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Abstract

This paper addresses two central questions in markets with adverse selection: How does

information impact the welfare of market participants (sellers and buyers)? Also, relatedly,

what is the optimal rating policy and how is it a�ected by the objective function of the planner?

In addition, we study the optimal design and performance of simple mechanisms that consist

of a small number of ratings. Particularly, we compare the revenue generated in the market

under these two schemes and �nd that the value loss due to using simple ratings is small and

drops sharply as the number of signals grows.
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1 Introduction

Reputation mechanisms and ratings are widely used in markets with adverse selection. While rele-

vant for any market with asymmetric information (e.g., hygiene ratings for restaurants or doctors’

performance ratings), information design is a key consideration for the overall performance of the

ever more popular online trading platforms, where transactions are decentralized and rarely re-

peated. Despite the importance of these mechanisms, little is known about their optimal design

and how it might depend on the characteristics of the market, such as supply, demand, and the

distribution of sellers’ quality. This paper sheds light on this question by considering the design of

an optimal information disclosure mechanism and how it relates to market characteristics.

In particular, the paper addresses two central questions. First, how does information impact the

welfare of market participants (i.e., sellers and buyers)? Also, relatedly, what is the optimal rating

policy and how is it a�ected by the objective function of the planner? Secondly, and motivated

by fact that rating systems tend to be very simple in practice, we consider the question of optimal

design and performance of rating systems when limited to a small number of ratings.

Our baseline model considers a competitive market with a large set of buyers and sellers.
1

Firms

are endowed with di�erent levels of quality, which is the only source of product di�erentiation.
2

The model exhibits two features that are common to adverse selection settings. First, low-quality

sellers bene�t from being pooled with high-quality ones, while adversely a�ecting them. Second,

high-quality sales are crowded out by low-quality ones. Information disclosure, and in particular a

rating system, helps reallocate sales from lower- to higher-quality producers, thus mitigating the

problem of adverse selection. Our analysis focuses on two main sources of market heterogeneity:

the distribution of �rm qualities and the responsiveness of sellers’ supply to prices. Intuitively, the

heterogeneity and skewness of seller quality a�ect the spread of prices across ratings, while the

responsiveness of supply determines the resulting reallocation of output across these categories.

To our best knowledge, this is the �rst paper that systematically considers the interaction of these

1
We also consider the case of Cournot competition with constant marginal costs and show the results are the same

as those for perfect competition with linear supply.

2
While moral hazard might be a critical consideration in some markets, in others adverse selection might play a

more critical role, as suggested by an empirical study on eBay (see Hui et al. (2018)). Optimal rating design with moral

hazard and adverse selection is considered in Saeedi and Shourideh (2019) in a simpli�ed market environment.
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two factors and their impact on optimal information disclosure and rating design.

As a result of improved information, prices become more strongly associated with true quality

of sellers and thus more dispersed. Demand is reallocated from lower- to higher-quality �rms,

which has a positive e�ect on the average quality of goods consumed and total surplus. However,

the e�ect of improved information on total market size and consumer surplus is ambiguous and

depends on the properties of the supply function. When supply is concave, the higher spread in

prices results in a decrease in total output and lowers consumer surplus. The opposite occurs when

the supply is convex.

Regarding optimal information design, we �nd that better information has opposing welfare

e�ects on consumers and producers that could lead to limited disclosure depending on the social

objective. For example, in regions where the supply function is concave, pooling can mitigate

the reduction in output from improved information and its negative impact on consumer surplus.

Where the supply function is convex, pooling decreases total output and increases prices, which

might have a positive impact on producers. For those cases where full information is not optimal,

we �nd that the region of pooling increases with the strength of the bias in the planner’s preference

for one or the other group.

In the second part, we turn to the question of optimal rating design, when limited to a small

number of ratings. In practice, rating systems usually provide coarse signals of quality to buyers.

For example, in California, restaurants are given grades A, B, C, or none based on the score ob-

tained after a hygiene inspection is conducted. Airbnb awards its top-quality hosts the Superhost

badge, and eBay’s high-quality sellers are classi�ed as Top Rated Sellers. Many governmental and

non-pro�t agencies certify �rms that meet certain standards.
3

These examples raise two critical

questions about coarse rating design: First, given a number of ratings, what are the criteria for

setting the boundaries between them? In particular, when there are only two tiers, how stringent

should the standards for certi�cation be?
4

Second, what is the welfare loss of using a coarse rating

3
For example the website ecolabelindex.com currently lists 455 certi�ers for food and consumer products across

199 countries and 25 industry sectors. To the best of our knowledge, they all use these simple mechanisms mostly with

certifying only a subset of the �rms in the sector that meet some minimum requirements. Accessed June 11, 2021.

4
Hui et al. (2021) examine the e�ect of an increase in the requirements to become a badged seller on eBay. They

�nd that this increase leads to a higher market share of high-quality sellers while decreasing the sales of sellers in the

medium range of quality.
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system instead of using the unconstrained optimal mechanism?

We �rst derive a necessary condition de�ning the thresholds that correspond to an intuitive

criterion. Consider a marginal �rm with quality at the threshold between two adjacent intervals.

For this threshold to be optimal, the planner should be indi�erent between pooling this �rm with

those in the intervals above or below. This decision ultimately a�ects the demand faced by the

�rm, and thus its total output. The bene�t of the increased output is the extra value generated

by the additional sales, which at the optimum should be equated to the extra cost of production.

Therefore, one of the key determinants of this trade-o� is the supply behavior of �rms, in particular,

the curvature of the supply function. We �nd a simple characterization for the optimal thresholds

in the case of linear supply, which provides a useful benchmark.
5

These optimal thresholds are the

solution to a standard clustering problem that involves only information regarding the distribution

of qualities.
6

Regarding the performance of ratings, we show that a one-threshold partition closes at least

half of the surplus gap between no information and full information for quality distributions with

log-concave density. In our numerical computations, we �nd that this partition closes from 46%

to nearly 77% of the gap, depending on the underlying distribution of qualities. The loss due to

coarse ratings diminishes rapidly as the number of thresholds increases, implying that a simple

and cost-e�ective system with a few tiers can achieve a large part of the full-disclosure value.

The design of a rating system faces the following challenges, which we address. How strict

should the standards for certi�cation be? How selective should they be? And how does their

choice depend on the distribution of quality and supply considerations? We �nd that an increase

in right (resp. left) skewness reduces (resp. increases) the share of producers with high ratings and

increases (resp. decreases) the share of those with lower ratings. Similar considerations apply to

the degree of convexity of the supply function. An intuition for this result is that optimal ratings

trade o� pooling in di�erent regions. Pooling is more costly where there is more quality dispersion

or where supply is more responsive to prices.

The last part of the paper examines a series of extensions. We �rst consider a demand system

5
Equivalently, Cournot competition with constant marginal cost.

6
This clustering problem can be solved by the k−means algorithm as introduced by MacQueen et al. (1967) and

used extensively in machine learning and statistics.
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where agents have heterogeneous preference for quality, and �rms have inelastic supply. Second,

we consider Cournot competition and show that all the results obtained under perfect competition

for our benchmark case apply to this setting. In our �nal extension, we add entry to the baseline

model.

Related Literature Our paper is related to two strands of literature: �rst, the papers considering

the impact of information disclosure on consumer and producer surplus; second, those concerning

the determinants of coarse rating systems as well as their performance.
7

Most papers belonging to the �rst strand of literature consider the case where there is a single

seller, or auctioneer, and multiple buyers, as opposed to multiple agents on both sides. Similar to

our results, Schlee (1996) shows that information can hurt consumers when the cost function is

su�ciently convex. Bergemann et al. (2015) consider the impact of information in third-degree

price discrimination. They show that any distribution of surplus that is between the ones achieved

by optimal pricing with none and full information can be attained with some information structure.

Bergemann and Pesendorfer (2007) show that in a private value setting, bidders can be worse o�

with better information even though total surplus increases. Board (2009) shows that this result

depends on the number of bidders. Hoppe et al. (2011) consider a matching problem where for

some distribution of types, consumers can be worse o� with better information. In our paper we

show that better information always increases total surplus, but it might decrease consumer or

producer surplus depending on properties of the supply function. These considerations are absent

in the matching framework, where supply is inelastic.

There is a large literature on certi�cation and quality disclosure. Dranove and Jin (2010) provide

an excellent survey of the earlier papers. Most of the literature has focused either on the incentives

for �rms to reveal their information or the incentives of certi�ers to do so. The main question in

this literature is how much information will be revealed in equilibrium and how this might depend

on the nature of competition in the product or certi�cation markets. As an example, Lizzeri (1999)

�nds that while a monopoly certi�er chooses to provide coarse information with a single and

7
Our paper focuses on a setting where uncertainty is about seller quality, and information is provided to consumers.

There is a growing literature that focuses on the reverse channel, where an intermediary transmits information about

buyers to sellers. For a survey see Bergemann and Bonatti (2019).
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low threshold, competition among certi�ers can lead to full information. Ostrovsky and Schwarz

(2010) consider equilibrium information structures where colleges strategically choose how much

information to reveal about their students ability. DeMarzo, Kremer, and Skrzypacz (2019) consider

a Bayesian game where agents choose the informativeness of testing but can withhold bad results.

Our paper di�ers from this certi�cation literature in several dimensions. First, in our setting

information is freely provided by a single informed certi�er, and in particular it is exogenous to

the �rm, as occurs in the examples mentioned above. Secondly, information a�ects payo�s of

�rms through two channels. The �rst is a standard one, where certi�cation provides a signal of

expected quality to consumers, directly a�ecting the price faced by the �rm. The second one is

that certi�cation a�ects total equilibrium output and thus the equilibrium prices received by all

�rms, thus impacting both, producer and consumer surplus. This e�ect is absent in most papers on

certi�cation in markets, that usually assume inelastic supply. Another implication of elastic supply,

is that certi�cation reallocates sales across �rms, to a degree that is a�ected by supply elasticity.

This plays an important role in the value and design of an optimal certi�cation mechanism.

Coarse ratings have also been justi�ed in the literature by their simplicity and overall perfor-

mance. Wilson (1989) shows that losses relative to full information are of order 1/n2
for a partition

with n classes. This �nding is consistent with our computed bounds in Section 4.2. Our theoretical

bound on the gains from a two-tier certi�cation is also related to the bounds found by the coarse

matching literature such as in McAfee (2002), Hoppe et al. (2011), and Shao (2016).

Information disclosure is the focus of the literature on Bayesian persuasion, where an informed

sender chooses an information structure to in�uence the behavior of a receiver. Kamenica (2018)

and Bergemann and Morris (2019) provide a great survey of this literature. Kolotilin (2018) and

Dworczak and Martini, (2018) provide conditions on payo�s so that interval partitions are the

optimal information structure. Onuchic and Ray (2021) study the problem of monotonic catego-

rization when sender and receiver have di�erent priors. In contrast to most of this literature, where

a single receiver takes an action, in our setting the outcome is the result of the equilibrium choices

of multiple agents, introducing a non-linearity across states
8

8
While other papers have studied settings with multiple receivers, the analysis has often been suitable for games

where a low-dimensional source of aggregate information is observed by a sender. For example, Bergemann and

Morris (2013, 2016) characterize the outcome of all Bayesian persuasion games with multiple receivers. In principle,
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The most relevant empirical papers related to our theory are Saeedi (2019), Elfenbein et al.

(2015), Fan et al. (2013), and Jin and Leslie (2003). Saeedi (2019) studies the value of reputation

mechanisms and establishes a positive signaling value for the certi�cation done by eBay. Elfenbein

et al. (2015) study the value of certi�cation badges across di�erent markets. They �nd that certi�-

cation provides more value when the number of certi�ed sellers is low and when markets are more

competitive. Fan et al. (2013) analyze the e�ect of badges on Taobao.com. They �nd sellers o�er

price discounts to move up to the next reputation level. Jin and Leslie (2003) use data on restaurant

hygiene ratings to examine the e�ect of an increase in product quality information to consumers

on �rms’ choices of product quality. Our paper also relates to the literature that analyzes the ef-

fects of changes in marketplace feedback mechanisms on price and quality (e.g., Hui et al. (2016),

Filippas et al. (2018), and Nosko and Tadelis (2015)).

Section 2 describes the model. Section 3 considers the optimal information disclosure problem.

Section 4 �nds the optimal coarse ratings when the number of signals is limited, and it also �nds a

bound on information loss due to this constraint. Section 5 studies the extensions to the baseline

model, and Section 6 concludes. Proofs are relegated to the appendix unless otherwise speci�ed.

2 The Model

There is a unit mass of �rms with qualities z distributed according to a continuous cumulative

distribution function (cdf) F (z). Production technology is the same for all �rms and is given by

a continuous, strictly increasing, and strictly convex cost function c (q), and, correspondingly, a

strictly increasing supply function s (p). On the demand side, there is mass M of consumers who

face a discrete choice problem, with preferences

U (z, θ, p) = z + θ − p,

our problem could be potentially mapped into this framework, with an omniscient sender that observes the quality

of a continuum of �rms, but it would be impractical to solve it this way. Even for a simple two-player game, Bhaskar

et al. (2016) show that computing the optimal public signal is NP-hard.

7



where z is the quality of the good purchased, θ is a taste parameter measuring the preference

for goods o�ered in this market vis a vis an outside option, and p is the price of the good. The

taste parameter θ is distributed according to a continuous and strictly increasing cdf Ψ (θ), while

the outside good’s utility (no purchase) is normalized to zero.
9

Goods are di�erentiated only by

quality, which is equally valued by all consumers.
10

Given the linearity of the utility function in z,

the same ordering is obtained for the consumption of a good of expected quality z. We assume all

market participants have the same information about the expected qualities of �rms, represented

by the distribution function G (z).
11

In particular, when considering a �nite rating system as in

Section 4, we assume that G is a discrete distribution with point masses at the conditional mean

qualities associated to each rating. We will say that a �rm has expected quality z if conditional on

all signals received, that is the quality expected by consumers.

Given expected quality z, equilibrium prices take the form p (z) = p (0) + z,where p (0) corre-

sponds to the demand price of a hypothetical good of quality zero. This expression for prices guar-

antees that all consumers are indi�erent between goods with di�erent signal realizations, which

is a necessary condition for an equilibrium. Given a baseline price p (0) , the marginal consumer’s

θ is found by setting U (0, θ, p (0)) = 0, or simply θ (p (0)) = p (0). All consumers with θ ≥ p (0)

will consume some good, so aggregate demand is Q = M (1−Ψ (p (0))). Inverting this function,

we can de�ne an inverse baseline demand function

P (Q) = Ψ−1 (1−Q/M) . (1)

On the supply side, each �rm with expected quality z chooses its output, q = s (p (z)), so

aggregate supply Q =
∫
s (p (z)) dG (z).

De�nition. An (interior) equilibrium, given the distribution of expected qualities G (z), is given

by prices p (z) = P (Q) + z, where total quantity Q =
∫
s (p (z)) dG (z).

9
Alternatively, one can consider−θ to be the value of the outside good to consumers. Also note that we do not need

to make any particular assumption on the distribution of θ ; additionally, linearity in z can be relaxed by modifying

the distribution of qualities.

10
In Section 5.3, we consider a case where consumers are heterogeneous with respect to their taste for quality.

11
This representation of the information structure is consistent with the approach followed in Ganuza and Penalva

(2010) and Gentzkow and Kamenica (2016). Given a common prior F (z0) over �rm qualities and a signal structure π,

we can let G (z) be the distribution of the expected posterior of �rm quality.
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Figure 1: Equilibrium

Figure 1 shows graphically the derivation of an interior equilibrium for the case of a two-tier

partition, where L represents the group of �rms with quality below a threshold z∗, and H those

above.
12

Denote by zL (resp. zH) the average quality of sellers in the L group (resp. H group). The

two curves depict the demand curve for the goods in the L and H segment, respectively. Since all

consumers value quality identically, the price di�erence between the goods in the two segments is

the same as the di�erence between the two respective average qualities pH−pL = zH−zL. The �rst

upward sloping curve is the supply function of the �rms in theH group, SH = (1− F (z∗)) s (pH) .

The second one is the supply function of the �rms in the L segment, SL = F (z∗) s (pL), displaced

to the right by the equilibrium quantity of the H group, QH . The marginal consumer Q is the one

that is indi�erent between consuming either of these goods or none at the equilibrium prices; Q is

also the total market supply of both goods.

To prove the existence of an interior equilibrium, we make the following assumption.

12
Alternatively, this can be interpreted as a case of having two types of sellers with two levels of qualities.
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Assumption 1. There exists θ̃ in the support of Ψ such that

M >

∫
s
(
θ̃ + z

)
dG (z)

for all distributions G such that F is a mean-preserving spread of G.

This assumption rules out the possibility that all consumers make purchases in this market; in

other words, we assume that the consumers are on the long side of the market.
13

While a corner

equilibrium, if it exists, is also unique, we rule this out as a matter of convenience.

Lemma 1. Under Assumption 1, there exists a unique interior equilibrium for all expected quality

distributions G such that F is a mean-preserving spread of G.

Proof. Given that the cdf Ψ is strictly increasing and continuous, the function P (Q) is strictly

decreasing and continuous. De�ne function f (Q) =
∫
s (P (Q) + z) dG (z). This function is

strictly decreasing and continuous. It follows immediately that f (0) > 0. By Assumption 1,

f (M) < M since P (M) ≤ θ̃. Hence, there exists a unique �xed point Q∗ for this mapping.

3 Information Disclosure

Our previous analysis takes the distribution of mean qualities,G, as a primitive. Given the linearity

of payo�s, this is a su�cient representation of information, as two products with the same posterior

mean qualities are equivalent to consumers. As in Ganuza and Penalva (2010) and Gentzkow and

Kamenica (2016), improvements in information can be represented by mean-preserving spreads of

the distribution of mean qualities. This section considers two related questions: (1) the impact of

improved information on producer and consumer surplus and (2) optimal information disclosure

by an informed principal.

13
As explained below, the assumption spans the set of all possible information structures.
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3.1 Improved Information

This section examines the impact of improved information on producer and consumer surplus.

Given total quantity Q, equilibrium prices are given by p (Q) + z, with mean p (Q) + z̄. A mean-

preserving spread of G increases the spread of prices around the mean while possibly changing

the mean, too, as the equilibrium quantity Q changes.

The increased dispersion of prices has a direct positive e�ect on average pro�ts, as a result of

the convexity of the pro�t function. In turn, an increase (resp. decrease) in market size as measured

by the change in total quantityQ has a negative (resp. positive) e�ect on pro�ts. In contrast, as we

now show, consumer surplus is a�ected only by changes in total quantity Q, and in the opposite

direction of pro�ts.

Consider a consumer of type θ who buys a good of quality z, with utility θ + z − p (z) . Given

the equilibrium price p (z) = P (Q) + z, the consumer’s net utility is θ − P (Q) . It follows that

total consumer surplus is

∫
P (Q)

(θ − P (Q)) dΨ (θ) =

∫ Q

0

(P (x)− P (Q)) dx

where the equality follows from the change of variables x = M (1−Ψ (θ)), and our de�nition of

P (Q) given by equation (1). This implies that consumer surplus will move in the same direction as

market size, as given by total quantityQ. It is worth noting that this general equilibrium e�ect has

opposite impacts on consumer and producer surplus. This observation will become quite relevant

in Section 3.2 when considering optimal information disclosure.

The impact of improved information on market size Q depends on the properties of the supply

function. If it is linear, the increase in price dispersion has no e�ect on total output, so there is

no change in Q. In contrast, when the supply function is convex (resp. concave), total output

increases (resp. decreases) with price dispersion. More generally, the direction and magnitude

of output change will depend on the shape of the supply function (convex or concave) and the

magnitude of the changes in spread.

The following proposition summarizes these results.
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Proposition 1. An improvement in information quality, as given by a mean-preserving spread ofG,

has the following e�ects:

1. It increases (resp. decreases) total output if the supply function is convex (resp. concave).

2. Consumer surplus changes in the same direction as total output.

3. Producer surplus increases if total output does not increase.

4. Total surplus increases.

In particular, in the case of concave supply functions, consumers are better o� with no infor-

mation. There are some related results in the literature, though in di�erent settings. For example,

Schlee (1996) considers a single product monopoly seller in a vertically di�erentiated market. The

quality of the good o�ered is exogenous and privately observed by the monopolist, who must

choose the informativeness of a signal to be provided to consumers before observing the quality

realization. It is shown that if the cost function is su�ciently convex, consumers are worse o� ex

ante with a more informative signal. Hoppe et al. (2011) consider a matching problem and show

that under some conditions on the distribution of types, one of the sides (e.g., consumers) can be

worse o� by having a more precise information structure regarding the type of the other side.

Regarding producer surplus, there is an additional direct contribution of price dispersion to

pro�ts. So, total pro�ts can still increase when output increases. While examples can be constructed

where producer surplus decreases, for this to occur, the degree of convexity of supply needs to be

very strong relative to the convexity of the pro�t function.
14

While improved information has ambiguous e�ects on consumer and producer surplus, it al-

ways increases total surplus. The intuition is as follows. Firstly, a social planner, subject to the

same information structure, cannot improve on the competitive equilibrium allocation, which is

thus optimal. Secondly, equipped with better information, a social planner can always increase

14
For example, consider the following setup: Marginal cost 0 for q ≤ 1 and 1+ε for q > 1 up to a capacity constraint

of 3. Mass of �rms equal 1; equal weights of qualities 0 and 1. Baseline inverse demand function is 1/2 up to Q = 1
and drops to 2ε after that. Initial equilibrium p = 1; total output equals 1, and total demand is also 1. Total pro�ts

are equal to 1. Equilibrium with full information: p = 1 + 2ε, and total pro�ts equal
1
2 × (3× (2ε+ 1)− 2 (1 + ε)),

which is approximately equal to 1/2 for small ε.
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total surplus. This result also implies that better information must bene�t either producers or con-

sumers, or both. In particular, average pro�ts must rise when consumer surplus does not increase,

as in the case of concave supply.

3.2 Optimal Information Disclosure

This section considers optimal information disclosure by a market designer, which we refer to as

the planner. The information structure is as follows. To motivate the analysis, we start with two

examples which capture in a stylized way some realistic features.

Example 1

All �rms inelastically supply q̄ units provided price is above marginal cost c > 0. Note that be-

cause output is inelastically supplied, the only role of information is to exclude some low-quality

producers from the market. This scenario might represent a market where retailers can acquire

the good at a wholesale price c, at a limited capacity. Let zc, zo, zp denote the optimal thresholds

for consumers, an equal weights planner, and producers, respectively. Consumers are interested in

maximizing output, subject to the participation constraint for producers being above the threshold

P ((1− F (zc)) q̄) +M (zc)− c ≥ 0,

where M (z∗) denotes the average quality above z∗. An equal weights planner will exclude all

producers that contribute negative value, and will thus choose

P ((1− F (zo)) q̄) + zo − c = 0.

Finally, producers would want the threshold to maximize total pro�ts. It is easy to verify that the

corresponding necessary condition is

P (· ) + zp − c = −P ′ (· ) (1− F (zp)) q̄.

13



It follows easily that zc < zo < zp. In order to implement the threshold zc, pooling above zc is

needed, while to implement producers’ preferred threshold zp, pooling below zp is needed. Full

separation can be used in the complementary regions.
15

Full separation for all producers is su�-

cient to implement the planner’s preferred threshold zo.

Example 2

Suppose the supply function is linear up to capacity constraint q̄ but there is a �xed cost and, corre-

spondingly, a breakeven price pb > 0. This example captures in a stylized way realistic features for

many activities (e.g., Uber rides), where there is a minimum strike price and an intensive margin

beyond this price up to a capacity limit.

This supply function is convex in the lower end and concave above it. Following the intuition

from the previous section, in order to maximize total output, consumers would want to separate

�rms in the lower end below some threshold zc and pool those above it. Assuming the upper bound

does not bind, total output is given by

Q = S (P ((Q) +M (zc))) (1− F (zc)) .

It follows after di�erentiation that dQ/dzc has the same sign as−P (Q) + zc. Consumers will thus

set zc to be the minimum such that P (Q) + zc ≥ 0 and P (Q) + M (zc) ≥ pb. As shown before,

the equal-weights social planner will want full information and an e�cient threshold such that

P (Q) + zo = pb. It follows easily that zo > zc. Moreover, because consumer surplus is decreasing

at zo, it must be that producer surplus is increasing, so the threshold for producers will be higher,

with full separation above it.

General Theory

The planner’s information is summarized by a distributionF (z) of expected qualities across sellers

with mean z̄. This represents the maximal information that the planner could provide to buyers.

15
The latter is su�cient but might not be necessary in this example.
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Any partial revelation of information can be represented by a distribution GεG, where G is the

set of garblings or mean-preserving contractions of F . Buyers have symmetric priors about seller

quality.
16

We �rst consider the extreme case where buyers have no information about �rms, sharing

a degenerate prior with mass 1 at mean quality z̄. Results are then extended to non-degenerate

priors in Section 3.3.

For anyG ∈ G, letQ (G) denote total equilibrium output. Letting 0 ≤ γ ≤ 1 denote the weight

given to consumers, the planner’s problem is

max
G∈G

(1− γ)

∫
π (p+ x) dG (x) + γ

∫ Q(G)

0

(P (q)− p) dq, (2)

where p = P (Q (G)) and π is the pro�t function of the sellers. The �rst term corresponds to

producer surplus and the second term to consumer surplus, as explained above.

Changes in the information structure, as represented by G, have two e�ects on the planner’s

objective: a direct e�ect on expected pro�ts and a general equilibrium e�ect, operating through

the change of Q and p. To provide some intuition, consider a small mean-preserving spread of G

around quality x. The direct e�ect will be an increase in pro�ts of a magnitude that depends on

the curvature of the pro�t function around p + x, (1− γ) π′′ (p+ x). The equilibrium e�ect will

be given by a marginal change in prices dp with welfare e�ect

[
(1− γ)

∫
∂π (p+ x)

∂p
dG (x)− γQ (G)

]
dp = (1− 2γ)Q (G) dp,

which follows from the envelope condition
∂π(p+x)

∂p
= s (p+ x). Thus the general equilibrium e�ect

will a�ect �rms and consumers in opposite and equal directions. Moreover, since dp = P ′ (Q) dQ,

16
This notion of garbling of information has been used repeatedly in the literature, for example in Ganuza and

Penalva (2010), who order the quality of information by the dispersion of beliefs. The distribution of expected qualities

G̃ is more informative than distribution G if it is a mean-preserving spread of G. We will refer to this ordering as

better information. As the maximal signal structure corresponds to perfect information, the class of all information

structures can be represented by all garblings of F , i.e., all distributions G such that F is a mean-preserving spread of

G. This corresponds to the ordering of integral precision of signal structures de�ned in Ganuza and Penalva (2010) and

the ordering in Gentzkow and Kamenica (2016). Starting from a prior F0, signal structure t̃ is more integral precise than

signal t if the induced distribution of expected qualities G (z) generated by t̃ is a mean-preserving spread of the one

generated by t. In general, integral precision ordering is weaker than the likelihood ratio and other related orderings

considered in the literature (see Ganuza and Penalva (2010) for references.)
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its magnitude will vary directly with the intensity (and sign) of the output change dQ. This in turn

depends on the curvature of the supply function s′′ (p+ x) around the point of the mean-preserving

spread x. In particular, if the supply function is convex around this point, total output will increase

and the general equilibrium e�ect will imply a transfer of utility from �rms to consumers. A

transfer in the opposite direction would occur if the supply function were concave at this point.

This endogeneity of Q, and the resulting nonlinearity, makes our problem di�erent from the

usual Bayesian persuasion models; therefore, we cannot use directly the methods developed in the

literature. But, as we show below, the problem has indeed a linear structure when constrained to

a given level of aggregate output Q, and this can be used to provide results on optimal disclosure.

Consider the constrained optimization problem:

U (Q) = max
G∈G

(1− γ)

∫
π (P (Q) + z) dG (z) + γ

∫ Q

0

(P (q)− P (Q)) dq

subject to: Q =

∫
S (P (Q) + z) dG (z),

where both the objective function and the constraint are linear inG.The corresponding Lagrangian

function is given by

L (Q, λ) = max
G∈G

(1− γ)

∫
π (P (Q) + z) dG (z) + γ

∫ Q

0

(P (q)− P (Q)) dq (3)

−λ
(
Q−

∫
S (P (Q) + z) dG (z)

)
.

As usual, the value λ (Q) can be obtained by di�erentiating (3) with respect to Q,

λ =
(1− 2γ)QP ′ (Q)

1− P ′ (Q)
∫
S ′ (P (Q) + z) dG (z)

.

It follows that λ is positive if and only if γ > 1/2. This captures the intuitive idea, discussed above,

that increases in total output represent, at the margin, a transfer from �rms to consumers. Letting

V (z) = (1− γ) π (P (Q) + z) + λS (P (Q) + z) , (4)
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the optimal information structure solves

max
G∈G

∫
V (z) dG (z) .

As in Kolotilin (2018), it follows from Jensen’s inequality that full revelation is optimal when V (z)

is convex, while no revelation is optimal when it is concave. Since the �rst term in (4) is convex,

we can easily derive the following su�cient conditions for full revelation.

Proposition 2. Full revelation is always optimal in the following cases:

1. γ = 1/2;

2. γ < 1/2 and S is concave; and

3. γ > 1/2 and S is convex.

In addition, when γ = 1, full revelation is optimal only if S is convex.

In all of these cases the implied function V (z) is convex, after factoring in the corresponding

sign of the multiplier λ. The �rst case con�rms our previous result that full revelation is optimal

when the planner maximizes total surplus. The second result follows intuitively from the fact that

when S is concave, improved information decreases output, implying a transfer from consumers

to �rms, which is desirable as γ < 1/2. Similarly, the last result follows from the fact that when

S is convex, improved information increases output, implying a transfer from �rms to consumers,

which is desirable as γ > 1/2.

Su�cient conditions for no revelation of information are harder to obtain. Because the �rst term

in (4) is convex, the conditions needed for V (z) to be concave seem to be stronger. In the extreme

case when γ = 1, the su�cient conditions will hold when the supply function S is concave, which,

as we found before, is the case where consumers are better o� with no information. More generally,

when γ > 1/2, the supply function has to be su�ciently concave relative to the pro�t function for

no information to be optimal, while if γ < 1/2 the supply function has to be su�ciently convex.

When considering the question of information provision using certi�cation criteria, an issue

that often arises is how hard should the test be? As an example, eBay’s increase in the requirements
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to qualify as eBay Top Rated Seller was an attempt to make the test harder to pass. An easy test

allows creating di�erentiation at the lower end, while a harder one, at the upper end. So, where is

information revelation more valuable? Our previous analysis suggests that more di�erentiation of

�rm qualities is of greater value in regions where the degree of convexity of V (z) is stronger. In

particular, when V ′′ (z) is increasing (resp. decreasing) we should expect full disclosure (pooling)

starting from a point z∗ and pooling (full disclosure) in the region below this point. These corre-

spond to situations when V (z) is concave-convex (resp. convex-concave). The next proposition

provides the conditions under which these properties hold.

Proposition 3. Full disclosure up to some threshold z∗ and complete pooling above is optimal in the

following cases:

1. γ > 1/2 and S ′′/S ′ is decreasing,

2. γ < 1/2 and S ′′/S ′ is increasing.

Complete pooling up to some threshold z∗ and full disclosure above is optimal in the following cases:

1. γ > 1/2 and S ′′/S ′ is increasing,

2. γ < 1/2 and S ′′/S ′ is decreasing.

The intuition for these results is as follows. A small increase in spread around z has a direct

positive impact on expected pro�ts that is proportional to π′′ (P (Q) + z) , the curvature of the

pro�t function around this point. Likewise, it has an impact on total output and a transfer from

producers to consumers that is proportional to S ′′ (P (Q) + z). This transfer is positive if S is

convex at this point, and negative otherwise. The ratio S ′′ (z) /π′′ (z) measures the transfer relative

to the pro�t increase resulting from this small increase in spread. The higher S ′′ (z) is relative to

π′′ (z) (lower in absolute value), the smaller the transfer (loss) is relative to the direct pro�t gain.

In this case, it is optimal to provide information disclosure for higher values of this ratio. Our

intuitive argument suggests that when S ′′ (z) /π′′ (z) is increasing (resp. decreasing), disclosure

should occur in an upper interval (resp. lower interval). Note that this is precisely the case where

V (z) is concave-convex (resp. convex-concave).
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Pooling then full disclosure

S0

S00 decreasing:
<latexit sha1_base64="cqaJ5/VUzlVk3uh21nHP8cGE22Q=">AAACBXicbVC7TsMwFHV4lvIKMMJg0aIyVUkXEFMlFsYi6ENqo8pxblqrjhPZDlIVdWHhV1gYQIiVf2Djb3DbDNBypCsdnXPvte/xE86Udpxva2V1bX1js7BV3N7Z3du3Dw5bKk4lhSaNeSw7PlHAmYCmZppDJ5FAIp9D2x9dT/32A0jFYnGvxwl4ERkIFjJKtJH69km5F0pCs7vKxFRlUsYBULNAMTG46tslp+rMgJeJm5MSytHo21+9IKZpBEJTTpTquk6ivYxIzSiHSbGXKkgIHZEBdA0VJALlZbMrJvjMKAEOY2lKaDxTf09kJFJqHPmmMyJ6qBa9qfif1011eOllTCSpBkHnD4UpxzrG00hwwCRQzceGECqZ+SumQ2JS0Sa4ognBXTx5mbRqVdepure1Ur2ex1FAx+gUnSMXXaA6ukEN1EQUPaJn9IrerCfrxXq3PuatK1Y+c4T+wPr8Ac7il3k=</latexit><latexit sha1_base64="cqaJ5/VUzlVk3uh21nHP8cGE22Q=">AAACBXicbVC7TsMwFHV4lvIKMMJg0aIyVUkXEFMlFsYi6ENqo8pxblqrjhPZDlIVdWHhV1gYQIiVf2Djb3DbDNBypCsdnXPvte/xE86Udpxva2V1bX1js7BV3N7Z3du3Dw5bKk4lhSaNeSw7PlHAmYCmZppDJ5FAIp9D2x9dT/32A0jFYnGvxwl4ERkIFjJKtJH69km5F0pCs7vKxFRlUsYBULNAMTG46tslp+rMgJeJm5MSytHo21+9IKZpBEJTTpTquk6ivYxIzSiHSbGXKkgIHZEBdA0VJALlZbMrJvjMKAEOY2lKaDxTf09kJFJqHPmmMyJ6qBa9qfif1011eOllTCSpBkHnD4UpxzrG00hwwCRQzceGECqZ+SumQ2JS0Sa4ognBXTx5mbRqVdepure1Ur2ex1FAx+gUnSMXXaA6ukEN1EQUPaJn9IrerCfrxXq3PuatK1Y+c4T+wPr8Ac7il3k=</latexit><latexit sha1_base64="cqaJ5/VUzlVk3uh21nHP8cGE22Q=">AAACBXicbVC7TsMwFHV4lvIKMMJg0aIyVUkXEFMlFsYi6ENqo8pxblqrjhPZDlIVdWHhV1gYQIiVf2Djb3DbDNBypCsdnXPvte/xE86Udpxva2V1bX1js7BV3N7Z3du3Dw5bKk4lhSaNeSw7PlHAmYCmZppDJ5FAIp9D2x9dT/32A0jFYnGvxwl4ERkIFjJKtJH69km5F0pCs7vKxFRlUsYBULNAMTG46tslp+rMgJeJm5MSytHo21+9IKZpBEJTTpTquk6ivYxIzSiHSbGXKkgIHZEBdA0VJALlZbMrJvjMKAEOY2lKaDxTf09kJFJqHPmmMyJ6qBa9qfif1011eOllTCSpBkHnD4UpxzrG00hwwCRQzceGECqZ+SumQ2JS0Sa4ognBXTx5mbRqVdepure1Ur2ex1FAx+gUnSMXXaA6ukEN1EQUPaJn9IrerCfrxXq3PuatK1Y+c4T+wPr8Ac7il3k=</latexit><latexit sha1_base64="cqaJ5/VUzlVk3uh21nHP8cGE22Q=">AAACBXicbVC7TsMwFHV4lvIKMMJg0aIyVUkXEFMlFsYi6ENqo8pxblqrjhPZDlIVdWHhV1gYQIiVf2Djb3DbDNBypCsdnXPvte/xE86Udpxva2V1bX1js7BV3N7Z3du3Dw5bKk4lhSaNeSw7PlHAmYCmZppDJ5FAIp9D2x9dT/32A0jFYnGvxwl4ERkIFjJKtJH69km5F0pCs7vKxFRlUsYBULNAMTG46tslp+rMgJeJm5MSytHo21+9IKZpBEJTTpTquk6ivYxIzSiHSbGXKkgIHZEBdA0VJALlZbMrJvjMKAEOY2lKaDxTf09kJFJqHPmmMyJ6qBa9qfif1011eOllTCSpBkHnD4UpxzrG00hwwCRQzceGECqZ+SumQ2JS0Sa4ognBXTx5mbRqVdepure1Ur2ex1FAx+gUnSMXXaA6ukEN1EQUPaJn9IrerCfrxXq3PuatK1Y+c4T+wPr8Ac7il3k=</latexit>

Full disclosure then pooling

S0

S00 increasing:
<latexit sha1_base64="8ssFrpipuQtWO733nMFvlR+P/hs=">AAACBXicbVC7TsMwFL3hWcorwAiDRYvKVCVdQEyVWBiLoA+pjSrHdVqrjhPZDlIVZWHhV1gYQIiVf2Djb3DbDNBypCsdnXPvte/xY86Udpxva2V1bX1js7BV3N7Z3du3Dw5bKkokoU0S8Uh2fKwoZ4I2NdOcdmJJcehz2vbH11O//UClYpG415OYeiEeChYwgrWR+vZJuRdITNK7SmaqkpURE8QsUEwMr/p2yak6M6Bl4uakBDkaffurN4hIElKhCcdKdV0n1l6KpWaE06zYSxSNMRnjIe0aKnBIlZfOrsjQmVEGKIikKaHRTP09keJQqUnom84Q65Fa9Kbif1430cGllzIRJ5oKMn8oSDjSEZpGggZMUqL5xBBMJDN/RWSETSraBFc0IbiLJy+TVq3qOlX3tlaq1/M4CnAMp3AOLlxAHW6gAU0g8AjP8Apv1pP1Yr1bH/PWFSufOYI/sD5/AOSdl4c=</latexit><latexit sha1_base64="8ssFrpipuQtWO733nMFvlR+P/hs=">AAACBXicbVC7TsMwFL3hWcorwAiDRYvKVCVdQEyVWBiLoA+pjSrHdVqrjhPZDlIVZWHhV1gYQIiVf2Djb3DbDNBypCsdnXPvte/xY86Udpxva2V1bX1js7BV3N7Z3du3Dw5bKkokoU0S8Uh2fKwoZ4I2NdOcdmJJcehz2vbH11O//UClYpG415OYeiEeChYwgrWR+vZJuRdITNK7SmaqkpURE8QsUEwMr/p2yak6M6Bl4uakBDkaffurN4hIElKhCcdKdV0n1l6KpWaE06zYSxSNMRnjIe0aKnBIlZfOrsjQmVEGKIikKaHRTP09keJQqUnom84Q65Fa9Kbif1430cGllzIRJ5oKMn8oSDjSEZpGggZMUqL5xBBMJDN/RWSETSraBFc0IbiLJy+TVq3qOlX3tlaq1/M4CnAMp3AOLlxAHW6gAU0g8AjP8Apv1pP1Yr1bH/PWFSufOYI/sD5/AOSdl4c=</latexit><latexit sha1_base64="8ssFrpipuQtWO733nMFvlR+P/hs=">AAACBXicbVC7TsMwFL3hWcorwAiDRYvKVCVdQEyVWBiLoA+pjSrHdVqrjhPZDlIVZWHhV1gYQIiVf2Djb3DbDNBypCsdnXPvte/xY86Udpxva2V1bX1js7BV3N7Z3du3Dw5bKkokoU0S8Uh2fKwoZ4I2NdOcdmJJcehz2vbH11O//UClYpG415OYeiEeChYwgrWR+vZJuRdITNK7SmaqkpURE8QsUEwMr/p2yak6M6Bl4uakBDkaffurN4hIElKhCcdKdV0n1l6KpWaE06zYSxSNMRnjIe0aKnBIlZfOrsjQmVEGKIikKaHRTP09keJQqUnom84Q65Fa9Kbif1430cGllzIRJ5oKMn8oSDjSEZpGggZMUqL5xBBMJDN/RWSETSraBFc0IbiLJy+TVq3qOlX3tlaq1/M4CnAMp3AOLlxAHW6gAU0g8AjP8Apv1pP1Yr1bH/PWFSufOYI/sD5/AOSdl4c=</latexit><latexit sha1_base64="8ssFrpipuQtWO733nMFvlR+P/hs=">AAACBXicbVC7TsMwFL3hWcorwAiDRYvKVCVdQEyVWBiLoA+pjSrHdVqrjhPZDlIVZWHhV1gYQIiVf2Djb3DbDNBypCsdnXPvte/xY86Udpxva2V1bX1js7BV3N7Z3du3Dw5bKkokoU0S8Uh2fKwoZ4I2NdOcdmJJcehz2vbH11O//UClYpG415OYeiEeChYwgrWR+vZJuRdITNK7SmaqkpURE8QsUEwMr/p2yak6M6Bl4uakBDkaffurN4hIElKhCcdKdV0n1l6KpWaE06zYSxSNMRnjIe0aKnBIlZfOrsjQmVEGKIikKaHRTP09keJQqUnom84Q65Fa9Kbif1430cGllzIRJ5oKMn8oSDjSEZpGggZMUqL5xBBMJDN/RWSETSraBFc0IbiLJy+TVq3qOlX3tlaq1/M4CnAMp3AOLlxAHW6gAU0g8AjP8Apv1pP1Yr1bH/PWFSufOYI/sD5/AOSdl4c=</latexit>

Pooling then full disclosure

� > 1/2
<latexit sha1_base64="p7/kPR/ESZB8FxCkAANYiyq3kVM=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKt6l0UoCNpYRzAfkjjC32SRLdu+O3T0hHPkbNhaK2Ppn7Pw3bpIrNPHBwOO9GWbmhYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nirIWjUWsuiFqJnjEWoYbwbqJYihDwTrh5G7ud56Y0jyOHs00YYHEUcSHnKKxkl/1Rygl3npX9Wq/XHFr7gJknXg5qUCOZr/85Q9imkoWGSpQ657nJibIUBlOBZuV/FSzBOkER6xnaYSS6SBb3DwjF1YZkGGsbEWGLNTfExlKracytJ0SzVivenPxP6+XmuFNkPEoSQ2L6HLRMBXExGQeABlwxagRU0uQKm5vJXSMCqmxMZVsCN7qy+ukXa95bs17qFcajTyOIpzBOVyCB9fQgHtoQgsoJPAMr/DmpM6L8+58LFsLTj5zCn/gfP4AG3KQZQ==</latexit><latexit sha1_base64="p7/kPR/ESZB8FxCkAANYiyq3kVM=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKt6l0UoCNpYRzAfkjjC32SRLdu+O3T0hHPkbNhaK2Ppn7Pw3bpIrNPHBwOO9GWbmhYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nirIWjUWsuiFqJnjEWoYbwbqJYihDwTrh5G7ud56Y0jyOHs00YYHEUcSHnKKxkl/1Rygl3npX9Wq/XHFr7gJknXg5qUCOZr/85Q9imkoWGSpQ657nJibIUBlOBZuV/FSzBOkER6xnaYSS6SBb3DwjF1YZkGGsbEWGLNTfExlKracytJ0SzVivenPxP6+XmuFNkPEoSQ2L6HLRMBXExGQeABlwxagRU0uQKm5vJXSMCqmxMZVsCN7qy+ukXa95bs17qFcajTyOIpzBOVyCB9fQgHtoQgsoJPAMr/DmpM6L8+58LFsLTj5zCn/gfP4AG3KQZQ==</latexit><latexit sha1_base64="p7/kPR/ESZB8FxCkAANYiyq3kVM=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKt6l0UoCNpYRzAfkjjC32SRLdu+O3T0hHPkbNhaK2Ppn7Pw3bpIrNPHBwOO9GWbmhYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nirIWjUWsuiFqJnjEWoYbwbqJYihDwTrh5G7ud56Y0jyOHs00YYHEUcSHnKKxkl/1Rygl3npX9Wq/XHFr7gJknXg5qUCOZr/85Q9imkoWGSpQ657nJibIUBlOBZuV/FSzBOkER6xnaYSS6SBb3DwjF1YZkGGsbEWGLNTfExlKracytJ0SzVivenPxP6+XmuFNkPEoSQ2L6HLRMBXExGQeABlwxagRU0uQKm5vJXSMCqmxMZVsCN7qy+ukXa95bs17qFcajTyOIpzBOVyCB9fQgHtoQgsoJPAMr/DmpM6L8+58LFsLTj5zCn/gfP4AG3KQZQ==</latexit><latexit sha1_base64="p7/kPR/ESZB8FxCkAANYiyq3kVM=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKt6l0UoCNpYRzAfkjjC32SRLdu+O3T0hHPkbNhaK2Ppn7Pw3bpIrNPHBwOO9GWbmhYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nirIWjUWsuiFqJnjEWoYbwbqJYihDwTrh5G7ud56Y0jyOHs00YYHEUcSHnKKxkl/1Rygl3npX9Wq/XHFr7gJknXg5qUCOZr/85Q9imkoWGSpQ657nJibIUBlOBZuV/FSzBOkER6xnaYSS6SBb3DwjF1YZkGGsbEWGLNTfExlKracytJ0SzVivenPxP6+XmuFNkPEoSQ2L6HLRMBXExGQeABlwxagRU0uQKm5vJXSMCqmxMZVsCN7qy+ukXa95bs17qFcajTyOIpzBOVyCB9fQgHtoQgsoJPAMr/DmpM6L8+58LFsLTj5zCn/gfP4AG3KQZQ==</latexit>

� < 1/2
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Figure 2: Optimal Pattern

The results from this section are summarized in Figure 2.

We end this section considering the e�ect of asymmetries in the weights of consumers and

producers. For those cases where full information is not optimal, we �nd that the region of pooling

increases with the strength of the bias in the planner’s preference for one or the other group.

Proposition 4. Consider an increase in γ. If γ > 1/2, then the pooling region increases with γ, while

if γ < 1/2 the pooling region decreases with γ.

The intuition for this result is as follows. When γ > 1/2, it must be the case that S is concave in

the pooling region; otherwise, there would be full disclosure, as stated in Corollary 2. Thus pooling

takes place to mitigate the reduction in output from improved information and its negative impact

on consumer surplus. The larger the weight of consumers, the larger this pooling region will be.

When γ < 1/2, it must be that the supply function is convex in the pooling region, and pooling

occurs precisely to mitigate the increase in output and its negative impact on producers. The lower

the weight of producers (higher γ), the smaller this pooling region will be.
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3.3 Buyer’s Prior Information

In this section we extend our results to the case where buyers have non-degenerate priors, given as

follows. There is a �nite partition of sellers into N groups with respective shares αj, j = 1, ..., N.

For all sellers in a group, buyers share symmetric information given by a Dirac prior on mean qual-

ity z0
j . This could represent, for example, identical realizations for a �nite set of ratings. For each of

these groups, the planner’s information can be represented by a distribution Fj of expected quali-

ties across these sellers, with mean z0
j . Any partial revelation of information can be represented by

a distribution GjεGj, where Gj is the set of garblings or mean-preserving contractions of Fj . This

information structure implies a distribution G =
∑

j αjGj over expected qualities of sellers which

re�nes the information of consumers up to the information held by the planner. Let G denote the

set of distributions that can be obtained this way. The optimal problem is identical to (2), optimized

over this set of distributions.

The constrained optimization problem we speci�ed in (3) can be adapted to this case. We solve

for the optimal disclosure policy Gj within each element of the information partition of buyers,

holding �xed the vector of total output Qj for each. Since the only connection between all of

these planning problems is through aggregate output, holding it �xed makes the problem separa-

ble. Moreover, as total output is the sum of the output Qj of all partitions, the multipliers λj are

identical. In consequence, all properties derived above translate to each element of the partition.

In particular, Corollaries 2 and 3 as well as Proposition 4 hold.

4 Coarse Ratings

Most rating systems are coarse, ranking sellers into a small number of categories. For example,

in the case of Yelp, the partition involves �ve stars, including the possibility of half-stars. In the

case of eBay, the partition includes two groups: the badged and unbadged. In the case of California

restaurants, the partition involves three elements: A, B, and C. In addition, hundreds of govern-

mental or non-pro�t certi�cation agencies use a pass-fail or tiered signal for their certi�cation

method. This section considers the question of optimal information design when the number of
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ratings the market designer can employ is limited. This restriction can be motivated not only by

its wide use but also by its cost-e�ectiveness, as giving very precise information might be di�cult

or costly, and simple rankings might be easier to interpret. Moreover, as we �nd, most of the gains

from optimal information provision, as given in the previous section, can be achieved with a very

limited number of ratings.

In this section we focus on simple ratings that partition the set of sellers into N groups. We

consider as an objective the maximization of total unweighted surplus (γ = 1/2 in the previous

section). The cases of consumer and producer surplus are discussed in Section 5.2. To simplify our

analysis, we assume that consumers have no information other than that provided by the certi�er.

The timing is as follows: First, the certi�er observes some signals for each �rm that are correlated

with the �rm’s quality; Second, the certi�er assigns a rating to each �rm and makes it common

knowledge to all participants in the market. Based on these ratings all market participants can

infer the average quality of sellers, thus sharing a common posterior with support at the corre-

sponding N conditional quality means.
17

Third, market equilibrium outcomes are determined for

this distribution of expected qualities.

Following our earlier discussion on information structures, the certi�er’s information can be

summarized by a distribution of posterior mean qualities that, in order to avoid further notation,

we denote by F (z). This is the basis on which the certi�er classi�es �rms into rating bins. To

simplify the exposition, we refer to the expected value z as the quality of the �rm.
18

We assume F

is di�erentiable on its support with density f (z).

A threshold partition totally orders �rms intoN quality intervals. As a corollary to Proposition

1, we establish the superiority of threshold partitions.
19

Corollary 1. The optimal rating is given by a threshold partition.

Given this corollary, the design of an optimal rating system reduces to �nding the vector of opti-

17
Certi�ers usually provide users with guidelines to interpret their ratings or users learn their meaning over time.

18
The true distribution of qualities plays no role, as any information provision that respects the information of the

certi�er is a garbling of the certi�er’s posterior F.
19

Dworczak and Martini (2019) provide conditions under which the optimal signal structure implies a monotone

partition in a Bayesian persuasion setting. Our setting is di�erent and our result straightforward. We can �nd a con-

nection only in the case of linear supply, where our problem can be mapped into their formulation with the additional

constraint of a �xed number of ratings.
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mal thresholds, z = (z1....zN−1), that divide sellers into theN partitions, {[z0, z1] , [z1, z2], ..., [zN−1, zN ]},

where z0 and zN are the lower and upper supports of the distribution of expected qualities given

the planner’s information (−∞ or +∞ if unbounded), respectively.

4.1 A Necessary Condition

In this section we derive a simple and intuitive necessary condition to characterize these optimal

thresholds. Let Mk = m (zk−1, zk) , k = 1, ..., N denote the conditional means of quality z in the

intervals [zk−1, zk]. LetQ (z) denote the unique equilibrium total quantity at the optimal threshold

vector. The prices for sellers in partition [zk−1, zk] are denoted by pk = P (Q (z)) + Mk, and

quantities by qk = s (pk) . Total surplus is given by

W (z) =

∫ Q(z)

0

P (x) dx+
N∑
k=1

[F (zk)− F (zk−1)] [Mkqk − c (qk)] . (5)

Taking �rst order conditions with respect to zk proves the following necessary condition:

Lemma 2. Let the thresholds z = (z1, ..., zN−1) maximize (5). Then

(P (Q (z)) + zk) (qk+1 − qk) = c (qk+1)− c (qk) (6)

for all zk.

Condition (6) has an intuitive interpretation. Consider a marginal �rm with quality at the

threshold between two adjacent intervals. For this threshold to be optimal, the planner should

be indi�erent between pooling this marginal �rm with those in the lower or upper interval. The

left hand side shows the marginal value obtained by increasing the quantity of the marginal �rm

with quality zk, from qk to qk+1; this would result from a marginal change in this threshold. The

right hand side shows the di�erence in cost. This condition highlights the relevance of the supply

behavior of �rms, in particular, the curvature of the supply function, as it impacts both the response

of output to changes in prices and its impact on cost.

Figure 3 provides a graphical representation of this necessary condition and its connection to
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qk+1
<latexit sha1_base64="qWWq3ymmhAeqavBGnZp7W2Lcb9M=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXvRY9OKxgv2QdinZNNuGJtk1yQpl6a/w4kERr/4cb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyU3md56o0iyS92YaU1/gkWQhI9hY6aH6OEgnF96sOihX3Jo7B1olXk4qkKM5KH/1hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU++n84Bk6s8oQhZGyJQ2aq78nUiy0norAdgpsxnrZy8T/vF5iwis/ZTJODJVksShMODIRyr5HQ6YoMXxqCSaK2VsRGWOFibEZlWwI3vLLq6Rdr3luzburVxrXeRxFOIFTOAcPLqEBt9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCxHI+p</latexit><latexit sha1_base64="qWWq3ymmhAeqavBGnZp7W2Lcb9M=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXvRY9OKxgv2QdinZNNuGJtk1yQpl6a/w4kERr/4cb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyU3md56o0iyS92YaU1/gkWQhI9hY6aH6OEgnF96sOihX3Jo7B1olXk4qkKM5KH/1hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU++n84Bk6s8oQhZGyJQ2aq78nUiy0norAdgpsxnrZy8T/vF5iwis/ZTJODJVksShMODIRyr5HQ6YoMXxqCSaK2VsRGWOFibEZlWwI3vLLq6Rdr3luzburVxrXeRxFOIFTOAcPLqEBt9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCxHI+p</latexit><latexit sha1_base64="qWWq3ymmhAeqavBGnZp7W2Lcb9M=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXvRY9OKxgv2QdinZNNuGJtk1yQpl6a/w4kERr/4cb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyU3md56o0iyS92YaU1/gkWQhI9hY6aH6OEgnF96sOihX3Jo7B1olXk4qkKM5KH/1hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU++n84Bk6s8oQhZGyJQ2aq78nUiy0norAdgpsxnrZy8T/vF5iwis/ZTJODJVksShMODIRyr5HQ6YoMXxqCSaK2VsRGWOFibEZlWwI3vLLq6Rdr3luzburVxrXeRxFOIFTOAcPLqEBt9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCxHI+p</latexit><latexit sha1_base64="qWWq3ymmhAeqavBGnZp7W2Lcb9M=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXvRY9OKxgv2QdinZNNuGJtk1yQpl6a/w4kERr/4cb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyU3md56o0iyS92YaU1/gkWQhI9hY6aH6OEgnF96sOihX3Jo7B1olXk4qkKM5KH/1hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU++n84Bk6s8oQhZGyJQ2aq78nUiy0norAdgpsxnrZy8T/vF5iwis/ZTJODJVksShMODIRyr5HQ6YoMXxqCSaK2VsRGWOFibEZlWwI3vLLq6Rdr3luzburVxrXeRxFOIFTOAcPLqEBt9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCxHI+p</latexit>

P + Mk+1
<latexit sha1_base64="RnD+qkl9acyamzfLXtWQyZMvRiA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BFtBKJTdXuyx4MWLUMF+wHYp2TTbhmaTJZkVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oWJ4AZc99spbG3v7O4V90sHh0fHJ+XTs65RqaasQ5VQuh8SwwSXrAMcBOsnmpE4FKwXTm8Xfu+JacOVfIRZwoKYjCWPOCVgJb/art0Ps2nNm1eH5Ypbd5fAm8TLSQXlaA/LX4ORomnMJFBBjPE9N4EgIxo4FWxeGqSGJYROyZj5lkoSMxNky5Pn+MoqIxwpbUsCXqq/JzISGzOLQ9sZE5iYdW8h/uf5KUTNIOMySYFJuloUpQKDwov/8YhrRkHMLCFUc3srphOiCQWbUsmG4K2/vEm6jbrn1r2HRqXVzOMoogt0ia6Rh25QC92hNuogihR6Rq/ozQHnxXl3PlatBSefOUd/4Hz+AH9jkAo=</latexit><latexit sha1_base64="RnD+qkl9acyamzfLXtWQyZMvRiA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BFtBKJTdXuyx4MWLUMF+wHYp2TTbhmaTJZkVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oWJ4AZc99spbG3v7O4V90sHh0fHJ+XTs65RqaasQ5VQuh8SwwSXrAMcBOsnmpE4FKwXTm8Xfu+JacOVfIRZwoKYjCWPOCVgJb/art0Ps2nNm1eH5Ypbd5fAm8TLSQXlaA/LX4ORomnMJFBBjPE9N4EgIxo4FWxeGqSGJYROyZj5lkoSMxNky5Pn+MoqIxwpbUsCXqq/JzISGzOLQ9sZE5iYdW8h/uf5KUTNIOMySYFJuloUpQKDwov/8YhrRkHMLCFUc3srphOiCQWbUsmG4K2/vEm6jbrn1r2HRqXVzOMoogt0ia6Rh25QC92hNuogihR6Rq/ozQHnxXl3PlatBSefOUd/4Hz+AH9jkAo=</latexit><latexit sha1_base64="RnD+qkl9acyamzfLXtWQyZMvRiA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BFtBKJTdXuyx4MWLUMF+wHYp2TTbhmaTJZkVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oWJ4AZc99spbG3v7O4V90sHh0fHJ+XTs65RqaasQ5VQuh8SwwSXrAMcBOsnmpE4FKwXTm8Xfu+JacOVfIRZwoKYjCWPOCVgJb/art0Ps2nNm1eH5Ypbd5fAm8TLSQXlaA/LX4ORomnMJFBBjPE9N4EgIxo4FWxeGqSGJYROyZj5lkoSMxNky5Pn+MoqIxwpbUsCXqq/JzISGzOLQ9sZE5iYdW8h/uf5KUTNIOMySYFJuloUpQKDwov/8YhrRkHMLCFUc3srphOiCQWbUsmG4K2/vEm6jbrn1r2HRqXVzOMoogt0ia6Rh25QC92hNuogihR6Rq/ozQHnxXl3PlatBSefOUd/4Hz+AH9jkAo=</latexit><latexit sha1_base64="RnD+qkl9acyamzfLXtWQyZMvRiA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BFtBKJTdXuyx4MWLUMF+wHYp2TTbhmaTJZkVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oWJ4AZc99spbG3v7O4V90sHh0fHJ+XTs65RqaasQ5VQuh8SwwSXrAMcBOsnmpE4FKwXTm8Xfu+JacOVfIRZwoKYjCWPOCVgJb/art0Ps2nNm1eH5Ypbd5fAm8TLSQXlaA/LX4ORomnMJFBBjPE9N4EgIxo4FWxeGqSGJYROyZj5lkoSMxNky5Pn+MoqIxwpbUsCXqq/JzISGzOLQ9sZE5iYdW8h/uf5KUTNIOMySYFJuloUpQKDwov/8YhrRkHMLCFUc3srphOiCQWbUsmG4K2/vEm6jbrn1r2HRqXVzOMoogt0ia6Rh25QC92hNuogihR6Rq/ozQHnxXl3PlatBSefOUd/4Hz+AH9jkAo=</latexit>

P + Mk
<latexit sha1_base64="4I+sDA4VrCfnAFo+DgKpj5hwEXM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jdl2D9r6YODx3gwz84KYM21c99spbGxube8Ud0t7+weHR+Xjk46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfQm87tPVGkWyQczi6kv8FiykBFsrPRYbV3dDdPpvDosV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4uA5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGXfoxFTlBg+swQTxeytiEywwsTYjEo2BG/15XXSqdc8t+bd1yvNRh5HEc7gHC7Bg2towi20oA0EBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+ktY+a</latexit><latexit sha1_base64="4I+sDA4VrCfnAFo+DgKpj5hwEXM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jdl2D9r6YODx3gwz84KYM21c99spbGxube8Ud0t7+weHR+Xjk46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfQm87tPVGkWyQczi6kv8FiykBFsrPRYbV3dDdPpvDosV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4uA5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGXfoxFTlBg+swQTxeytiEywwsTYjEo2BG/15XXSqdc8t+bd1yvNRh5HEc7gHC7Bg2towi20oA0EBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+ktY+a</latexit><latexit sha1_base64="4I+sDA4VrCfnAFo+DgKpj5hwEXM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jdl2D9r6YODx3gwz84KYM21c99spbGxube8Ud0t7+weHR+Xjk46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfQm87tPVGkWyQczi6kv8FiykBFsrPRYbV3dDdPpvDosV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4uA5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGXfoxFTlBg+swQTxeytiEywwsTYjEo2BG/15XXSqdc8t+bd1yvNRh5HEc7gHC7Bg2towi20oA0EBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+ktY+a</latexit><latexit sha1_base64="4I+sDA4VrCfnAFo+DgKpj5hwEXM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jdl2D9r6YODx3gwz84KYM21c99spbGxube8Ud0t7+weHR+Xjk46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfQm87tPVGkWyQczi6kv8FiykBFsrPRYbV3dDdPpvDosV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4uA5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGXfoxFTlBg+swQTxeytiEywwsTYjEo2BG/15XXSqdc8t+bd1yvNRh5HEc7gHC7Bg2towi20oA0EBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+ktY+a</latexit>

P + zk
<latexit sha1_base64="QYJWGQeUg44Y0GE+nVZTCIfTvl8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MVjBfsh7VKyabYNTbJLkhXq0l/hxYMiXv053vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G05vM7z5SpVkk780spr7AY8lCRrCx0kO1dfU0TKfz6rBccWvuAmideDmpQI7WsPw1GEUkEVQawrHWfc+NjZ9iZRjhdF4aJJrGmEzxmPYtlVhQ7aeLg+fowiojFEbKljRoof6eSLHQeiYC2ymwmehVLxP/8/qJCRt+ymScGCrJclGYcGQilH2PRkxRYvjMEkwUs7ciMsEKE2MzKtkQvNWX10mnXvPcmndXrzQbeRxFOINzuAQPrqEJt9CCNhAQ8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwDpyo/H</latexit><latexit sha1_base64="QYJWGQeUg44Y0GE+nVZTCIfTvl8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MVjBfsh7VKyabYNTbJLkhXq0l/hxYMiXv053vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G05vM7z5SpVkk780spr7AY8lCRrCx0kO1dfU0TKfz6rBccWvuAmideDmpQI7WsPw1GEUkEVQawrHWfc+NjZ9iZRjhdF4aJJrGmEzxmPYtlVhQ7aeLg+fowiojFEbKljRoof6eSLHQeiYC2ymwmehVLxP/8/qJCRt+ymScGCrJclGYcGQilH2PRkxRYvjMEkwUs7ciMsEKE2MzKtkQvNWX10mnXvPcmndXrzQbeRxFOINzuAQPrqEJt9CCNhAQ8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwDpyo/H</latexit><latexit sha1_base64="QYJWGQeUg44Y0GE+nVZTCIfTvl8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MVjBfsh7VKyabYNTbJLkhXq0l/hxYMiXv053vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G05vM7z5SpVkk780spr7AY8lCRrCx0kO1dfU0TKfz6rBccWvuAmideDmpQI7WsPw1GEUkEVQawrHWfc+NjZ9iZRjhdF4aJJrGmEzxmPYtlVhQ7aeLg+fowiojFEbKljRoof6eSLHQeiYC2ymwmehVLxP/8/qJCRt+ymScGCrJclGYcGQilH2PRkxRYvjMEkwUs7ciMsEKE2MzKtkQvNWX10mnXvPcmndXrzQbeRxFOINzuAQPrqEJt9CCNhAQ8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwDpyo/H</latexit><latexit sha1_base64="QYJWGQeUg44Y0GE+nVZTCIfTvl8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MVjBfsh7VKyabYNTbJLkhXq0l/hxYMiXv053vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G05vM7z5SpVkk780spr7AY8lCRrCx0kO1dfU0TKfz6rBccWvuAmideDmpQI7WsPw1GEUkEVQawrHWfc+NjZ9iZRjhdF4aJJrGmEzxmPYtlVhQ7aeLg+fowiojFEbKljRoof6eSLHQeiYC2ymwmehVLxP/8/qJCRt+ymScGCrJclGYcGQilH2PRkxRYvjMEkwUs7ciMsEKE2MzKtkQvNWX10mnXvPcmndXrzQbeRxFOINzuAQPrqEJt9CCNhAQ8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwDpyo/H</latexit>

Concave supply

Convex supply

a
<latexit sha1_base64="cYQDb9W+0/s5KPx+8k3UZ6+HGfM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLW9s7uXnG/dHB4dHxSPj3rmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilhyqtDssVt+YuQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOidXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/FsOFnQiUpcsVWi8JUEozJ4m8yEpozlDNLKNPC3krYhGrK0KZTsiF46y9vkk695rk1775eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c6L86787FqLTj5zDn8gfP5A3ddjTU=</latexit><latexit sha1_base64="cYQDb9W+0/s5KPx+8k3UZ6+HGfM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLW9s7uXnG/dHB4dHxSPj3rmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilhyqtDssVt+YuQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOidXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/FsOFnQiUpcsVWi8JUEozJ4m8yEpozlDNLKNPC3krYhGrK0KZTsiF46y9vkk695rk1775eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c6L86787FqLTj5zDn8gfP5A3ddjTU=</latexit><latexit sha1_base64="cYQDb9W+0/s5KPx+8k3UZ6+HGfM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLW9s7uXnG/dHB4dHxSPj3rmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilhyqtDssVt+YuQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOidXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/FsOFnQiUpcsVWi8JUEozJ4m8yEpozlDNLKNPC3krYhGrK0KZTsiF46y9vkk695rk1775eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c6L86787FqLTj5zDn8gfP5A3ddjTU=</latexit><latexit sha1_base64="cYQDb9W+0/s5KPx+8k3UZ6+HGfM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLW9s7uXnG/dHB4dHxSPj3rmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilhyqtDssVt+YuQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOidXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/FsOFnQiUpcsVWi8JUEozJ4m8yEpozlDNLKNPC3krYhGrK0KZTsiF46y9vkk695rk1775eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c6L86787FqLTj5zDn8gfP5A3ddjTU=</latexit>

b
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Figure 3: Optimal Pattern

the supply function. Three cases are considered: a linear supply function given by the solid diagonal

line, an upper convex supply (concave marginal cost function), and a lower concave supply (convex

marginal cost function). The area below the marginal cost function between qk and qk+1 equals the

right hand side of (6), while the area under the line P + zk equals the left hand side. The di�erence

between these two areas is ∫ qk+1

qk

(P + zk − C ′ (q)) dq,

which equals zero if and only if condition (6) holds. In the linear case, the integrand is positive

up to point b and negative thereafter. Point P + zk is such that the regions from a to b and from

b to c have the same areas. It is immediate that in the linear case, the corresponding value of

zk = (Mk+1 +Mk) /2. It also follows easily that for the convex supply case, P + zk must be

higher, so zk > (Mk+1 +Mk) /2, while the converse holds for the concave supply case.

Proposition 5. Let the thresholds z = (z1, ..., zN−1)maximize (5), and denote byMk = E (z|zk−1 ≤ z ≤ zk)

the corresponding conditional means. Then

1. zk = (Mk +Mk+1) /2 if the supply function S (p) is linear;

2. zk ≥ (Mk +Mk+1) /2 if the supply function is convex, with strict inequality if it is not linear
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in the interval [Mk,Mk+1]; and

3. zk ≤ (Mk +Mk+1) /2 if the supply function is convex, with strict inequality if it is not linear

in the interval [Mk,Mk+1].

A simple characterization for the solution in the linear supply and conditions for uniqueness

are provided in the following proposition.
20

Proposition 6. If the supply function is linear, the optimal thresholds z = (z1, ..., zN) are the ones

that minimize
N∑
k=1

∫ zk

zk−1

(z −Mk)
2 dF (z) . (7)

If in addition F has log-concave density, the solution to this minimization problem is unique.

The optimal thresholds for the linear supply case are the ones that minimize the sum of the

variance of qualities within partitions. This objective coincides with the popular k−means criteria

for clustering as introduced by MacQueen et al. (1967), commonly used in the machine learning and

statistics literature. This makes estimating the optimal thresholds a trivial task, as many software

programs incorporate algorithms to solve this problem.

Following from the above observations, the linear supply case seems to be a natural reference

point. It is easy to compute, providing the market designer a good place to start. Moreover, Proposi-

tion 5 suggests that the thresholds for the linear case can be lower (resp. upper) bounds for the case

of convex (resp. concave) supply, which is formally proved in Section 5.1. In addition, all results

obtained for the linear supply case apply identically to the canonical case of Cournot competition

with constant marginal cost and arbitrary demand function, as shown in Section 5.4. The remain-

der of this section will focus on the linear supply case. Section 4.2 considers the performance of

simple rating systems. Section 4.3 considers the role of the distribution of �rm qualities F and in

particular its skewness.

20
The analysis for the nonlinear supply cases is provided in Section 5.1
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4.2 Value Loss Due to Coarse Ratings

In this section, we study the performance of simple rating mechanisms. We �rst derive a theoretical

bound for the case of two-tier ratings. Next, we explore numerically the performance of simple

ratings for a large class of widely used distribution functions.

Given that in the case of linear supply considered here total quantity and consumer surplus

are invariant to the information structure, without loss of generality we consider the gap in pro-

ducer surplus. Pro�ts for a �rm with expected quality z are equal to p (z)2 /2 = (P (Q) + z)2 /2.

Therefore, for any distribution G of expected quality, total pro�ts are

Π =
1

2

∫
(P (Q) + z)2 dG (z)

=
1

2
P (Q)2 + P (Q) z̄ +

1

2

∫
z2dG (z) .

The �rst two terms do not depend on G and thus on the partition. For the full information case,

the distribution of means G = F, so Π = 1
2
P (Q)2 + P (Q) z̄ + 1

2

∫
z2dF (z). Therefore, the

surplus gap with respect to the full information case is ∆Π = 1
2

(∫
z2dF (z)−

∫
z2dG (z)

)
for any

distribution of expected quality G. In particular, the total gap with respect to the no-information

case is ∆Π = 1
2

(∫
z2dF (z)− z̄2

)
. For a threshold partition (z1, ..., zN−1) , where G has N mass

points at the conditional means M1, ...,MN

∆Π =
1

2

N∑
k=1

∫ zk

zk−1

(
z2 −M2

k

)
dF (z) (8)

=
1

2

N∑
k=1

∫ zk

zk−1

[
(z −Mk)

2] dF (z) .

This equation corresponds again to the loss function used in k −means clustering, given that at

the optimal thresholds, as de�ned earlier, the expected values Mk are precisely the centroids of the

corresponding intervals [zk−1, zk] . We are interested in seeing how much of the total surplus is

captured by 8 or simply the following ratio:
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G ≡ ∆Π−∆Π

∆Π
= 1−

∑N
k=1

∫ zk
zk−1

(z −Mk)
2 dF (z)∫

z2dF (z)− z̄2

=

∑N
k=1 (F (zk)− F (zk−1)) (Mk − z̄)2∫

(z − z̄)2 dF (z)
,

which is the ratio of the variance between the conditional mean qualities and the total variance.

Intuitively, this bound is a measure of the relative importance of the variance between the means of

the partitions, separated by their ratings, and the variance that remains in each pool. This connec-

tion to variance decomposition is used below to derive a theoretical bound on ratings’ performance.

Theoretical Bounds The simplest coarse rating scheme is a two-tier certi�cation, widely used

in many settings. The next proposition provides a useful bound for the gains from certi�cation that

builds on the variance decomposition described above. The corollary that follows gives su�cient

conditions so that a two-tier rating achieves at least half of the surplus of full information.

Proposition 7. The relative performance of a two-tier setting satis�es

G ≥ 1

1 + max {cv2
1, cv

2
2}
,

where cv1 is the coe�cient of variation of z−z̄ conditional on z < z̄ and cv2 the coe�cient of variation

of z − z̄ conditional on z ≥ z̄.

Corollary 2. Suppose that the distribution F has an increasing hazard rate and a decreasing reverse

hazard rate. Then a two-tier rating achieves at least half of the surplus of full information.

Proof. From a well-known result from Stoyan and Daley (1983), pp 16–19, the conditions of this

corollary imply that cv1 < 1 and cv2 < 1. Using the bound in Proposition 7 completes the proof.

The conditions given in the corollary are satis�ed by a large class of distributions that include

all those with log-concave densities, such as uniform, normal, exponential and double exponential,
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Table 1: Optimal Thresholds

Distribution Case Mean/Median z∗ 1− F (z∗)
Share of Surplus Gap Closed

n = 2 n = 3 n = 5 n = 10

Pareto α = 3 1.19 2.73 0.05 0.46 0.68 0.84 0.94

α = 4 1.12 1.84 0.09 0.54 0.74 0.89 0.97

Exponential all 1.45 0.20 0.65 0.82 0.93 0.98

F (z) = zα α = 0.5 1.32 0.41 0.36 0.77 0.90 0.97 0.99

z ∈ [0, 1] α = 2 0.94 0.62 0.62 0.72 0.87 0.95 0.99

Log-normal σ = 0.25 1.03 1.09 0.36 0.63 0.81 0.92 0.98

(µ = 0) σ = 1 1.64 4.25 0.07 0.55 0.75 0.89 0.97

Note: The above calculations correspond to the linear supply case.

logistic, extreme value, and many others with some restriction on parameters (e.g., power function

F (z) = zc for c ≥ 1.) Related bounds for two-sided matching problems can be found in McAfee

(2002); Hoppe et al. (2011); Shao (2016). The results of Wilson (1989) imply that the losses from

N−ratings are of order 1/N2
.

Numerical Results We examine now numerical results for a variety of distribution functions

that are often used in the economics literature. Table 1 reports the share of the total surplus gap that

is closed with partitions of di�erent sizes n. As can be seen from the calculations, a one-threshold

(certi�cation) partition closes from near 50% to almost 80% of the surplus gap, depending on the un-

derlying distribution of qualities. The gains are diminishing as the number of thresholds increases.

Even though total surplus increases with the number of tiers, our numerical results suggest that

most gains are attained with a small number of ratings. As a result, the market designer should

weigh in the cost of having a more complicated information structure against the diminishing re-

turn of having more tiers.

These results show that a very simple rating system consisting of a single certi�cation thresh-

old or few tiers can achieve a considerable share of the gains from full information. This suggests

that the added cost or complexity of a more elaborate design might not be compensated by the

gains from it. While we do not model the cost of providing more detailed information for the mar-

ket designer or consumer’s cost of analyzing and understanding detailed information, our results

suggest that small costs could justify simple rating schemes and their popularity among market
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designers in practice.

4.3 Skewness and Optimal Thresholds

The optimal thresholds, as depicted in Equation 7, will depend on the distribution of sellers’ quality,

i.e., F distribution. In this section, we study how skewness in the distribution of qualities impacts

this optimal choice. In particular, we show that in the simple case of a two-tier certi�cation, the

optimal threshold is skewed in the same direction as the distribution of qualities. Then, we extend

this result, providing general comparative statics for the vector of thresholds with respect to an

appropriately de�ned skewness ordering.

Before proceeding to the analysis, we would like to provide some intuition behind our results.

Consider the case of one certi�cation threshold z∗. The following trade-o� appears when deciding

how strictly to draw the line separating the upper and lower segments. When putting z∗ in the

upper group, there is an upward distortion of the supply of the �rm at z∗, which is a function of

the distance MH − z∗. This distance also measures the extent to which the �rm at z∗ gains from

being pooled with higher-quality �rms. When putting z∗ in the lower group, there is a downward

distortion of the supply of the �rm at z∗, which is a function ofML−z∗. This distance also measures

the extent to which the �rm at z∗ loses from being pooled with lower-quality �rms. Right skewness

(resp. left skewness) of the distribution F (z) will increase (resp. decrease) the upward distortion

and decrease (resp. increase) the downward distortion, making it optimal to have more restrictive

(resp. less restrictive) certi�cation standards.

The condition given in Proposition 6 implies

z∗ =
1

2
(ML (z∗) +MH (z∗)) , (9)

which can be used to relate this threshold to properties of the distribution. Consider �rst the case

of a symmetric distribution, i.e., where the median, zmedian, equals the mean, z̄. Since for any z∗,

F (z∗)ML + (1− F (z∗))MH = z̄, setting the threshold z∗ = z̄ = zmedian would satisfy the above

condition.

The same reasoning suggests that when F is skewed, the optimal threshold will also be skewed
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Figure 4: z∗ When Mean>Median

relative to the mean in the same direction. This can be easily proved, as follows. Consider the case

of a right skewed distribution where z̄ > zmedian. Let ML (.) and MH (.) denote functions equal

to the conditional average of quality of sellers below and above any value within the range of

qualities, respectively. Furthermore, denote g (z) = 1
2

(ML (z) +MH (z)). Following Proposition

5, the optimal threshold is a �xed point of this function. When z → zmax (or as z →∞ in the case

of unbounded support), g (z) → 1
2
z̄ + 1

2
z < z, and when z → zmin(or as z → −∞ in the case of

unbounded support), g (z)→ 1
2
zmin + 1

2
z̄ > z. For z = zmedian, g (z) = z̄ > z. Since the function

g (z) is increasing and continuous, the unique �xed point z∗ must be to the right of zmedian and,

as a consequence, z∗ > z̄, as illustrated in Figure 4. The result for the case of left skewness can be

shown similarly.

Table 1 shows the optimal threshold for a series of distributions, as well as the corresponding

fraction of certi�ed sellers. All distributions in our example are skewed to the right except for one,

so according to our argument, z∗ > z̄ > zmedian and it is optimal to have a smaller share of sellers

certi�ed. This is shown in the �fth column of Table 1. As an example, for the Pareto distributions

only a small fraction should get certi�ed, 5% when the power parameter is 3 and 9% when the

power parameter is 4.
21

For the exponential distribution, only 20% of sellers should be certi�ed

regardless of the hazard rate.

Now, we extend our �ndings to the case of multiple signals under a stronger skewness order.

This skewness order, the convex (concave) order, was originally proposed by Van Zwet (1964).

21
When α ≤ 2, the value of z∗ is unde�ned, as total surplus is strictly increasing in z∗ in all the support.
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De�nition. Distribution F̃ is more skewed to the right than F if F̃−1 (F (x)) is convex; equiva-

lently, there exists an increasing convex function g (x) such that F̃ (g (x)) = F (x).
22

We can think of this ordering as stretching to the right the quality scale with the transformation

g (x) . As an example, if F is a uniform distribution in [0, 1] and g (x) = x2
, then F̃ (x2) = x or,

equivalently, F̃ (x) = x1/2.

Proposition 8. Suppose the supply function is linear. Let F be a distribution with log-concave density

and F̃ a distribution such that F̃ (g (z)) = F (z) , where g is a strictly convex increasing function.

Let {lk} be the optimal thresholds for F and {g (zk)} the optimal thresholds for F̃ . Then zk > lk for

all k.

This proposition implies that for all k, F̃ (g (zk)) = F (zk) > F (lk), so the percentiles de�ned

by the two optimal thresholds are ordered. In particular, for a two-tier certi�cation rating, the

share of certi�ed �rms should be lower for distribution F̃ . An example is given in Table 1 for the

case of power distributions F (z) = zα. It is easily shown that the distribution with α = 0.5 is

more skewed to the right than the one with α = 2.23
Consistently with the previous proposition,

the share of certi�ed sellers is lower when α = 0.5.

5 Further Characterizations and Extensions

This section provides some additional results and extensions. Section 5.1 considers non-linear sup-

ply functions. Section 5.2 considers the optimal ratings for consumers and producers, highlighting

the con�icting interests of the two groups. Section 5.3 considers the case of vertical di�erentia-

tion, where buyers di�er in their preference for quality, and the matching between goods’ quality

and consumer’s type becomes important. Section 5.4 establishes the equivalence between Cournot

competition and the case of linear supply. Finally, Section 5.5 considers the role of entry.

22
Note that this de�nition implies that F−1 (F (x)) = g−1 (x) is concave.

23
Take g (x) = x4.

30



5.1 Non-linear Supply Functions

In this section, we generalize our results in Section 4.1 to the case of a non-linear supply function.

The role of curvature can be conveniently illustrated comparing the two polar cases of perfectly

inelastic and perfectly elastic supply. When supply is perfectly inelastic (i.e., producers can produce

either zero or one unit or equally face a constant marginal cost up to a �xed capacity), quality

ratings cannot reallocate output to higher-quality producers, except in the extreme case where

there is no production in the absence of information. However, ratings can potentially serve to

�lter out the very low-quality producers that no consumer would buy from at a positive price, so

the optimal threshold will be at this low end. At the other extreme, when all �rms face a constant

marginal cost, only the highest-quality �rm should serve the market, so the optimal threshold

would be at the other end. More generally, the following lemma and proposition show that the

optimal thresholds in the case of a convex (resp. concave) supply function are pointwise higher

(resp. lower) than those in the linear case. As an example, in the case of a simple certi�cation

rating with two groups, more elastic supply leads to a higher threshold and lower share of certi�ed

sellers, as illustrated in the following lemma.

Lemma 3. If the supply function is concave (resp. convex), then zk is lower (resp. higher) than

(Mk +Mk+1) /2.

While the second part of this lemma gives the criteria for local deviations for a single threshold,

convex to the right and concave to the left, starting at those obtained for the linear case, it does not

imply an ordering of the whole vector of thresholds. The following proposition gives the conditions

for the total ordering.

Proposition 9. Suppose the quality distribution F (z) has a log-concave density. Let
(
zL1 , ..., z

L
N−1

)
be the optimal thresholds for the linear case. The optimal vector of thresholds (z1, ..., zN−1) for a

convex (resp. concave) supply function is pointwise higher (resp. lower) than
(
zL1 , ..., z

L
N−1

)
.

The formula in Equation (7) gives a simple characterization for the optimal thresholds in the lin-

ear supply case that depends only on the distribution of qualities, and, by the previous proposition,

provides a lower (resp. upper) bound when the supply function is convex (resp. concave). Thus,
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the problem of �nding the optimal thresholds becomes a manageable task, as one can start with

the simple solution of optimal thresholds in the linear case and then change them in the mentioned

direction when dealing with non-linear supply functions.

5.2 Consumer and Producer Surplus

We have focused on total surplus as the objective function. However, it is easy to show that at the

optimal thresholds, there is generically a con�ict of interest between consumers and producers, and

that the optimal choice balances o� these con�icting interests. The di�erence lies in the general

equilibrium e�ect: consumers’ surplus increases with total output, while pro�ts decrease. These

two opposing e�ects balance each other exactly at the optimal thresholds. In which direction would

consumers like the threshold to move? In particular, would consumers prefer stricter or less strict

criteria for certi�cation? The answer depends again on the properties of the supply function.

In the case of concave supply, total output decreases with information, so the optimal thresholds

are at the extremes of the distribution. When supply is linear, total quantity is independent of the

amount of information (see Proposition 1), so consumer surplus is the same for any threshold.

This implies that the optimal threshold is also the one that maximizes pro�ts. More generally,

total output will vary as the thresholds change depending on the properties of the supply function.

The following proposition provides su�cient conditions that determine the direction of change

of output (and consumer surplus) at the optimal thresholds. The direction of change of producer

surplus has the opposite sign.

Proposition 10. Let z = (z1, ..., zN−1) be the thresholds that maximize total surplus. If s′′ (p) /s′ (p)

is decreasing (resp. increasing) in p, then dQ (z) /dzk and dCS (z) /dzk are negative (resp. positive)

at z.

To illustrate the above results, consider a simple example. Suppose the supply function s (p) =

pθ (cost function c (q) = q1+θ/ (1 + θ)). Therefore, s′′ (p) /s′ (p) = (θ − 1) /p. For θ > 1, this

expression is decreasing in p. Applying the corollary, this decreasing condition implies that starting

at the surplus maximizing thresholds, consumers would prefer lower thresholds, while producers

would prefer higher ones. Therefore, if the planner puts more weight on the consumer side, it
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should lower thresholds, and if it puts more weight on the sellers, it should increase the thresholds.

The reverse occurs when θ < 1.

Note that the results in Proposition 10 are consistent with Corollary 3 if we compare the implied

directions of preferences with the order of pooling and separating regions. For example, Corollary

3 �nds that when s′′(p)/s′ (p) is decreasing, consumers prefer lower thresholds, so there is a larger

pooling region in the higher-quality segment. In comparison, for the same case, Corollary 3 shows

that the information structure that maximizes consumer surplus has full separation below some

threshold and pooling above.

5.3 Heterogeneous Preference for Quality

In this extension, we consider a demand system where agents have heterogeneous preference for

quality, and �rms have inelastic supply. While by construction, improvements in information do

not increase total quantity, they contribute to welfare by increasing the correlation between aver-

age �rm quality and consumer preference for quality. The optimal threshold is de�ned by a slightly

modi�ed formula that weighs di�erences in the �rms’ quality gap in each interval by the respec-

tive gap in consumers’ preferences. As a result, skewness in consumers’ preferences for quality

has similar implications to the ones observed for skewness in producers’ quality.

We examine brie�y the determination of optimal thresholds when consumers di�er in their

preferences for quality for the case of certi�cation, i.e., N = 2. Suppose consumers’ preferences

are given by the utility function u = θz + θ0 − p for a good of quality z, a la Mussa and Rosen

(1978). Consumers di�er in their preference for quality θ and for the value they assign the inside

vs. outside good θ0, which is distributed in the population according to some joint distribution

Ψ (θ, θ0). As earlier, �rm qualities z are distributed according to the cdf F (z) . For simplicity, we

restrict our analysis to a partition of sellers into two groups de�ned by threshold z∗with qualities zL

and zH , respectively. Given prices pL and pH , consumers will be split into three groups: those that

do not consume and those that consume either theH or L product, with demandsDH (pL, pH) and

DL (pL, pH), respectively. Prices pL and pH will be equilibrium prices provided thatDH (pL, pH) =

(1− F (z∗)) q (pH) and DL (pL, pH) = F (z∗) q (pL) . As in our previous case, there is a unique
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equilibrium under fairly general conditions.

Lemma 4. The optimal choice of threshold z∗ satis�es the following �rst-order necessary condition:

Π (pH)− Π (pL) = (z∗ − zL) θLqL + (zH − z∗) θHqH , (10)

where θL is the average preference for quality of consumers who purchase the L product, and θH of

those who purchase the H product.

This formula has an intuitive explanation. The �rst term is the loss of pro�ts of those �rms

that transition from the H to the L group, when z∗ is marginally increasing. The second term

measures the e�ect of the increase in the averages zL and zH as z∗ is increased, valued at the quality

preference of the average consumer in each group, and weighted by their respective market sizes.

Vertical Di�erentiation with Inelastic Supply

To establish further results, we consider the canonical model of vertical di�erentiation where con-

sumers di�er only in their preference for quality θ and where �rms supply inelastically one unit of

output.
24

Given equilibrium prices pL and pH , all consumers above a threshold θ∗ buy anH product,

while all those between θ and θ∗ buy an L product, where θzL = pL and θ∗ (zH − zL) = pH − pL.

Substituting in Equation (10) gives the condition

(z∗ − zL) (θ∗ − θL) = (zH − z∗) (θH − θ∗) .

Notice that this equation is a modi�ed version of Equation (15), where the gaps between z∗ and

the respective means are weighted by the corresponding preference gaps. This equation highlights

the role of the complementarities between average quality and preference for quality in the deter-

mination of the optimal threshold. In particular, when both distributions are symmetric, this also

implies that the optimal threshold z∗ (and also θ∗) will equal the corresponding mean. Moreover,

24
This case can be reinterpreted as a one-to-one matching environment with surplus function θz.
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when z and θ have the same distribution, the optimal threshold is also given by our baseline con-

dition, as given in Equation (15).
25

As an example, if both have uniform distributions, then when

θ∗ = z∗ = 1/2, this condition will hold.

5.4 Cournot Competition

Throughout the paper, we have assumed that the �rms are price takers. In this section, we extend

our analysis to the case of Cournot competition among �rms with constant marginal cost. There

is a total of n �rms (per consumer), and given threshold z∗, a fraction F (z∗) in the �rst group and

(1− F (z∗)) in the second. The demand structure is the same as in the competitive case considered

above. Assume �rms face a constant marginal cost c regardless of their type. The equilibrium

conditions are

MRH = P ′ (Q) qh + P (Q) + zH = c (11)

MRL = P ′ (Q) ql + P (Q) + zL = c. (12)

Multiplying each equation by the number of �rms in the respective group and adding up, we get

P ′ (Q)Q+ nP (Q) + nz̄ = nc,

where z̄ is the mean quality for then �rms. Interestingly, this equation determinesQ independently

of the signal threshold z∗, as in the case of perfect competition with linear supply.

Another implication of the invariance of total output is that consumer surplus does not change,

as in the case of linear supply with z∗. This fact occurs because price increases capture exactly the

change in average quality in each group. It follows that optimal thresholds solve the maximization

problem (5), so they are identical to those obtained above for the linear case.
26

25
It is interesting to note that when all consumers have the same preference for quality and supply is inelastic,

welfare is independent of z∗, as the average product quality is not a�ected by its choice.

26
We have considered here quantity competition. For a model of price competition with partially informed con-

sumers, see Moscarini and Ottaviani (2001).
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5.5 Entry

In our previous analysis we did not consider explicitly the e�ect of changes in z∗ on entry. Many

of our results extend to settings where the distribution of qualities of �rms is not a�ected by entry.

We discuss here two scenarios: one where entrants are ex ante di�erentiated and one where they

are ex ante homogeneous.

Consider �rst the case of di�erentiated entrants. Our analysis extends without modi�cation

to the following scenario. Suppose there is a mass n of entrants that are di�erentiated in qual-

ities z and �xed (or entry) costs f . Assume qualities are independent from �xed costs and are

given by distribution F and Φ, respectively. For a given threshold partition z∗, we can de�ne the

aggregate supply functions SL and SH as follows. Let SH (p) = s (p)NH (p), where NH (p) =

n (1− F (z∗)) Φ (π (p)). This supply function combines the e�ect of prices on the intensive and

extensive margin. We can de�ne similarly SL (p) . Our analysis remains unchanged if we substi-

tute s (p) by ŝ (p) = s (p)nΦ (f (p)), so total supplies are SL (p) = F (z∗) ŝ (p) and SH (p) =

ŝ (p) (1− F (z∗)) .27

For the homogeneous case, assume there is a setN of potential entrants that draw their qualities

independently from distribution F upon entry, after paying an entry cost f, which is distributed

according to cdf Φ (f) . For �xed output, improved information results in a mean preserving spread

of expected qualities and thus prices. Given that pro�t functions are convex in prices, this results

in an increase in expected pro�ts and a consequent increase in entry. In the case of linear supply,

where in the absence of entry, total output does not change, additional entry results in an increase

in total output and thus consumer surplus. In the case of concave supply, we have seen that total

output decreases. This increases pro�ts over what is produced by the mean preserving spread of

average qualities, thus inducing entry, mitigating, if not totally undoing, the drop in total output

that would result in the absence of entry. Finally, note that if all potential entrants were to have

the same entry cost, all surplus gains from improved information would accrue to consumers, as

expected, and average pro�ts would remain unchanged. The above results apply in particular to

27
The properties of these modi�ed supply functions will now depend both on the individual supply functions and

the distribution of �xed costs. There exist assumptions on the latter that will guarantee that the modi�ed supply

functions are linear, convex, or concave when each of these properties holds for the original supply functions.
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the e�ect of introducing a certi�cation mechanism in a market where there is none.

6 Final Remarks

This paper considered the optimal design of quality ratings in markets with adverse selection. We

�rst study the problem of optimal rating design for a planner with a �exible objective function.

We �nd that better information has opposing welfare e�ects on consumers and producers that

could lead to limited disclosure. For example, in regions where the supply function is concave,

pooling can mitigate the reduction in output from improved information and its negative impact

on consumer surplus. Where the supply function is convex, pooling decreases total output and

increases prices, which might have a positive impact on producers. For those cases where full

information is not optimal, we �nd that the region of pooling increases with the asymmetry in the

weights of the two groups in the objective function of the planner.

Ratings reallocate demand across producers, impacting not only the average quality of goods

consumed but also average cost. The optimal thresholds in a discrete rating system optimize this

trade-o�. Optimal ratings thus depend on the characteristics of the market, given by the distribu-

tion of producers’ quality, the elasticity of supply, and consumers’ preferences. We �nd that the

optimal thresholds in the case of a convex (resp. concave) supply function are pointwise higher

(resp. lower) than those in the linear case. Intuitively, in the case of a simple certi�cation rating

with two groups, more elastic supply leads to a higher threshold and lower share of certi�ed sellers.

We also �nd that skewness in the distribution of �rm qualities matters for optimal ratings, which

move in the direction of the skew.

We have given a simple characterization for the optimal thresholds in the case of linear sup-

ply, or Cournot competition with constant marginal cost, as the solution to standard clustering

problems. Our results thus provide a straightforward and easy-to-compute method for the design

of rating systems. This method is used to derive bounds on the performance of the rating system

as a function of the number of categories. We �rst theoretically show that a simple certi�cation

mechanism, or a two-tier rating, is enough to reach half of the bene�ts of the best rating mecha-

nism in case of log-concave densities. As an example, we �nd that for the exponential family of
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distributions, 65% of the surplus gains from full information can be achieved with only two cate-

gories. The large gains in surplus with a very simple threshold mechanism suggest that the added

cost of a more complex one might not be compensated by the gains from it. This could explain the

popularity of these simple schemes among market designers.

Our preliminary analysis of the vertical di�erentiation model suggests that preferences for qual-

ity can be an important factor in determining optimal thresholds. One might conjecture that, in

parallel to our results on the supply side, more convexity (resp. concavity) in the distribution of

consumer types increases (resp. decreases) the gains from more assortative matching, thus leading

to higher thresholds. This question and further extensions on the demand side, such as including

scope for horizontal di�erentiation, are subject for future research. Other extensions worth consid-

ering are a more detailed modeling of entry, following results obtained in the empirical literature

by Hui et al. (2021). Finally, we have abstracted from moral hazard considerations, which can be

important in some settings; exploring their impact on the design of optimal ratings is left to future

research.
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7 Appendix. Proofs

Proof of Proposition 1

Proof. Suppose the supply function S (p) is convex and, by way of contradiction, Q1 < Q2. Let

p1 (z) = P (Q1) + z denote the equilibrium price for a good of expected quality z, and de�ne

similarly p2 (z) . It follows immediately that p1 (z) > p2 (z), since P is strictly decreasing. Let G1

and G2 denote the distribution of expected qualities under signal structures t1 and t2, respectively.

By de�nition of integral precision, it follows that G1 second order stochastically dominates G2, so

Q1 =

∫
S (p1 (z)) dG1 (z) ≥ S (p2 (z)) dG1 (z)

≥
∫
S (p2 (z)) dG2 (z) = Q2,

where the second inequality follows from convexity of S (p) . The above contradicts the original

hypothesis, proving that Q1 ≥ Q2. The proof is similar for concave S (p).

To show that total surplus increases with better information, we show that there exists a cor-

respondence between competitive equilibria and allocations that maximize total surplus. Given a

distribution of mean qualities G (z), the problem of maximizing total surplus solves

S = max
q(z)

∫ Q

0

P (x) dx+

∫
[zq (z)− C (q (z))] dG (z)

subject to

Q =

∫
q (z) dG (z) .

The �rst order conditions for the choice of q (z) are

z − C ′ (q (z)) + λ = 0 (13)

and this holds for all points in the support of G, where the Lagrange multiplier of the constraint

λ = P (Q) . Substituting in (13) and letting p (z) = P (Q) + z implies p (z) = C ′ (q (z)), which

is the condition de�ning the pro�t maximizing output q (z) in the competitive equilibrium. Hence
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the allocation q (z) and the prices p (z) are the ones that correspond to the unique competitive

equilibrium.

Consider now a distribution of expected qualities G̃ corresponding to a better information sys-

tem than G so it is a mean-preserving spread of G. Following the characterization in Rothschild

and Stiglitz (1970), there exists a garbling of signals that generates G from G̃. This means that a

social planner could ignore the additional information contained in G̃ and reproduce the quantity-

weighted distribution of average qualities corresponding to the optimal allocation under G and

thus the same value. While this allocation is feasible under G̃, it is not optimal. This follows from

the easily veri�ed property that the unique competitive equilibrium (which as argued is also the

optimal allocation) di�ers across these two information structures.

Proof of Proposition 3

Proof. Following the �rst condition given in Proposition 3 part (i) in Kolotilin (2018), full disclosure

up to some threshold z∗ and complete pooling above is optimal when V ′′ (z) changes sign from

positive to negative. Note that V ′′ (z) has the same sign as

V ′′ (z)

π′′ (z)
= (1− γ) + λ

S ′′ (z)

π′′ (z)
.

So when either of the two �rst conditions given in the proposition holds, then V ′′ (z) can be always

positive, always negative, or switch sign from positive to negative. If it is always positive, full

disclosure is optimal, and if it is always negative, no disclosure is optimal. In these two cases z∗ is

at an extreme. When V ′′ (z) changes sign, z∗ is an interior point. In this case, there is an interval

with full disclosure followed by no disclosure.

The proof of the second part is analogous to the �rst one, using instead the second condition

in Proposition 3 part (i) in Kolotilin (2018).

Proof of Proposition 4

To prove this proposition, we �rst need to state the following two lemmas.

43



Lemma 5. 1) LetQ (z) be the equilibrium output for an upper interval disclosure policy with threshold

z. Let mL (z) denote the conditional mean below z (the pooling interval), pL = P (Q (z) +mL) and

p = P (Q (z) + z) . Then Q′ (z) has the same sign as

S ′ (pL) (p− pL)− (S (p)− S (pL)) .

2) Let Q (z) be the equilibrium output for a lower interval disclosure policy with threshold z.

Let mH (z) denote the conditional mean above z (the pooling interval), pH = P (Q (z) +mH) and

p = P (Q (z) + z) . Then Q′ (z) has the same sign as

S ′ (pH) (pH − p)− (S (pH)− S (p)) .

Proof. Consider the upper interval disclosure with threshold z. Equilibrium output Q (z) is the

solution to

Q (z) = F (z)S (P (Q (z)) +mL (z)) +

∫
z

S (P (Q (z)) + s) dF (s) ,

where mL (z) is the conditional mean below the threshold z (the pooling interval). Di�erentiating

with respect to z,

Q′ (z) = f (z)
S ′ (P (Q (z)) +mL (z)) (z −mL (z))− (S (P (Q (z)) + z)− S (P (Q (z)) +mL (z)))

1− P ′ (Q (z))
(
F (z)S ′ (P (Q (z)) +mL (z)) +

∫
z
S ′ (P (Q (z)) + s) dF (s)

) .

The denominator is positive, so the sign of Q′ (z) is equal to the sign of the numerator:

S ′ (P (Q (z)) +mL (z)) (z −mL (z))− (S (P (Q (z)) + z)− S (P (Q (z)) +mL (z))) .

The proof of the second part follows similar calculations.

The following lemma gives the conditions that determine the sign of the above expressions.

Lemma 6. Consider an optimal disclosure policy that is given by a threshold with pooling on one side

of the threshold (above or below) and complete separation on the other side. Then a marginal increase
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in the pooling region will increase total output (resp. decrease total output) when γ > 1/2 (resp. when

γ < 1/2).

Proof. Consider �rst the case where z corresponds to the threshold of a lower disclosure inter-

val. Let mH (z) denote the mean above z (the pooling interval), pH = P (Q (z) +mH) and p =

P (Q (z) + z) . Following Kolotilin (2018), V (mH (z)) − V (z) − (mH (z)− z)V ′ (mH (z)) = 0.

Since V (s) = π (P (Q (z)) + s)+λS (P (Q (z)) + s) and the �rst term is convex, for this equality

to hold it is necessary that

λ [S (P (Q (z)) +mH (z))− S (P (Q (z)) + z)] > λ [(mH (z)− z)S ′ (P (Q (z)) +mH (z))] .

For γ > 1/2, λ > 0, so this implies that S (pH) − S (p) > (pH − p)S ′ (pH) , and by Lemma 5, it

follows that Q′ (z) < 0. An increase in the pooling region corresponds to a decrease in z, so total

output increases. The reverse is obviously true when γ < 1/2.

Consider now the case where z corresponds to the threshold of an upper disclosure inter-

val. Let mL (z) denote the mean above z (the pooling interval), pL = P (Q (z) +mL) and p =

P (Q (z) + z) . Following Kolotilin (2018), V (z) − V (mL (z)) − (z −mL (z))V ′ (mL (z)) = 0.

Since V (s) = π (P (Q (z)) + s) +λS (P (Q (z)) + s) and the �rst term is convex, for the equality

to hold it is necessary that

λ [S (P (Q (z)) +mH (z))− S (P (Q (z)) + z)] < λ [(mH (z)− z)S ′ (P (Q (z)) +mH (z))] .

For γ > 1/2, λ > 0, so this implies that S (pH) − S (p) < (pH − p)S ′ (pH), and by Lemma 5, it

follows that Q′ (z) > 0. An increase in the pooling region corresponds to an increase in z, so total

output increases. The reverse is obviously true when γ < 1/2.
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Proof of Proposition 4

Proof. Consider �rst the setting where the optimal policy is a left disclosure interval, as in Propo-

sition 3.

W (z, γ) = (1− γ)

[∫ z

0

π (P (Q (z)) + s) dF (s) + (1− F (z))π (P (Q (z)) +mH)

]
+γ

∫ Q(z)

0

(p− P (Q (z))) dz,

where Q (z) is the equilibrium output under this policy.

∂W

∂z
= (1− γ) f (z) (π (z)− π (mH)) + (1− γ) f (z) (mH − z) π′ (mH) + (1− 2γ)Q (z)P ′ (Q (z))Q′ (z)

Taking derivative with respect to γ,

∂2W

∂z∂γ
= −f (z) [(π (z)− π (mH)) + (mH − z) π′ (mH)]− 2Q (z)P ′ (Q (z))Q′ (z)

= −(1− γ)

1− γ
f (z) [(π (z)− π (mH)) + (mH − z) π′ (mH)]− 2 (1− γ)

1− γ
Q (z)P ′ (Q (z))Q′ (z)

= 0− 1

1− γ
Q (z)P ′ (Q (z))Q′ (z) .

When γ > 1/2, Lemma 6 implies that Q′ (z) < 0, so the cross partial is negative and the pooling

region increases with γ. When γ < 1/2, Q′ (z) > 0, so the cross partial is positive and the pooling

region decreases with γ.

Consider next the case where the optimal policy is a right disclosure interval, as in Proposition

3:

W (z, γ) = (1− γ)

[
F (z) π (P (Q (z)) +mL) +

∫
z

π (P (Q (z)) + s) dF (s)

]
+γ

∫ Q(z)

0

(p− P (Q (z))) dz,
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where Q (z) is the equilibrium output under this policy.

∂W

∂z
= (1− γ) f (z) (π (mL)− π (z)) + (1− γ) f (z) (z −mL) π′ (mL) + (1− 2γ)Q (z)P ′ (Q (z))Q′ (z)

Taking derivative with respect to γ,

∂2W

∂z∂γ
= −f (z) [(π (mL)− π (z))− (z −mL)π′ (mL)] +−2Q (z)P ′ (Q (z))Q′ (z)

= − 1

1− γ
Q (z)P ′ (Q (z))Q′ (z) .

When γ > 1/2, 6 implies that Q′ (z) > 0, so the cross partial is positive and the pooling region

increases with γ.When γ < 1/2, Q′ (z) < 0, so the cross partial is negative and the pooling region

decreases with γ.

Proof of Corollary 1

Proof. Consider a partition of the set of sellers into sets S1, ..., SN . Suppose there are two sets

Sk, Sk+1 that are not totally ordered in quality with meansMk ≤Mk+1 and massGk andGk+1. By

reordering elements of these two sets, one can substitute Sk and Sk+1 with two new disjoint sets

S ′k and S ′k+1 of equal measures to the original ones, where Sk ∪ Sk+1 = S ′k ∪ S ′k+1 and S ′k < S ′k+1,

element-wise. By construction, M ′
k ≤ Mk ≤ Mk+1 ≤ M ′

k+1 and G′kM
′
k + G′k+1M

′
k+1 = GkMk +

Gk+1Mk+1. This corresponds to a mean preserving spread of the original distribution of means

and thus gives higher surplus.

Proof of Lemma 2

To totally di�erentiate Equation (5) with respect to zk, �rst note that by the envelope condition,

we can ignore the e�ect on the output choices q1, ..., qN . In particular, this implies that ∂Q/∂zk =

f (zk) (qk − qk+1) . Since Mk =
∫ zk
zk−1

zdF (z) / (F (zk)− F (zk−1)) , it follows that

∂ (F (zk)− F (zk−1))Mk

∂zk
= f (zk) zk,

∂ (F (zk+1)− F (zk))Mk+1

∂zk
= −f (zk) zk.
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The result now follows by totally di�erentiating (5) and setting it equal to zero.

Proof of Proposition 5

To prove this proposition we need an intermediate step, which is proven using the following lemma.

Lemma 7. The optimal thresholds satisfy the following condition:

zk −Mk

Mk+1 −Mk

s (pk) +
Mk+1 − zk
Mk+1 −Mk

s (pk+1) =

∫ pk+1

pk
s (p) dp

pk+1 − pk
, (14)

where Mk and Mk+1 are the conditional mean qualities for the two groups, and pk and pk+1 the

equilibrium prices.

Proof. First note that

(P (Q) + zk) (qk+1 − qk) = (P (Q) +Mk+1 −Mk+1 + zk) qk+1

− (P (Q) +Mk −Mk + zk) qk

= pk+1qk+1 − pkqk − (Mk+1 − zk) qk+1 − (zk −Mk) qk.

Substituting in (6) and rearranging gives

(Mk+1 − zk) qk+1 + (zk −Mk) qk = πk+1 − πk.

Equation (14) follows by substituting πk+1 − πk =
∫ pk+1

pk
s (p) dp, using qk+1 = s (pk+1) and qk =

s (pk), and dividing through the left hand side by (Mk+1 −Mk) and the right hand side by the

equivalent value pk+1 − pk.

We use the expression found in Lemma 7. Equation (14) equates the expected value of s (p)

under two lotteries. The left hand side lottery has weights α = (zk −Mk) / (Mk+1 −Mk) on price

pk and (1− α) on price pk+1. The second lottery is uniform between these two extreme prices.
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When s is linear, it must be the case that α = 1/2 and this implies that

zk −Mk = Mk+1 − zk. (15)

When s is convex, α > 1/2 so zk −Mk > Mk+1 − zk, so the optimal threshold is above the one

de�ned by equation (15), while the reverse occurs when s is concave. This concludes the proof.

Proof of Proposition 6

Without loss of generality let S (p) = p, so the cost function c (q) = 1
2
q2. Consider now the

objective function (5) for this case:

W (z) =

∫ Q

0

P (x) dx+
N∑
k=1

[F (zk)− F (zk−1)]

[
Mk (P +Mk)−

1

2

(
(P +Mk)

2)]
(16)

=

∫ Q

0

P (x) dx+
N∑
k=1

[F (zk)− F (zk−1)]

[
1

2
M2

k −
1

2
P 2

]
. (17)

After suppressing the terms that are una�ected by the partition, maximizing this expression is

equivalent to maximizing

N∑
k=1

[F (zk)− F (zk−1)] (Mk − z̄)2 , (18)

where z̄ =
∑N

k=1 [F (zk)− F (zk−1)]Mk is the mean �rm quality, which is independent of the

partition. The above expression is the variance between partitions. Since total variance is �xed,

maximizing (18) is equivalent to minimizing (7). Uniqueness of the thresholds is guaranteed when

the distribution has log-concave density, as shown in Mease and Nair (2006).
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Proof of Proposition 7.

Proof. Let M̄1 and M̄2 be the conditional mean of z below and above the mean z̄, respectively. By

the variance decomposition,

∫
(z − z̄)2 dF (z) =

∫ z̄ (
z − M̄1

)2
dF (z) +

∫
z̄

(
z − M̄2

)2
dF (z)

+F (z̄)
(
M̄1 − z̄

)2
+ (1− F (z̄))

(
M̄2 − z̄

)2

= F (z̄)
(
cv2

1 + 1
) (
M̄1 − z̄

)2
+ (1− F (z̄))

(
cv2

2 + 1
) (
M̄2 − z̄

)2

≤
(
max

{
cv2

1, cv
2
2

}
+ 1
) (
F (z̄)

(
M̄1 − z̄

)2
+ (1− F (z̄))

(
M̄2 − z̄

)2
)
,

where the second equality follows from

cv1 =

∫ z̄ (
(z − z̄)−

(
M̄1 − z̄

))2
dF (z)

F (z̄)
(
M̄1 − z̄

)2

and similarly for cv2. From the above inequality,

F (z̄)
(
M̄1 − z̄

)2
+ (1− F (z̄))

(
M̄2 − z̄

)∫
(z − z̄)2 dF (z)

≥ 1

1 + max {cv2
1, cv

2
2}
.

This gain corresponds to setting z∗ = z̄, so it is a lower bound to the gains under the optimal

threshold.

Proof of Proposition 8.

To prove this proposition, we �rst need to show the following lemma.

Lemma 8. Let g (z1) , ..., g (zN−1) be the optimal thresholds for F̃ . Let Mk = m (zk−1, zk) =

EF (zk−1 ≤ z ≤ zk). Then zk −Mk > Mk+1 − zk.

Proof. Let M̃k = EF̃ (g (z̃k−1) ≤ z ≤ g (z̃k)). Note that by strict convexity of g, M̃k > g (Mk) . It

follows that
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z −Mk > zk − g−1
(
M̃k

)
= g−1 (g (zk))− g−1

(
M̃k

)
= g−1

(
M̃k+1

)
− g−1 (g (zk))

> Mk+1 − zk.

To prove the proposition, let the vector {lk} be the optimal thresholds for F and {zk} the op-

timal thresholds for F̃ . Equation (21) follows from the necessary condition for optimal thresholds,

and (23) follows from the previous lemma.

Proof of Proposition 9

We use the following properties of distributions with log-concave densities (see Lemma 1 in Mease

and Nair (2006)):

E (z|s ≤ z ≤ s+ d)− s is decreasing in s for d > 0 and (19)

s− E (z|s− d ≤ z ≤ s) is increasing in s for d > 0, (20)

and these properties are preserved when conditioning on intervals.

Lemma 9. SupposeF is a distribution with log-concave density and letm (a, b) = EF (z|a ≤ z ≤ b) .

Suppose the vector of thresholds {lk}N−1
k=1 satis�es

lk −m (lk−1, lk) = m (lk, lk+1)− lk (21)

and let z1, ..., zN−1 be a vector such that

zk −m (zk−1, zk) > m (zk, zk+1)− zk. (22)
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Then zk > lk for all k.

To prove Lemma 9 we use �rst the following:

Claim. Under the assumptions of Lemma 9, suppose that for some k, zk < lk and zk+1 − zk ≥

lk+1 − lk. Then zk−1 < lk−1 and zk − zk−1 ≥ lk − lk−1.

Proof. Note that

zk −m (zk−1, zk) > m (zk, zk+1)− zk (23)

≥ m (zk, zk + lk+1 − lk)− zk

≥ m (lk, lk+1)− lk

= lk −m (lk−1, lk) .

The �rst inequality follows from (22), the second one from monotonicity of m,the third from (19),

and the last from (21). Now consider k − 1. We will show that zk − zk−1 ≥ lk − lk−1.

Suppose, by way of contradiction, that zk − zk−1 < lk − lk−1. Then

zk −m (zk−1, zk) ≤ lk −m (lk − (zk − zk−1) , lk)

≤ lk −m (lk−1, lk)

where the �rst inequality follows from condition (20) and the second one from the monotonicity

of m. This inequality contradicts (23), proving that zk − zk−1 ≥ lk − lk−1. Given that zk < lk, this

also guarantees that zk−1 < lk−1.

We now prove Lemma 9. Let h denote the highest k for which zk < lk. By the de�nition of h,

zh+1 − zh > lh+1 − lh. Using inductively the previous claim, it follows that the same is true for all

k = 1, ..., h. For k = 1, the claim would imply that z0 < l0, which cannot be true if the distribution

had a lower bound, since in that case both z0 and l0 should equal this lower bound. For unbounded

support, an argument similar to the one used in the claim can be used to generate a contradiction.

This completes the proof.
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Proof of Proposition 9.

Let {lk} denote the optimal thresholds for the linear supply function and {zk} those for the convex

supply function. Lemma 3 and Equations (21) and (23) hold, so Lemma 9 proves the proposition.

Proof of Proposition 10

To prove this proposition, we need to show the following lemma �rst:

Lemma 10. The term dQ (z) /dzk has the same sign as

zk −Mk

Mk+1 −Mk

s′ (pk) +
Mk+1 − zk
Mk+1 −Mk

s′ (pk+1)−
∫ pk+1

pk
s′ (p) dp

pk+1 − pk
. (24)

Proof. Total output is

Q =
N∑
k=1

(F (zk)− F (zk−1)) s (pk) ,

where pk = P (Q) +Mk. Di�erentiating with respect to zk and using

(F (zk)− F (zk−1))
∂Mk

∂zk
= f (zk) (zk −Mk)

(F (zk+1)− F (zk))
∂Mk+1

∂zk
= f (zk) (Mk+1 − zk)

∂Q

∂zk
= f (zk) (s (pk)− s (pk+1))

+ f (zk) [s′ (pk) (Mk − zk) + s′ (pk+1) (Mk+1 − zk)]

+
N∑
k=1

(F (zk)− F (zk−1)) s′ (pk)P
′ (Q)

∂Q

∂zk
,

we get

∂Q

∂zk
=
f (zk) [s (pk)− s (pk+1) + s′ (pk) (Mk − zk) + s′ (pk+1) (Mk+1 − zk)]

1−
∑N

k=1 (F (zk)− F (zk−1)) s′ (pk)P ′ (Q)
.
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The denominator is positive since s′ (pk) > 0 and P ′ (Q) < 0, so ∂Q/∂zk has the same sign as

s (pk)− s (pk+1) + s′ (pk) (Mk − zk) + s′ (pk+1) (Mk+1 − zk) ,

and since s (pk)− s (pk+1) = −
∫ pk+1

pk
s′ (p) dp and pk+1−pk = Mk+1−Mk, Equation (24) follows.

Proof of Proposition 10

Letting α (zk) = Mk+1−zk
Mk+1−Mk

, we can rewrite Equation (14) as

s (pk) + α (zk) (s (pk+1)− s (pk)) = s (pk) +

∫ pk+1

pk
s (p)− s (pk) dp

pk+1 − pk
,

so

α (zk) =

∫ pk+1

pk

s(p)−s(pk)
s(pk+1)−s(pk)

dp

pk+1 − pk
. (25)

To evaluate dQ/dzk at the optimal thresholds z1, ..., zk we rewrite Equation (24) in a similar

fashion using the expression for α (zk) given by Equation (25).

dQ

dzk
= α (zk) (s′ (pk+1)− s′ (pk))−

∫ pk+1

pk
(s′ (p)− s′ (pk)) dp
pk+1 − pk

=

∫ pk+1

pk

s(p)−s(pk)(s′(pk+1)−s′(pk))

s(pk+1)−s(pk)
dp−

∫ pk+1

pk
(s′ (p)− s′ (pk)) dp

pk+1 − pk
,

so a su�cient condition for dQ/dzk to be positive (negative) is that

(s (p)− s (pk)) (s′ (pk+1)− s′ (pk))
s (pk+1)− s (pk)

− (s′ (p)− s′ (pk)) > 0 (< 0) ,

or, equivalently,

s′ (pk+1)− s′ (pk)
s (pk+1)− s (pk)

− s′ (p)− s′ (pk)
s (p)− s (pk)

> 0 (< 0) . (26)
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A su�cient condition for this equation to hold is that

s′ (p)− s′ (pk)
s (p)− s (pk)

(27)

increasing (resp. decreasing) in p (for all p > pk). The derivative of (27) with respect to p has the

sign of

s′′ (p) (s (p)− s (pk))− s′ (p) (s′ (p)− s′ (pk))

=s′′ (p)

∫ p

pk

s′ (x) dx− s′ (p)
∫ p

pk

(s′′ (x)) dx,

which in turn has the sign of

s′′ (p)

s′ (p)
−
∫ p
pk

(s′′(x))
s′(x)

s′ (x) dx∫ p
pk
s′ (x) dx

.

The second term is a weighted average of the coe�cient of absolute risk aversion of s for values

between pk and p. So, if s′′ (x) /s′ (x) is increasing (resp. decreasing) in x, then this di�erence will

be positive (resp. negative).

Proof of Lemma 4

Let

U (QH , QL, z
∗) = max

AL,AH

∫
AL

u (θ, zL (z∗)) dΨ (θ) +

∫
AH

u (θ, zH (z∗)) dΨ (θ) (28)

subject to

∫
AL

dΨ (θ) = QLand

∫
AH

dΨ (θ) = QH .

Given this problem, we can write the general problem as

V (z∗) = max
qL,qH

U (qLF (z∗) , qH (1− F (z∗)) , z∗)− F (z∗) c (qL)− (1− F (z∗)) c (qH) .
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By the envelope theorem,

∂V (z∗)

∂z∗
=

∂U

∂QL

qLf (z∗)− ∂U

∂QH

qHf (z∗) +
∂U

∂z∗
(29)

− f (z∗) c (qL) + f (z∗) c (qH) .

The �rst two derivatives are the respective multipliers pL and pH of the constraints in (28). To

evaluate the last term, �rst we note that

∂zL
∂z∗

= f (z∗)
z∗ − zL (z∗)

F (z∗)
(30)

and

∂zH
∂z∗

= f (z∗)
zH (z∗)− z∗

1− F (z∗)
. (31)

Also,

∂U

∂z∗
=

(∫
(θ1,θ0)εAL

θ1dG

)(
∂zL
∂z∗

)
(32)

+

(∫
(θ1,θ0)εAH

θ1dG

)(
∂zH
∂z∗

)
.

Finally, note that the measure of the set AL is QL = qLF (z∗), and the measure of the set AH is

QH = qH (1− F (z∗)) . Dividing and multiplying (32) by these respective measures and substitut-

ing (30) and (31), we get

∂U

∂z∗
= f (z∗) (z∗ − zL)E (θ1| (θ0, θ1) εAL) qL (33)

+ f (z∗) (zH − z∗)E (θ1| (θ0, θ1) εAH) qH .

Substituting (33) in (29) we obtain

1

f (z∗)

∂V

∂z∗
= pLqL − c (qL)− [pHqH − c (qH)]

+ (z∗ − zL)E (θ1| (θ0, θ1) εAL) qL

+ (zH − z∗)E (θ1| (θ0, θ1) εAH) qH .
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Noting that the multipliers pL and pH are also the equilibrium prices, we can rewrite the �rst order

condition for the optimal z∗ as

Π (pH)− Π (pL) = (z∗ − zL)E (θ1| (θ0, θ1) εAL) qL (34)

+ (zH − z∗)E (θ1| (θ0, θ1) εAH) qH .
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