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Abstract

In many organizations, employees enjoy significant discretion regarding project se-

lection. If projects differ in their informativeness about an employee’s quality, project

choices will be distorted whenever career concerns are important. We analyze a model

in which an organization can shape its employees’ career concerns by committing to

a system for allocating a limited set of promotions. We show that the organization

optimally overpromotes certain categories of underperforming employees, trading off

efficient matching of employees to promotions in return for superior project selection.

When organizations can additionally pay monetary bonuses, we find that overpromo-

tion is a superior incentive tool when the organization needs to offer high-powered

incentives; otherwise, bonuses perform better.

1 Introduction

In this paper, we analyze how employees’ career concerns distort project selection in organi-

zations, and how organizations can design reward systems to mitigate these distortions. Our

starting point is the observation that in many organizations, employees exercise significant

discretion when deciding what projects to take on or how to complete projects they have

been assigned. For instance, academics and many scientists have broad freedom to set their

own research agendas; engineers may be handed design challenges and given authority to

pursue the solution they judge most promising; and managers may be asked to craft strategic

proposals for their division and face a choice between pitching a novel strategy of their own

or supporting a consensus option.
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The choices available to an employee, which for simplicity we will refer to as projects, in

general differ across two key dimensions: their expected returns to the organization, and the

amount of information their outcome reveals about the employee’s quality. An employee’s

choice of project will therefore have important implications for her career whenever the

organization uses her performance to evaluate her suitability for promotion. Employees

who are highly motivated by such career concerns will make project decisions which are

inefficient from the organization’s perspective. Some may seek projects which will generate

large losses for the organization in case of failure, but that could allow them to distinguish

themselves and propel their careers if successful. Others may elect to stay away from risky

but profitable projects in order to avoid rocking the boat and undermining their progress in

the organization.

As a prelude to our main analysis, we show formally how career concerns can lead to

inefficient project selection absent a well-designed incentive scheme. The nature of the

inefficiency depends fundamentally on the amount of upward mobility in the organization.

In organizations with significant upward mobility, which we represent by a large pool of

promotions to be filled by high performers, the inefficiency takes the form of employees shying

away from highly productive but informative (and hence risky to their careers) projects.

In organizations with little upward mobility, i.e. a small pool of promotions, the opposite

problem appears: employees take too many risks in the hopes of distinguishing themselves

by an impressive outcome and shy away from productive but “routine” projects.

A substantial literature in social psychology studying the phenomenon of “psychological

safety” emphasizes the first problem—situations in which employees refrain from drawing at-

tention to problems, offering feedback, or taking other risks for fear of negative consequences,

including to their careers (Edmondson 1999; Edmondson and Lei 2014; Kahn 1990). Lack

of psychological safety has been associated with serious negative outcomes in a variety of

contexts, for instance unreported nursing errors leading to patient deaths in hospitals (Ed-

mondson 1999, p.352); unwillingness to offer feedback and suggestions leading to dysfunction

in teams at Google (Google 2014); and reluctance to ask for information leading to slow dis-

semination of financial, health, and agricultural knowledge in rural India (Chandrasekhar

et al. 2019). The problem of employees shying away from routine projects is has been less

systematically documented, but is illustrated, for example, by employees’ neglect of dull

but essential projects at Sun Hydraulics (Hill and Suesse 2003); and by the reluctance of re-

search scientists to perform and publish replication studies of other researchers’ publications,

leading to the well-known “replication crisis” in a number of fields.

Our first main result demonstrates how commitment to an incentive scheme implementing

an ex-post inefficient promotion policy can improve the performance of an organization.
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We show that in organizations with significant upward mobility, it is optimal to commit

to overpromote employees who tackle risky projects and fail. That is, the organization

should act as if it discounts the value of the information gained from failure.1 Such a

scheme creates “psychological safety” to take risks and trades off more profitable project

selection for less efficient matching of employees to promotions. On the other hand, in

organizations with little upward mobility, the organization should commit to a very different

policy: overpromoting those that devote time to routine projects and underpromoting those

who succeed at risky projects. Instead of inducing “psychological safety” to take risks, such

a policy rewards conservatism to ensure that a sufficient number of routine but important

projects are undertaken.

In many organizations, promotions are the primary incentive tool employed in practice.2

However, in some organizations incentives can be effectively provided by monetary rewards

as well as promotion policies. Our second set of results characterize the optimal incentive

scheme when the organization can commit to both promotion policies and bonuses. We find

that when an organization incentivizes through bonuses, it should deploy them in a very

similar way to an optimal promotion scheme—when employees take too few risks, bonuses

are paid for failure on risky projects, while when employees take too many risks, bonuses are

paid to employees undertaking routine projects.

We further find that the organization should deploy only one of the two tools, with the

optimal tool depending on how far the organization wishes to push project selection away

from its no-commitment distribution. Bonuses turn out to be the superior tool for providing

“low-powered” incentives, inducing only a small number of employees to switch projects.

On the other hand overpromotion is more effective for providing “high-powered” incentives,

under which a significant fraction of employees switch projects. We further show that the

optimal power of incentives depends on the organization’s payoff from matching the best

employees to promotions. When this payoff is large, incentives should be low-powered and

bonuses should be used, while when the payoff is small, high-powered incentives with an

overpromotion scheme are optimal.

1Commitment to such policies bears similarities to corporate mantras urging employees to “celebrate

failure” or “fail fast” in innovative organizations. For instance, Facebook adopted the internal motto “Move

fast and break things” in its early years, and Google X’s CEO Astro Teller has discussed how his organization

recognizes and celebrates failures (https://youtu.be/3SsnY2BvzeA).
2For instance, Baker et al. (1988) note that “Promotions are used as the primary incentive device in

most organizations, including corporations, partnerships, and universities. The empirical importance of

promotion-based incentives, combined with the virtual absence of pay-for-performance compensation policies,

suggests that providing incentives through promotion opportunities must be less costly or more effective than

providing incentives through transitory financial bonuses.”
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1.1 Related literature

Our paper studies how an organization should structure its promotion system to influence

employees’ project choices in the face of career concerns. While a number of papers have

studied multitasking and career concerns, to the best of our knowledge ours is the first to treat

career concerns as a design variable rather than an exogenous incentive. Two foundational

related papers are the career concerns model of Holmström (1999), which demonstrates

how an agent’s concern for their future reputation shapes incentives for exerting effort in

situations of moral hazard; and the multitasking model of Holmström and Milgrom (1991),

which characterizes optimal pay-for-performance schemes when an agent may split effort

among multiple tasks. The basic career concerns framework has been extended by Gibbons

and Murphy (1992) to allow for pay-for-performance contracts, and by Dewatripont et al.

(1999) to a multitask environment. Kaarbøe and Olsen (2006) combine all three features by

allowing a principal to write pay-for-performance contracts in a multitask environment with

career concerns. A key feature of these papers is that the agent’s reputational concerns are

taken to be exogenous,3 while we allow the organization to directly control career concerns

via its choice of a promotion system.

Closely related to the career concerns literature are a pair of recent papers by Kuvalekar

and Lipnowski (2020) and Kostadinov and Kuvalekar (2018), studying task selection in

a dynamic agency setting. Both papers highlight that career concerns may lead agents to

choose inefficient, uninformative tasks at some stages of their careers in order to slow learning

about their quality. The focus of those papers is quite different from ours, as they model a

single agent’s task dynamics, while we study how task selection varies across heterogeneous

agents in a static multi-agent setting. Moreover, while those papers analyze equilibrium

outcomes absent commitment, a central focus of our paper is the optimal joint design of

promotions and monetary rewards.

Our paper is also related to the tournaments literature—for instance Lazear and Rosen

(1981), Green and Stokey (1983), and Nalebuff and Stiglitz (1983)—which compare indi-

vidual pay-for-performance contracts with tournaments where prizes are awarded based on

rank-order comparisons between agents. The prizes in a tournament are often interpreted as

promotions, framing the exercise as a form of promotion policy design.4 However, the cost to

3Some papers, for instance Dewatripont et al. (1999), consider how an organization should respond to

an agent’s career concerns by assigning tasks to different agents or aggregating the performance measures

that the market observes. However, such interventions do not account for any efficiency impact of changing

how much the market knows about the agent’s quality. Further, they do not allow the organization to tailor

incentives as effectively as direct design of returns to reputation.
4For instance, Lazear and Rosen (1981) argue, “On the day that a given individual is promoted from
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the organization of awarding a prize is assumed to be independent of the employee receiving

it. As a result, analyses of tournaments typically abstract from the problem of matching

high-quality workers to promotions, which is a central problem faced by the organization

in our model. One exception is Rosen (1986), which considers the problem of selecting the

most talented agent from a population via a sequence of pairwise tournaments. However,

that paper does not design tournaments to optimize effort, instead confining attention to

schemes which induce an arbitrary stationary effort level. By contrast, in our model the or-

ganization simultaneously optimizes over employee task choice and allocation of employees

to promotions.

2 The model

An organization wishes to guide innovation by its employees in a decentralized environment in

which innovation serves dual roles, determining short-run profits and providing information

about which employees are most suitable for promotion into roles of greater responsibility.

The organization’s life unfolds over two stages. In the first, employees choose and complete

projects, which provide an immediate productive payoff to the organization. In the second,

the organization selects a subset of employees to promote, yielding a further payoff from

future production.

The organization oversees a continuum of employees of measure 1, as well as a large stock

of potential projects. Projects are heterogeneous across two dimensions—their risk profile

and their expected productivity. Some projects are routine, and if completed generate a

guaranteed payoff to the organization. Other projects are innovative, and if attempted may

either succeed and generate a payoff of 1, or fail and produce no payoff. The organization

possesses a continuum of measure 1 of each project type . Routine projects are homogeneous,

and each generates a payoff of K ∈ (0, 1) to the organization. Innovative projects, on the

other hand, differ in their productivity, as characterized by their probability of success.

Specifically, the nth innovative project succeeds with probability γ(n) ∈ [0, 1), where γ is

assumed to be a C2 function satisfying γ′ < 0.

Project assignment is decentralized, and is determined by a combination of random

matching and employee choice. Each employee is first randomly matched with an inno-

vice-president to president, his salary may triple. It is difficult to argue that his skills have tripled in that

1-day period. . . It is not a puzzle, however, when interpreted in the context of a prize. The president of a

corporation is viewed as the winner of a contest in which he receives the higher prize”. Similarly, Green and

Stokey (1983) note “[I]n most organizations one of the most important rewards is promotion. . . [E]mployees

at any one echelon are competing for a fixed, smaller number of positions at the next higher echelon.”
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vative project. Employees are ex ante homogeneous, and so without loss we will label each

employee by the innovative project to which she is matched. After being matched, each

employee chooses whether to undertake a routine project or the innovative project available

to them. The organization’s total project payoff is then the sum of the output of all projects

undertaken. Specifically, if a set N ⊂ [0, 1] of employees choose innovative projects, the

organization’s total expected project payoff is

f(N ) ≡
∫
N
γ(n) dn+K(1− |N |).

We will assume that the organization’s optimal project mix includes both routine and inno-

vative projects:

Assumption 1. γ(0) > K > γ(1).

Let N † ∈ (0, 1) be the unique solution to γ(N) = K. Then the organization’s project payoff

is maximized when employees in the set [0, N †] innovate.

Each employee’s choice of project also impacts how much information is generated about

their suitability for promotion. Specifically, we assume that each employee generates an

uncertain payoff from promotion, and that succeeding at an innovative project raises the

organization’s estimate of that payoff, while failing lowers it. We microfound this infer-

ence through a quality type which governs both the employee’s probability of success on

an innovative project and the payoff they generate by being promoted. Each employee n

has quality θ(n) ∈ {H,L}, where qualities are drawn independently and identically with

Pr(θ(n) = G) = π ∈ (γ(0), 1). A low-quality employee never succeeds at their innovative

project, while a high-quality employee succeeds with probability q(n) ≡ γ(n)/π. (These prob-

abilities are calibrated so that the expected productivity of the nth employee’s innovative

project is exactly γ(n).) An employee’s quality type does not impact the output of a routine

project. Quality types are not directly observed by either the employee or the organization.

As a result, the organization can learn about an employee’s type only by observing their

performance on an innovative project.

The organization possesses a continuum of promotions of measure β ∈ (0, 1) to which it

can assign employees. An employee who is promoted receives a private payoff of V > 0 re-

gardless of their type, and receives a private payoff normalized to zero otherwise. Meanwhile

a promoted employee generates a payoff of R > 0 to the organization if they are high-quality,

and a payoff of 0 otherwise. An employee who is not promoted also generates a payoff of 0

for the organization.

Finally, we assume the organization and all employees are risk-neutral over outcomes and

money, and that the payoffs f(N ), V, and R are all measured in dollar terms.
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2.1 Incentive schemes

As project assignment is decentralized, the organization cannot directly determine how much

innovation takes place. However, the organization can guide employee decisions through the

use of two incentive tools: bonuses and promotion systems. Specifically, we assume that the

organization can commit to how much it pays each employee and how it prioritizes them for

promotion as a function of their project choice and outcome. We will refer to a joint choice

of bonuses and promotions as an incentive scheme.

We impose the following requirements on an incentive scheme:

• Feasibility : At most β employees may be promoted.

• Limited liability : Every employee must receive a non-negative bonus in every state of

the world.

• Anonymity : All employees choosing the same project type and producing the same

outcome must receive the same bonus and be promoted with the same probability.

The requirements of feasibility and limited liability are routine. The requirement of anonymity

amounts to an assumption that the organization cannot observe the productivity of the in-

novative project undertaken by a given employee.

Given the requirements above, we formally define an incentive scheme as follows:

Definition 1. An incentive scheme is a triple (N ,T ,σ), where:

• N ⊂ [0, 1] is the set of innovative projects the organization recommends be imple-

mented.

• T = (TG, T∅, TB) ≥ 0 are the bonuses received by an employee who, respectively,

succeeds at an innovative project, completes a routine project, or fails at an innovative

project.

• σ = (σG, σ∅, σB) ∈ [0, 1]3 are the probabilities of promotion for an employee who,

respectively, succeeds at an innovative project, chooses a routine project, or fails at an

innovative project.

We interpret an incentive scheme as promoting employees uniformly at random from each

bin of all employees who chose a particular project type and obtained the same outcome,

with a fraction σi of employees from bin i ∈ {G, ∅, B} promoted. As a result, the number of

employees promoted from each bin is deterministic. Our notion of an incentive scheme there-

fore restricts attention to schemes satisfying a form of aggregate non-randomness. Of course,

7



from the perspective of any individual employee, promotion may be random conditional on

the outcome of their chosen project.

An incentive scheme is feasible if it promotes at most β employees, supposing employ-

ees follow the recommended innovation policy.5 This requirement is summarized by the

inequality

β ≥
∫
N

(σGγ(n) + σB(1− γ(n))) dn+ σ∅(1− |N |).

It is incentive-compatible if all employees find it optimal to follow the scheme’s recommended

innovation policy. That is,

γ(n)(TG + V σG) + (1− γ(n))(TB + V σB)

≥ T∅ + V σ∅, ∀n ∈ N ,

≤ T∅ + V σ∅, ∀n ∈ [0, 1] \ N .
(1)

The following lemma shows that attention may be restricted to incentive schemes which

recommend that only the best projects be implemented, given an overall number of innovative

projects recommended.

Lemma 1. Fix any feasible and IC incentive scheme satisfying |N | = N , under which

|[0, N ] \ N | > 0. Then there exists another feasible, IC incentive scheme implementing N

projects yielding strictly higher profits.

Going forward, we will describe innovation policies via the amount of innovation they

recommend, without explicitly specifying the set of innovative projects implemented. For

N ∈ [0, 1], we will also define the project payoff f(N) ≡ f([0, N ]).

3 Equilibrium innovation rates

We first characterize outcomes when the organization cannot commit to an incentive scheme.

Formally, our timeline then becomes a two-stage game, with employees choosing projects in

the first stage and the organization observing project choices and outcomes and choosing

bonuses and promotions in the second stage. We restrict the organization to use anonymous

bonus and promotion policies, which treat all employees who chose the same project and

obtained the same outcome equally, analogous to the requirement imposed on incentive

5As employees are atomistic, any feasible incentive scheme remains feasible following a deviation by

a single employee. Further, such deviations do not affect bonuses or promotion probabilities under an

anonymous incentive scheme, which can condition only on the measure of project outcomes of each type.

The organization’s choice of bonuses and promotion probabilities off-path therefore do not impact employee

incentives, and we do not explicitly specify them.

8



schemes in Section 2.1. Our solution concept is perfect Bayesian equilibrium subject to a

mild refinement on treatment of measure-zero sets of employees.6

Absent commitment, the organization pays no bonuses and promotes employees efficiently

given observed outcomes. Recall that successes on innovative projects are good news about

an employee’s quality, failures are bad news, and routine projects provide no information.

The organization therefore first promotes all employees who have succeeded at innovative

projects, followed by employees who chose routine projects, and finally resorts to promoting

employees who failed at innovated projects, until all promotions are filled. (Because even a

low-quality employee provides a payoff no lower than leaving a spot unfilled, all promotion

slots are filled.)

We now establish that the equilibrium innovation rate is unique in the game without

commitment, and is declining in β whenever it is interior. For N ∈ (0, 1], define

pG(N) ≡ 1

N

∫ N

0

γ(n) dn

to be the fraction of successes among all employees choosing innovative projects, supposing

that employees in the set [0, N ] innovate. Further define pG(0) = γ(0). Finally, let β ≡ pG(1)

and β ≡ pG(0). Note that

0 < β < β < 1

given that γ is strictly decreasing and γ(0) ∈ (0, 1).

Proposition 1. For each β ∈ (0, 1), in the essentially unique equilibrium project allocation,7

employees in the set N eq(β) innovate, where:

• If β < β, then N eq(β) = [0, 1],

• If β ∈ [β, β], then N eq(β) = [0, N eq(β)], with N eq(β) the unique solution in [0, 1] to

β = pG(N)N + γ(N)(1−N),

• If β > β, then N eq(β) = ∅,

• N eq(β) is continuous, strictly decreasing, and satisfies N eq(β) = 1 and N eq(β) = 0.

6The refinement requires that the organization never pass over an employee with a high reputation to

promote an employee of a lower reputation. This restriction would be redundant under sequential rationality

in a game with a discrete set of employees, and eliminates pathologies in our setting with a continuum of

employees. See the proof of Proposition 1 for details.
7For each value of β there exists exactly one additional project allocation consistent with equilibrium,

which differs from the one stated here only in the project chosen by a single marginal employee.
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Recall that lower-index employees are those possessing the most productive innovative

projects. The fact that the equilibrium innovation set takes the form [0, N eq(β)] for some

N eq(β) therefore implies that only employees with the best projects choose to innovate. This

result is straightforward, because all employees receive the same payoff from routine projects

while employees with good innovative projects have the most incentive to gamble for success.

The drop in innovation with β arises because each employee’s incentives to innovate

weaken, holding fixed the innovation decisions of all other employees. Intuitively, the bar

for promotion drops as more employees are promoted, and so a given employee gains less

upside from succeeding at innovation and faces a larger downside from failing to innovate.

This force pushes fewer employees to innovate in equilibrium as β increases. Equilibrium

uniqueness is not immediate, because the game is one of strategic complements—as other

employees innovate more, the bar for promotion rises and increases incentives for a given

employee to innovate. The proof of the proposition establishes that nonetheless, a unique

equilibrium exists for every value of β.

When β lies outside the range [β, β], the equilibrium innovation rate is unambiguously

suboptimal from the organization’s perspective. To see this, recall that the organization’s

project payoff is maximized at the interior innovation rate N † ∈ (0, 1), so that absent con-

siderations of promotion efficiency the organization would choose an interior innovation rate.

Now suppose that no employees innovate. Then increasing innovation slightly would both

raise project payoffs and reveal information about the quality of some employees, allowing

for a more efficient allocation of employees to promotions. So the optimal innovation rate

is strictly positive for all β, and therefore equilibrium innovation is inefficiently low when

β > β. On the other hand, suppose that all employees innovate. In this case the organization

sees pG(1) employees who succeeded on innovative projects, which is strictly more than the

organization needs to promote when β < β = pG(1). As a result, when β < β equilibrium

innovation is inefficiently high, because the organization can achieve the same promotion

payoff and a strictly higher project payoff if slightly fewer employees innovate.

In this paper we are interested in how incentive schemes can improve on equilibrium

outcomes when the equilibrium is inefficient. In light of the discussion of the previous

paragraph, we will focus on incentive design when β < β and β > β, which correspond to

cases when equilibrium innovation is unambiguously suboptimal.

4 Optimal Policy, Small Beta

We first study optimal incentive schemes in organizations that have relatively few promotions

available for their employees. In particular, we consider the case β < β. In Section 3 we
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showed that absent commitment, for this range of β all employees would choose innovative

projects. From the organization’s perspective, this innovation rate is always higher than

would be optimal if it could directly control innovation.

We now determine how the organization optimally mitigates this inefficiency when it can

commit to an incentive scheme. We characterize the optimal incentive scheme in two steps.

We first ask, for a given desired level of innovation, what incentive scheme optimally induces

that amount of innovation. With this result in hand, we then optimize over the amount of

innovation.

Definition 2. An incentive scheme promotes efficiently if its promotion probabilities max-

imize the organization’s expected promotion payoff given the scheme’s recommended in-

novation policy. An incentive scheme overpromotes (underpromotes) a set of employees if

more (fewer) employees from that set are promoted than would occur under the promotion

payoff-maximizing policy.

Proposition 2. Suppose that β < β and the organization wishes to implement N innovative

projects. Then there exists N ∈ (0, 1] such that:

1. If N < N , the organization optimally pays no bonuses, overpromotes employees who

undertake routine projects, and underpromotes employees who succeed at innovative

projects.

2. IfN > N , the organization optimally pays a positive bonus to employees who undertake

routine projects and promotes efficiently.

N is decreasing in R and increasing in V, and N = 1 for sufficiently small R or sufficiently

large V , while limR→∞N = limV→0N = 0.

Because employees are incentivized to undertake too much innovation absent intervention,

the organization must use promotions and bonuses to make routine projects more attractive.

The proposition shows that whether promotions or bonuses are the better incentive tool

depends how much innovation N the organization wishes to target.8

Implementing a given number of safe projects requires the organization to pay an incen-

tive cost for every employee choosing one. This cost is in general comprised of a combination

8 In the proof of Proposition 2, we further establish that the optimal incentive scheme is unique whenever

N /∈ {0, N, 1}. In the edge cases N ∈ {0, 1}, the optimal scheme is uniquely determined “on-path”, that is,

for employees who choose the on-path project type. When N is interior and N = N, bonuses and promotion

distortion are equally efficient incentive tools, and a continuum of optimal schemes exist using a combination

of the two tools.
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of 1) bonus payments and 2) inefficient promotions, due to promoting some employees choos-

ing routine projects over others who succeeded at innovative ones. The balance of these two

costs must make the Nth employee just indifferent between working on an innovative ver-

sus a routine project. The optimal mix of incentive tools is determined by how both the

organization and the marginal employee view the tradeoff between these two forms of reward.

It turns out that the organization’s tradeoff is independent of N. Note that the incremen-

tal cost of a bonus is exactly 1; meanwhile the incremental cost of promoting an employee

who chose a routine project over one who succeeded at innovating is R(1 − π), reflecting

the decreased average quality of those employees. Thus regardless of N, the organization

faces the same marginal rate of substitution between these two tools. How the optimal mix

changes with N is therefore driven entirely by changes in how the marginal employee trades

off bonuses against promotions.

Imagine lowering the marginal employee’s bonus payment by an amount ∆T , and raising

her probability of being promoted by an amount ∆σ to maintain indifference. The employee’s

total payoff from choosing a routine project is

UR = T∅ −∆T + V (σ∅ + ∆σ),

which is independent of N. Meanwhile the employee’s total payoff from choosing her inno-

vative project is

UI = V γ(N)σG.

It turns out that changing σ∅ also implies an offsetting decrease in σG, and therefore UI , in

order to maintain the same total number of promotions. To the extent that UI shrinks as

σ∅ rises, this force decreases the ∆σ needed to maintain UR = UI when the bonus drops.

The key to the proof is establishing that UI is less sensitive to σ∅ when N is larger. One

component of this result is the fact that γ(N) is decreasing in N, so that for larger N ,

UI is less sensitive to changes in σG. Further, it turns out that for large N, σG is itself

less sensitive to σ∅. The result is that as N increases, saving a dollar on bonus payments

becomes increasingly expensive in terms of the compensating rise in promotion of employees

working on routine projects. Hence bonuses are optimally employed only for large N, while

promotion distortion is optimally used only for small N.

The next proposition jointly characterizes the optimal number N∗ of innovative projects

along with the optimal incentive scheme.

Proposition 3. Suppose that β < β. Then there exists a unique R∗ > 0 such that:

1. if R < R∗, the organization distorts promotions and pays no bonuses;
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2. if R > R∗, the organization promotes efficiently and pays bonuses to employees who

undertake safe projects.

Further, the optimal number of innovative projects N∗ is increasing in R, and there exists

an R > 0 such that N∗ is strictly increasing in R whenever R ≤ R and N∗ is constant for

R > R.9

The parameter R captures the importance to the organization of matching promotions

with high-quality employees relative to other priorities such as efficient project allocation

and monetary savings. To this end, innovation is the sole tool by which the organization can

discover talent, and more innovation reveals more high-quality employees.10 Thus naturally

the optimal amount of innovation pursued by the organization increases with R until the

organization incentivizes enough innovation that all promotions are filled by employees suc-

ceeding at innovative projects, at which point the amount of innovation becomes insensitive

to R.

The switchover from promotions to bonuses occurs for two reasons. First, fixing the

amount of innovation, bonuses become cheaper relative to promotion distortion as R rises.

Thus promotions are optimal for small R while bonuses are optimal for large R, holding N

fixed. This logic is reflected in the fact that N is decreasing in R in Proposition 2. Second,

Proposition 2 established that bonuses are optimal for large N while promotions are optimal

for small N. Since the optimal amount of innovation rises in R, this force further encourages

a switchover from promotions to bonuses as R rises.

5 Optimal Policy, Large Beta

We now study optimal incentive schemes in organizations that have many promotions to

fill. In particular, we consider the case β > β. Absent commitment, for this range of β all

employees would choose safe projects. From the organization’s perspective, this innovation

rate is always lower than would be optimal if it could directly control innovation.

As in the small-β case, we first characterize how the organization optimally implements

a given amount of innovation, and then analyze the optimal amount of innovation.

9In general N∗ may be set-valued for some values of R. We define the correspondence N∗(R) to be

increasing in R if for every R > R′ and n ∈ N∗(R), n′ ∈ N∗(R′), either n, n′ ∈ N∗(R) ∩ N∗(R′) or else

n > n′. It is strictly increasing in R if R > R′ and n ∈ N∗(R), n′ ∈ N∗(R′) implies n > n′.
10A caveat to this logic is that more innovation shrinks the pool of “indeterminate-talent” employees who

have pursued routine projects. This fact is irrelevant when β < β, as the organization is never short of such

employees. However, as we will see in Section 5, when the organization has many promotions to hand out,

reducing the pool of indeterminate-talent employees will have important consequences.
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Proposition 4. Suppose that β > β and the organization wishes to implement N innovative

projects. Assume that (1−γ(N))(1−N) is nonincreasing. Then there exists N ∈ [0, 1) such

that:

1. If N < N , the organization optimally pays a positive bonus to employees who attempt

innovative projects but don’t succeed, and promotes efficiently.

2. If N > N , the organization optimally pays no bonuses, overpromotes employees who

attempt innovative projects but don’t succeed, and underpromotes employees who

choose routine projects.

N is increasing in R and decreasing in V, and N = 0 for sufficiently small R or sufficiently

large V , while limR→∞N = limV→0N = 1.

When β is large, the organization faces the opposite problem compared to when β was

small—now employees are not incentivized to innovate absent intervention, and so promo-

tions and bonuses must now be used to reward employees to innovate. Similar to Proposition

2, this proposition finds that whether the optimal incentive scheme uses bonuses or promo-

tion distortion depends on whether N falls below or above a particular threshold.11 However,

bonuses are now optimally used for small N while promotion distortion is optimally deployed

for large N, the reverse of the outcome for small β.

As in the small-β case, the optimal mix of promotions and bonuses is determined by

how the organization and marginal employee trade off the two tools. Unlike the small-

β case, now the organization increasingly prefers promotion distortion over bonuses as N

increases. The incremental cost of a bonus is fixed at 1 for all N ; meanwhile the incremental

cost of promoting an employee who failed to innovate over one chose a routine project is

R(π − πB(N)), where πB(N) is the organization’s posterior inference about employees who

failed. This posterior inference is increasing in N, because as more employees innovate the

average innovative project is less likely to succeed, even if the employee is high-quality. Hence

promotion distortion becomes less costly as N increases, leading the organization to favor

this tool all else equal.

Of course, this preference could be overridden if the marginal employee requires increasing

boosts to promotion to compensate for decreased bonuses as N increases. The proof proceeds

by showing that, under some conditions on model primitives, this does not happen. The

logic is similar to that for the small-β case. Suppose that bonuses are paid only for failure

and the employee is always promoted following a success. Imagine lowering the marginal

employee’s bonus payment by an amount ∆T , and raising her probability of being promoted

11Uniqueness holds under the same conditions discussed in footnote 8.
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following failure by an amount ∆σ to maintain indifference. The employee’s total payoff

from choosing her innovative project is

UI = γ(N) + (1− γ(N))(TB −∆T + V (σB + ∆σ)),

while the employee’s total payoff from choosing a routine project is

UR = V σ∅.

Increasing σB requires an offsetting decrease in σ∅, and therefore also UR, in order to maintain

the same total number of promotions. To the extent that UR shrinks as σB rises, this force

decreases the ∆σ needed to maintain UI = UR when the bonus drops. It turns out that σ∅

is more responsive to increases in σB as N increases. This force favors trading off bonuses

for promotions. However, UI is also more responsive to changes in σB, since 1 − γ(N),

the likelihood of the marginal innovative project failing, is increasing in N . It is thus not

inevitable that a smaller ∆σ will balance incentives as N increases. The requirement that

(1−N)(1−γ(N)) be decreasing ensures that 1−γ(N) does not increase too quickly. Under

that sufficient condition, the employee requires smaller promotion boosts to make up for a

reduction in bonuses as N rises.12

A variety of forms of γ satisfy the monotonicity requirement of Proposition 4. One class

of functions satisfying this property are those for which γ′(N) ≥ −(1−γ(0)) for all N. Recall

that γ(0) ≤ π < 1, so that this condition is satisfied for γ with a sufficiently shallow slope

everywhere. In particular, if γ(N) = A−BN and B ≤ 1− A, the condition is satisfied.

One new feature of the design problem when the organization seeks to incentivize inno-

vative rather than routine projects is that bonuses may be paid conditional on the outcome

of the project. Proposition 4 establishes that bonuses are optimally paid after failure, not

success. The reason for this is that the average employee who innovates succeeds more often

than the marginal innovating employee, meaning that success bonuses are paid more often

to the average innovating employee than to the marginal one. Thus bonuses can be shifted

away from success and toward failure in a way which leaves the marginal innovating em-

ployee’s incentives unchanged while reducing the average bonus payment to innovators. It

follows that bonuses are paid for failure, not success.

The next proposition jointly characterizes the optimal number N∗ of innovative projects

along with the optimal incentive scheme.

12Absent any conditions on the growth rate of 1 − γ(N), it is possible to construct examples in which

the optimal promotion scheme’s dependence on N does not exhibit a threshold structure. Nonetheless, we

establish in the proof of Proposition 4 that for any γ, bonuses are optimal for sufficiently small N while

promotion distortion is optimal for sufficiently large N.
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Proposition 5. Suppose that β > β. Then there exist thresholds 0 < R∗ ≤ R∗ such that:

1. if R < R∗, the organization distorts promotions and pays no bonuses;

2. if R > R∗, the organization promotes efficiently and pays bonuses to employees who

undertake safe projects.

This proposition establishes that the form of the optimal incentive scheme for small or

large R is as in the small-β case. The basic intuition is similar—given a fixed amount of

innovation, bonuses become cheaper as an incentive tool relative to promotion distortion as

R rises. This logic drives the result that N is increasing in R in Proposition 4. In particular,

when R is small promotions are optimal for any target level of innovation, while when R is

large bonuses are optimal for all but very extreme amounts of innovation. It follows that an

optimal incentive scheme distorts promotions for small R and pays bonuses for large R.

Unlike the small-β case, however, a straightforward threshold dependence on R is no

longer ensured. This is because in general increasing R has two countervailing effects on the

optimal incentive structure. On the one hand, holding N fixed, the optimal mix of incentives

tilts away from promotion distortion and toward bonuses as R increases. But on the other

hand, if the amount of innovation increases as well, Proposition 4 indicates that promotions

become more favorable. Thus in general whenever N∗ is increasing in R, the net effect of a

small increase in R on the optimal incentive scheme is ambiguous, and single-crossing is not

ensured.

Additionally, when β is large N∗ is in general not monotone in R. This is because increas-

ing the amount of induced innovation no longer has a straightforward positive impact on the

amount of information gained about employees. To see this, suppose that the organization

were able to freely reallocate one more employee from a routine project to innovation. If

the organization could track the reassigned employee and personalize her promotion rule, its

achievable promotion payoff could only go up from this reassignment. However, promotion is

anonymous, and so the practical effect of this reassignment is to shrink the pool of employees

engaged on routine projects available for promotion. If the organization must then promote

more employees who failed to innovate to make up its quota, its achievable promotion payoff

actually goes down. In particular, instead of being able to promote the reassigned employee

even if she had failed, the organization must promote a random failed innovator, and the

average failed innovator is lower-quality than a failed innovator on the marginal project. So

past a certain point, encouraging further innovation actually has a detrimental impact on

the highest promotion payoff the organization can achieve.

Because of the ambiguous impact of innovation on information production, the organiza-

tion may prefer less innovation than would maximize its project payoffs. In that case optimal
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innovation goes down as promotion payoffs become more important. This effect is especially

pronounced when the organization uses bonuses and is able to promote efficiently given the

amount of innovation it targets. The behavior of N∗ as R varies therefore depends heavily

on model parameters. Note that over any interval on which N∗ is decreasing in R, the com-

plexities regarding single-crossing discussed earlier do not arise, and single-crossing of the

optimal incentive scheme in R is assured locally. In particular, if N∗ is globally decreasing

(which can occur for some model specifications), then single-crossing holds.

6 Conclusion

In this paper we have analyzed how employees’ career concerns in an organization may

distort their choice of projects, and have characterized how organizations should design

promotion and bonus policies to mitigate these distortions. In organizations with little

upward mobility, employees are overly motivated to take risks in order to stand out, while in

very dynamic organizations, employees become preoccupied with avoiding tarnishing failures.

An optimal promotion policy addresses these issues by overpromoting certain categories

of underperforming employees—when employees naturally take too many risks, those who

choose routine projects are overpromoted, while when employees naturally take too few

risks, those who take on risky projects and fail are overpromoted. When both bonuses and

promotions can be used for motivation, we find that bonuses are optimal for inducing low-

powered incentives, while promotions are better for inducing high-powered incentives. We

further characterize how the optimal intensity of incentives varies with the value of ex-post

selection of high-quality employees.

We show these results in the context of a decentralized organization in which employees

are free to choose their own projects. We therefore abstract from the role of management in

directly assigning employees to projects. While such top-down decisions are indisputably an

important management function, they can backfire. Since employees typically possess private

information about their fit to (or excitement for) particular projects, top-down assignment

of employees to projects can lead to poor matching and significant efficiency losses. Our

paper is motivated by applications in which this efficiency loss is prohibitive compared to

the costs of a bonus or promotion scheme. The interaction between top-down assignment

and incentive schemes is left as an interesting direction for future research.

We have also abstracted from moral hazard by assuming that employees need not ex-

ert unobserved effort to complete projects. This assumption reflects organizations in which

employee activities are highly visible, so that managers can directly monitor employees to en-

sure they’re working hard on their chosen project. A natural concern is that in organizations
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or jobs without such visibility, incentive schemes which reward failure may create perverse

incentives for employees to choose risky projects and then shirk. Whether such forces might

hamstring efforts to encourage risk-taking, and whether optimal incentive schemes in such

environments may resort to bonuses or other rewards to success, are important unanswered

questions for further research.

Finally, in our setting all employees are viewed as having the same ex-ante quality prior

to completing a project. This assumption is natural in settings where all employees are new

hires or newly promoted into their role. But in some contexts, employees may either enter

their roles with heterogeneous initial reputations, or may develop divergent reputations over

time in a dynamic setting. It would be interesting to extend our setting to accommodate

such heterogeneity, in particular by allowing employees to undertake a sequence of projects

before being evaluated for promotion, in order to understand its implications for optimal

design of incentives.
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Appendix

A Proof of Lemma 1

Throughout this proof we use the following notation: for an arbitrary innovation set N
satisfying |N | > 0, we let

pG(N ) ≡ 1

|N |

∫
N
γ(n) dn.

For any N > 0, we let pG(N) ≡ pG([0, N ]).

Fix a scheme satisfying the stated hypotheses. Trivially any such scheme involves |N | ∈
(0, 1). Further, such a scheme must involve V σB + TB ≥ V σG + TG; for otherwise the payoff

to innovating is strictly declining in n, in which case N = [0, N ] is the unique incentive-

compatible project allocation. We construct profit-improving incentive schemes separately

for the cases V σB + TB = V σG + TG and V σB + TB > V σG + TG. In the first case we show

that the project allocation can be changed in a profit-improving way, while in the second

case we show that either bonuses or promotion probabilities can be profitably changed.

Consider first a scheme in which V σB+TB = V σG+TG. In this case all employees receive

the same payoff from innovating. Then since |N | ∈ (0, 1), employees must also be indifferent

between innovating and not, implying

V σG + TG = V σ∅ + T∅ = V σG + TB.

We will show that there exists another feasible, IC scheme in which N = [0, N ] and profits

are strictly higher.

Suppose first that σG = σB. Then TG = TB as well, and the total number of innovating

employees promoted, the mix of good and bad outcomes promoted, and total bonus payments

to innovating employees, are all independent of N . Thus modifying the original scheme by

setting N = [0, N ] preserves feasibility and does not impact bonus or promotion payoffs, but

improves the project payoff, yielding strictly higher profits.

Next suppose that σG > σB. Let β′ ≤ β be the total number of employees promoted in

the original scheme. In this case changing N to [0, N ] while leaving promotion probabilities

unchanged increases the ratio of good to bad outcomes and thus the total number of em-

ployees promoted. So consider a new scheme which chooses N = [0, N ] and sets σ′ = σ/M

and T ′ = T /M for the unique M > 1 which yields β′ total promotions. This new scheme

scales down the payoff to innovative and safe projects by the same amount for all employees,

preserving indifference and ensuring that N = [0, N ] is incentive-compatible. The change

in project allocation under the scheme raises the project payoff. Further, compared to the
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original scheme, this new scheme increases the ratio of good to bad outcomes promoted, as

well as the ratio of good outcomes to safe projects promoted. Then as the total number

of employees promoted is held fixed, the total number of good outcomes promoted must

rise while the number of bad outcomes and safe projects promoted both fall, and the total

promotion payoff must rise. Finally, bonus payments shrink under the new scheme. To see

this, note that σG > σB implies TG < TB given that V σG+TG = V σB+TB. Thus an increase

in the ratio of good to bad outcomes decreases bonus payments to innovating employees.

Further, we have shrunk bonus payments to all employees by a factor of M. Both of these

forces decrease total bonus payments. So all three components of the profit function rise

compared to the original scheme.

Finally, suppose that σG < σB. Let β′ ≤ β be the total number of employees promoted

under the original scheme. Now changingN to [0, N ] decreases the total number of employees

promoted, reducing the total number of employees promoted. So consider a new scheme with

sets N ′ = [0, N ] and chooses σ′G = σG + ∆/V and T ′G = TG −∆, where ∆ > 0 is chosen so

that β′ employees are promoted. We first show that this new scheme satisfies the boundary

constraints σ′G ≤ 1 and T ′G ≥ 0. First observe that if σ′G ≥ σB, then the total number of

employees promoted under the new scheme would be at least

NσB + (1−N)σ∅ > NpG(N )σG +N(1− pG(N ))σB + (1−N)σ∅ = β′,

contradicting the assumption that ∆ is chosen to promote exactly β′ employees. So σ′G <

σB ≤ 1, satisfying the boundary constraint on this parameter. Further,

V σ′G + T ′G = V σG + TG = V σB + TB ≥ V σB > V σ′G,

meaning T ′G > 0. Thus the boundary constraint on T ′G is also satisfied.

We now show that the organization’s payoff rises under the new scheme. Certainly

the project payoff increases. Meanwhile since the number of safe outcomes promoted is

unchanged, this new scheme must also leave the total number of innovating employees pro-

moted unchanged versus the original scheme. Further, both the number of good outcomes

and their probability of promotion has gone up, so more good outcomes in absolute terms

must be promoted. Thus promotions are transferred from bad to good outcomes, increasing

the total promotion payoff. It remains only to show that total bonus payments do not rise

under the new scheme. Under the original scheme, total bonuses were

B = TGpG(N )N + TB(1− pG(N ))N + T∅(1−N),

while under the new scheme, bonuses are

B′ = T ′GpG(N)N + TB(1− pG(N))N + T∅(1−N).
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Now, by construction the total number of innovating employees being promoted is the same

under the original and the new scheme. Therefore

σGpG(N ) + σB(1− pG(N )) = σ′GpG(N) + σB(1− pG(N)).

Rearranging this equality yields σ′GpG(N) − σGpG(N ) = σB(pG(N) − pG(N )). Now, by

construction TG + V σG = T ′G + V σ′G. Using this identity to eliminate σ′G from the previous

expression yields

(TG − T ′G)pG(N) = V (σB − σG)(pG(N)− pG(N )).

Meanwhile the assumption that V σG + TG = V σB + TB allows σB − σG to be eliminated

from the previous expression, yielding

(TG − T ′G)pG(N) = (TG − TB)(pG(N)− pG(N )),

or

TB(pG(N)− pG(N )) = T ′GpG(N)− TGpG(N ).

Using this identity, we may compute

(B′ −B)/N = T ′GpG(N)− TGpG(N )− TB(pG(N)− pG(N )) = 0.

So total bonuses are unchanged in the new scheme, implying that overall profits rise.

In the remainder of the proof we consider schemes in which V σG + TG < V σB + TB. In

this case the payoff to an innovative project is strictly increasing in n, and so the unique

incentive-compatible project allocation is N = [1−N, 1], and the IC constraint on the Nth

employee must be binding:

γ(1−N)(V σG + TG) + (1− γ(1−N))(V σB + TB) = V σ∅ + T∅.

Note that any alternative scheme which also satisfies N = [1−N, 1], V σG+TG ≤ V σB +TB,

and this binding IC constraint is also fully incentive-compatible.

We first show that unless min{TG, T∅} = 0 and TB = 0, there exists a new scheme with

modified bonuses which strictly increase overall profits. Suppose first that min{TG, T∅} > 0.

Then there exists a ∆ > 0 sufficiently small such that the new bonus scheme (T ′G, T
′
∅, T

′
B) =

(TG−∆/γ(1−N), T∅−∆, TB) satisfies all boundary constraints. By construction, this new

set of bonuses is fully incentive-compatible for every ∆ > 0. Further, this change strictly

decreases total bonus payments. So a new incentive scheme with these bonuses is incentive-

compatible and strictly increases total probability.
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A similar argument yields profitable improvements if min{TB, T∅} > 0. Thus in particular

if TB > 0 and T∅ > 0, there exists a profitable improvement. Suppose instead that TB > 0

and T∅ = 0. Consider an alternative bonus scheme which sets

T ′G(∆) = TG + ∆
1− γ(1−N)

γ(1−N)
, T ′∅ = T∅, T ′B(∆) = TB −∆.

This new bonus scheme preserves the binding IC constraint for the Nth employee for all

∆. Further, for ∆ > 0 sufficiently small, T ′B(∆) > 0 and additionally V σG + T ′G(∆) ≤
V σB + T ′B(∆), so that the scheme satisfies the boundary constraints and is fully IC. Total

bonus payments under this new scheme are

B(∆) = T∅(1−N) + T ′G(∆)

∫ 1

1−N
γ(n) dn+ T ′B(∆)

(
N −

∫ 1

1−N
γ(n) dn

)
.

Differentiating wrt ∆ yields

dB

d∆
=

∫ 1

1−N γ(n) dn

γ(1−N)
−N.

Since γ is strictly decreasing,
∫ 1

1−N γ(n) dn < γ(1 − N)N, so that B′(∆) < 0. Thus bonus

payments strictly decrease in ∆, and so for small ∆ > 0 this new scheme is feasible, IC and

strictly increases profits.

We have so far shown a profitable improvement for any scheme satisfying V σB + TB >

V σG + TG and either min{TG, T∅} > 0 or TB > 0. It remains only to find a profitable

improvement in the remaining case that min{TG, T∅} = 0 and TB = 0. The binding IC

constraint for the Nth employee, combined with V σB +TB > V σG +TG and TB = 0, implies

that

V σB > V σ∅ + T∅ > V σG + TG.

In particular, σB > σG, σ∅, and so σG, σ∅ < 1.

Suppose first that the feasibility constraint is slack—that is, fewer than β employees are

promoted. We know that at least one of T∅ and TG is zero. Suppose first that both are

zero. Since σG, σ∅ < 1, both probabilities may be raised in concert to preserve the Nth

employee’s binding IC constraint. For a small enough rise in promotion probabilities, this

modification also maintains feasibility and preserves global IC. Further, change strictly raises

promotion payoffs since more employees are promoted, and project and bonus payments are

unchanged, raising total profits. Suppose instead that exactly one of T∅ and TG is zero. Then

raise the promotion payoff of the outcome with no bonus, and lower the bonus on the other

outcome by a corresponding amount to preserve the Nth employee’s IC constraint. This

can be done while respecting boundary constraints, feasibility, and global IC for a small
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enough perturbation. This change strictly raises promotion payoffs and strictly lowers bonus

payments, again raising total profits.

Suppose instead that the feasibility constraint is binding. Consider a new scheme which

leaves N and bonuses unchanged, and sets promotion probabilities (σ′G, σ
′
B, σ

′
∅) satisfying

σ′G = (1 − α)σG + ασ + ∆, σ′B = (1 − α)σB + ασ + ∆, and σ′∅ = σ∅ + ∆, where σ ≡
γ(1 − N)σG + (1 − γ(1 − N))σB and α ∈ (0, 1) and ∆ > 0 are constants to be determined

momentarily. Since IC binds for the Nth employee in the original scheme, by construction it

continues to bind in the new scheme. Further, since V σB +TB > V σG+TG, for α sufficiently

close to zero the inequality V σ′B +TB > V σG+T ′G holds. Thus this new scheme is incentive-

compatible for all employees for α close to zero. Fix any such α > 0 going forward.

Under the new incentive scheme, the total number of promoted employees is(∫ 1

1−N
γ(n) dn

)
σ′G +

(
N −

∫ 1

1−N
γ(n) dn

)
σ′B + (1−N)σ′∅

= (1− α)β + α (Nσ + (1−N)σ∅) + ∆.

Since γ(1−N) > 1
N

∫ 1

1−N γ(n) dn and σG < σB, we have

σ = γ(1−N)σG + (1− γ(1−N))σB <

(
1

N

∫ 1

1−N
γ(n) dn

)
σG +

(
1− 1

N

∫ 1

1−N
γ(n) dn

)
σB,

and therefore(∫ 1

1−N
γ(n) dn

)
σ′G +

(
N −

∫ 1

1−N
γ(n) dn

)
σ′B + (1−N)σ′∅

< (1− α)β + α

((∫ 1

1−N
γ(n) dn

)
σG +

(
N −

∫ 1

1−N
γ(n) dn

)
σB + (1−N)σ∅

)
+ ∆

= β + ∆.

So the feasibility constraint is slack under the new scheme for ∆ = 0, and there exists a unique

∆∗ > 0 such that the feasibility constraint just binds. Set ∆ = ∆∗. We must check that for

this choice of ∆, the resulting scheme satisfies the boundary constraints σ′G, σ
′
∅, σ

′
B ≤ 1.

Note that ∆∗ satisfies

β = (1− α)β + α(Nσ + (1−N)σ∅) + ∆∗,

or ∆∗ = α(β −Nσ − (1−N)σ∅). So define ∆0 ≡ β −Nσ − (1−N)σ∅. Then

σ′G = (1− α)σG + α(σ + ∆0),

and similarly

σ′∅ = (1− α)σ∅ + α(σ∅ + ∆0),

25



σ′B = (1− α)σB + α(σ + ∆0).

Then as σG, σ∅ < 1 and σ,∆0 are independent of α, it must be that σ′G, σ
′
∅, σ

′
B < 1 for α

sufficiently small.

We have shown that for α > 0 sufficiently small, and an appropriate choice of ∆, the new

scheme is feasible and incentive-compatible. The final step is to show that this new scheme

raises profits compared to the original scheme. Note that the new scheme yields identical

project and bonus payoffs, since the project allocation and bonuses were not changed. Fur-

ther, σ′G > σG and σ′∅ > σ∅ given that ∆ > 0 and σ > min{σG, σB} = σG. Therefore the new

scheme promotes more employees with good outcomes and safe projects, while by construc-

tion preserving the same total number of promotions. Thus this new scheme strictly raises

promotion payoffs and therefore total profits.

B Proof of Proposition 1

Define a bin to be the set of employees who chose a particular project and achieved a

particular outcome. Following any set of project choices, each employee falls into exactly one

of three bins depending on whether she chose a routine project, succeeded at an innovative

project, or failed at an innovative project. To respect anonymity of employees in each bin,

we impose the following restriction on the organization’s strategy:

Definition B.1. An organization’s strategy is anonymous if:

• Following every set of project choices and outcomes, all employees in each bin are

promoted with the same probability and paid the same bonus.

• Promotion probabilities and bonuses are a function only of the measure of employees

in each bin,

The following definition describes our solution concept:

Definition B.2. Let G be the game between employers and organization in which the

organization is restricted to use anonymous strategies. An equilibrium is a perfect Bayesian

equilibrium of G such that:

• Every employee uses a pure strategy,

• Following every set of project choices and outcomes, if some employee is promoted with

strictly positive probability, all employees with a strictly higher expected quality are

promoted with probability 1.
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This notion of equilibrium rules out pathological outcomes supported by off-path play

in which the organization fails to promote a measure-zero set of deviating employees, even

though their ex post quality is higher than the quality of some other employee who is pro-

moted. Such equilibria can arise under a continuum of employees despite sequential ratio-

nality, because the organization’s payoff is insensitive to its treatment of measure-zero sets

of employees. By contrast, the requirement would be a trivial consequence of sequential

rationality in a setting with a discrete set of employees. Our solution concept can therefore

be viewed as a refinement eliminating equilibria that are not limits of equilibria in a sequence

of discrete-employee games. Going forward we will refer to the second requirement in our

definition of equilibrium as regularity.

We now characterize the set of project allocations which can be supported by some

equilibrium. Given our restriction to equilibria in pure strategies by employees, a task

allocation can be represented by the set N ⊂ [0, 1] of employees who choose to innovate

in equilibrium. We will make free use of the following two consequences of anonymity and

sequential rationality: 1) the organization pays no bonuses in any bin of strictly positive

measure, and 2) the organization promotes a measure β of employees.

We first look for equilibria in which |N | = 1. For each n ∈ N , let Σ(n) denote employee

n’s equilibrium promotion probability. In any equilibrium satisfying |N | = 1, it must be that∫
N Σ(n) dn = β. Further, optimality requires that employees who successfully innovated be

promoted at a strictly higher rate than employees who failed to innovate. Since the prob-

ability of succeeding at innovation is strictly declining in n, Σ(n) is also strictly decreasing

in n, meaning that there exists an employee n0 ∈ N satisfying Σ(n0) < β. Let σ∅ be the or-

ganization’s probability of promoting employees choosing routine projects if a measure-zero

set of employees did so. Any choice of σ∅ is optimal and feasible for the organization, as

decisions over measure-zero sets of employees do not affect payoffs or feasibility. However, a

choice of σ∅ < 1 satisfies regularity iff β ≤ pG(1) = β, as otherwise optimality requires the

organization to promote employees who failed to innovate with strictly positive probability,

and those employees have strictly lower expected quality than employees who chose routine

projects. On the other hand if σ∅ = 1, then β < 1 implies that employee n0 ∈ N would ob-

tain a strictly higher payoff by deviating to routine projects. Thus an equilibrium involving

|N | = 1 cannot exist if β > β.

So suppose that β ≤ β. In this case optimality and regularity are satisfied by any policy

which, following observation of a measure-zero set of employees choosing routine projects,

promotes employees who failed to innovate and employees who chose routine projects with

probability 0. We need not consider other possible promotion rates for employees choosing

routine projects, as the same incentives may be provided by paying an appropriate bonus T∅
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to employees choosing routine projects. (Such bonuses are sequentially rational on sets of

measure zero.) To ensure that no employee inN wishes to deviate, the inequality V Σ(n) ≥ T∅

must be satisfied for every n ∈ N . Since |N | = 1 and Σ is strictly declining in n, it follows

that any choice of T∅ ≤ V Σ(1) satisfies incentive-compatibility for all employees in N . And

in that case that all employees, except possibly employee 1, strictly prefer to innovate, with

employee 1 indifferent if T∅ = V Σ(1). Therefore N = [0, 1] and N = [0, 1) are the only sets

N satisfying |N | = 1 supportable in equilibrium when β ≤ β.

We next look for equilibria in which |N | = 0. In such an equilibrium, any employee in

[0, 1] \ N who follows his equilibrium strategy is promoted with probability β. Let σG and

σB be the organization’s probability of promoting employees who succeeded and failed at

innovative projects, when a measure-zero set of employees innovated. Let TG and TB be

the corresponding bonuses to these employees. (Such a bonuses are sequentially rational on

sets of employees of measure zero.) Any choice of σG and σB are optimal and feasible for

the organization, given that treatment of measure-zero sets of employees does not impact

payoffs. However, regardless of which employees the organization believes chose to innovate,

it assigns posterior probability 1 that every employee who successfully innovated is High-

quality. Regularity therefore requires that σG = 1, since employees choosing safe projects

are optimally promoted with strictly positive probability, and employees who successfully

innovated have strictly higher expected quality. Further, regardless of which employees the

organization believes chose to innovate, it assigns posterior probability weakly less than π

that each employee who failed to innovate is High-quality. A choice of σB = 0 is therefore

always consistent with regularity. We need not consider any other choice of σB, as equivalent

incentives can always be provisioned by an appropriate choice of TB.

The work of the previous paragraph implies that if employee n ∈ [0, 1] \ N deviates and

chooses to innovate, she receives a payoff no lower than γ(n), with the lower bound achieved

by a choice of TG = TB = 0. Under this choice of bonuses, no employee in [0, 1] \ N prefers

to deviate iff β ≥ γ(n) for all n ∈ [0, 1] \ N . As |N | = 0, the inequality β ≥ γ(n) must

hold for n to be arbitrarily small. Recalling that γ is strictly decreasing in n, it follows that

employees in [0, 1] \ N have no incentive to deviate iff β ≥ γ(0) = β. Thus in particular

an equilibrium in which N = ∅ exists if β ≥ β, while if β < β no equilibrium involving

|N | = 0 exists. The previous logic further establishes that when β ≥ β, an equilibrium

supporting N = {0} also exists, as a choice of TB satisfying γ(0)+(1−γ(0))TB = V β makes

employee 0 indifferent between innovating or not, while all higher-indexed employees strictly

prefer routine projects. No other project allocations satisfying |N | = 0 can be supported in

equilibrium.

Finally, we look for equilibria in which |N | ∈ (0, 1). In any such equilibrium, sequen-

28



tial rationality requires that the organization pay no bonuses to any employee when |N |
employees innovate, and so we set all bonuses to zero going forward. It is further the case

that whenever |N | ∈ (0, 1) employees innovate, Bayes’ rule implies that the organization

assigns strictly higher expected quality to employees who successfully innovated than those

who chose routine projects, and assigns those who chose routine projects strictly higher ex-

pected quality than those who failed to innovate. Suppose first that pG(|N |)|N | ≥ β. Then

whenever |N | employees innovate, optimality and regularity require that the organization

must promote only employees who successfully innovated. But in this case every employee in

[0, 1] \ N strictly gains by deviating to innovation, a contradiction of |N | < 1. On the other

hand if pG(|N |)|N | + (1 − |N |) ≤ β, then optimality and regularity imply that when |N |
employees innovate, all employees who chose routine projects are promoted with probability

1, while employees who failed to innovate are promoted with probability strictly less than

1. But as innovation always involves a positive probability of failure, every employee in N
strictly gains by deviating to a routine project, contradicting |N | > 0.

The work of the previous paragraph shows that a necessary condition for |N | ∈ (0, 1) to

be supportable in equilibrium is pG(|N |)|N | < β < pG(|N |)|N |+ (1−|N |). Whenever these

inequalities hold, optimality implies that whenever |N | employees choose to innovate, the

organization optimally promotes employees successfully innovating with probability 1, em-

ployees who failed to innovate with probability 0, and employees who chose routine projects

with probability σ∅(|N |) = (β−pG(|N |)|N |)/(1−|N |). The payoff to the nth employee from

innovating is therefore γ(n), while the payoff from choosing a routine project is σ∅(|N |). It

follows immediately that N constitutes an equilibrium iff N = [0, N ] or N = [0, N), where

N satisfies γ(N) = σ∅(N). Rearranging this equation yields

β = pG(N)N + γ(N)(1−N).

Note that the rhs of this equation has derivative γ′(N)(1 − N) < 0, so that the rhs is

continuous and strictly decreasing in N everywhere, with limits γ(0) = β at N = 0 and

pG(1) = β at N = 1. A solution N eq(β) to this equation for N ∈ (0, 1) therefore exists

iff β ∈ (β, β), in which case N eq(β) is unique. Note that by the inverse function theorem

N eq(β) is continuous and strictly decreasing in β, and the function satisfies N eq(β) = 1 and

N eq(β) = 0 at its limits.

Combining the work so far, we have shown that if β ≤ β, all equilibria involve |N | = 1;

when β ≥ β, all equilibria involve |N | = 0; and when β ∈ (β, β), all equilibria involve

|N | = N eq(β), where N eq(β) is the unique solution to

β = pG(N)N + γ(N)(1−N).
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Moreover, we have shown that the essentially unique equilibrium project allocation for β < β

is N = [0, 1]; for β > β is N = ∅; and for β ∈ [β, β] is N eq(β). These project allocations

are unique up to the project choice of the largest innovating employee: when β < β the set

N = [0, 1) is also supportable in equilibrium; when β ∈ [β, β] the set N = [0, N eq(β)) is also

supportable; and when β < β the set N = {0} is also supportable.

C Proof of Proposition 2

We derive the optimal incentive scheme when V = 1, and solve the case of general V at the

end of the proof. Let

N(R) ≡ sup{N ∈ [0, 1] : pG(N)N(R(1− π)− 1) < γ(N)(1−N)}.

We establish that the following is an optimal incentive scheme:

1. If N ≤ N(R), then the organization distorts promotions but pays no bonuses:

σG =
β

µ(N)
, σ∅ =

βγ(N)

µ(N)
, σB = 0, TG = TB = T∅ = 0,

where µ(N) ≡ pG(N)N + γ(N)(1−N).

2. If N > N(R), then the organization pays bonuses but promotes efficiently. In partic-

ular, letting N0 ∈ (0, 1) be the solution to pG(N)N = β,

(a) If N ≤ N0,

σG = 1, σ∅ =
β − pG(N)N

1−N
, σB = 0, T∅ =

µ(N)− β
1−N

, TG = TB = 0.

(b) If N > N0,

σG =
β

pG(N)N
, σ∅ = 0, σB = 0, T∅ =

βγ(N)

pG(N)N
, TG = TB = 0.

We further show that when N /∈ {0, N(R), 1}, the optimal incentive scheme is unique.

We first characterize an optimal policy for N ∈ (0, 1), and return to the extremal case

afterward. We begin by conjecturing that at the optimum, among all IC constraints only

the Nth employee’s IC constraint binds, in the direction of choosing a safe project. Thus we

solve the relaxed problem in which the only IC constraint is

γ(N)(σG + TG) + (1− γ(N))(σB + TB) ≤ σ∅ + T∅,
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and confirm that the resulting optimal scheme involves σG + TG ≥ σB + TB and a binding

Nth-employee IC constraint. Thus the solution to the relaxed problem satisfies the full set

of IC constraints.

We first argue that both constraints bind at the optimum of the relaxed problem. Suppose

first that the feasibility constraint were slack. Then trivially profits are maximized by setting

TG = TB = T∅ = 0 and σG = σ∅ = σB = 1, since this incentive scheme satisfies the

Nth-employee IC constraint. But then a measure 1 of employees are promoted, violating

feasibility. So the feasibility constraint binds at the optimum. Suppose next that the Nth-

employee IC constraint were slack. Then the optimal scheme would pay no bonuses and

promote efficiently subject to feasibility, setting σG = 1, σ∅ = max{(β−pG(N)N)/(1−N), 0},
and σB = 0. But then

γ(N)(σG + TG) + (1− γ(N))(σB + TB) = γ(N).

If pG(N)N ≥ β then σ∅ + T∅ = 0 while γ(N) > 0 given N < 1, violating the IC constraint.

On the other hand if pG(N)N < β, then σ∅ = (β − pG(N)N)/(1−N) and

γ(N)− (σ∅ + T∅) =
pG(N)N + γ(N)(1−N)− β

1−N
=
µ(N)− β

1−N
,

where µ(N) ≡ pG(N)N + γ(N)(1 − N). Note that µ′(N) = γ′(N)(1 − N) < 0, so µ is

uniquely minimized at N = 1, where µ(1) = pG(1) > β. Thus γ(N) > σ∅ + T∅ for all N,

again violating the IC constraint. So the IC constraint must bind. (This establishes one of

the claims of the previous paragraph about the optimal scheme in the relaxed problem.)

We next argue that TG = TB = 0 at the optimum. First consider any feasible, IC incentive

scheme in which max{TG, TB} > 0. This scheme may be modified by setting TG = TB = 0

without violating the IC constraint, and since N > 0 this modification strictly increases

profits. So any optimal scheme must satisfy TG = TB = 0.

We now argue that σB = 0 at the optimum. (This combined with TG = TB = 0 establishes

the earlier claim that σG + TG ≥ σB + TB at the optimum of the relaxed problem.) Suppose

first that T∅ > 0 at the optimum. Then the binding IC constraint

γ(N)σG + (1− γ(N))σB = σ∅ + T∅

implies that σ∅ < 1, for otherwise the rhs would be strictly greater than 1, while the lhs

is at most 1. Suppose that σB > 0 at the optimum. Consider a new promotion scheme

(σ′G, σ
′
∅, σ

′
B) = (σG, σ∅ + ∆, σB −∆′), where ∆,∆′ are sufficiently small that σ∅ + ∆ < 1 and

σB −∆′ > 0, and are chosen relative to one another to ensure that the feasibility constraint

continues to be satisfied. This new scheme lowers the payoff to choosing an innovative
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project and raises the payoff to choosing a safe project. Therefore the IC constraint may

be satisfied by appropriately lowering T∅, which is feasible given T∅ > 0 if ∆,∆′ are chosen

sufficiently small. This new incentive scheme is feasible and IC, pays strictly lower bonuses,

and reallocates promotions from bad outcomes to employees choosing safe projects. Thus

total profits must go up, contradicting the presumed optimality of the original scheme. Thus

σB = 0 if T∅ > 0 at the optimum.

Suppose instead that T∅ = 0 at the optimum. Then the optimal promotion probabilities

must solve the reduced optimization problem in which T∅ = 0. With the bonus eliminated,

the firm’s problem is to maximize the value of promoted employees

N(pG(N)σG + (1− pG(N))πB(N)σB) + (1−N)πσ∅

subject to the constraintsγ(N)σG + (1− γ(N))σB ≤ σ∅,

β ≥ N(pG(N)σG + (1− pG(N))σB) + (1−N)σ∅.

The arguments used previously for the full problem with bonuses continue to imply that

both constraints must bind in the problem without bonuses. Use the binding IC constraint

to eliminate σ∅ from the problem, leaving the objective

(NpG(N) + (1−N)γ(N)π)σG + (N(1− pG(N))πB(N) + (1−N)(1− γ(N))π)σB,

subject to the reduced feasibility constraint

β ≥ (NpG(N) + (1−N)γ(N))σG + (N(1− pG(N)) + (1−N)(1− γ(N))σB,

which must bind at the optimum. The derivatives of the corresponding Lagrangian are

∂L

∂σG
= pG(N)N

(
1− λ

(
1 +

γ(N)(1−N)

pG(N)N

))
and

∂L

∂σB
= (1− pG(N))N

(
πB(N)− λ

(
1 +

(1− γ(N))(1−N)

(1− pG(N))N

))
,

where λ > 0 at the optimum given that the feasibility constraint must bind. Given that

N > 0, we have γ(N) < pG(N) and thus 1− γ(N) > 1− pG(N). It follows that

1− λ
(

1 +
γ(N)(1−N)

pG(N)N

)
> πB(N)− λ

(
1 +

(1− γ(N))(1−N)

(1− pG(N))N

)
.

Hence at the optimum, at most one of σG and σB may be interior, and σG ≥ σB. In particular,

if σB > 0 then σG = 1. But then the constraint reduces to

β = (NpG(N) + (1−N)γ(N)) + (N(1− pG(N)) + (1−N)(1− γ(N))σB.
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Note that NpG(N) + (1−N)γ(N) has derivative (1−N)γ′(N) < 0, so that the expression

is minimized at N = 1, where it equals pG(1). Thus in particular the rhs of the constraint is

strictly greater than pG(1), which by assumption is strictly greater than β, a contradiction.

So it must be that σB = 0 if T∅ = 0 at the optimum.

Going forward, we restrict attention to the problem with both constraints enforced with

equality and σB = TG = TB = 0:

γ(N)σG = σ∅ + T∅. (C.1)

β = NσGpG(N) + (1−N)σ∅, (C.2)

We may use these constraints to eliminate σ∅ and T∅ from the firm’s problem, yielding a

maximization problem wrt σG:

max
σG∈[0,1]

−
(

(1−N)γ(N)σG − (β − σGpG(N)N)
)

+R
(
βπ +NσGpG(N)(1− π)

)
, (C.3)

subject only to the boundary constraints that σG, σ∅ ∈ [0, 1] and T∅ ≥ 0, with T∅ and σ∅

characterized in terms of σG by equations (C.1) and (C.2).

The boundary constraints on σG, σ∅, and T∅ collectively imply that σG ∈ [σG, σG], where

σG ≡ min

{
β

pG(N)N
, 1

}
σG ≡ max

{
0,
β − (1−N)

pG(N)N
,

β

µ(N)

}
.

We now show that σG must equal the third argument of the max operator. Note that the

third argument is strictly greater than zero, so it remains to show that the third argument

exceeds the second argument.

As previously noted, µ(N) is uniquely minimized at N = 1, and so

µ(N) > pG(1) > β > γ(N)β,

and µ(N) > γ(N)β may be shown by some algebra to be equivalent to the inequality

β

µ(N)
>
β − (1−N)

pG(N)N
.

Thus

σG =
β

γ(N)(1−N) + pG(N)N
.

Now note that the derivative of the objective (C.3) with respect to σG is constant and

equal to

ξ(N) ≡ pG(N)N(R∆π − 1)− γ(N)(1−N),
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which implies

σ∗G =

σG if ξ(N) > 0

σG if ξ(N) < 0.

Recall the definition of N(R) ≡ sup{N ∈ [0, 1] : ξ(N) < 0}, and observe that ξ(0) =

−γ(0) < 0. If R∆π > 1, then ξ(N) is strictly increasing in N , with ξ(1) = pG(1)(R∆π−1) >

0, so N(R) ∈ (0, 1). On the other hand, if R∆π ≤ 1, then ξ(N) is weakly decreases from

ξ(0) < 0, so ξ(N) < 0 for all N and N(R) = 1. In either case, N < N(R) implies ξ(N) < 0

and N > N(R) implies ξ(N) > 0.

So if N < N(R), then ξ(N) < 0 and therefore σG = σG. If N > N(R), then ξ(N) > 0

and therefore σG = σG, which equals 1 whenever N ≤ N0 and equals β/[pG(N)N ] otherwise.

Finally, if N = N(R) then either scheme is optimal, and by convention we choose the first

scheme. For each scheme, the corresponding values of σ∅ and T∅ may then be computed from

equations (C.1) and (C.2), and are reported in the lemma statement.

Finally, consider the extremal cases N = 0, 1. Note that the organization’s objective

function is continuous in (σ,T , N), and the set of feasible, IC incentive schemes is charac-

terized by a set of weak inequalities which are each continuous in N. Thus the constraint

correspondence is continuous in N. This correspondence is not compact, as transfers are

unbounded. However, it is easy to show that placing a sufficiently large bound on transfers,

uniformly for all N, does not change the optimal scheme for any N. (Indeed, it is never

necessary to offer a transfer larger than 1 to any employee to implement any desired N and

promotion probabilities.) Thus it is without loss to pass to the modified problem with a suf-

ficiently large bound on transfers. The maximum theorem may then be invoked to conclude

that our characterized optimal incentive schemes for N ∈ (0, 1) remain optimal in the limits

N = 0, 1.

To complete the proof, we consider the case when V 6= 1. Note that the set of incentive-

compatible schemes for a given V is the same as the set of schemes (σ, V T ), ranging over

all schemes (σ,T ) which are IC when V = 1. Let ΠIC(σ,T , V ′, R′) be the principal’s payoff

from promotions and bonus payments (excluding project payoffs, which are the same for all

IC incentive schemes implementing N innovative projects) from the scheme (σ, V ′T ) when

V ′ is the value of promotion to employees and R′ is the value to the organization of promoting

a high-quality employee. Since this profit function is a weighted sum of bonus payments and

promotion payoffs, with weights V ′ and R′, we may write

Π(σ,T , V ′, R′) = V ′Π(σ,T , 1, R′/V ′).

Hence an optimal incentive scheme for arbitrary V can be derived by solving for an optimal
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scheme when V ′ = 1 and R′ = R/V, and then scaling up the bonus payments by a factor of

V.

D Proof of Proposition 3

We first define three notions of set-ordered monotonicity which will be invoked in the proof.

Definition D.1. Let F : X ⇒ Y be a correspondence with X, Y ⊂ R and Y compact. Then

F is increasing if x > x′ and y ∈ F (x), y′ ∈ F (x′) implies that either y, y′ ∈ F (x) ∩ F (x′)

or else y > y′. It is strongly increasing if it is increasing and additionally y ∈ F (x) ∩ IntY

implies that y > y′. It is strictly increasing if it is increasing and additionally y′ ∈ F (x′)

implies y′ /∈ F (x).

Note that these definitions are successively stronger notions of monotonicity—all strictly

increasing functions are strongly increasing, and all strongly increasing functions are increas-

ing, but the reverse implications do not hold. Also notice that the property of being strongly

increasing is defined relative to the codomain of the correspondence.

By Proposition 2, an optimal incentive scheme either offers a bonus for choosing a safe

project, or distorts promotion decisions, but not both. When inducing a given fraction N

of employees to innovate, the optimal promotion-distortion scheme yields the organization a

payoff of

ΠPr(N ;R) = f(N) +Rβ(π + ω(N)(1− π)),

where

ω(N) ≡ pG(N)N

pG(N)N + γ(N)(1−N)
.

Meanwhile the optimal bonus scheme yields the organization a payoff of

ΠB(N ;R) =

ΠB
−(N ;R), N ≤ N0

ΠB
+(N ;R), N > N0

where

ΠB
−(N ;R) = f(N)− V (γ(N)(1−N) + pG(N)N − β) +Rβ

(
π +

pG(N)N

β
(1− π)

)
and

ΠB
+(N ;R) = f(N)− V γ(N)(1−N)

pG(N)N
β +Rβ.

Note that ΠB
−(N0;R) = ΠB

+(N0;R), so that ΠB(N ;R) is continuous in N.
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Let N∗,P r(R) be the set of optimizers of ΠPr(N ;R) wrt N for a given R, and let N∗,B− (R)

and N∗,B+ (R) be the optimizers of ΠB(N ;R) wrt N for a given R subject to the constraints

N ≤ N0 and N ≥ N0, respectively. Let Π∗,P r(R), Π∗,B− (R), and Π∗,B+ (R) be the correspond-

ing optimal profit functions. By the maximum theorem, each optimizer correspondence is

compact- and non-empty-valued and upper hemicontinuous in R, and each optimal profit

function is continuous in R. Further, note that R enters as an additive shift to ΠB
+(N ;R),

so that N∗,B+ is independent of R.

We next establish that N∗,P r(R) and N∗,B− (R) are strongly increasing in R, relative

to their respective codomains [0, 1] and [0, N0], in the set-valued sense of Definition D.1.

This follows from a strict version of Topkis’s theorem (see Theorem 1 of [CITE]) provided

∂2Π/∂R∂N > 0 for every N < 1.13 Note that

∂2ΠPr

∂R∂N
= βω′(N)(1− π),

and

ω′(N) = ω(N)×
{

γ(N)

pG(N)N
− γ′(N)(1−N)

pG(N)N + γ(N)(1−N)

}
.

When N = 0 this simplifies to ω′(0) = 1, while for every N ∈ (0, 1) this expression is strictly

positive. Meanwhile,
∂2ΠB

−

∂R∂N
= γ(N)(1− π),

which is strictly positive for N < 1 given that γ satisfies the same property.

Let N∗,B(R) be the unconstrained maximizer of ΠB(N ;R) wrt N. This correspondence

is also upper hemicontinuous by the maximum theorem, since ΠB(N ;R) is continuous in N

everywhere.

Lemma D.1. Either N∗,B(R) = N∗,B+ for all R > 0, or else there exists an R0 > 0 such that

N∗,B(R) =


N∗,B− (R), R < R0

N∗,B− (R) ∪N∗,B+ , R = R0

N∗,B+ , R > R0.

In either case N∗,B(R) is increasing in R everywhere, and in the latter case N∗,B(R) is strictly

increasing in R for R ≤ R0.

13Formally, the hypotheses of Theorem 1 of [CITE] require that ∂2Π/∂R∂N > 0 even at N = 1. However,

the proof of that theorem requires only that the inequality hold strictly for interior values of N, and we rely

on that slight generalization of the result.
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Proof. We first show that N∗,B− (R) = {N0} for R sufficiently large. Note that

∂ΠB
−

∂N
= γ(N)

(
1− V γ

′(N)(1−N)

γ(N)
+R(1− π)

)
.

Since 1 − V γ′(N)(1−N)
γ(N)

is bounded below on [0, N0], there exists an R sufficiently large that

1 − V γ′(N)(1−N)
γ(N)

+ R(1 − π) > 0 for all N ∈ [0, N0]. Thus for sufficiently large R, we have

∂ΠB
−/∂N > 0 for all N ≤ N0, implying N∗,B− (R) = {N0} for R large.

We further show that there exists an R# ≥ 0 such that N∗,B− (R) = {N0} for R > R# and

N0 /∈ N∗,B− (R) for R#. Let R# = inf{R > 0 : N0 ∈ N∗,B− (R)}. By the work of the previous

paragraph, we know that R# <∞. If R# = 0, then the result is immediate. Otherwise, by

upper hemicontinuity of N∗,B− , we know that N0 ∈ N∗,B− (R#). So

ΠB
−(N0;R#) ≥ ΠB

−(N ;R#)

for all N < N0. Then for any R > R#, we may write

ΠB
−(N0;R) = ΠB

−(N0;R#) + (R−R#)β

(
π +

pG(N0)N0

β
(1− π)

)
> ΠB

−(N ;R#) + (R−R#)β

(
π +

pG(N)N

β
(1− π)

)
= ΠB

−(N ;R)

for every N < N0. So N∗,B− (R) = {N0} for all R > R#. And by definition N0 /∈ N∗,B− (R) for

any R < R#. This establishes the desired result.

We next argue that ∆Π∗,B ≡ Π∗,B+ (R) − Π∗,B− (R) satisfies single-crossing in R. Suppose

that there exists an R̂ > 0 such that ∆Π∗,B(R̂) = 0. Then it follows that

ΠB
−(N ; R̂) ≤ Π∗,B+ (R̂)

for all N ≤ N0, with equality for at least one N. Now consider any R > R̂. Then we may

write

ΠB
−(N ;R) = ΠB

−(N ; R̂) + (R− R̂)β(1 + ω(N)(1− π)).

Recall that ω(N) < 1 for every N < 1, so that

ΠB
−(N ;R) < ΠB

−(N ; R̂) + (R− R̂)β ≤ Π∗,B+ (R̂) + (R− R̂)β = Π∗,B+ (R)

for every N ≤ N0. It follows that Π∗,B+ (R) > Π∗,B− (R) for every R > R̂. Now consider any

R < R̂. Then similar reasoning yields

ΠB
−(N ;R) > ΠB

−(N ; R̂) + (R− R̂)β
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for every N ≤ N0. In particular, for N satisfying ΠB
−(N ; R̂) = Π∗,B+ (R̂), we have

ΠB
−(N ;R) > Π∗,B+ (R̂) + (R− R̂)β = Π∗,B+ (R).

Hence Π∗,B− (R) > Π∗,B+ (R) for every R < R̂.

Now suppose that minN∗,B+ = N0. We showed earlier that there exists an R# ≥ 0

such that N∗,B− (R) = {N0} for R > R# and N0 /∈ N∗,B− (R) for R < R#. Hence whenever

R > R#, N∗,B− (R) ⊂ N∗,B+ and so immediately N∗,B(R) = N∗,B+ . If R# = 0 we’re done, so

suppose R# > 0. Then whenever R < R#, Π∗,B− (R) > ΠB
−(N0;R) = Π∗,B+ (R). So N∗,B(R) =

N∗,B− (R) in this case. As for R = R#, by upper hemicontinuity of N∗,B(R) at R = R#,

N∗,B+ ⊂ N∗,B(R#), and by upper hemicontinuity of N∗,B(R) and N∗,B− (R) at R = R#,

N∗,B− (R#) ⊂ N∗,B(R#). But also by definition of N∗,B(R), N∗,B(R#) ⊂ N∗,B− (R#) ∪ N∗,B+ ,

meaning N∗,B(R#) = N∗,B− (R#) ∪N∗,B+ . Thus N∗,B(R) has the desired form for R0 = R#.

Suppose instead that minN∗,B+ > N0. Recall that N0 ∈ N∗,B− (R) = {N0} for R ≥ R#.

Thus for R ≥ R# we must have Π∗,B+ (R) > Π∗,B− (R) given that N0 /∈ N∗,B+ . We further showed

that ∆Π∗,B(R) satisfies single crossing in R. If ∆Π∗,B(0) ≥ 0, then Π∗,B+ (R) > Π∗,B− (R) for

every R > 0, and so N∗,B(R) = N∗,B+ for all R > 0. On the other hand, if ∆Π∗,B(0) < 0, then

by single crossing there exists a unique R0 ∈ (0, R#) such that ∆Π∗,B(R) < 0 for R < R0

while ∆Π∗,B(R) > 0 for R > R0. So N∗,B(R) = N∗,B− (R) for R < R0 and N∗,B(R) = N∗,B+ for

R > R0, and by upper hemicontinuity argument of the previous paragraph we may conclude

that N∗,B(R0) = N∗,B− (R)∪N∗,B+ . This immediately implies the desired form of N∗,B(R) for

this choice of R0.

We complete the proof by establishing the claimed monotonicity properties. In the first

case in the lemma statement monotonicity is trivial. So suppose we are in the latter case.

We first prove strict monotonicity for R ≤ R0. Note that the arguments of the previous

two paragraphs imply that R0 ≤ R#, so that N0 /∈ N∗,B(R) for R < R0. Fix R ≤ R0 and

R′ < R0, and choose n ∈ N∗,B(R) and n′ ∈ N∗,B(R′). Since N0 /∈ N∗,B(R′) = N∗,B− (R′) and

maxN∗,B− (R′) ≤ N0, it follows that n′ < N0. If R < R0 then by the same argument n < N0.

On the other hand if R = R0 and n ≥ N0, then immediately n > n′. So without loss we

may assume that n < N0, in which case n ∈ N∗,B− (R). The desired result that n > n′ then

follows from strong monotonicity of N∗,B− (R) provided that 0 /∈ N∗,B− (R). But note that

∂ΠB
−

∂N
(0) = f ′(0)− V γ′(0) +Rγ(0)(1− π),

and since f ′(0), γ(0) > 0 while γ′(0) < 0, it follows that ∂ΠB
−/∂N > 0 at N = 0, so

0 /∈ N∗,B− (R), as desired.

Finally, consider global weak monotonicity. Fix any R > R′. If R ≤ R0 then monotonicity

follows from strict monotonicity, while if R′ > R0 then monotonicity follows from the fact
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that N∗,B(R) = N∗,B(R′). So suppose that R′ = R0. Then for any n′ ∈ N∗,B(R′), either

n′ ∈ N∗,B+ , in which case n′ ∈ N∗,B(R) = N∗,B+ , or else n′ ∈ N∗,B− \ N∗,B+ , in which case

n′ < n for every n ∈ N∗,B+ = N∗,B(R). So monotonicity holds in this case. Finally, suppose

that R > R0 > R′. Then for any n ∈ N∗,B(R) = N∗,B+ , also n ∈ N∗,B(R0), meaning by

strict monotonicity that n > n′ for every n′ ∈ N∗,B(R′). So weak monotonicity holds in all

cases.

We now derive the threshold R∗ > 0 claimed in the proposition statement. Specifically,

we will establish existence of an R∗ > 0 such that ∆Π∗(R) ≡ Π∗,B(R) − Π∗,P r(R) satisfies

∆Π∗(R) < 0 for R < R∗ while ∆Π∗(R) > 0 for R > R∗.

The proof of Proposition 2 established single-crossing of ΠPr(N ;R) − ΠB(N ;R) in N

for fixed R, with ΠPr(N ;R) > ΠB(N ;R) for N < N(R) and ΠPr(N ;R) < ΠB(N ;R) for

N > N(R). The threshold value N(R) is equal to 1 for R ≤ V/(1 − π), and is interior and

strictly decreasing inR forR > V/(1−π), with limR→∞N(R) = 0.Also, ifR < V/(1−π) then

ΠPr(N ;R) > ΠB(N ;R) for all N, while if R ≥ V/(1−π) then ΠPr(N(R);R) = ΠB(N(R);R)

We first establish that a promotion-distortion scheme is uniquely optimal for sufficiently

small R, while a bonus scheme is uniquely optimal for sufficiently large R. The small-R result

is immediate from the fact that ΠPr(N ;R) > ΠB(N ;R) for all N whenever R < V/(1− π).

So consider the limit of large R. Note that for any R > 0 and N ≤ N †,

∂ΠPr

∂N
= f ′(N) +Rβω′(N)(1− π) > 0

given that f ′(N) ≥ 0 for N ≤ N † and ω′(N) > 0 for N < 1. Thus minN∗,P r(R) > N † for

every R. But also for sufficiently large R, N(R) < N †. For any such R, choose N ′ ∈ N∗,P r(R).

Then N ′ > N † > N(R) and so we must have

Π∗,B(R) ≥ ΠB(N ′;R) > ΠPr(N ′;R) = Π∗,P r(R).

Hence a bonus scheme is uniquely optimal for large R.

Suppose that 1 ∈ N∗,P r(V/∆π). Since ΠB(N ;V/∆π) < ΠPr(N ;V/(1 − π)) for N < 1

while ΠB(1;V/(1 − π)) = ΠPr(1;V/(1 − π)), it follows that N∗,B(V/(1 − π)) = {1} and

Π∗,P r(V/(1−π)) = Π∗,B(V/(1−π)). Further, for every R > V/(1−π) the strong monotonicity

of N∗,P r(R) in R implies that N∗,P r(R) = {1}. Since 1 > N(R) for R > V/(1−π), it follows

that

Π∗,B(R) ≥ ΠB(1;R) > ΠPr(1;R) = Π∗,P r(R),

and thus a bonus scheme is uniquely optimal for every R > V/(1 − π). Finally, recall that

∆Π∗(R) < 0 for R < V/(1− π). The desired result therefore follows for R∗ = V/(1− π).
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Suppose instead that 1 /∈ N∗,P r(V/(1− π)). Then for all N,

Π∗,P r(V/(1− π)) ≥ ΠPr(N ;V/(1− π)) ≥ ΠB(N ;V/(1− π)),

with the first inequality strict when N = 1 and the second inequality strict when N < 1.

Thus ∆Π∗(V/(1− π)) < 0. And we established above that ∆Π∗(R) < 0 for R < V/(1− π),

while ∆Π∗(R) > 0 for R sufficiently large. We will show that ∆Π∗(R) satisfies single-crossing

for R > V/(1−π), which immediately implies existence of an R∗ > V/(1−π) with the desired

properties.

Lemma D.2. For every N,

ω(N) ≤ min

{
pG(N)N

β
, 1

}
,

with the inequality strict whenever N < 1.

Proof. First note that straightforwardly ω(1) = 1, while by assumption pG(1) > β. So the

inequality in the lemma statement holds with equality for N = 1. Suppose instead that

N < 1. We previously established that ω′(N) > 0 for all N < 1. Then since ω(1) = 1, we

must have ω(N) < 1 for all N < 1. Further, the derivative of pG(N)N + γ(N)(1 − N) is

γ′(N)(1−N) < 0, so this expression is strictly decreasing in N and equal to pG(1) at N = 1.

Therefore for all N < 1,

ω(N) <
pG(N)N

pG(1)
<
pG(N)N

β
,

with the final inequality following from the assumption that β < pG(1).

Consider any R̂ > V/(1 − π) at which ∆Π∗(R̂) = 0. Select any n′ ∈ N∗,P r(R̂) and

n′′ ∈ N∗,B(R̂). The fact that ΠB(n′′; R̂) ≥ ΠPr(N ; R̂) for all N implies that n′′ ≥ N(R̂),

while the fact that ΠPr(n′; R̂) ≥ ΠB(N ; R̂) for all N implies that n′ ≤ N(R̂).

Now fix any R > R̂. Since N(R) is strictly decreasing in R, we know that ΠPr(N ;R) <

ΠB(N ;R) for every N ≥ N(R̂). Hence Π∗,B(R) > ΠPr(N ;R) for all N ≥ N(R̂). So fix any

N < N(R̂). Note that N(R̂) < 1, so we have

ΠPr(N ;R) = ΠPr(N ; R̂) + (R− R̂)β (π + ω(N)(1− π))

< ΠPr(N ; R̂) + (R− R̂)β

(
π + min

{
pG(N)N

β
, 1

}
(1− π)

)
≤ Π∗,P r(R̂) + (R− R̂)β

(
π + min

{
pG(N)N

β
, 1

}
(1− π)

)
= Π∗,B(R̂) + (R− R̂)β

(
π + min

{
pG(N)N

β
, 1

}
(1− π)

)
.
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Now, note that N < N(R̂) ≤ n′′ and min{pG(n)n/β, 1} is weakly increasing in n. Therefore

ΠPr(N ;R) < Π∗,B(R̂) + (R− R̂)β

(
π + min

{
pG(n′′)n′′

β
, 1

}
(1− π)

)
= ΠB(n′′;R).

Hence Π∗,B(R) > ΠPr(N ;R) for all N, meaning ∆Π∗(R) > 0.

Finally, fix any R < R̂. Since N(R) is strictly decreasing in R, we know that ΠPr(N ;R) >

ΠB(N ;R) for every N ≤ N(R̂). Hence Π∗,P r(R) > ΠB(N ;R) for all N ≤ N(R̂). So fix any

N > N(R̂). Then we have

ΠB(N ;R) = ΠB(N ; R̂) + (R− R̂)β

(
π + min

{
pG(N)N

β
, 1

}
(1− π)

)
≤ ΠB(N ; R̂) + (R− R̂)β (π + ω(N)(1− π))

≤ Π∗,B(R̂) + (R− R̂)β (π + ω(N)(1− π))

= Π∗,P r(R̂) + (R− R̂)β (π + ω(N)(1− π)) .

Further, ω(N) is a strictly increasing function, and as n′ ≤ N(R̂) < N, we therefore have

ΠB(N ;R) < Π∗,P r(R̂) + (R− R̂)β (π + ω(n′)(1− π)) = ΠPr(n′;R).

So Π∗,P r(R) > ΠB(N ;R) for all N, meaning ∆Π∗(R) < 0. Thus ∆Π∗(R) satisfies single-

crossing, as desired.

We now turn to monotonicity properties of N∗(R). First note that for R < R∗, N∗(R) =

N∗,P r(R). Let R# ≡ inf{R > 0 : 1 ∈ N∗,P r(R)}. For every R,

∂ΠPr

∂N
(1;R) = f ′(1) +Rβω′(1)(1− π),

and as ω′(1) is finite while f ′(1) < 0, for sufficiently small R we have ∂ΠPr/∂N < 0 at

N = 1, so that 1 /∈ N∗,P r(R) for R sufficiently small. Thus R# > 0. At the other extreme,

∂ΠPr

∂N
(0;R) = f ′(0) +Rβ(1− π).

Since f ′(0) > 0, it follows that ∂ΠPr/∂N > 0 at N = 0, so that 0 /∈ N∗,P r(R) for any

R. These results, combined with strong monotonicity of N∗,P r(R), collectively ensure that

N∗,P r(R) satisfies strict monotonicity for R ≤ R#. Meanwhile, strong monotonicity also

implies that N∗,P r(R) = {1} for R > R#. So N∗,P r(R) is weakly monotone everywhere.

Now, recall that either R∗ = V/(1− π) and 1 ∈ N∗,P r(R∗) while N∗,B(R∗) = {1}, or else

R∗ > V/(1 − π) and maxN∗,P r(R∗) ≤ N(R∗) < 1 while minN∗,B(R∗) ≥ N(R∗). In both

cases

N∗(R) =


N∗,P r(R), R < R∗

N∗,P r(R) ∪N∗,B(R), R = R∗

N∗,B(R), R > R∗.
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In the former case, Lemma D.1 ensures that N∗,B(R∗) = {1} for all R > R∗, in which case

the monotonicity properties of N∗,P r(R) ensure that N∗(R) must be monotone everywhere,

strictly monotone for R ≤ R#, and constant for R > R#. Thus the desired monotonicity

properties hold for R = R# > 0. So consider the latter case. Recall the monotonicity

properties of N∗,B(R) established in Lemma D.1, and let R0 = 0 if N∗,B(R) = N∗,B+ for all

R > 0. These properties, combined with the monotonicity properties of N∗,P r(R), ensure that

N∗(R) is monotone everywhere, strictly monotone for R ≤ max{R∗, R0}, and constant for

R > max{R∗, R0}. Thus the desired monotonicity properties hold for R = max{R∗, R0} > 0.

E Proof of Proposition 4

We derive the optimal incentive scheme when V = 1, with the optimal incentive for general

V obtainable by beginning with the optimal incentive scheme for R′ = R/V and V ′ = 1 and

then scaling up transfers by a factor of V. See the proof of Proposition 2 for details on this

procedure.

Let

ξ(N) ≡ (1− γ(N))(1−N)(1−R(π − πB(N))) + (1− pG(N))N.

We establish that the following is an optimal incentive scheme:

1. If ξ(N) ≤ 0, the organization pays bonuses but promotes efficiently. In particular,

letting N0 ∈ (0, 1) be the solution to pG(N)N + (1−N) = β,

(a) If N ≤ N0,

σG = 1, σ∅ =
β − pG(N)N

1−N
, σB = 0, TB =

β − µ(N)

(1− γ(N))(1−N)
, TG = T∅ = 0.

(b) If N > N0,

σG = σ∅ = 1, σB =
β −NpG(N)− (1−N)

(1− pG(N))N
, TB =

1− β
(1− pG(N))N

, TG = T∅ = 0.

2. If ξ(N) > 0, the organization distorts promotions but pays no bonuses:

σG = 1, σ∅ = γ(N) + (1− γ(N))
β − µ(N)

1− µ(N)
, σB =

β − µ(N)

1− µ(N)
, TG = TB = T∅ = 0,

where µ(N) ≡ pG(N)N + γ(N)(1−N).
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We further show that when N /∈ {0, 1} ∪ ξ−1(0), the optimal incentive scheme is unique.

Finally, we establish that when (1 − N)(1 − γ(N)) is monotone, ξ satisfies single-crossing,

so that defining

N(R) ≡ sup{N ∈ [0, 1] : ξ(N) < 0},

the organization optimally pays bonuses when N < N(R) and optimally distorts promotions

when N > N(R).

We first characterize an optimal policy for N ∈ (0, 1), and return to the extremal case

afterward. We conjecture that the binding constraint involves the Nth employee, in the

direction of choosing an innovative project. Thus we solve the relaxed problem in which the

only IC constraint is

γ(N)(σG + TG) + (1− γ(N))(σB + TB) ≥ σ∅ + T∅,

and confirm that the resulting optimal scheme involves σG + TG ≥ σB + TB and a binding

Nth-employee IC constraint. Thus the solution to the relaxed problem satisfies the full set

of IC constraints.

We first argue that both constraints bind at the optimum of the relaxed problem. Suppose

first that the feasibility constraint were slack. Then trivially profits are maximized by setting

T = (0, 0, 0) and σ = (1, 1, 1), since this scheme satisfies the Nth-employee IC constraint.

But then a measure 1 of employees are promoted, violating feasibility. So the feasibility

constraint binds at the optimum. Suppose next that the Nth-employee IC constraint were

slack. Then the optimal scheme would pay no bonuses and promote efficiently subject to

feasibility, setting

σG = 1, σ∅ = min

{
β − pG(N)N

1−N
, 1

}
, σB = max

{
β − pG(N)N − (1−N)

(1− pG(N))N
, 0

}
.

Note that σB < 1, and so if σ∅ = 1 then

σ∅ + T∅ = 1 > γ(N)(σG + TG) + (1− γ(N))(σB + TB),

violating IC. On the other hand if σ∅ < 1 then σB = 0, in which case

γ(N)(σG + TG) + (1− γ(N))(σB + TB) = γ(N).

Thus

σ∅ + T∅ − (γ(N)(σG + TG) + (1− γ(N))(σB + TB)) =
β − µ(N)

1−N
.

Recall that µ(N) is strictly decreasing in N , and so is maximized at N = 0, where µ(0) =

pG(0) < β. Thus the rhs of the previous expression is strictly positive, again violating IC.
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So the IC constraint must also bind. (This establishes one of the claims of the previous

paragraph.)

We now argue that TG = T∅ = 0 at the optimum of the relaxed problem. Given that the

IC constraint binds at the optimum, the Lagrange multiplier λ on that constraint must be

strictly positive. The derivative of the Lagrangian wrt T∅ at the optimum is therefore

∂L

∂T∅
= −(1−N)− λ < 0,

implying T∅ = 0 at the optimum. Now, suppose that (TG, TB) are both perturbed by an

amount ∆. The derivative of the Lagrangian wrt ∆ is

∂L

∂∆
= −N + λ,

which much be weakly negative at the optimum in order for there not to be an improve-

ment involving an increase of (TG, TB). Hence λ ≤ N. Additionally, the derivative of the

Lagrangian wrt TG is

∂L

∂TG
= −pG(N)N + λγ(N) ≤ N(γ(N)− pG(N)),

which is strictly negative given that γ(N) < pG(N) for all N > 0. So it must be that TG = 0

at the optimum.

We now argue that σG = 1 at the optimum. Suppose first that TB > 0 at the optimum.

Then the IC constraint implies that σ∅ > 0, for otherwise the rhs would be zero while the

lhs is strictly greater than 0. Suppose additionally that σG < 1 at the optimum. Consider a

new promotion scheme (σ′G, σ
′
∅, σ

′
B) = (σG + ∆′, σ∅ −∆), where ∆,∆′ are sufficiently small

that σ∅ −∆ > 0 and σG + ∆′ < 1, and are chosen relative to one another to ensure that the

feasibility constraint continues to be satisfied. This new scheme raises the payoff to choosing

an innovative project and lowers the payoff to choosing a safe project. Therefore the IC

constraint may be satisfied by appropriately lowering TB, which is feasible given TB > 0

if ∆,∆′ are chosen sufficiently small. This new incentive scheme is feasible and IC, pays

strictly lower bonuses, and reallocates promotions from employees choosing safe projects

to employees achieving good outcomes. Thus total profits must go up, contradicting the

presumed optimality of the original scheme. Thus σG = 1 if TB > 0 at the optimum.

Suppose instead that TB = 0 at the optimum. Then the optimal promotion probabilities

must solve the reduced optimization problem with no bonuses. With bonuses eliminated,

the firm’s problem is to maximize the value of promoted employees

N(pG(N)σG + (1− pG(N))πB(N)σB) + (1−N)πσ∅
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subject to the constraintsγ(N)σG + (1− γ(N))σB ≥ σ∅,

β ≥ N(pG(N)σG + (1− pG(N))σB) + (1−N)σ∅.

The arguments used to establish that both constraints bind in the problem with bonuses

continue to hold here, and so both constraints must bind in the reduced problem with-

out bonuses. Use the binding IC constraint to eliminate σ∅ from the problem, leaving the

objective

(NpG(N) + (1−N)γ(N)π)σG + (N(1− pG(N))πB(N) + (1−N)(1− γ(N))π)σB,

subject to the reduced feasibility constraint

β ≥ (NpG(N) + (1−N)γ(N))σG + (N(1− pG(N)) + (1−N)(1− γ(N))σB,

which must bind at the optimum. The derivatives of the corresponding Lagrangian are

∂L

∂σG
= pG(N)N

(
1− λ

(
1 +

γ(N)(1−N)

pG(N)N

))
and

∂L

∂σB
= (1− pG(N))N

(
πB(N)− λ

(
1 +

(1− γ(N))(1−N)

(1− pG(N))N

))
,

where λ > 0 at the optimum given that the feasibility constraint must bind. Given that

N > 0, we have γ(N) < pG(N) and thus 1− γ(N) > 1− pG(N). It follows that

1− λ
(

1 +
γ(N)(1−N)

pG(N)N

)
> πB(N)− λ

(
1 +

(1− γ(N))(1−N)

(1− pG(N))N

)
.

Hence at the optimum, at most one of σG and σB may be interior, and σG ≥ σB. In particular,

if σG < 1 then σB = 0. But then the constraint reduces to

β = (NpG(N) + (1−N)γ(N))σG.

Note that NpG(N) + (1−N)γ(N) has derivative (1−N)γ′(N) < 0, so that the expression

is maximized at N = 0, where it equals pG(0). Thus in particular the rhs of the constraint

is strictly less than pG(0), which by assumption is strictly less than β, a contradiction. So it

must be that σG = 1 if TB = 0 at the optimum.

Going forward, we restrict attention to the problem with TG = T∅ = 0, σG = 1, and both

constraints enforced with equality:

γ(N) + (1− γ(N))(σB + TB) = σ∅, (E.1)
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β = N(pG(N) + σB(1− pG(N))) + (1−N)σ∅. (E.2)

Use equation (E.1) to eliminate σ∅ from the problem, yielding the reduced constraint

β = pG(N)N+γ(N)(1−N)+((1−pG(N))N+(1−γ(N))(1−N))σB+(1−γ(N))(1−N)TB.

This constraint may then be used to further eliminate TB from the problem. After dropping

an additive constant, this reduction yields the following optimization problem for σB:

max
σB∈[0,1]

(1− pG(N))N

(1− γ(N))(1−N)
ξ(N)σB,

subject to the boundary constraints that σ∅ ∈ [0, 1] and TB ≥ 0. This objective is strictly

increasing in σB if ξ(N) > 0, and is strictly decreasing in σB if ξ(N) < 0. (When ξ(N) = 0,

any feasible scheme in this reduced class is optimal.)

Consider first the case ξ(N) > 0. Recall that the reduced constraint implies a linear

relationship between σB and TB. Thus if ξ(N) is positive, σB is optimally set as high as

possible subject to TB ≥ 0, with TB specified by the reduced constraint, and the boundary

constraints on σB and σ∅, with σ∅ specified by the IC constraint. The reduced constraint

combined with TB ≥ 0 imply that

σB ≤ σB ≡
β − µ(N)

1− µ(N)
,

where µ(N) ≡ pG(N)N + γ(N)(1 − N). Note that µ′(N) = γ′(N)(1 − N) < 0, so µ is

maximized at N = 0, where µ(0) = pG(0) < β. Thus µ(N) < β for every N, implying

σB ∈ (0, 1), so this value of σB satisfies with its boundary constraint. Further, the IC

constraint with σB = σB and TB = 0 implies

σ∅ = γ(N) + (1− γ(N))σB,

which is a weighted average of 1 and a quantity in (0, 1), with a weight of γ(N) < 1 on 1.

Thus σ∅ ∈ (0, 1) for these choices of σB and TB. It follows that σB = σB and TB = 0 are the

unique optimal choices of (σB, TB) when ξ(N) > 0.

Now consider the case ξ(N) < 0. Now σB is optimally set as small as possible subject

to the boundary constraints on TB, σB, and σ∅, with TB specified by the reduced constraint

and σ∅ specified by the IC constraint. We first check whether σB = 0 satisfies all boundary

constraints. In this case the reduced constraint yields

TB =
β − µ(N)

(1− γ(N))(1−N)
,
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which satisfies the boundary constraint TB ≥ 0 given that µ(N) < β. Substituting into the

IC constraint then yields

σ∅ = γ(N) +
β − µ(N)

1−N
=
β − pG(N)N

1−N
.

This expression is always strictly positive, but is less than 1 only for N ≤ N0, where N0

is the unique solution to pG(N)N + (1 − N) = β. Thus whenever N ≤ N0, the optimal

incentive scheme sets σB = 0 and TB = (β−µ(N))/((1−γ(N))(1−N)). On the other hand,

when N > N0 the boundary constraint σ∅ ≤ 1 must bind at the optimum. In this case the

feasibility constraint implies that

σB =
β −NpG(N)− (1−N)

(1− pG(N))N
.

The IC constraint may then be used to recover TB, yielding

TB = 1− σB =
1− β

(1− pG(N))N
.

We now characterize the sign of ξ. Recall that πB(N) is increasing in N, and so ∆π(N) ≡
π − πB(N) is decreasing in N. So suppose first that R ≤ 1/∆π(0). Then ξ(N) > 0 for

all N ∈ (0, 1). Suppose instead that R > 1/∆π(0). Then ξ(1) = 1 − pG(1) > 0, while

ξ(0) = (1 − γ(0))(1 − R∆π(0)) < 0 given that γ(0) < 1. So ξ is negative for N sufficiently

close to 0, and positive for N sufficiently close to 1. We further show that ξ satisfies single-

crossing whenever (1−N)(1− γ(N)) is weakly decreasing. First note that whenever N > 0

and R∆π(N) ≥ 1, ξ(N) > 0. So consider N such that R∆π(N) < 0. In that case the fact

that ∆π(N) and (1− γ(N))(1−N) are both decreasing in N implies that

(1− γ(N))(1−N)(1−R∆π(N))

is increasing in N. Meanwhile (1 − pG(N))N has derivative 1 − γ(N), and so is strictly

increasing in N. Thus ξ(N) is strictly increasing in N whenever R∆π(N) < 0. It follows

that ξ satisfies single-crossing.

Whenever ξ satisfies single-crossing, the form of an optimal incentive scheme depends on

how N compares to the threshold N(R). The arguments of the previous paragraph imply

that N(R) = 0 for R ≤ 1/∆π(0), and N(R) < 1 for all R. Further,

∂ξ

∂R
= (1− γ(N))(1−N)πB(N),

which is strictly decreasing in N whenever (1− γ(N))(1−N) is decreasing. So N(R) must

be strictly increasing in R whenever it is nonzero.
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Finally, consider the extremal cases N = 0, 1. Note that the organization’s objective

function is continuous in (σ,T , N), and the set of feasible, IC incentive schemes is charac-

terized by a set of weak inequalities which are each continuous in N. Thus the constraint

correspondence is continuous in N. This correspondence is not compact, as transfers are

unbounded. However, it is easy to show that placing a sufficiently large bound on transfers,

uniformly for all N, does not change the optimal scheme for any N. (Indeed, it is never

necessary to offer a transfer larger than 1 to any employee to implement any desired N and

promotion probabilities.) Thus it is without loss to pass to the modified problem with a suf-

ficiently large bound on transfers. The maximum theorem may then be invoked to conclude

that our characterized optimal incentive schemes for N ∈ (0, 1) remain optimal in the limits

N = 0, 1.

F Proof of Proposition 5

In light of Proposition 4, an optimal incentive scheme takes one of two forms: it either

distorts promotions, or offers a bonus in case of a bad outcome on an innovative project, but

not both. We proceed by computing total profits under each scheme as a function of N, and

comparing profits from each scheme under their respective optimal choices of N.

Under the promotion-distortion scheme, total payoffs from implementing N innovative

projects are

ΠPr(N ;R) = f(N) +R

{
pG(N)N + (1− pG(N))N

β − µ(N)

1− µ(N)
πB(N)

+(1−N)

(
γ(N) + (1− γ(N))

β − µ(N)

1− µ(N)

)
π

}
.

By Bayes’ rule,

πB(N) =

(
1− 1

N

∫ N
0
q(n) dn

)
π

1− pG(N)
=
π − pG(N)

1− pG(N)
.

Inserting this expression into ΠPr(N ;R) and simplifying yields

ΠPr(N ;R) = f(N) +Rβ

(
π + (1− π)

1− β
β

pG(N)N

1− µ(N)

)
.

Meanwhile under the bonus scheme, total payoffs from implementing N ≤ N0 innovative

projects are

ΠB
−(N ;R) = f(N)− V β − µ(N)

(1− γ(N))(1−N)
(1− pG(N))N

+R

(
pG(N)N +

β − pG(N)N

1−N
(1−N)π

)
,
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or equivalently

ΠB
−(N ;R) = f(N)− V β − µ(N)

(1− γ(N))(1−N)
(1− pG(N))N +Rβ

(
π + (1− π)

pG(N)N

β

)
.

And when N > N0, total payoffs are

ΠB
+(N ;R) = f(N)− V (1− β) +R (pG(N)N + (1−N)π + (β − pG(N)N − (1−N))πB(N)) .

Inserting the expression for πB(N) above and simplifying yields

ΠB
+(N ;R) = f(N)− V (1− β) +Rβ

(
π + (1− π)

1− β
β

pG(N)

1− pG(N)

)
.

We define ΠB(N ;R) for N ∈ [0, 1] by letting ΠB(N ;R) = ΠB
−(N ;R) for N ≤ N0 and

ΠB(N ;R) = ΠB
+(N ;R) for N > N0. Note that ΠB(N ;R) is a continuous function of N given

that ΠB
−(N0;R) = ΠB

+(N0;R).

Define Π∗,P r(R) = supN∈[0,1] Π
Pr(N ;R), and similarly Π∗,B− (R) = supN∈[0,N0] Π

B(N ;R),

Π∗,B+ (R) = supN∈[N0,1] Π
B(N ;R), and Π∗,B(R) = supN∈[0,1] Π

B(N ;R). Each of these functions

is the maximized value of a continuous objective over a compact objective set, and so each

is a continuous function of R.

We first show that Π∗,P r(R) > Π∗,B(R) for sufficiently small R > 0. The proof of Propo-

sition 4 established that for R ≤ V/(π−πB(0)), that ΠPr(N ;R) ≥ ΠB(N ;R) for all N, with

the inequality strict when N ∈ (0, 1). Further, when R = 0, ΠPr(N ; 0) is uniquely maxi-

mized at N = N † ∈ (0, 1). Thus in particular Π∗,P r(0) > ΠPr(0; 0),ΠPr(1; 0). Since Π∗,P r(R)

is continuous in R, it follows that for R > 0 sufficiently small, we also have Π∗,P r(R) >

ΠPr(0;R),ΠPr(1;R). Hence for R > 0 sufficiently small, Π∗,P r(R) ≥ ΠPr(N ;R) > ΠB(N ;R)

for all N ∈ (0, 1), and further Π∗,P r(R) > ΠPr(N ;R) ≥ ΠB(N ;R) for N = 0, 1. Thus

Π∗,P r(R) > Π∗,B(R) for R sufficiently small.

We complete the proof by showing that Π∗,B(R) > Π∗,P r(R) for sufficiently large R.

Define Γ(N) ≡ pG(N)N/(1 − µ(N)), and let N̂ be any maximizer of Γ(N) on [0, 1]. (Since

Γ(N) is continuous, at least one such maximizer must exist.) For any R, it must be the case

that the payoff from the optimal promotion-distortion scheme is bounded above by

Π∗,P r(R) ≤ f(N †) +Rβ

(
π + (1− π)

1− β
β

Γ(N̂)

)
.

Meanwhile, for any R the payoff from the optimal bonus scheme is bounded below by

Π∗,B(R) ≥ ΠB
−(N0;R) = f(N0)− V (1− β) +Rβ

(
π + (1− π)

pG(N0)N0

β

)
.

49



Therefore

Π∗,B(R)− Π∗,P r(R) ≥ f(N0)− f(N †)− V (1− β) +R(1− π)
(
pG(N0)N0 − (1− β)Γ(N̂)

)
.

We now show that Γ(N) < pG(N0)N0/(1−β) for allN, so that in particular (1−β)Γ(N̂) <

pG(N0)N0. Note that since µ(N) is strictly decreasing in N, we have µ(N) ≤ µ(0) = γ(0) =

pG(0) < β for all N, and hence 1− µ(N) > 1− β for all N . We may therefore bound Γ(N)

above as Γ(N) < pG(N)N/(1 − β) for all N. Since pG(N)N is strictly increasing in N, it

follows that Γ(N) < pG(N0)N0/(1 − β) for N ≤ N0. We may derive another upper bound

on Γ(N) by noting that

1− µ(N) = (1− pG(N))N + (1− γ(N))(1−N) ≥ (1− pG(N))N.

Hence

Γ(N) ≤ pG(N)N

(1− pG(N))N
=

pG(N)

1− pG(N)

for all N. Since pG(N) is strictly decreasing in N, this upper bound is strictly decreasing in

N, and so in particular for all N > N0 we have

Γ(N) <
pG(N0)

1− pG(N0)
.

Now, by definition N0 satisfies pG(N0)N0+(1−N0) = β, which is equivalently 1−pG(N0) =

(1− β)/N0. Thus

Γ(N) <
pG(N0)N0

1− β
for all N > N0, as desired.

Given that (1 − β)Γ(N̂) < pG(N0)N0 and N0 and N̂ are both independent of R, we

have that Π∗,B(R)−Π∗,P r(R) is bounded below by an expression which is an affine, strictly

increasing function of R. Thus Π∗,B(R) > Π∗,P r(R) for sufficiently large R, as desired.
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