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Abstract

We study the existence of e¢cient auctions in private value settings in which some

bidders choose their bids based on the accessible data from past similar auctions con-
sisting of bids and ex post values. We consider steady-states in such environments with

a mix of rational and data-driven bidders, and we allow for correlation across bidders
in the signal distributions about the ex post values. After reviewing the working of the

approach in second-price and …rst-price auctions, we show our main result that there
is no e¢cient auction in such environments.
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1 Introduction

Understanding which auction format if any ensures that the goods end up in the hands

of the buyers who value them the most is not only of theoretical but also of practical

interest. As forcefully argued by Maskin (1992), a primary objective of privatizations is

to ensure an e¢cient allocation of productive assets. More generally, the same e¢ciency
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concern applies to most auction settings that are organized by public authorities (for exam-

ple, the U. S. Congress explicitly mandated the Federal Communications Commission to

promote e¢ciency in its auctions of frequency bands for telecommunications sale of license

auctions).1

The academic view about e¢cient (one-object) auctions is as follows. In the private

value setting, that is, when the private information held by any given buyer is a su¢cient

statistics for determining the value of the good to this buyer, the Vickrey or second-

price auction is an e¢cient auction: Irrespective of whether there is correlation in the

private information held by the various buyers and irrespective of potential asymmetries

between buyers, the good ends up in the hand of the buyer who values it the most. This

is not so with the …rst-price auction in which ine¢ciencies can arise in the private value

setting, in particular in the presence of asymmetries and correlation. By contrast, in

the interdependent value setting or when there are informational externalities between

bidders, ine¢ciencies are unavoidable when private information is multi-dimensional no

matter what auction format is used (see Maskin (1992) for an early illustration and Jehiel

and Moldovanu (2001) for a general analysis of this).

In this paper, we revisit the possibility of e¢cient auctions in one-object private value

settings assuming that some bidders, the less experienced ones, lack the ability to …nd

out their best strategy, as usually considered in economic applications. Speci…cally, such

bidders referred to as novice are assumed to rely on the data accessible from similar auctions

played by other bidders to help them make their decision on how to bid in the current

auction. More precisely, we will assume that the available data consist of the bids as well

as the ex post values, as in the empirical work of Hendricks and Porter (1988). In addition

to the novice bidders, more experienced bidders can participate in the auction, and these

are viewed as having identi…ed the strategy that serves their interest best given the auction

environment. In other words, experienced bidders are simply rational, as usually considered

in economic applications.2 Using a di¤erent terminology, one can think of rational bidders

as insiders having familiarity with the prevailing auction environment and of novice bidders

as outsiders who would participate in such auctions for the …rst time and rely on AI or

machine learning techniques to guide them on how to bid.

1As in Maskin (1992), we abstract here from issues related to allocative externalities, which may some-
times be of primary importance in the context of shaping competitive market structures (see Jehiel and
Moldovanu (2003) and (2006) for an analysis of this).

2The strategy employed by such bidders may di¤er though from that arising in Bayes Nash equilibria
due to the presence of novice bidders.
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Our main result will be to establish that even in private value settings, there is no e¢-

cient auction when there is a mix of novice and experienced buyers, the private information

is correlated among bidders, and the private information at the time of the auction is only

a noisy signal about the ex post value of the buyer. That is, we suggest a novel potential

source of ine¢ciency in auctions that is related to the cognitive limitations of (some) bid-

ders and not to the interdependent character of the private information, as highlighted by

the previous literature.

One may wonder why the Vickrey or second-price auction would fail to induce an

e¢cient allocation in our private value setting. As we will see, the correlation between

the distributions of ex post values and other buyers’ bids observed in the data from past

auctions will lead novice bidders to reason as if they were in an interdependent value

setting, thereby leading them to adopt bidding strategies that di¤er from the usual weakly

dominant one. This will in turn induce ine¢ciencies, as experienced and novice bidders

will not bid in the same way, even when receiving the same objective information.

Speci…cally, we consider one-object auctions in which at the time of the auction, a

bidder ’s private information is a noisy signal about his (own) ex post value for the good

assumed to take one of …nitely many realizations.3 We assume that after the auction is

completed, what is publicly disclosed is the pro…le of bids as well as the ex post values

of the various bidders, but not the signals observed by the bidders at the time of the

auction. It should be mentioned that our disclosure assumptions correspond to the practical

environment considered by Hendricks and Porter (1988) and Hendricks et al. (2003) in the

context of …rst-price common value auctions for drainage leases, and we believe that in

most applications, it would be unnatural to assume that data beyond the ex post values

and the bids (such as data on the signals received by bidders at the time of the auction)

would be accessible to outside observers and new comers. But, it should be stressed that

Hendricks, Porter and co-authors assume that bidders behave optimally, and these authors

seek to derive the underlying structural model from the observed data consisting of bids and

ex post values under this rationality assumption. By contrast, our approach will consist in

3While the private value formulation may seem restrictive in some applications of the privatization type,
we note that it is appropriate as long as the private information bears only on the own cost attached to
winning the object (as opposed to the common conditions applying to all possible buyers, here assumed to
be symmetrically known by everyone). Moreover, to the extent that extra information would be learned
after the auction, it is legitimate to assume that at the time of the auction bidders receive only noisy
signals about their ex post values (a bit di¤erently from most private value models in which the type would
generally be reduced to the expected ex post value). Assuming buyers do not observe their ex post value
at the time of the auction will play an important role in the analysis.
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assuming that novice bidders’ behaviors are derived from these data, which as we will see

need not imply optimal behavior.4 In the main part, we restrict attention to two-bidder

auctions, but we note that our main insights carry over when there are more bidders.

It should be highlighted that we allow for correlation between signals, which will play

a key role in the analysis.5 But, despite the correlation and as already stressed, the

setting is one of private values, since the distribution of bidder ’s ex post value is fully

determined by bidder ’s signal (i.e., it is una¤ected by the other bidder’s signal, conditional

on ’s signal).6 Yet, novice players are assumed to be unaware of the true signal generating

process, and thus of the private value character of the auction. Instead, like econometricians

or analysts would do, they construct a representation of the statistical links between the

variables of interest based on the signal they receive as well as the dataset available to

them. Speci…cally, observations from past auctions take the form (1 1 2 2) where 
is the bid previously submitted by a subject in the role of bidder  and  is his ex post

value.7 A novice bidder  constructs from the dataset the empirical distribution describing

how  is distributed conditional on the various possible ex post values of bidder . He also

uses his own signal  that is informative about the likelihood of his various possible ex post

values  and combines the two to form a belief about how ( ) are jointly distributed

given his own signal. He then best-responds to this belief given the rules of the auction.

We will be considering steady state environments in which there is a mixed population

of bidders composed of a share of novice bidders (whose expectations are formed as just

informally explained) and a complementary share of experienced or rational bidders. We

will refer to such steady states as Data-Driven Equilibria.

We apply this model to understand the e¢ciency properties of Data-Driven Equilibria,

and more particularly, whether by a judicious choice of auction rule, one can implement

an e¢cient allocation. Our insights are as follows. First, unless the distributions of signals

of the two bidders are independent, data-driven bidders rely on a misspeci…ed statistical

4 In the private value setting, it may be argued that it is harder to access the ex post value of losers.
We will discuss in Section 5 how our model could be extended to cope with missing data on losers’ ex post
values as well as missing data on losing bids.

5A practical way to think of correlation is that the distributions of signals are in‡uenced by unobserved
conditions which are common to all bidders.

6The …rst-price auctions in a¢liated private value settings studied by Pinkse and Tan (2005) fall in
this category, but these authors consider the case of rational bidders when we allow for boundedly rational
bidders and more general auction formats.

7We will consider in the discussion how to deal with the cases in which bids are anonymous or cases in
which only the winning bid is observed.
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model, and as a result choose suboptimal bidding strategies. In Section 3, we start illus-

trating this with Second-Price Auctions (SPA) in the (symmetric) binary case in which

there are two possible ex post values. We show that unlike rational bidders, novice bidders

do not bid their expected value when there are correlations. As in winner’s curse models,8

novice bidders make inferences about their ex post value from how the other bidder bids.9

In the case of positive correlation, this leads novice bidders to bid more than their expected

value when they receive good signals (because in the neighborhood of large opponent’s bids,

the own ex post value is more likely to be high) and less than their expected value when

they receive bad signals (for a symmetric reason). We provide a numerical characterization

of the equilibrium for a parametric class of distributions, and we describe how it is a¤ected

by the share of rational bidders and the correlation of signal distributions.

Clearly, the fact that novice and rational bidders do not bid in the same way leads to

ine¢ciencies in the binary case, unless there is perfect correlation of the signals, or the

bidders are all novice or all rational. For our parametric example, we observe that the

normalized welfare loss in the data-driven equilibrium of the SPA is U-shaped in the share

of novice bidders as well as in the degree of correlation. More generally, we show for the

binary mixed population case that as soon as there are correlations, there is some welfare

loss in the Second-Price Auction. We also consider First-Price Auctions (FPA), for which

we also show that there must be ine¢ciencies whenever there is correlation.10

Our main result concerns general auction-like mechanisms de…ned as mechanisms in

which each bidder submits a real-valued bid, and an outcome is chosen as a function of the

pro…le of bids with the restriction that if a bidder submits a higher bid, this bidder has

more chance of winning the object. In Section 4, we provide a general ine¢ciency result.

More precisely, we show in the mixed population case that for generic joint distributions

of signals, there is no auction-like mechanism that allows to obtain an e¢cient outcome

with probability one as a Data-Driven Equilibrium when ex post values can take at least

three realizations. The intuition for this result is as follows. To obtain e¢ciency among

rational bidders, only the Second-Price Auction or a strategically equivalent auction format

can be used. This is so because with more than two ex post values there is generically a

manifold of signal realizations corresponding to the same expected value for the object, but

8See Milgrom and Weber (1982) for the classic analysis of such models.
9 In some sense, they reason as if the correlation between the competitor’s bid and their own ex post

value implied a causality link from the former to the latter when in reality there is no such link.
10We illustrate through an example that sometimes the welfare loss may be larger in the Second-Price

Auction than in the First-Price Auction. The opposite welfare ranking can arise in other cases.
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di¤erent beliefs about the signal realization of the other bidder, and if the payment in the

auction were to depend on the own bid, then the belief about the opponent would a¤ect

the shape of the optimal bid, as in First-Price Auctions. Since in Second-Price auctions,

novice bidders do not bid their expected value as also observed in the simpli…ed binary

case, we conclude that ine¢ciencies must occur.

In Section 5, we put our analysis in perspective. First, we discuss alternative spec-

i…cations of cognitive limitations in auction-like mechanisms, and we make the simple

observation that our main impossibility result would a fortiori hold if we were to consider a

mixed population that includes extra cognitive types in addition to those considered in the

main part of the paper. Second, we discuss scenarios in which the ex post values of losing

bidders and/or losing bids would not be accessible from past auctions. After suggesting

various possible approaches to the modeling of novice bidders in such cases, we argue that

they would lead to a similar ine¢ciency result as the one obtained in our main model. We

also discuss scenarios in which past bids would be anonymous, and mention open issues for

further research. Section 6 concludes.

Related literature

Our paper relates to di¤erent branches of literature. First, the modeling of data-driven

bidders is in the spirit of the Analogy-Based Expectation Equilibrium (Jehiel, 2005) to the

extent that these bidders aggregate the bid behavior of their opponent according to their

own ex post value. More precisely, such an aggregation of bidding behavior can be related

to the payo¤-relevant analogy partition introduced in Jehiel and Koessler (2008).11

The modeling of data-driven bidders can also be related to the Bayesian Network Equi-

librium (Spiegler, 2016), viewing these agents as believing that their ex post value is a cause

of the bid of the opponent. From this perspective, it is precisely this wrong causality that

leads novice bidders to reason as in winner’s curse models whenever there is correlation

in the underlying distribution of types.12 At a more general level, one can also relate the

11See Jehiel (2011) for a di¤erent application of ABEE to mechanism design in which unlike in the present
setting the designer is assumed to control what is disclosed from past auctions.
12Note that in our prefered interpretation the reasoning of novice bidders in our approach is viewed as

a consequence of the nature of the dataset accessible to them, not as a consequence of a subjective wrong
causality relation they could have in mind (see Spiegler (2020), and Jehiel (2021), for elaborations of the
link between the Analogy-Based Expectation Equilibrium and the Bayesian Network Equilibrium as well
as Spiegler (2021) for an extension of the Bayesian Network Equilibrium to settings suited to deal with the
present application).
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Data-Driven Equilibrium to recent behavioral equilibrium models allowing for misspeci-

…ed beliefs (see the cursed equilibrium Eyster and Rabin, 2005; the behavioral equilibrium

Esponda, 2008; or the Berk-Nash equilibrium Esponda and Pouzo, 2016, among others).

In particular, the cursed equilibrium of Eyster and Rabin (2005) also considers the auction

application, but note that the cursed equilibrium gives predictions away from the Nash

equilibrium, only in interdependent value settings (thus not in our private value setting).

In some sense, cursed bidders behave as if they were in a private value setting when in

interdependent value environments. By contrast, our data-driven bidders behave as if they

were in an interdependent value setting when in private value settings with correlation.

Another relevant strand of literature is the one initiated by Li (2017) who introduced

the idea of obviously dominant strategy. In particular, he applied the idea to auctions to

suggest that the ascending price auction may make it easier (than the sealed-bid second

price auction) for bidders to play optimally in private value settings. In Li’s approach,

bidders fail to identify their (weakly) dominant strategy in the second-price auction because

they may entertain di¤erent expectations about their competitor’s bidding behavior when

considering di¤erent bids. In our approach, the expectation about the opponent’s behavior

is the same irrespective of the bid, but the underlying correlation and the possibility of

multiple ex post values lead novice bidders to miss that they are in a private value setting,

thereby leading them to fail to identify their optimal strategy in second-price (as well as

in ascending-price) auctions.

Our paper is also related to the robust mechanism design literature (Bergemann and

Morris, 2005), in the sense that a common motivation in that literature and our approach

is that it may be hard to know what the beliefs of agents are. While the robust mechanism

design literature uses this observation to motivate the desire to implement outcomes for

a large range of (or even all) beliefs,13 our paper explicitly suggests a method of belief

formation for bidders who do not have access to such information from past auctions.14

Finally, from a technical point of view, our analysis makes use of some results developed

in the literature on mechanism design with correlation. In particular, we borrow genericity

arguments from Gizatulina and Hellwig (2017).

13To some extent, our result that with only rational bidders, an e¢cient auction must be strategically
equivalent to a second-price auction belongs to the robust design literature and it provides a new result in
favor of second-price auctions in private value settings with common priors when signals are beliefs over ex
post values.
14Our paper can thus be viewed as o¤ering a di¤erent approach than that of Bergemann and Morris to

Wilson’s critique calling for a relaxation of the common prior assumption.
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2 Model

Mechanisms. We consider the allocation of a single object to two bidders  = 1 2

via an auction or more general auction-like mechanism. To simplify notation, when we

consider a generic bidder  2 f1 2g, we denote the opponent by  6= . A Mechanism

 = [()  ] consists of three elements: (i) feasible bids  for the two bidders. A

pro…le of bids is denoted  = (1 2) 2  := 1£2. (ii) an allocation rule  :  ! [0 1]2,

() = (1() 2()), with 1() + 2() · 1, where () is the probability that bidder

 gets the object if the bid pro…le  is submitted. (iii) A payment rule  :  ! R2,
() = (1() 2()), where () denotes the payment bidder  has to make if the bid

pro…le  is submitted.

Valuations. Ex-post, the value of the object for bidder  is denoted . It can take

values in  =
©
1    

ª
. Up to normalization, it is without loss to assume that 0 =

1       = 1. When participating in a mechanism, each bidder has an interim type

 = (1      

 ) 2 £ := ¢ , where  denotes the probability that  = . A pro…le

of types is denoted  = (1 2). We assume that conditional on ,  is independent

of . As a consequence the expected valuation of a bidder only depends on her own

interim type: [j] = [j]. In other words, we are considering a setting with private
values. Interim types are jointly distributed with cumulative distribution function  ()

and density () de…ned over £2, and our main interest is in the case where 1 and 2 are

not independent.15 We assume throughout that the joint distribution is symmetric and has

a continuous and positive density. When there is no confusion, we slightly abuse notation

and denote marginal distributions () and () by  () and (); and conditional

distributions (j) and (j), by  (j) and (j).

Rational and Novice Bidders. We assume that each bidder  is characterized by a

generalized type  = ( ), where  denotes the interim type described before, and

 2 fg speci…es the sophistication of the bidder. We denote the set of general types
by  = ££fg. For simplicity we will call  just the type. The probability that  = 
is denoted  2 (0 1); we assume that it is independent of  and across bidders.  = 

15One way to think of correlation is to introduce an auxiliary variable  distributed with density (),
and condionally on , let  and  be distributed independently according to ( j ) and ( j ),
respectively. Any smooth joint density () can be decomposed that way, and  in this decomposition can
be thought of as representing the unobserved conditions that apply to all bidders.
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means that bidder  is rational ; and  =  means that bidder  is novice or misspeci…ed.

Informally, the rational type correctly understands the environment, whereas the novice

type holds beliefs that are endogenously determined by past observations of equilibrium

outcomes of the mechanism she currently participates in. As we will see, this way of

forming beliefs can lead to misspeci…cations, and accordingly we also refer to the novice

type as the misspeci…ed type.

We now make this precise. Fix a mechanism  = [()  ]. A strategy of bidder 

is a function  :  ! , where as a shorthand we write ( ) = 

 ()—that is, 


 (¢)

is the strategy of the rational type, and  (¢) is the strategy of the misspeci…ed type of
bidder .16 A strategy pro…le is denoted by  = (1 2) = (1 


1  


2 


2 ) and we denote the

space of all strategy pro…les by B.
For a rational type of bidder , the expected utility of type  when submitting bid

 2 , and assuming that bidder  bids according to (¢), is given by

 ( j(¢)) = E [ ( ( ))¡ ( ( ))j] 

where E is the expectation with respect to the correct distribution  and the probability
.

Next consider the misspeci…ed type. We assume that this type forms a belief using

past observations from the same mechanism played by similar bidders. Suppose the mech-

anism is run repeatedly with two (short-lived) bidders whose generalized type pro…les are

drawn i.i.d., across repetitions. If both bidders play according to a …xed strategy pro…le,

as they would in a steady state, then repeated play generates a data set with observa-

tions (1 1 2 2). We make the assumption that only bids and ex-post valuations are

observable.

Assumption 1. For each mechanism we consider, we assume that bidders have access

to observations of the form (1 1 2 2) from the same mechanism. The data about past

mechanisms does not include the types (1 2) of past bidders.

The idea behind this assumption is that bids are often disclosed after an auction and as

time goes by, the ex-post valuation of the bidders, or an estimate thereof becomes known

as well. On the other hand, bidders typically do not have access to the beliefs that past

bidders in their role held at the time of bidding. In Section 5, we discuss situations in

16We only consider pure strategies in our setting with continuous interim types.
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which only the winner’s ex post valuation or only the winner’s bid is disclosed.

Past data allow bidders to identify the joint distribution of observable variables. We

abstract from issues of estimation, and assume that bidders can recover this distribution

without estimation error. The misspeci…ed bidder then forms a simple model that combines

relevant information from the empirical distribution of (1 1 2 2), and her belief that

her own  is distributed according to . To illustrate, consider an auction with possible

bids 1 = 2 = [01). To assess the payo¤ from di¤erent bids, a bidder need to know

the joint distribution of her own valuation  and the opponent’s bid , conditional on her

own type . The misspeci…ed bidder combines the distribution of  given by her type

 with the joint distribution of  and the opponent’s bid  learned from the data in a

parsimonious way, taking the joint distribution to be

P
h
 = 

  · j
i
=  £(j) (1)

where (j) is the c.d.f. of  conditional on  =  that is obtained from the data.

Throughout, we will use P for probabilities assessed by the misspeci…ed type and P for
probabilities computed using the correct probabilistic model (given the density “”). To

see the di¤erence, note that

P
h
 = 

  · j
i
=  £ P

h
 · j  = 

i
=  £ P [ · j]

where the second equality follows from the assumption that  and  are independent,

conditional on . Under Assumption 1, P [ · j] cannot be assessed directly from the

data since the types of past bidders are not available. In order to identify P [ · j]
from the data, one would have to make assumptions about the strategies used by past

bidders. These assumptions are ad hoc if only data on past bids and ex-post values are

available and a misspeci…ed bidder does not have insight into the type of reasoning used

by past bidders. The misspeci…ed type therefore does not attempt to use the data through

the lens of such assumptions but just takes the empirical correlation between  and  as

given.

Regarding rational types, our preferred way to interpret such types is to think of them

as experienced bidders who have learned the best bidding strategy given the environment,

and thus behave as if they understood how bidders behave as a function of their type (as
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well as understanding the distribution of types).17 By contrast, novice bidders have no

experience on what the best strategy is and they must rely on the available data to choose

their strategy, which typically does not allow them to form a correct representation on how

all relevant variables are distributed. In particular, the misspeci…ed type does not know

that conditional on her own type , her own valuation is independent of the opponent’s type

and thus that her valuation and the opponent’s bid are also conditionally independent. The

data available from past auctions, however, exhibits a correlation between the valuation

 and the bid  , since conditioning on the unobserved type  is not possible. This is

the source of the misspeci…cation of the -type. As we will see, this gives rise to bidding

behavior that is similar to the winner’s curse.

To summarize, for a misspeci…ed type of bidder , the expected utility of type  when

submitting bid  2 , and assuming that bidder  6=  bids according to (¢), is given by

 ( j(¢)) = E [ ( ( ))¡ ( ( ))j] 

=
X

=1



Z



[ ( )¡ ( )](j)

where E is the expectation formed according to the model described above. Note that in
order to determine (¢j), it is enough to specify the strategy (¢) since  and  in the
current auction do not depend on the bids placed by the bidder in role  in the past.18 To

understand this better, the example of the second-price auction in the next section will be

helpful.

Equilibrium. To close the model, we assume that (¢j) are equilibrium objects that

are generated by the equilibrium strategy pro…le, and the misspeci…ed type best-responds

given her beliefs that are captured by (¢j). In other words, we focus on steady state in
which the data generated by new bidders follow the same distribution as those generated

by previous bidders. Formally,

De…nition 1. The strategy pro…le (¢) is a “Data-Driven Equilibrium” of the mechanism
 = [()  ] if for all  6= , and for all  2 £,
17With this interpretation, a rational bidder need not know the share  of rational bidders but she behaves

as if she knew it.
18Another way to motivate why bidder  does not use the  from past auctions is that she is unsure

what led a past bidder  to choose his bid, as it could be determined by his information and/or his way of
reasoning none of which are accessible to her.
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(a)  () 2 argmax2  ( j(¢)),

(b)  () 2 argmax2  ( j(¢)), where the distribution (j) used to com-
pute  is derived from (¢),  , and Prob[ = ] = .

3 Standard Auctions

Before considering auction-like mechanisms and presenting the main result of the paper,

we apply the model to standard auctions. This illustrates how data-driven beliefs a¤ect

bidding behavior.

To start with a simple case, we assume here that j j = 2, so that the type of each

bidder is one-dimensional. More speci…cally, we assume that  = f0 1g, so that the type
can be written as one number  2 [0 1], that speci…es the probability that bidder ’s

ex-post valuation is  = 1. Note that this implies that  is also the interim expected

value of bidder . In the following, we explain the equilibrium logic of our model for two

standard auctions formats, the Second-Price Auction and the First-Price Auction. To

compute concrete bidding equilibria, we will use a parametric class of joint distributions

that allows us to vary the correlation between 1 and 2.

Example 1. The joint density is given by

 (1 2) =
2 + 

2
(1¡ j1 ¡ 2j) 

The parameter  2 [01) determines the correlation between the two types where  = 0
corresponds to the independent case and  =1 corresponds to perfect correlation.

3.1 Second-price Auction

In a second-price auction, the rational type has a weakly dominant strategy since values

are private. Hence she bids her interim expected value. We have

() = 

where  refers to the rational type’s strategy. We denote the inverse by (), which is of

course equal to  in this case.
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Now consider the misspeci…ed type and consider a symmetric equilibrium, that is

 (¢) =  (¢) = (¢). Suppose the equilibrium strategy (¢) is strictly increasing with
inverse (). In equilibrium, the distribution of  conditional on  = 1 is

SPA( j  = 1) =
P [ ·   = 1]

P [ = 1]
 (2)

where SPA(¢) refers to this distribution for the SPA. Note that the misspeci…ed type
learns the correct joint distribution of  and  from the data. Hence we have used

the correct probabilities P on the right-hand side. In the denominator, we have the

unconditional probability of  = 1 which is given by the (ex-ante) expectation of the

random variable ~. In the numerator, the probability P [ ·   = 1] is obtained by

averaging P [ ·   = 1j~] over the (ex-ante) random variable ~. Since  is a function

of  and , and the generalized type ( ) and  are independent conditional on ~, we

have:

SPA( j  = 1) =
E~

h
P [ · j~]£ P [ = 1j~]

i

E[~]

=
E~

h³
P [() · j~] + (1¡ )P [() · j~]

´
£ P [ = 1j~]

i

E[~]

=
1

E[~]

Z 1

0

h
 ( j ~) + (1¡ ) (() j ~)

i
~  (~)~

In the second line we decomposed the probability P [ · j~] into the probability that a
rational and a misspeci…ed type bid below , conditional on ~. If the opponent is rational,

the probability of  ·  is given by P [() · j~] =  (() j ~) =  ( j ~), and if the
opponent is misspeci…ed it is given by P [() · j~] =  (() j ~). The term ~ in

the third line is just P [ = 1j~]. We obtain a similar expression for the distribution of 
conditional on  = 0:

SPA( j  = 0) =
1

E[1¡ ~]

Z 1

0

h
 ( j ~) + (1¡ ) (() j ~)

i
(1¡ ~) (~)~

where the expectation in the integral di¤ers from that in SPA( j  = 1) since  [ =

0j~] = (1¡ ~), and outside the integral E[1¡ ~] is the unconditional probability  [ =

13



Figure 1: SPA bid-function (),  2 f1 1 10g (left to right)

0].19

In a symmetric equilibrium of the second-price auction, the misspeci…ed type’s bid for

 solves

max


½


SPA( j  = 1)¡ 
Z 

0

SPA(j = 1)¡ (1¡ )
Z 

0

SPA(j = 0)
¾

To obtain an equilibrium we have to determine a bidding strategy  and the implied SPA

such that  is optimal for the misspeci…ed type give belief SPA. Taking the …rst-order

condition for  and substituting SPA( j  = 1) and SPA( j  = 0), we obtain a

di¤erential equation for .

In Example 1, when  = 0—the independent case—we have that SPA( j  = 1) =
SPA( j  = 0) and the …rst order condition leads to () = . But, when  di¤ers

from 0, SPA( j  = 1) di¤ers from SPA( j  = 0) and () di¤ers from . Solving

the di¤erential equation numerically for the joint distribution from Example 1, we get the

bid-functions illustrated in Figure 1.

We see that increasing the correlation leads to stronger deviations from the rational

bid. Moreover, the sensitivity of  with respect to  becomes stronger if the correlation is

stronger. Generally, for …xed correlation, increasing the share of misspeci…ed types (1¡)
leads to smaller deviation from rationality. Bidding against mainly rational types, a mis-

19Note that SPA ( j  = 0) = P [ ·   = 0] P [ = 0]
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speci…ed type’s behavior exhibits strong deviations from rationality,20 but in equilibrium,

the presence of other misspeci…ed types has a dampening e¤ect.

Intuition. The reasoning leading to the derivation of  follows a logic similar to that

in classic analysis of winner’s curse models (see Milgrom and Weber, 1982). We observe

from Figure 1 that the misspeci…ed type overbids for   12 and underbids for   12.

What explains this behavior? To understand this, it is useful to shut down the (dampening)

equilibrium e¤ect of misspeci…ed types and assume that  ¼ 1. The crucial observation

is that the -type believes that conditional on  = 1, the opponent’s bid distribution is

strong. This is because in the data,  and  are positively correlated: Observations with

 = 1 are more likely generated when ~ is high. Due to the positive correlation between

 and , this implies that  is also likely to be high. Conversely, the -type believes

that conditional on  = 0, the opponent’s bid distribution is weak.

For an -type with low , consider the incentives to decrease the bid below  = .

In this range reducing the bid has a large e¤ect on the winning probability conditional on

 = 0 (the-type believes that conditional on  = 0, the opponents bid’s are concentrated

on a low range) and little e¤ect on the winning probability conditional on  = 1 (where

the -type believes the opponents bid’s are concentrated on a high range). Therefore, the

-type believes that by shading the bid, she can cut the losses from winning with  = 0,

without a strong reduction of the gains from winning when  = 1.

For a high , this logic is reversed. Consider the incentives to increase the bid above

 =  when  is high. The bid is now in a range where the -type believes that increasing

the bid mainly a¤ects the winning probability conditional on  = 1 and has less e¤ect on

the winning probability conditional on  = 0. Hence, she thinks overbidding increases the

pro…ts from winning with  = 1, while only modestly increasing the losses from winning

with  = 0. This leads to bids above  for high types of the misspeci…ed bidder.21

20Numerical computations indicate that even if  ! 1, the slope of  remains bounded, where the
bound depends on . In other words,  does not converge to a step function according to the numerical
results.
21The dampening e¤ect of lower values of  can be understood as follows. Take a value of  larger (resp.

smaller) than 05. Rational bidders bid less (resp. more) than misspeci…ed bidders. Thus, bidder  ties with
the equilibrium bid of a misspeci…ed agent, for a larger (resp smaller) value of  when bidder  is rational
than when he is misspeci…ed. Given the correlation between  and  , this in turn gives rise to a bigger
winner’s curse-like correction when  is bigger, thereby explaining the dampening e¤ect of decreasing the
share of rational types.
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Ine¢ciency of the Second-Price Auction. While the distortions observed in the

example are speci…c to the parametric class of distributions, we can show generally that

the SPA is not e¢cient whenever both rational and misspeci…ed types arise with positive

probability, and the types of the two bidders are correlated.22 23

Proposition 1. If  2 (0 1) and Corr[1 2] 6= 0, then any equilibrium of the second-

price auction in which the rational types of both bidder play their dominant strategies is

ine¢cient.

Proof. All omitted proofs can be found in Appendix A.

Revenue and E¢ciency. Continuing our illustration for the parametric class in Exam-

ple 1, we show how revenue and (relative) e¢ciency of the allocation varies with (a) the

share of rational types  and (b) the correlation between 1 and 2—that is, the parameter

.

Figure 2 plots the revenue as a function of  for di¤erent values of . Note that the

comparison between di¤erent values of  with  held …xed is not very informative since

the joint distribution changes in a complicated way as  changes.

We see that for the case of weak correlation ( = 1), revenue is increasing in the share

of rational bidders. This suggests that the distortions in the misspeci…ed type’s bidding

function adversely a¤ect revenue. For highly correlated interim types, the pattern changes

and revenue is U-shaped in the share of rational types. The initial decline is intuitive since

the distortions in the -types bid become larger if the share of rational types increases.

Pro…ts rise again if the share of rational types becomes so large that the presence of-types

becomes unlikely.

Figure 3 shows how e¢ciency changes depending on  and .

To make this comparable across di¤erent parameter sets, we normalize e¢ciency by

the expected ex-post value achieved if the object is always allocated to the bidder with

the highest interim type. Clearly when  = 0 or 1, there is no ine¢ciency given that

bidders of the same sophistication bid in the same way. Moreover, both when  = 0 (the

22Correlation is a su¢cient condition for an ine¢ciency. The careful reader will see from the proof that
weaker forms of dependency also lead to ine¢ciencies. In Section 4 we generalize this proposition to any
…nite number of valuations (see Lemma 6).
23As suggested by Bob Wilson, ine¢ciencies require the presence of both rational and misspeci…ed types

due to our assumed symmetry on the distribution of types. In the absence of symmetry, one would expect
ine¢ciencies to arise in SPA, even if there are no rational types, as long as signals are correlated.
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Figure 2: Revenue from the SPA as a function of : for  2 f1 10 20g

Figure 3: E¢ciency of SPA as a function of : for  2 f1 5 10 20g
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Figure 4: E¢ciency of SPA as a function of  = 15 + 5 where  = 1     9 is on the
horizontal axis.  2 f05 5 95g.

independent case) or  = 1 (perfect correlation) there is no ine¢ciency either. In the

parametric example, we observe that the relative e¢ciency is -shaped as a function of 

and , as shown in Figure 4.

3.2 First-price auction

In a …rst-price auction, we obtain the misspeci…ed type’s belief in a similar way as for the

second-price auction:

FPA( j  = 1) =
Z 1

0

h
 (() j ~) + (1¡ ) (() j ~)

i
~
(~)

[~]
~

FPA( j  = 0) =
Z 1

0

h
 (() j ~) + (1¡ ) (() j ~)

i
(1¡ ~)

(~)

[1¡ ~]
~

(¢) and (¢) now denote the bidding strategies of the rational and misspeci…ed types in
the symmetric equilibrium of the FPA, and their inverses are denoted by (¢) and (¢).
The misspeci…ed bidder’s bid for type  maximizes

max

(1¡ ) FPA( j  = 1)¡ (1¡ )FPA(j = 0) (3)

Again we obtain a di¤erential equation for (). In contrast to the second price auction,

however, we cannot assume that rational bidders bid their expected valuations. Instead
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Figure 5: Equilibrium bid functions for  2 f1 5 10g

they maximize

max

( ¡ ) ( (()j) + (1¡ ) (()j))

In this optimization, rational bidders behave as if using the correct distribution  , the

correct share of rational types in the population, and the equilibrium bidding strategies

of both the rational and the misspeci…ed types when determining their optimal bids. The

…rst-order condition for the rational type’s problem yields a second di¤erential equation.

To compute an equilibrium, we need to solve the system of two ODEs with the boundary

condition ((0) (0)) = (0 0). This proves challenging even for the distributions in our

example, since the system has a singular point at the boundary condition. However, we

obtain a similar ine¢ciency result as we had for the SPA.

Proposition 2. If  2 (0 1) and Corr[1 2] 6= 0, then the symmetric equilibrium of the

…rst-price auction is ine¢cient.

3.3 Comparison

We can compute the bidding equilibrium for both auction formats for the case of only

rational bidders ( = 1) and only misspeci…ed bidders  = 0. Figure 5 shows the bid

functions  where  = 1 2 denotes …rst- or second-price auctions and  =   denotes

the misspeci…ed or rational type.

To illustrate the role of correlation, the functions are shown for  2 f1 5 10g. Com-
paring FPA and SPA in the rational case, we see the familiar revenue ranking that the
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Figure 6: For the FPA ( = 1), and the SPA ( = 2), () is the rational strategy if
 = 1;  () is the best response of misspeci…ed type to data generated by the purely
rational equilibrium. ( = 15).

SPA yields higher revenue than the FPA with correlated types. This revenue ranking is

preserved in the case of misspeci…ed bidders. Interestingly, with misspeci…ed bidders, the

gap between SPA and FPA becomes more pronounced if values are more correlated. This

conforms well with the intuition for the distortions in the bid function: In the SPA low

types underbid and high types overbid. In the FPA, the same forces lead the low types to

underbid. But this allows the higher types to shade their bids more and the incentive to

overbid does not compensate for this force. This leads to much lower bids for misspeci…ed

types compared to the rational equilibrium if the correlation is high.

Finally, we want to compare the e¢ciency of the SPA and FPA. This comparison is

not interesting in the purely rational or purely misspeci…ed cases since the symmetric

equilibrium implies that both auction formats are fully e¢cient. A comparison in the

mixed case is challenging because we are not able to compute the equilibrium in the FPA.

To make progress we consider the best response of a misspeci…ed type to the purely rational

equilibrium. This allows us to show how e¢ciency changes if we inject a small share of

misspeci…ed types in a rational population. Figure 6 shows the resulting bidding strategies

for  = 15.

To compare the e¢ciency we numerically compute how much e¢ciency is lost in expec-

tation if bidder one uses the purely rational strategy and bidder two uses the misspeci…ed

response. This number gives the rate at which e¢ciency decreases if we decrease  slightly
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from  = 1. In the example depicted in Figure 6 we have a marginal loss of 0035 for the

FPA and 0088 for the SPA. This means that the SPA is less e¢cient than the FPA.

4 Auction-like Mechanisms

We now consider the possibility of implementing an e¢cient allocation in the presence of

both rational and misspeci…ed buyers in the general case. We consider a class of auction-

like mechanisms, in which bidders can place a one-dimensional bid  2  ½ R, and which
allocate to the highest bid (possibly adjusted by a bonus or malus). We assume that

bidders may choose not to participate in a mechanism in which case their utility is zero.24

De…nition 2. An auction-like mechanism is given by  =
h
 ()=12  ()=12  1

i
.

 = [ ] is the set of feasible bids. The allocation rule 1 :  !  is a strictly increasing

function. The object is allocated to bidder 1 if 1  1(2), to bidder two if 1  1(2),

and with probability 12 if 1 = 1(2). We denote the inverse by 2 = 
¡1
1 . The payment

rules are  :  £  ! R+0 , and  :  £ ! R+0 , which specify the payment bidder 
has to make as a function of the bids, if she wins or loses, respectively. We assume that

for each  2 f1 2g, both functions   are weakly increasing in bidder ’s own bid.

An auction-like mechanism is smooth if for  2 f1 2g, , , and , are continuously

di¤erentiable with derivatives that can be continuously extended to the boundary of .

The smoothness assumption is made for tractability. Many common auction formats

are smooth auction-like mechanisms. Our main result is that if there are at least three

possible ex-post valuations, then for generic type distributions, no smooth auction-like

mechanism exists that has an e¢cient equilibrium.

To make this precise, we reformulate the types of agents. We denote the interim

valuation of bidder  with type  by

() := E [j] 

Given the normalization 0 = 1       = 1, we have () 2 [0 1]. For each

24Our de…nition of auction-like mechanisms is similar to that in Deb and Pai (2017) who restrict attention
to symmetric such auctions (in which only the winner makes a payment) to analyze the extent to which
such auctions can allow for revenue-optimal discrimination in asymmetric settings.
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 2 [0 1], we denote the set of types  that have interim valuation  by

£() := f 2 £jE [j] = g 

For  2 f0 1g this set is a singleton; and for all  2 (0 1), there exists a homeomorphism
(¢;) : £()! [0 1]¡2, where  = j j is the number of ex-post valuations. We can
therefore write the type of bidder  as ( ) 2 [0 1]¡1. While  is the payo¤-relevant
part of the type, for  2 (0 1)  can be used to recover the belief  (j¡1 (;)) about
bidder ’s type. Abusing notation we use (1 1 2 2) to denote the joint density of

the buyers’ types and assume that this density is strictly positive.

Our main result is that for generic distributions, smooth auction-like mechanisms do

not have e¢cient equilibria. To state this formally, we let M
+([0 1]

2¡2) be the set of

probability measures on [0 1]2¡2 that admit continuous and strictly positive densities

(1 1 2 2). We endowM
+([0 1]

2¡2) with the uniform topology for densities. For

given  and , let I( ) ½M
+([0 1]

2¡2) be the set of prior distributions for which all

equilibria of any smooth auction-like mechanism are ine¢cient.

Theorem 1. Suppose  = j j ¸ 3 and  2 (0 1). Then for generic type distributions,
there exists no smooth auction-like mechanism with an e¢cient equilibrium. Formally,

I( ) is a residual subset ofM
+([0 1]

2¡2), that is, it contains a countable intersection

of open and dense subsets ofM
+([0 1]

2¡2).

The notion of genericity used here is the same as in Gizatulina and Hellwig (2017), who

show the genericity of full surplus extraction. The key step in the proof is to show that in

the presence of rational bidders, e¢ciency requires that the mechanism is a second price

auction. The reason is that to achieve e¢ciency, the bid in an auction-like mechanism must

be a function of  only. If there are more than two ex-post valuations, for each  2 (0 1),
the set £() is a manifold of dimension  ¡ 2 ¸ 1, and all types in £() have identical
interim expected valuations but di¤erent beliefs. We show that for generic distributions,

the requirement that the bid is independent of the rational type’s belief, implies that the

mechanism must be a second-price auction.25 We then complete the proof by extending the

result of Proposition 1 to more than two ex-post valuations (see Lemma 6 below), showing

25The intuition for this is that in any auction in which the payment of the winner would depend non-
trivially on the winner’s own bid, the optimal equilibrium bid would require some shading that depends
non-trivially on the belief, as in the …rst-price auction. To ensure that the shading is the same for all beliefs
as generated by variations of , a second-price auction must be used.
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that in a second-price auction the misspeci…ed type does not bid truthfully, which rules

out an e¢cient equilibrium.26

Remark 1 (Precise signal). The ine¢ciencies identi…ed in Theorem 1 would vanish in

second-price auctions if for every bidder  the signal  was always very informative of

the ex post value , as in such a case bidders (whether rational or novice) would approxi-

mately bid their ex post value. Thus, the noisy character of  is essential for the derivation

of ine¢ciencies.

Remark 2 (Two ex-post valuations). With only two ex-post valuations ( = 2), our proof

does not apply. While the analysis of standard auctions in Section 3 suggests that bid

functions of rational and misspeci…ed types in auction-like mechanisms di¤er, it is an open

question whether auction-like mechanism o¤er enough ‡exibility in choosing the payment

rules so that types of both sophistication can be incentivized to use an identical bid function

when  = 2.

Remark 3 (More than two bidders). The restriction to two bidders has been made for

simplicity. With more than two bidders, we can consider misspeci…ed types who have

access to data from past auctions with observations of the form (1 1       ), where

 is the number of bidders. Such bidders will now rely on (¡j), the pdf of ¡ = () 6=
conditional on , to form their beliefs about how variables of interest are distributed. We

can de…ne auction-like mechanisms that award the object to the highest bidder and specify

payments as a function of all bids. We conjecture that the key argument in our proof—

namely that e¢ciency requires the use of a second-price auction also works with more than

two bidders, as long as there are at least three ex-post valuations. Moreover, an analogous

result to Proposition 1 and Lemma 6 implies that misspeci…ed types do not use the rational

bid function in any equilibrium of the second-price auction.

4.1 Proof of Theorem 1

Regular Equilibria of Simple Mechanisms. First, we show that it su¢ces to consider

regular equilibria of simple mechanisms. We call a smooth auction-like mechanism simple

if it is of the form = [[0 1] ()  ()  ], where  =  denotes the identity so that the

26 In a second-price auction, ine¢ciencies would typically arise even without rational bidders when there
are three or more ex post values (since a novice bidder  would not in general bid in the same way for
di¤erent signals  corresponding to the same interim expected value ). But, our argument for using a
second-price auction makes use of the presence of rational bidders.
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allocation rule is symmetric. We call an equilibrium regular if it is symmetric and the bid

of each generalized type (  ) is given by a continuous and strictly increasing function

() with range ([0 1]) = [0 1]. In other words, the bid only depends on the interim

valuations, but not on the identity, sophistication, or belief , of the bidder. Note that a

regular equilibrium of a simple mechanism is e¢cient. We denote the strictly increasing

and continuous inverse of (¢) by  : [0 1]! [0 1].

Lemma 1. Let ~ = [ ~ ( ~) (~) ~1] be a smooth auction-like mechanism with an ef-

…cient equilibrium (~1(1 1 1),~2(2 2 2)). Then there exists a simple mechanism

 = [[0 1] ()  ()  ], with a regular (and hence e¢cient) equilibrium.

Proof. The proofs of all Lemmas can be found in the Appendix.

In light of Lemma 1, it su¢ces to consider regular equilibria of simple mechanisms. The

intuition behind this result is that in an e¢cient mechanism with a symmetric allocation

rule,27 all bidders must use the same bids as function of their interim valuation. The proof

shows that mechanisms for which the bidding function has discontinuities, these jumps

can be removed in a way that preserves the smoothness of the payment rules. Lemma 1

falls short of the revelation principle because the full revelation argument may not preserve

the smoothness of the payment rules if the equilibrium of the original mechanism is non-

smooth.

Second-Price Auctions. Next we derive a condition on the payment rules and equi-

librium bid function that characterizes regular equilibria of the second-price auction. We

denote the equilibrium di¤erence in utility between winning and losing of a bidder with

bid  = (), whose bid is tied with the opponent by

() = ()¡ (( )¡( )) 

In a regular equilibrium of the SPA, the rational type bids truthfully (() = ), and

the payment rules satisfy ( ) =  and  ´ 0, so that () = 0 for all  2 [0 1]. The
following Lemma shows the converse result.

Lemma 2. Consider a simple mechanism = [[0 1] ()  ()  ] with a regular equilib-

rium. If () = 0, for  2 f1 2g and all  2 [0 1], then  is a second-price auction—that
27Clearly, an mechanism with an asymmetric allocation rule can be made symmetric by a simple

monotonic transformation.
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is, for all  2 f1 2g, ( ) = 0 for all  ·  and ( ()) =  whenever

 ¸ ().

Di¤erentiability of the Bidding Strategy. To show that () = 0 for all bids we

derive an implication of ()  0 and show that it is violated generically. In the derivations

we will use …rst-order conditions. The following Lemma shows that the inverse of the bid

function, () is di¤erentiable if ()  0. The Lemma is based on the proof of Lemma 7

in Persico and Lizzeri (2000).

Lemma 3. If (0)  0 for some 0 2 [0 1], then there exists a non-empty interval

( ) ½ [0 1], with 0 2 ( ), such that  is continuously di¤erentiable on ( ), and
0()  0 and ()  0 for all  2 ( ).

For generic distributions, e¢ciency requires = . Next, we show that () 

0 implies that a condition similar to the full-surplus extraction condition (McAfee and Reny,

1992) must be violated, and prove results analogous to Gizatulina and Hellwig (2017), to

show that for generic prior densities (1 1 2 2), we must have () = 0 for all

 2 [0 1],  2 f1 2g, and any regular equilibrium of a simple mechanism.

We begin by deriving an implication of ()  0. Fix  2 (0 1) such that ()  0 and
consider a rational bidder  with type ( ), where  = () and  2  is arbitrary. In

a regular equilibrium, this type maximizes (where we use  6=  to denote the opponent):

max
02[01]

Z (0)

0

¡
()¡(

0 ())
¢
( j() )¡

Z 1

(0)
(

0 ())(j() )

Given Lemma 3, we can di¤erentiate the objective function with respect to 0, and obtain

the …rst-order condition, which must hold for 0 = :

( ~ = ()j ~ = () ) =
Z 1

0

( ())
()

0()
(j ~ = () ) (4)

where we simplify notation by denoting the payment of bidder  as follows

( ) := 1fg( ) + 1fg( )
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Multiplying (4) by ( ~ = () )( ~ = ~ = ()), and using

(j ~ = ~ = ())( ~ = ~ = ()) = ( ~ = ~ = ())

we obtain for all  2 :

(j ~ = ~ = ()) =

Z 1

0
( () ) (j ~ = () ) (5)

where

( () ) =
( ()) ( ~ = () )

()
0()( ~ = ~ = ())



Since we consider a simple mechanism and prior densities  2M
+([0 1]

2¡2), and 0() 

0, the term ( () ) is …nite and non-negative. For …xed , ( () ¢) is in fact a
probability density on [0 1].28

Condition (5) states that the density (¢j ~ = ~ = ()) can be expressed as a positive

linear combination of the densities (¢j ~ = () ) for  2 [0 1], with positive weights
on  6= (). By virtually the same proof as for Theorem 2.4 in GH17, we can show that

for generic distributions (5) is violated.

To state the result we need several de…nitions that mimic GH17. LetM
+() be the set

of absolutely continuous probabilities measures on  with strictly positive and continuous

densities, endowed with the topology induced by the sup-norm for density functions on ;

let C([0 1]M
+()) be the set of continuous mappings from [0 1] toM

+(), endowed with

the topology of uniform convergence; and letM([0 1]) be the set of probability measures

on [0 1], endowed with a topology that is metrizable by a metric that is a convex function

on M([0 1]) £M([0 1]). Finally let E() ½ C([0 1]M
+()) be the set of continuous

mappings that map  2 [0 1] to densities (¢j) 2 M
+() that satisfy the following

condition: For all  2M([0 1]):

(j) =
Z 1

0

(j0)(0) 8 2  =)  =  (6)

where  2M([0 1]) is the Dirac measure with a mass-point on .

Lemma 4 (see Theorem 2.4 in Gizatulina and Hellwig, 2017). For any  2 (0 1), the
set E() is a residual subset of C([0 1]M

+()), that is, it is a countable intersection of

28 Integrating both sides of (5) over  we see that
 1
0
( () ) = 1.
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open and dense subsets of C([0 1]M
+()).

The implication of this Lemma is that for …xed  2 (0 1), and generic functions

 7! (¢j ) that map  to conditional densities (¢j ), any simple mechanism
with a regular equilibrium must satisfy (()) = 0.

This Lemma is insu¢cient for our purposes for two reasons. First, we need to show

that for generic priors, the function that maps  to the conditional density  (j ) is
an element of E(), and second we need to show this for all . To this end, for  2 f1 2g
let W be a countable and dense subset of (0 1). We show that for generic prior densities

(1 1 2 2), the mapping that maps  2 [0 1] to the conditional density (¢j )
is an element of E() for all  2 W and all  2 f1 2g. For the following Lemma,
recall that M

+([0 1]
2¡2) denotes the set of priors with strictly positive and continuous

densities.

Lemma 5 (see Theorem 2.7 in Gizatulina and Hellwig, 2017). For  2 f1 2g, let W be a

countable and dense subset of (0 1). Let F be the set of prior densities inM
+([0 1]

2¡2)

such that for all  2 f1 2g and  2 W, the mapping  7! (¢j ) is an element
of E(). Then F is a residual subset of M

+([0 1]
2), that is it contains a countable

intersection of open and dense subsets ofM
+([0 1]

2).

This Lemma implies that for generic prior densities (1 1 2 2), any regular equi-

librium of a simple mechanism must satisfy (()) = 0 for all  2 W. Since the

functions (¢) and (¢) are continuous and W is dense, this implies () = 0 for all

 2 [0 1]. By Lemma 2, this implies that for generic distributions, if a simple mechanism
has a regular equilibrium, then it must be the second-price auction.

Bidding Strategy of the Misspeci…ed Type in the Second-Price Auction. So far

we have made use of the rational type’s …rst-order condition to show that e¢ciency cannot

be achieved with an auction-like mechanism other than the SPA. To conclude the proof of

Theorem 1 we show that for generic distributions, misspeci…ed types do not use () = 

in a SPA.

Lemma 6. Let  2 (0 1) and suppose that E
£
 j · 

¤
6= E [ ]

E [1 ]
E
£
1 j · 

¤
for

some  2 f1 2g and  2 [0 1]. In any equilibrium of the second price auction where the

rational types bid truthfully, some types () place a bid that is di¤erent from their

interim valuation.
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It is easy to see that the subset of prior densities for which there exists  2 f1 2g and
 2 [0 1] such that E

£
 j · 

¤
6= E [ ]

E [1 ]
E
£
1 j · 

¤
is open and denseM

+([0 1]
2)

so that its intersection with F is residual by Lemma 5. This concludes the proof of Theorem
1.

5 Discussion and Extensions

In this Section we discuss various robustness checks as well as possible extensions. In

Subsection 5.1, we discuss alternative models of belief formation with the same disclosure

assumptions as considered above. In Subsection 5.2 we review possible approaches one

could take for situations in which data from past auctions would not include losers’ valua-

tions and/or losers’ bids. In Subsection 5.3, we discuss the case in which past bids would be

anonymous. Finally, in Subsection 5.4 we present some discussion of further design-related

issues.

5.1 Model of Belief Formation from Observed Data

Two basic assumptions have guided our modeling choices concerning the belief formation of

novice bidders (the -types). First, we have assumed that novice bidders are sophisticated

in the sense that they are able to use the empirical joint distribution of observable variables

to inform their own bid. Second, we have assumed that novice bidders do not reason about

how the bids of past bidders were formed. In particular they do not form a conjecture

or model of the information available to past bidders and do not try to analyze how such

information drives observed behavior.

Due to missing data about signals (or types) of past bidders, novice bidders are not

able to learn the true joint distribution of signals/types, ex-post valuations and opponent’s

bids. At the same time, a novice bidder knows her own type , and has access to the

empirical distribution of observable variables. She lacks knowledge how these two should

be combined, and a priori, di¤erent ways of using the data are conceivable, all of which

rely on some implicit or explicit assumptions. Following our second basic assumption,

novice bidders do not try to reason about how past bidders have determined their bids.

Instead they simply combine the joint distribution of observable variables  and  with

the belief about the distribution of  given by their type  to evaluate the expected payo¤

of di¤erent bids. This leads to a misspeci…ed model in which  and  are correlated even
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when conditioning on .29

We believe that this simple way of using the data is a plausible model of an inexperienced

bidder. But, there may be other ways to think about data-driven belief formation, and

other ways of forming beliefs may lead to di¤erent misspeci…cations and deviations from

rational behavior.

Thinking about more sophisticated types, we may ask what additional knowledge in-

experienced bidders would need to have in order to see that their model is misspeci…ed.

In the data, one can see that  and  are independent conditional on  since bids are a

function of . However, without further assumptions on how past bids were formed, this

does not allow to conclude that  and  are independent conditional on . Hence, given

the available data, it is not obvious to an outside observer or the novice bidder, that the

-type in our model uses a misspeci…ed model.30

Conversely, we may think of less sophisticated types who do not attempt or are unable

to use the statistical link between the bids  and the ex post values . For example this

could be bidders who are not able to analyze large data sets beyond producing marginal

distributions of the opponents’ bids. Alternatively, the bidder may know her expected

valuation [j] but not the full distribution  over ex-post valuations. Such bidders may
in some cases actually display less bias in their bidding behavior since they do not use the

statistical link between  and  that gives rise to a (perceived) conditional correlation.

For example, this is the case in second-price auctions in which such bidders would bid

optimally, in contrast to the -type bidders we consider.

Clearly, considering a population of rational bidders and novice bidders with di¤erent

degrees of sophistication would not help restoring the existence of an e¢cient auction-like

mechanism, since by an argument similar to that used in the proof of Theorem 1, such an

auction-like mechanism would have to be equivalent to a second-price auction to ensure

an e¢cient allocation among rational bidders, and a second-price auction would fail to

allocate the good e¢ciently in the presence of novice bidders as we have modeled them

29 It may be mentioned that this way of using the data echoes the kind of data processing routinely made
by non-structural statisticians.
30The case of two possible ex-post valuations is special. Here, a more sophisticated -type might make

the plausible assumptions that (a) past bidders also had a one-dimensional type  and (b) bids are a strictly
increasing function of . Based on these assumptions, the -type could conclude from the data that 
and  are independent conditional on , leading her to behave like the rational type. Note however, that
with more than two possible ex-post valuations, the bidding strategy cannot be injective, and therefore,
without further assumptions about bidding behavior, the -type cannot conclude from the data that 
and  are independent conditional on .
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(and who would be present in such a richer environment).

5.2 Non-observability of losers’ valuations and/or losing bids

So far we have assumed that data on past beliefs are not accessible but bidders have full

access to past bids and past ex-post valuations. In practice, the ex-post valuations may not

be observed precisely, and perhaps only noisy signals of the true valuation are available. To

model such a situation, one could formulate the type  as a distribution over such signal

realizations and proceed as before.

More importantly, one may argue that there is an asymmetry in the accessibility of

winners’ ex post valuations and losers’ ex post valuations where the latter and not the

former requires building estimates about counterfactual situations. In some scenarios, it

may also be the case that only winning bids are accessible.31

When (together with the bids) only the winner ’s valuation is accessible ex post,

and there is only a noisy signal  = (1   

 ) 2 ¢ about the loser’s valuation 

(where  represents the probability that  is equal to 
), a natural idea is to complete

the missing value of  with the distribution over  induced by  (i.e., substitute the

observed data (   ) with each of (    = 
) with probability  ). From the

obtained dataset, one can construct the empirical cumulative distributions ( j ) and
( j ), and proceed as in Section 2 for the derivation of a steady-state.

Alternatively, if there is no signal ex post about losers’ valuations and the observation

consists only of (  ) when  is the winner, one can possibly complete the missing data

on  using the observed joint distribution of ( ) when  is the winner, and assume

 = 
 with a probability equal to the frequency with which  =  is observed in this

dataset when the bid of  is . Doing so would result in the same equilibrium as the one

studied in the main model when (    ) was assumed to be observed, since in the

true data-generating process  is independent of  conditional on  .32

While the exact characterization of the steady-state would have to be amended depend-

ing on the chosen modeling, the conclusion of Theorem 1 would still (most likely) hold in

such a setting in which losers’ valuations are not accessible. This is so because as in the

31 In the data of Hendricks and Porter, all bids were observed and since a common value setting was
assumed, accessing the winner’s ex post value was enough to know the values to every bidder.
32One may argue that this way of completing the missing data on  is at odds with the premise that 

must be informative of  (and the symmetric view that  must be informative of ). Alternatively, the
bidder may complete the missing data as described above using the prior distribution on  instead of the
noisy signal  .
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main model, e¢ciency would require using an auction equivalent to a second-price auction

(so as to guarantee an e¢cient allocation among rational bidders), and data-driven bidders

would not bid their expected value in the second-price auction, since they would believe

their competitor’s bid is informative of their own value, as in the main model.

We next discuss the case in which all valuations are accessible ex post but only the

winning bid and the identity of the winner is observable.33

Consider the case that after a symmetric auction with   , the data point (   )

is observed, so that data about losing bids are not available. In the main model, we have

taken (j) to be the empirical distribution of the opponent’s bid  conditional on
valuation  for bidder . If losing bids are not observed, this distribution is not directly

accessible. We outline three exemplary models of how a bidder may construct (j)
that re‡ect di¤erent degrees of sophistication. For each approach, the constructed (j)
can be plugged into our equilibrium framework and the analysis would proceed as before.

A naive bidder may ignore that the observations about opponent’s bids  for a given

valuation  is selected and use the (observable) distribution (j   ) instead of

(j). This approach will lead bidder  to think that bidder  bids higher than in reality,
which induces an additional bias.34

A semi-naive bidder may be aware that for each  she only observes a selected sample

of opponent’s bids  which satisfy   . For all other observations with a given , 
is known and she can only infer that   . The bidder could then attempt to complete

the missing data by assuming some distribution ~(j   ). A natural starting point
would be the uniform distribution. We call this bidder semi-naive since she makes some

ad hoc assumption about ~( j   ), but at least she makes an attempt to correct

for the selected sample. Given this approach, one could construct a distribution (j)
that combines the empirical distribution (j   ) and the assumed distributions
~(j   ).
Finally, a sophisticated bidder may attempt to estimate the distribution of  condi-

tional on , using some structural model. Since the correlation between 1 and 2 cannot be

assessed from the data, a natural starting point is that a bidder takes them to be indepen-

33An alternative is that the auctioneer may disclose the identity of the winner and the payment she has to
make. In a …rst-price auction, this is equivalent to disclosing the winning bid, but in an ascending auction
or second-price auction, the payment is equal to the second highest bid and the following discussion has to
be modi…ed accordingly.
34Jehiel (2018) uses a similar selection neglect to demonstrate how investor overoptimism can arise if

investors only observe realized past projects.
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dent (conditional on 1 and 2), and tries to identify the marginal conditional distribution

(j) from the data. An identical identi…cation problem arises in competing risk models.
Translated into our context, the results of Tsiatis (1975) show that for any (not necessarily

independent) joint distribution of the bids 1 and 2, one can construct unique marginal

distributions that, under the assumption of independence are consistent with the observed

data. The independence assumption is thus not testable and the sophisticated bidder is

always able to pursue her approach.

Common to all three approaches is that, the naive, semi-naive, and the sophisticated

bidder will deviate from the rational bid in the second-price auction if 1 and 2 are not

independent.35 This is the case since in all approaches the bidder believes that conditional

on ,  and  are correlated. Therefore, the impossibility of an e¢cient auction-like

mechanism continues to hold since the presence of the rational type requires the use of the

second-price auction, and as before, the -type does not bid truthfully in a second-price

auction.

5.3 Anonymity of bids

In the above analysis, we have assumed that whether a past bid  came form a bidder in

the role of bidder  or  was accessible in the dataset so that bidder  was able to relate the

distribution of (past bidder ’s bids)  to the realizations of (past bidder ’s ex post values)

. In some cases, past bids would remain anonymous and the datasets would consist of

( 0  ) instead. In such cases, it would not be known whether  or 0 was chosen by

a bidder in the role of  or . In the spirit of the analogy-based expectation equilibrium,

this would call for considering an analogy partition that is bidder-anonymous in addition

to being ex post-payo¤ relevant (see Jehiel, 2021). That is, for each , bidder  would

aggregate the distributions of  and 0 (or equivalently of  and ) conditional on , and

best-respond as if bidder  were playing according to such an aggregate distribution when

the ex post value of  is .

The analysis would be similar to the one above. In particular, we would still obtain an

ine¢ciency result under the conditions of Theorem 1. But, it should be mentioned that in

the anonymous bid case, even when  and  are independently distributed, the resulting

steady state would induce some misspeci…cations on the part of a data-driven bidder , as

35 Interestingly, only the last approach will have the converse property that when the distributions of
types are independent, bidders are behaving optimally. In this sense, it is the approach bringing insights
closest to those developed in the main part of the paper.
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it would lead such a bidder  to think that  is correlated to  when in fact only  is.36

5.4 Other considerations

In this paper, we have taken as given the feedback that is made accessible to new bidders.

One may wonder from a normative viewpoint whether it is in the interest of the designer

to disclose as much as she can from what happened in past auctions. In particular, in

our private value setting, if the designer could conceal every piece of information such as

the bids from past auctions, she would make the identi…cation of the correlation between

the competitor’s bid and one own’s value impossible, thereby increasing the chance that

novice bidders bid their expected value in the second-price auction. This simple insight

is suggestive that in the face of novice bidders, concealing some information from past

auctions that is available to the designer may sometimes be desirable.37

While our study has focused on private value settings, the notion of data-driven equilib-

rium can easily be extended to cover more general interdependent value settings in which

bidder ’s signal  would then be viewed as a probability distribution over ( ) and not

just over . More precisely, building on the setup described in Section 2, such an extension

would require letting player ’s interim type be  = (
0

 )0 where 
0

 would denote

the probability that  =  and  = 
0
for every  0 = 1 . The subjective expected

utility of a data-driven bidder  with type  derived from bidding  would have to be

modi…ed as:

 ( j(¢)) =
X

0


0



Z



[ ( )¡ ( )]( j =   = 
0
)

where as before (  ) denotes the bid of bidder  with interim type  and sophistication

type  and (¢j =   = 
0
) now denotes the cumulative distribution of bid 

conditional on  =  and  = 
0
. That is, from the data set, the data-driven bidder 

would be able to construct the empirical distribution of  for each realization of ( )

36 In the case of two bidders, one could argue that knowing the rule of the auction and observing who the
winner is would allow to identify who from  or  submitted the bids  and 0, therefore not requiring a new
analysis. However, with more than two bidders, anonymity would bring extra coarseness (regarding the
bids of the losers) as compared to the main model, and a discussion similar to that developed here would
have some bite.
37One may object to this that novice bidders would then seek themselves information on past bids, and

it is not clear then they would bid their expected value.
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and derive (¢j =   = 
0
) accordingly. And the information about ( ) through

 obtained by bidder  at the time of the auction would be combined with this to build the

above subjective expected utility.38 The study of such extensions is left for future research,

even if given the existing literature (with rational bidders only) and the insights developed

above, there is little hope that e¢cient auctions may exist in such a case.

We have focused on a class of auction-like mechanisms in which bids are one-dimensional

and a higher bid increases the chance of winning the auction. This is a natural class that

covers virtually all practically relevant auction formats. In the working paper version, we

explore whether more elaborate mechanisms could help improve e¢ciency. We note in our

basic setup that since no two di¤erent types would have the same belief about the distrib-

ution of the opponent’s interim type (for generic distributions), scoring rule mechanisms of

the type considered in Johnson, Pratt, and Zeckhauser (1990) would allow the designer to

elicit the interim type and approximate any allocation goal of her choice such as e¢ciency.

However, we note that such a conclusion would not be robust to the inclusion of richer

speci…cations of cognitive limitations which would, under plausible formulations, lead dif-

ferent interim types to have the same beliefs about the distribution of their opponent’s

interim type. Independently of this, such mechanisms are fragile, as stressed in the robust

mechanism design literature.

6 Conclusion

This paper has revisited the possibility of e¢cient auctions when some bidders form their

beliefs about others’ bidding strategies based on accessible data from similar auctions which

consist only of ex post values and bids. Our main impossibility result obtained in a private

value setting demonstrates a novel source of potential ine¢ciency related to the cognitive

limitation that is induced by missing data on the signals observed at the time of the auction.

Developing the approach to the broader understanding and quanti…cations of ine¢ciencies

in general design settings including among others bargaining and the provision of public

goods would look like interesting next steps.

38Observe that as in classic models of interdependent values, the information about  would be used
only to adjust the inference to be made from the bid of the opponent to the extent that (¢j ) would
in general depend on  .
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A Omitted Proofs

A.1 Proof of Proposition 1

Proof of Proposition 1. If  2 (0 1), e¢ciency would require that () =  which implies

SPA( j  = 1) =
Z 1

0
 ( j ~)~

(~)

E[~]
~

SPA( j  = 0) =
Z 1

0

 ( j ~)(1¡ ~)
(~)

E[1¡ ~]
~

Moreover, we must have

 2 argmax


½


SPA( j  = 1)¡ 
Z 

0

SPA(j = 1)¡ (1¡ )
Z 

0

SPA(j = 0)
¾

Di¤erentiating the objective function and setting  =  yields

(1¡ )
£
SPA0( j  = 1)¡SPA0( j  = 0)

¤

We have

SPA0( j  = 1)¡SPA0( j  = 0)

=

Z 1

0
( j ~)~

(~)

E[~]
~ ¡

Z 1

0
( j ~)(1¡ ~)

(~)

E[1¡ ~]
~

=

Z 1

0

"
~

E[~]
¡ 1¡ ~
1¡ E[~]

#
( j ~)(~)~

=()

Z 1

0

"
~

E[~]
¡ 1¡ ~
1¡ E[~]

#
(~j)~

=()

"
E[~j = ]

E[~]
¡ 1¡ E[~j = ]

1¡ E[~]

#
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Hence, for bidding  to be optimal for the misspeci…ed type we must have for all :

E[~j = ]
E[~]

¡ 1¡ E[~j = ]
1¡ E[~]

= 0

() E[~j = ] = E[~]

If the last line holds for all  we must have

Z 1

0

~(~j)~ = E[~] 8

()
Z 1

0

~(~ )~ = E[~1]() 8

=) 
h
~

i
=
³
E[~]

´2


The last line implies that we must have Corr[1 2] = 0 if the misspeci…ed types …rst-order

condition is satis…ed for  =  for all . Therefore, if Corr[1 2] 6= 0, there are types for
which a misspeci…ed bidder will not bid  and since () =  for all types and  2 (0 1),
the allocation will be ine¢ciency for some type pro…les.

A.2 Proof of Proposition 2

Proof of Proposition 2. An e¢cient allocation requires that () = () = () for all

 2 [0 1]. We denote the inverse of (¢) by .
The rational type’s bid solves

max

( ¡ ) (()j)

The FOC yields

¡ (j) + ( ¡ ()) (j)0(()) = 0

() 0() = ( ¡ ())
(j)
 (j)

 (7)

The solution with boundary condition (0) = 0 is

() =

Z 

0

¡
 


(j)
 (j)

(j)
 (j)
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The misspeci…ed type maximizes (3)

max

(1¡ ) FPA( j  = 1)¡ (1¡ )FPA(j = 0)

with

FPA( j  = 1) =
Z 1

0
 (() j ~)~

(~)

[~]
~

FPA( j  = 0) =
Z 1

0

 (() j ~)(1¡ ~)
(~)

[1¡ ~]
~

This yields


FPA(() j  = 1) + (1¡ )FPA(()j = 0)

= (1¡ ()) FPA0(() j  = 1)¡ ()(1¡ )FPA0(()j = 0)

Using

FPA0( j  = 1) = 0()
Z 1

0

(() j ~)~
(~)

[~]
~ = 

0()
[~j()]
[~]

(())

FPA0( j  = 0) = 0()
Z 1

0
(() j ~)(1¡ ~)

(~)

[1¡ ~]
~ = 

0()
1¡ [~j()]
1¡ [~]

(())
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we have



Z 1

0

 ( j ~)~
(~)

[~]
~ + (1¡ )

Z 1

0

 ( j ~)(1¡ ~)
(~)

[1¡ ~]
~

=(1¡ ()) 0(())
[~j]
[~]

()¡ ()(1¡ )0(())
1¡ [~j]
1¡[~]

()

() 

Z 1

0
 ( j ~)~

(~)

[~]
~ + (1¡ )

Z 1

0
 ( j ~)(1¡ ~)

(~)

[1¡ ~]
~

=
1¡ ()
0()


[~j]
[~]

()¡
()

0()
(1¡ )

1¡[~j]
1¡[~]

()

() 0() =
(1¡ ())  [

~j]
[~]

()¡ ()(1¡ )1¡[
~j]

1¡[~]
()


R 1
0  ( j ~)~

(~)

[~]
~ + (1¡ )

R 1
0  ( j ~)(1¡ ~)

 (~)

[1¡~]
~

=

[~j]
[~]

()


R 1
0  ( j ~)~

 (~)

[~]
~ + (1¡ )

R 1
0  ( j ~)(1¡ ~)
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[1¡~]
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Where the last line follows from (7). Matching coe¢cients, we get
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0  ( j ~)~

(~)
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R 1
0  ( j ~)(1¡ ~)
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Combining these we have

[~j]
[~]

= 
[~j]
[~]

¡ (1¡ )
1¡[~j]
1¡[~]

[~j]
[~]

=
1¡[~j]
1¡[~]

This is the same condition as for the SPA which requires that Corr[1 2] = 0.

A.3 Proof of Lemma 1

Proof of Lemma 1. Consider the equilibrium of the original mechanism ~ For each bidder

 and each  2 fg, we de…ne a (non-empty) correspondence that contains all bids that
types with expected valuation  use.

 () =
~( )

where  = [0 1]¡2 We prove the lemma in three steps: (1) we obtain an e¢cient

equilibrium of the original mechanism with single-valued correspondences (or functions)

̂ . (2) We show that these functions satisfy ̂

 () = ̂


 () =

~(̂

()) =

~(̂

()), and

a change of variable allows us to construct a mechanism · =
¡

¡
·

¢

¡
·
¢
 
¢
that

has an e¢cient equilibrium in which · () = ·() = ·() =
·() =

·(). (3) We

remove jump continuities in ·() and normalize the range of ·() to obtain a mechanism

 = ([0 1] ()  ()  ) so that the (normalized) continuous part of ·() is an e¢cient

equilibrium. We show that removing the discontinuities does not destroy the smoothness

of the simple mechanism  .

Step 1: First, note that e¢ciency requires that the correspondences  for  2 f1 2g
must be strictly increasing, meaning any selection must be strictly increasing. We denote

the point-wise in…mum and supremum of the correspondence by  () = inf 

 () and



 () = sup  (). Note that the in…mum  () is strictly increasing if any selection

from  () is strictly increasing.

Suppose for some ,  () is not single-valued. E¢ciency and the fact that the in

requires that for every  2 [ () 

 ()],

³




´¡1
(2()) ½ fg, that is, any bid in

the closed interval between the between the in…mal and supremal bid that bidder  with

interim value  places in equilibrium is either not placed by bidder  or it is placed by a
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bidder with the same interim value. We can include the in…mum (and supremum) since

 2
³




´¡1
(2(


 ())) for some    would imply that there exists 0 2 ( )

such that 0  

 () for some 

0
 2 


 (

0
), which violates e¢ciency.

Since the probability that  =  conditional on ( ) is zero for all  2 ,

the rational type is indi¤erent between all bids in [ () 

 ()]. We set ̂(  ) :=

̂ () := 

 (). Similar steps show that we can set ̂( ) := ̂


 () := 


 ().

Since the probability that [j] =  is zero, and there are at most countably many
discontinuities, this modi…cation of ~ to ̂ does not change the incentives of bidder  so

that we have constructed a new equilibrium in which the correspondences of bidder  are

single valued. We can apply the same modi…cation to the strategy of bidder . Clearly

these modi…cation preserve e¢ciency since  ()  2(inf ~

 ()) whenever   .

Step 2: We have shown in Step 1 that there exists an e¢cient equilibrium of ~ that is

given by the function ̂ (),  2 f1 2g,  2 fg. Clearly, e¢ciency requires that ̂ () =
̂ () = (̂


()) = (̂


 ()) =: ̂() for almost every . The only exceptions are a

countable set of interim values where all functions have a jump-discontinuity. Here we can

rede…ne ̂ () = ̂

 () = ̂() := lim0"min

n
̂ (

0) ̂ (
0) (̂


(

0)) (̂

 (

0))
o
for

 6= , so that ̂ () = ̂ () = (̂()) = (̂ ()) = ̂() for every , and ̂() is
left-continuous.

The bids of bidder  are contained in ̂ = [̂(0) ̂(1)]. We now de…ne a new mechanism

with · = [0 1], ·() =  and · · : [0 1]2 ! R given by:

·(··) = ~

³
̂(0) + ·ĵj ~

³
̂(0) +· ĵj

´´


·( ) = ~
³
̂(0) + ·ĵj ~

³
̂(0) +· ĵj

´´


The new mechanism has an equilibrium given by the functions · () = (̂()¡ ̂(0))ĵj
and ·() = (̂()¡ ())ĵj. This equilibrium allocates to the bidder with the highest

valuation since · ()  ·

() if and only if ̂()  (̂()) and the original mechanism

was e¢cient. This implies that all bidding functions are the same: · () = ·

() =:

·()

for  2 fg. Moreover · and · are C1 since ~ is continuously di¤erentiable.
Step 3: The bidding function ·() is strictly increasing and can therefore be decom-

posed as ·() = ·() + ·(), where ·() is continuous and · () is constant except

for a countable number of jump-discontinuities. We can modify the de…nition of · and

obtain a new smooth auction-like mechanism  with a symmetric equilibrium in which
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() = ·()
¡
·(1)¡ ·(0)

¢
.

The function () speci…es an equilibrium in the mechanism given by:

(1 2) = ·(·((·
)¡1(1(

(1)¡ (0))))·((·)¡1(2((1)¡ (0)))))
(1 2) = ·(·((·

)¡1(1(
(1)¡ (0))))·((·)¡1(2((1)¡ (0)))))

Next, we show that and  are continuously di¤erentiable. In the mechanism de…ned

in step 2, a rational bidder chooses  to maximize

Z ·¡1()

0

¡
 ¡ ·(·())

¢
 ( j )¡

Z 1

·¡1()

·(·()) (j )

where  (0j ) is the probability that  · 0, conditional on bidder ’s type ( ).
Consider a rational bidder with type  = ̂ + , where ̂ is a discontinuity in the

equilibrium bidding function · of original mechanism. Placing a bid 0 2 [·(̂)·(̂+))
instead of ·() must not be pro…table:

Z ·¡1(·())

0

¡
 ¡ ·(·()·())

¢
 (j )¡

Z 1

·¡1(·())

·(·()·()) (j )

¸
Z ·¡1(0)

0

¡
 ¡ ·(

0·())
¢
 (j )¡

Z 1

·¡1(0)

·(
0·()) (j )

This can be rewritten as

Z ̂

0

¡
 ¡ ·(·()·())

¢
 (j )¡

Z 1

̂

·(·()·()) (j )

+

Z ̂+

̂

¡
 ¡ ·(·()·())

¢
 (j ) +

Z ̂+

̂

·(·()·()) (j )

¸
Z ̂

0

¡
 ¡ ·(

0·())
¢
 (j )¡

Z 1

̂

·(
0·()) ( j )

The second term in on the left-hand side vanishes as ! 0 since · and · are bounded.
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Hence we must have

Z ̂

0

¡
·(

0·())¡ ·(·(̂+)·())
¢
 (ĵ )

+

Z 1

̂

¡
·(

0·())¡ ·(·(̂+)·())
¢
 (ĵ ) ¸ 0

Since 0  ·(), and · and · are non-decreasing in the …rst argument, this implies that
·(

0·()) = ·(·()) and ·(0·()) = ·(·()) all 0 2 [·(̂)·(̂+)] and al-
most every . By continuity of · and · the equalities must hold for all . Hence since
· and · are continuously di¤erentiable,  ·(

0·()) = 0 and  ·(0·()) = 0

for all  and all 0 2 [·(̂)·(̂+)] and also  ·(
0·()) =  ·(·(̂)·()) =

 ·(·+(̂)·()) and  ·(0·()) =  ·(·(̂)·()) =  ·(·(̂+)·())
for all 0 2 [·(̂)·(̂+)] and all  . Hence continuous di¤erentiability is preserved by the
elimination of the gaps.

A.4 Proof of Lemma 2

Proof of Lemma 2. We …rst show that for all  and   2 [0 1]: ( ) = 0 if

  , and ( ) = 0 if   .

Since () = 0 for all  2 [0 1] we have that 

0() =
( )


+
( )


¡ ( )


¡ ( )


1

where …niteness follows from the assumption that and  are continuously di¤erentiable.

Now suppose that for some  2 (0 1),
R 1
0
(()())


(j )  0. The same

derivation leading to (8) in the proof of Lemma 3, together with (()) = 0 implies that

lim inf
%()

(())¡ ()
()¡ 

=1

This contradicts 0(())  1. Hence
R 1
0
(()())


(j ) = 0 for all  2

[0 1]. Since  ( ) ¸ 0 by assumption, we therefore have (0 ()) = 0

for almost every  and by continuity of ,  and , this holds for all .

Therefore (0 ) = 0 if   0, and (0 ) = 0 if   0.

To conclude the proof, note that individual rationality together with ( ) ¸ 0
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requires that (0 ) = 0 for all .39 Since ( ) = 0 if   , this implies

that ( ) = 0 for all  · . Next, (()) = 0 implies (() ()) =  +

(() ()) = , and since ( ) = 0, ( ()) =  whenever  ¸
().

A.5 Proof of Lemma 3

Proof of Lemma 3. Consider a rational bidder  with types (0 ) 2 [0 1]¡1 and any
sequence of valuations  % 0.  prefers to bid 

 = ( ) over bidding 0 = (0).

Therefore

Z ()

0
( ¡(

 ()))  (j  ) ¡
Z 1

()
(

 ())( j  )

¸
Z (0)

0
( ¡(0 ())) (j  ) ¡

Z 1

(0)
(0 ())(j  )

() 1

¡ 
Z ()

0
((0 ())¡(

 ())) (j  )

+
1

¡ 
Z 1

()
((0 ())¡ ( ())) ( j  )

¸ 1

¡ 
Z (0)

()

( ¡(0 ()) +(0 ())) (j  )

Taking the lim sup on both sides we get

Z 1

0

(0 ())


( j0 ) ¸ (0)(0j0 ) lim sup

!1

(0)¡ ()
0 ¡ 

39Notice that this holds independent of our normalization that 1 = 0, since the lowest type never wins
the object in a regular equilibrium.
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where ( ) =( )+( ). Similarly, 0 prefers to bid 0 over  for all  2 N:

Z (0)

0
(0 ¡(0 ())) (j0 ) ¡

Z 1

(0)
(0 ())( j0 )

¸
Z ()

0
(0 ¡(

 ())) ( j0 ) ¡
Z ()

1
((

 ())) (j0 )

() 1

0 ¡ 
Z (0)

()

(0 ¡(0 ()) +(0 ())) ( j0 )

¸ 1

0 ¡ 
Z ()

0
((0 ())¡(

 ()))  (j0 )

+
1

¡ 
Z 1

()
((0 ())¡( ())) ( j  )

Taking the lim inf on both sides we get

(0)(0j0 ) lim inf
!1

(0)¡ ()
0 ¡ 

¸
Z 1

0

(0 ())


 (j0 )

Hence, for (0)  0 we have

lim inf
!1

(0)¡ ()
0 ¡ 

¸
R 1
0
(0())


 (j0 )

(0) (0j0 )
¸ lim sup

!1

(0)¡ ()
0 ¡ 

(8)

Notice that so far we have considered the case that   0. The same steps apply for

the case that the sequence satis…es   0. Hence condition (8) applies for both cases.

We have

0(0) = 
0
¡(0) = 

0
+(0) =

R 1
0
(0( ))


( j(0) )

(0) ((0)j(0) )
 (9)

Hence (0) is di¤erentiable at 0. Since () is continuous, there exists  such that () 

0 for all  2 (0). Since the right-hand side of (9) is continuous in 0,  is continuously
di¤erentiable on (0). Since  is strictly increasing there must be 0 2 (0) such that
0(0)  0 and since 0 is continuous, there exist   0   such that ( ) ½ (0) and
 is continuously di¤erentiable with 0()  0 for  2 ( ).
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A.6 Proof of Lemma 4

The proof follows the same steps as the proof of Theorem 2.4 in GH17, except that instead

of considering continuous mappings from  to the space of all measures on ¡,M(¡), we

consider continuous mappings from [0 1] to the space of all absolutely continuous measures

on  = [0 1]¡2 with strictly positive and continuous density, which we denoted by

M
+().

Restricting attention to M
+() instead of the space of all measures M(), requires

a straightforward modi…cation of the constructions of the functions g and the measures

1      in footnote 20 of GH17. First we take the functions  to be functions  :

 ! [0 2] with () = 2 and () = 0 for  2 . This allows us to construct

perturbations of the measures 0 which need to be elementsM
+() for our purposes, by

setting  = (1¡ )0+ ~ where the measure ~ has a density ~ that satis…es ~() for
 2  and

R
 

() ~() = 1. Then, with  6= ¡(1¡ ) for all negative eigenvalues
of the matrix

¡R
 

()0 ()
¢

, the vectors

R
 g()() for  = 1     are linearly

independent. The remaining steps in the proof are virtually unchanged.

A.7 Proof of Lemma 5

The proof follows Theorem 2.7 in GH17 and uses results from Section 5.4 in Gizatulina

and Hellwig (2014).

First note that for elements of M
+([0 1]

2), marginal and conditional densities are

de…ned in the usual way. Moreover, for each , the function that maps  to the condi-

tional probability measure on  that is given by the density (j ), is an element of
C([0 1]M

+()) (see GH14).

Analog to the proof of Theorem 2.7 in GH17, we let F  ½ M
+([0 1]

2 ) be the set

of priors such that the function  7!  (¢j ) is an element of E(). The key step
is to show that the residualness of E() in C([0 1]M

+()) implies the residualness of

F =
T
2f12g2W

F  in M

+([0 1]

2). For each  2 f1 2g and  2 (0 1), let  :
M

+([0 1]
2)!M

+([0 1])£C([0 1]M
+()) be the mapping that maps the prior to the

conditional distribution (j) and the function  7! (j ). As shown in the
proof of Lemma 5.9 in GH14, the maps  are continuous and open if M

+([0 1]
2) is

endowed with the uniform topology for density functions. As in the proof of Theorem 2.7

in GH17, this implies that F  is as residual subset of M

+([0 1]

2), that is it contains

a countable intersection
T
2N( ) of open and dense sets ( ) ½ M

+([0 1]
2).
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Clearly,  =
T
2f12g

T
2W

T
()2N()( ) is a subset of F . By a diagonal

argument,  is a countable intersection of open and dense subsets of M
+([0 1]

2) and

hence F is residual.

A.8 Proof of Lemma 6

Proof of Lemma 6. We have shown this for j j = 2 in Proposition 1. For j j ¸ 3, we need
to modify the proof. If -types bid (), we must have for all  that

 = E[j] 2 argmax


(
X

=1



µ


SPA( j  )¡
Z 

0
SPA(j )

¶)


The …rst-order condition is

j jX

=1



³
 ¡

´
SPA0( j  ) = 0

Considering the type  = (1 ¡  0     0 ) for any  2 (0 1), we have  = , and the

…rst-order condition simpli…es to

SPA0( j  = 1)¡SPA0( j  = 0) = 0

We have

SPA( j  ) =
P
£
 ·   = 

¤

P
£
 = 

¤ =

R
£

P
h
 · j~

i
P
h
 = 


 j~

i
(~)~

E
£

¤

=

R
£
(j~)~


 (~)~

E
£

¤

SPA0( j  ) =
R
£
(j~)~


 (~)~

E
£

¤

46



Substituting this in the …rst-order condition, we get for all  2 :

R
£
(j~)~


 (

~)~

E
£

¤ ¡

R
£
 (j~)~

1
 (
~)~

E
£
1
¤ = 0

()
Z

£

"
~



E
£

¤ ¡

~
1


E
£
1
¤
#
(

~j = )()~ = 0

()
E
£
 j = 

¤

E
£

¤ =

E
£
1 j = 

¤

E
£
1
¤

() E
£
 j · 

¤
=

E
£

¤

E
£
1
¤ E

£
1 j · 

¤

For generic distributions, the last line is violated.
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