- Examples.
- Kullback-Leibler divergence:

- Rényi a-divergence:

Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the cost of information. How do we assign costs to experiments?
- A monotone additive cost function is a map $C: \mathcal{B} \rightarrow \mathbb{R}_{+}$such that
- If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
- $C(\mu \otimes \nu)=C(\mu)+C(\nu)$.
- Examples.
- Kullback-Leibler divergence:

$$
\int_{\Omega} \log \frac{\mathrm{d} \mu_{0}}{\mathrm{~d} \mu_{1}}(\omega) \mathrm{d} \mu_{0}(\omega)
$$

- Rényi a-divergence:

Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the cost of information. How do we assign costs to experiments?
- A monotone additive cost function is a map $C: \mathcal{B} \rightarrow \mathbb{R}_{+}$such that
- If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
- $C(\mu \otimes \nu)=C(\mu)+C(\nu)$.
- Examples.
- Kullback-Leibler divergence:

$$
\int_{\Omega} \log \frac{\mathrm{d} \mu_{0}}{\mathrm{~d} \mu_{1}}(\omega) \mathrm{d} \mu_{0}(\omega) .
$$

- Rényi a-divergence:

$$
D_{a}(\mu)=\frac{1}{a-1} \log \int\left(\frac{\mathrm{~d} \mu_{0}}{\mathrm{~d} \mu_{1}}(\omega)\right)^{a-1} \mathrm{~d} \mu_{0}(\omega)
$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Monotone Additive Costs of Blackwell Experiments

- Large recent literature on the cost of information. How do we assign costs to experiments?
- A monotone additive cost function is a map $C: \mathcal{B} \rightarrow \mathbb{R}_{+}$such that
- If μ Blackwell dominates ν then $C(\mu) \geq C(\nu)$.
- $C(\mu \otimes \nu)=C(\mu)+C(\nu)$.
- Examples.
- Kullback-Leibler divergence:

$$
\int_{\Omega} \log \frac{\mathrm{d} \mu_{0}}{\mathrm{~d} \mu_{1}}(\omega) \mathrm{d} \mu_{0}(\omega) .
$$

- Rényi a-divergence:

$$
D_{a}(\mu)=\frac{1}{a-1} \log \int\left(\frac{\mathrm{~d} \mu_{0}}{\mathrm{~d} \mu_{1}}(\omega)\right)^{a-1} \mathrm{~d} \mu_{0}(\omega)
$$

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Every monotone additive cost is a weighted sum of the KL-divergences and the Rényi divergences.

