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Talk Overview

Definition of monotone additive statistics.

Characterization.

Applications.

I Posted prices for sacks of potatoes.
I Fishburn-Rubinstein time preferences.
I Rabin-Weizsäcker preferences over gambles.

Monotone additive costs of Blackwell experiments

I Different paper: “From Blackwell Dominance in Large Samples to
Rényi Divergences and Back Again.”

I Same authors.
I Related ideas.

Work in progress.
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I Rabin-Weizsäcker preferences over gambles.

Monotone additive costs of Blackwell experiments

I Different paper: “From Blackwell Dominance in Large Samples to
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Rényi Divergences and Back Again.”

I Same authors.
I Related ideas.

Work in progress.



Talk Overview

Definition of monotone additive statistics.

Characterization.

Applications.

I Posted prices for sacks of potatoes.
I Fishburn-Rubinstein time preferences.
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Monotone Additive Statistics

A statistic is a way of capturing distributions by a single number.

I Expectation.
I Median.
I Value at risk.
I Certainty equivalent.

Let L∞ be the set of all bounded random variables.

A statistic is a map Φ: L∞ → R such that

1 Φ(c) = c.
2 If X and Y have the same distribution then Φ(X) = Φ(Y ).

It is monotone if X ≥1 Y implies Φ(X) ≥ Φ(Y ).

Equivalently: it is monotone if X ≥ Y implies Φ(X) ≥ Φ(Y ).

I Because X ≥1 Y iff ∃X̃ ∼ X, Ỹ ∼ Y s.t. X̃ ≥ Ỹ a.s.

A statistic is additive if Φ(X + Y ) = Φ(X) + Φ(Y ) whenever X and Y
are independent.
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Monotone Additive Statistics

Question: What are the additive monotone statistics?



Examples of Monotone Additive Statistics

E [X].

max[X] = sup{c ∈ R : P [X ≥ c] > 0}.

min[X].

For a 6= 0,

Sa(X) =
1

a
logE

[
eaX

]
.

By continuity

I S0(X) = E [X],
I S∞(X) = max[X],
I S−∞(X) = min[X].
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Characterization

Is there anything beside the Sa’s?

Main result: this is it.

Well... we can also take weighted averages.

Theorem
Let Φ be a monotone additive statistic. Then there is a probability measure m
on R ∪ {+∞,−∞} such that

Φ(X) =

∫
Sa(X) dm(a).

{Sa} are the extreme points of the set of additive monotone statistics.
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Proof ideas

Take X,Y that are not ranked under FOSD.

Is it possible that there is a independent R such that X +R ≥1 Y +R?

Example: X ∼ B(1/3), Y ∼ U([−3/5, 2/5]).
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Proof ideas

Pomatto, Strack, Tamuz (2019): If E [X] > E [Y ] then X +R ≥1 Y +R
for some independent R.

Under what conditions on X,Y is there a bounded independent r.v. R
such that X +R ≥1 Y +R?

If Sa(X) < Sa(Y ) for some a this is impossible, since

Sa(X +R) = Sa(X) + Sa(R) < Sa(Y ) + Sa(R) = Sa(Y +R).

Theorem

For X,Y ∈ L∞, if Sa(X) > Sa(Y ) for all a, then there exists an R ∈ L∞
such that X +R ≥1 Y +R.

Corollary: if Sa(X) > Sa(Y ) for all a, then Φ(X) ≥ Φ(Y ), because

Φ(X) + Φ(R) = Φ(X +R) ≥ Φ(Y +R) = Φ(Y ) + Φ(R)

Rest of the proof: exercise in analysis.
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Proof ideas

Theorem

For X,Y ∈ L∞, if Sa(X) > Sa(Y ) for all a, then there exists an R ∈ L∞
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Application: Posted Prices for Sacks of Potatoes

Consider a buyer who posts her prices for potatoes.

Farmers come and sell her their crops.

Potatoes Price
1 $1
2 $2
3 $3.10
4 $4
5 $5
6 $6
7 $5

Price P : R+ → R+.

Free disposal: x ≥ y implies P (x) ≥ P (y).

No mergers: P (x+ y) ≤ P (x) + P (y).

No splits: P (x+ y) ≥ P (x) + P (y).

Theorem: P (x) = P (1) · x.
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Consider a buyer who posts her prices for sacks of potatoes.

Farmers come and sell her their crops.

Price P : L∞+ → R+.

Free disposal: X ≥1 Y implies P (X) ≥ P (Y ).

No mergers: P (X + Y ) ≤ P (X) + P (Y ).

No splits: P (X + Y ) ≥ P (X) + P (Y ).

So P (X) = P (1) · Φ(X) for some monotone additive statistic Φ.
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Application: Fishburn-Rubinstein Time Preferences

A pair (x, t) is a (positive) amount of money x at (non-negative) time
t. The set of such pairs is Ω = R++ × R+.

Fishburn and Rubinstein consider preferences � over Ω.

Axiom

1 If x > y then (x, t) � (y, t).

2 If t < s then (x, t) � (x, s).

3 If (x, t) � (y, s) then (x, t+ τ) � (y, s+ τ).

4 Upper and lower contour sets are closed.

All such preferences come from exponential discounting.

Theorem (Fishburn and Rubinstein)

The axioms imply that � is represented by f(x, t) = u(x)e−rt for some r > 0,
and an increasing u : R++ → R++.
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Application: Fishburn-Rubinstein Time Preferences

A pair (x, T ) is a (positive) amount of money x at a random
(non-negative) time T .

Axiom

1 Keep FR’s axioms for deterministic times.

2 If T <1 S then (x, T ) � (x, S).

3 If (x, T ) � (y, S) then (x, T +R) � (y, S +R) for all bounded random
independent R.

4 for all (x, T ) there is a t such that (x, T ) ∼ (x, t).

All such preferences come from exponential discounting of a monotone
additive statistic applied to the random time.

Theorem

The axioms imply that � is represented by f(x, T ) = u(x)e−rΦ(T ) for some
r > 0, an increasing u : R++ → R++, and a monotone additive statistic Φ.
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Application: Rabin-Weizsäcker Preferences

Let L∞ be the set of bounded gambles.

Consider an expected utility agent with an increasing utility function u
for money.

Write X � Y if E [u(X)] > E [u(Y )].

Axiom
Suppose X1, X2 are independent, Y1, Y2 are independent. If X1 � Y1 and
X2 � Y2 then Y1 + Y2 does not stochastically dominate X1 +X2.

What does this tell us about u?

Theorem (Rabin-Weizsäcker)

The axiom implies that either u(x) = aeax for some a 6= 0, or u(x) = x (up to
affine transformations).

So CARA agents are the only ones that satisfy the axiom.
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Application: Rabin-Weizsäcker Preferences

What about general (non-expected utility) preferences?

Write X � Y if the agent strictly prefers X to Y .

Axiom

1 Rabin-Weizsäcker. Suppose X1, X2 are independent, Y1, Y2 are
independent. If X1 � Y1 and X2 � Y2 then Y1 + Y2 does not
stochastically dominate X1 +X2.

2 X + ε � X.

3 for all X there is a c ∈ R such that X ∼ c.

Such preferences can be represented by a monotone additive statistic.

Proposition

The axioms imply that � is represented by some monotone additive statistic.

Φ is the average of CARA certainty equivalents Sa(X) =
1

a
logE

[
eaX

]
.
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What about general (non-expected utility) preferences?

Write X � Y if the agent strictly prefers X to Y .

Axiom
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Monotone Additive Costs of Blackwell Experiments

Binary state of the world θ ∈ {0, 1}.

A Blackwell Experiment is a pair µ = (µ0, µ1) of probability
measures on some measurable space Ω.

We say that it is bounded if log
dµ0

dµ1
is bounded.

The collection of bounded experiments is B.

The Blackwell order captures a strong sense of when one experiment is
more informative than another.

The product experiment µ⊗ ν is given by (µ0 × ν0, µ1 × ν1).



Monotone Additive Costs of Blackwell Experiments

Binary state of the world θ ∈ {0, 1}.

A Blackwell Experiment is a pair µ = (µ0, µ1) of probability
measures on some measurable space Ω.

We say that it is bounded if log
dµ0

dµ1
is bounded.

The collection of bounded experiments is B.

The Blackwell order captures a strong sense of when one experiment is
more informative than another.

The product experiment µ⊗ ν is given by (µ0 × ν0, µ1 × ν1).



Monotone Additive Costs of Blackwell Experiments

Binary state of the world θ ∈ {0, 1}.

A Blackwell Experiment is a pair µ = (µ0, µ1) of probability
measures on some measurable space Ω.

We say that it is bounded if log
dµ0

dµ1
is bounded.

The collection of bounded experiments is B.

The Blackwell order captures a strong sense of when one experiment is
more informative than another.

The product experiment µ⊗ ν is given by (µ0 × ν0, µ1 × ν1).



Monotone Additive Costs of Blackwell Experiments

Binary state of the world θ ∈ {0, 1}.

A Blackwell Experiment is a pair µ = (µ0, µ1) of probability
measures on some measurable space Ω.

We say that it is bounded if log
dµ0

dµ1
is bounded.

The collection of bounded experiments is B.

The Blackwell order captures a strong sense of when one experiment is
more informative than another.

The product experiment µ⊗ ν is given by (µ0 × ν0, µ1 × ν1).



Monotone Additive Costs of Blackwell Experiments

Binary state of the world θ ∈ {0, 1}.

A Blackwell Experiment is a pair µ = (µ0, µ1) of probability
measures on some measurable space Ω.

We say that it is bounded if log
dµ0

dµ1
is bounded.

The collection of bounded experiments is B.

The Blackwell order captures a strong sense of when one experiment is
more informative than another.

The product experiment µ⊗ ν is given by (µ0 × ν0, µ1 × ν1).



Monotone Additive Costs of Blackwell Experiments

Binary state of the world θ ∈ {0, 1}.

A Blackwell Experiment is a pair µ = (µ0, µ1) of probability
measures on some measurable space Ω.

We say that it is bounded if log
dµ0

dµ1
is bounded.

The collection of bounded experiments is B.

The Blackwell order captures a strong sense of when one experiment is
more informative than another.

The product experiment µ⊗ ν is given by (µ0 × ν0, µ1 × ν1).



Monotone Additive Costs of Blackwell Experiments

Large recent literature on the cost of information. How do we assign
costs to experiments?

A monotone additive cost function is a map C : B → R+ such that

I If µ Blackwell dominates ν then C(µ) ≥ C(ν).
I C(µ⊗ ν) = C(µ) + C(ν).

Examples.

I Kullback-Leibler divergence:∫
Ω

log
dµ0

dµ1
(ω) dµ0(ω).

I Rényi a-divergence:

Da(µ) =
1

a− 1
log

∫ (
dµ0

dµ1
(ω)

)a−1

dµ0(ω).

Theorem (Mu, Pomatto, Strack, Tamuz (2020))

Every monotone additive cost is a weighted sum of the KL-divergences and
the Rényi divergences.
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the Rényi divergences.



Monotone Additive Costs of Blackwell Experiments

Large recent literature on the cost of information. How do we assign
costs to experiments?

A monotone additive cost function is a map C : B → R+ such that
I If µ Blackwell dominates ν then C(µ) ≥ C(ν).
I C(µ⊗ ν) = C(µ) + C(ν).

Examples.
I Kullback-Leibler divergence:∫

Ω

log
dµ0

dµ1
(ω) dµ0(ω).
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