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Abstract

We introduce a collective experimentation problem where agents choose
the timing of irreversible actions under uncertainty and where public feed-
back from the actions arrives gradually over time. This kind of gradual
learning where information is delayed and arrives over time is present in
many real-life situations, such as adoption of new technologies, progressive
market entry, and incremental roll-out of public policies. The socially op-
timal expansion path entails an informational trade-off where acting today
speeds up learning but postponing capitalizes on the option value of waiting.
We solve the social optimum and contrast it to the decentralized equilib-
rium where agents ignore the social value of information they generate. We
develop mechanism design techniques to coordinate collective experimenta-
tion and illustrate the techniques in the context of pricing a new durable
good.

JEL classification: C61, C73, D82, D83
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1 Introduction

Many actions have long-run consequences that can be observed only gradually over

time. As a concrete example, consider a decision to purchase the latest model of
∗Laiho: Ministry of Finance, Finland (tuomas.s.laiho@gmail.com), Murto: Aalto Uni-

versity School of Business (pauli.murto@aalto.fi), Salmi: University of Copenhagen (ju-
lia.salmi@econ.ku.dk).

1

https://sites.google.com/view/juliasalmi


an electric car. When using the car after purchase, a new owner observes how

well the car functions in different situations and whether any technical problems

emerge. When more consumers buy the new model – the fleet of existing cars ex-

pands – learning on the aggregate level becomes more precise but remains gradual

because each owner continues to make observations long after the buying decision.

Similarly, the profitability of capital investments, environmental damage caused

by pollution, or effects of public policies are realized gradually over time, poten-

tially long after the critical decisions were made. While such situations abound,

we lack a flexible modeling framework to address the welfare implications of this

kind of endogenous gradual learning.

This paper introduces a novel learning problem to address this. The key fea-

ture of the model is that an action taken today has a long-run impact on the flow

of information. A continuum of small agents chooses when to stop – for exam-

ple, when to adopt an innovation, make an irreversible investment, or purchase a

durable good. An unknown binary state determines if stopping is profitable for

the agents. Crucially, learning is gradual: upon stopping, each agent initiates a

persistent flow of information over time. This is in contrast to the standard ex-

perimentation models where an action generates an instantaneous one-time signal

and further actions are needed to learn more.

Our main question is how the incremental path of stopping decisions – the

expansion path – is determined on one hand when agents optimize individually

and on the other hand when a central planner chooses the actions. We also

ask how a planner can coordinate the actions of individual agents with a posted

price mechanism. The paper’s contribution is twofold. First, we develop a novel

methodological approach with suitable solution techniques. Second, we derive new

economic insights that are caused by endogenous gradual learning.

Gradual learning creates a new trade-off for the socially optimal expansions:

the information generation effect calls for aggressive expansion in order to im-

prove information for future decisions and the option value effect calls for cautious

expansion in order to have better information for the current decisions. A social

planner balances these two effects, but individual agents internalize only the latter
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effect and thus the decentralized equilibrium suffers from informational free-riding.

We approach experimentation under gradual learning by modeling the path of

individual actions as a stock process, which controls the speed of learning. Each

agent who has stopped produces a flow of i.i.d. signals conditional on the true

state. In continuous time, this leads to an aggregate signal that follows a Brownian

motion with an unknown drift, determined by the true state, and a signal-to-noise

ratio proportional to the stock of agents who have stopped. Each stopping decision

thus affects information generation gradually over time.

The techniques to solve the decentralized equilibrium and the socially optimal

policy turn out to be quite different. The common challenge is that the problems

are two-dimensional as both the belief that the state is high and the stock affect

the future. Furthermore, the stock and the belief processes are interlinked as the

stock determines the flow of new information. We show that the decentralized

equilibrium can be solved by analyzing “shortsighted” agents who optimize their

stopping decisions against the assumption that no agent stops in the future. The

shortsighted approach works because information arrives smoothly over time under

gradual learning.

Unlike the decentralized equilibrium, the socially optimal policy takes into

account the social value of faster learning. The equivalence with shortsighted

optimization breaks because the value of information depends on the expected fu-

ture actions. Because of the information generation effect, socially optimal policy

favors earlier and more aggressive expansions than what happens in the decentral-

ized equilibrium. The difference between the two is especially pronounced when

the learning technology is good and learning could potentially be fast. Compared

to the no-learning benchmark, gradual learning tends to increase the socially opti-

mal stock for low beliefs and to decrease it for high beliefs due to the informational

trade-off between information generation and the option value of waiting.

Due to its technical tractability, the model with gradual learning has a potential

to work as a workhorse model that can be further extended to analyze other

phenomena. We provide one such extension in the companion paper, Laiho, Murto

and Salmi (2022), by including the possibility that agents’ payoffs depend directly
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on the other agents’ stopping behavior.

In the last part of the paper, we show how to incorporate mechanism design

techniques to implement the social optimum, or any other policy, as a decentralized

equilibrium. We then demonstrate our theoretical results by solving the pricing

problem of a monopolist selling a new durable good under social learning. We point

out the potential benefit of market power to consumers: a large player internalizes

the informational externality partly to the benefit of the consumers and this may

result in a higher consumer welfare than in a competitive market equilibrium. The

example highlights the quality of the learning process as an important determinant

of welfare implications. An improvement in the learning technology – for example

improved social learning caused by better communication technologies – amplifies

the welfare loss of the decentralized equilibrium and hence puts more weight on

the identified positive impact of market power. More generally, a better learning

technology strengthens the case for policies to correct informational distortions

highlighted by our model.

1.1 Related literature

Using the framework of our paper, the previous literature on learning can be

organized based on whether the information generation effect or the option value

effect is present in the model. The current paper is the first to analyze the dual

effect of endogenous learning.

The information generation effect is present in papers analyzing classic single

agent bandit problems and experimental consumption (Gittins and Jones 1974,

Rothschild 1974, Prescott 1972 and Grossman, Kihlstrom and Mirman 1977).

Introducing multiple agents to these models adds an informational externality

that dampens the information generation effect. Bolton and Harris (1999), Keller,

Rady and Cripps (2005) and Keller and Rady (2010) analyze such models under

different assumptions on the learning technology. Applications include Bergemann

and Välimäki (1997, 2000) and Bonatti (2011) who analyze dynamic pricing. No

option value effect exists in these papers because actions are reversible and hence
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learning always increases the level of optimal quantities relative to the no-learning

benchmark.

When actions are irreversible but information arrives exogenously rather than

endogenously, only the option value effect is present. Seminal papers in this liter-

ature include McDonald and Siegel (1986), Pindyck (1988), and Dixit (1989) and

the ensuing literature on real options is summarized in Dixit and Pindyck (1994).

One can see our solution to the social planner’s problem as extending the real

options literature to endogenous learning.

A few papers investigate social learning with irreversible actions, which bears

similarities with informational free-riding in our decentralized solution. Frick and

Ishii (2020) analyze the adoption of new technologies using a Poisson process with

instantaneous feedback to model learning. The adoption rate of innovations is

lower than without learning in their model because of the option value effect. An

early paper by Rob (1991) makes a similar observation when analyzing sequential

entry into a market of unknown size. Similarly, in the models of optimal timing

under observational learning, the option value creates an incentive to wait causing

socially inefficient delays (Chamley and Gale 1994, Murto and Välimäki 2011).

Introducing a large player can overturn the effect of social learning and irre-

versibility on optimal quantities because a large player internalizes the information

generation effect. Che and Hörner (2017) study how a social planner, who designs

a recommendation system for consumers, can mitigate informational free-riding.

Laiho and Salmi (2021) analyze monopoly pricing in a similar setup. Both in

Che and Hörner (2017) and in Laiho and Salmi (2021), the presence of a social

planner or a monopolist induces learning to increase quantities. The crucial dif-

ference from the present paper is that these papers model instantaneous learning

from each consumption decision: the planner and the monopolist do not face the

option value effect since they get more information only by attracting new con-

sumers. More generally, there is no informational trade-off under instantaneous

learning.

Our assumption that learning is gradual implies that past actions matter for

the current information flow. Two contemporaneous papers share this feature
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with us, although their models and key trade-offs are otherwise different from

ours. Liski and Salanié (2020) analyze a single-agent problem where a decision-

maker controls the accumulation of a stock that triggers a one-time catastrophe

at an unknown threshold level. The novel feature in their model is a random

delay between the crossing of the threshold and the onset of the catastrophe.

Martimort and Guillouet (2020) analyze a model with similar features focusing on

a time-inconsistency problem under their assumptions.

Finally, our other paper Laiho, Murto and Salmi (2022) builds on the modeling

techniques developed in this paper to analyze the joint effect of informational and

payoff externalities. Laiho, Murto and Salmi (2022) shows that agents can be

strictly better off and learning can be faster in an equilibrium under a worse

learning technology if there are positive payoff externalities.

2 Model

2.1 Actions and payoffs

A unit mass of small agents choose when, if ever, to take an irreversible action

(to stop). We index individual agents by their type θ and assume that θ is dis-

tributed according to a continuously differentiable distribution function F with a

full support on Θ := [θ, θ]. Time t is continuous and goes to infinity.

An agent’s stopping payoff, vω(θ), depends on the state of the world ω ∈ {H,L}

such that the payoff is higher in the high state of the world for all types: vH(θ) ≥

0 > vL(θ).1 Payoffs are continuously differentiable with bounded derivatives and

increasing in type: for each θ ∈ Θ, v′ω(θ) ≥ 0 for both ω ∈ {H,L} and v′ω(θ) > 0

for at least one ω = H or ω = L. The realized payoff for an agent of type θ,

who stops at time t, is e−rtvω(θ) where r is the common discount rate. An agent’s

outside option is zero and we normalize vH(θ) = 0 so that θ is the lowest type who

would ever want to stop. The model is equivalent to a setting where agents receive
1The analysis easily extends to the case where vL(θ) > 0 for some types. The only change is

that all types, who get a positive stopping payoff in both states of the world, stop immediately.
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a flow of state dependent payoffs πω(θ) = rvω(θ) at every instant after stopping.

Agents are risk-neutral and maximize their expected discounted stopping pay-

offs. The agents do not know the state of the world ω but learn about it over time

as we will describe next.

2.2 Learning

The key idea of gradual learning is that every agent who has stopped generates a

flow of conditionally independent public signals. Therefore, we consider endoge-

nous learning from the stock of stopped agents: let qt denote the stock (measure)

of agents who have stopped by time t.

Specifically, the public learns about the state by observing a Brownian diffu-

sion:2

dyt = qtµωdt+ σ
√
qtdwt, (1)

where we normalize µH = 1/2 and µL = −1/2, σ > 0 is the standard deviation

of the process, and wt is a standard Wiener process. Signal process (1) is the

limit of a model where qt is composed of discrete units that produce conditionally

independent noisy signals over time and where the total informativeness per unit

of q is normalized to stay constant. The signals can be for example interpreted as

realized individual payoffs (see Appendix A).3

We denote by xt the public posterior belief xt = Pr(ω = H|Ft), where Ft is

the natural filtration generated by the signal process (1). The unconditional law

of motion for the public belief follows from Bayes’ rule:

dxt =
√
qt
σ
xt(1− xt)dw̃t, (2)

where w̃t is a standard Wiener process. In equation (2), the term
√
qt
σ

is the signal-

to-noise ratio of the process (1) and determines how fast the belief converges to
2The process is otherwise equivalent to the learning processes in Bolton and Harris (1999)

and in Moscarini and Smith (2001) but learning is from the stock of cumulative actions instead
of being from the flow of new actions.

3See Bergemann and Välimäki (1997, 2000), Bolton and Harris (1999), Moscarini and Smith
(2001), and Bonatti (2011) for other applications and further discussion. The difference to these
papers is that they do not consider learning from the stock but from the flow of new actions.
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the truth. Hence, the higher the stock of stopped agents, the more informative

the public signals. In Online Appendix, we extend the model to allow for a more

general relationship between the stock qt and the signal-to-noise ratio.

2.3 Solution concepts

We use the term policy for a description of how the stock qt evolves over time. A

policy Q = {qt}t≥0 is an increasing stochastic process adapted to Ft. Notice that

the signal process itself depends on the evolution of qt, so that in effect we are

defining policy Q jointly with signal process Y .

Individual agents take the policy Q as given when they choose their stopping

strategies. A strategy for an agent of type θ is a stopping time τ(θ) adapted to

Ft. The payoff to type θ adopting τ(θ) under Q is

E
[
e−rτ(θ)vω(θ)

∣∣∣Q] , (3)

where the vertical line notation means that the expectation is for some fixed

process Q.

We say that a stopping profile T = {τ(θ)}θ∈Θ is consistent with Q if

Pr

[∫ θ

θ
1(τ(θ) ≤ t)dF (θ) = qt

∣∣∣Q] = 1

for all t. In other words, T is consistent with Q if the measure of agents that it

commands to stop always matches the policy.

It is convenient to define solution concepts directly in terms of a policy rather

than in terms of a stopping profile. We consider two solution concepts. In a

decentralized equilibrium agents optimize individually taking the policy as given:

Definition 1. A policy QE is a decentralized equilibrium if there exists a profile

T E such that i) it is consistent with QE and ii) τE(θ) maximizes (3) for each θ

when Q = QE.

The socially optimal policy maximizes the expected total welfare:
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Definition 2. A policy Q∗ is socially optimal if there exists a profile T ∗ such that

i) it is consistent with Q∗ and ii)

E
[∫ θ

θ
e−rτ

∗(θ)vω(θ)dF (θ)
∣∣∣Q∗] ≥ E

[∫ θ

θ
e−rτ(θ)vω(θ)dF (θ)

∣∣∣Q] ,
for any policy Q and profile T = {τ(θ)}θ∈Θ consistent with Q.

In section 3.5 we recast this as a control problem for the stock process {qt}.

3 Analysis

Our objective is to analyze how gradual learning affects stopping decisions. First,

we discuss some common properties that hold regardless of whether stopping times

are individually or socially optimal and present the no-learning benchmark. Then,

we solve both the (unique) decentralized equilibrium and the socially optimal

policy. Lastly, we compare the decentralized equilibrium and the socially optimal

solution to the no-learning benchmark and provide comparative statics results on

the effects of learning.

3.1 Higher types stop first

In principle, one can implement a policy Q by many different stopping profiles.

However, because the stopping payoffs are increasing in θ, in equilibrium higher

type agents want to stop whenever a lower type agent wants to stop, which leads

to monotone stopping profiles:

Lemma 1. If T = {τ (θ)}θ∈Θ maximizes (3) for each θ for given process Q, then

Pr
[
τ (θ) ≤ τ (θ′)

∣∣∣Ft;Q] = 1

whenever θ > θ′.

Also socially optimal stopping order is monotone:

Lemma 2. Any stopping profile T = {τ (θ)}θ∈Θ consistent with Q satisfies:

E
[∫ θ

θ
e−rτ(θ)vω (θ) dF (θ)

∣∣∣Ft;Q
]
≤ E

[∫ θ

θ
e−rτ

mon(θ)vω (θ) dF (θ)
∣∣∣Ft;Q

]
,
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where τmon (θ) := inf {t : qt ≥ 1− F (θ)}.

We prove both Lemma 1 and Lemma 2 in Appendix A. The lemmas mean that

it is without loss of generality to restrict attention to monotone stopping profiles

for which there is a one-to-one mapping between the stock qt and the largest type

θt who has not stopped: qt = 1 − F (θt). Throughout the paper we use notation

q(θ) := 1 − F (θ) to denote the stock as a function of the current highest type,

which has an inverse (current highest type): θ(q) := {θ : 1 − F (θ) = q}. With a

slight notational abuse, we use vω(q) to denote the stopping payoff of type θ(q).

3.2 Boundary policies

This subsection discusses the dynamics in our model. It turns out that both

solutions can be characterized as boundary policies:

Definition 3. A policy Q is a boundary policy if there exists a continuous function

q̃ : [0, 1] → [0, 1] such that qt = q̃(maxs∈[0,t] xs) where q̃ is strictly increasing for

all x such that q̃(x) > 0.

A boundary policy is Markovian: agents’ stopping decisions depend only on

the stock and the belief. Because stopping is irreversible, the stock at time t is

determined by the highest belief reached up to t. A boundary policy hence divides

the stock-belief state space into two regions: in the expansion region, more agents

stop until the stock equals q̃(x) and in the waiting region, everyone waits.

A boundary policy is fully characterized by the inverse of q̃, a policy function

x̃ : [0, 1] → [0, 1], which maps the stock to the cutoff belief. It turns out that

it is easier to use policy functions to characterize our solutions than functions q̃.

Figure 1 illustrates a boundary policy and the implied dynamics in the state space.

Above the boundary, the stock increases (horizontal movement in the figure) and

below it, the stock stays constant and only the belief moves (vertical movement).

As soon as the belief hits the boundary from below, the quantity is pushed towards

right along the boundary. The expansions in the stock are immediate (depicted by

solid arrows in the figure), whereas the belief fluctuates according to the diffusion
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Figure 1: Dynamics in the waiting and expansion regions of the state space.

process (2) (dashed arrows). Apart from the possible initial jump, the stock

process stays below the boundary and is continuous almost surely.

It is useful to note that since a boundary policy is Markovian in the stock-

belief state space, we can express an individual agent’s best-response to such a

policy as an optimally chosen stopping region in the state space. We utilize this

in establishing the existence and uniqueness of a decentralized equilibrium.

3.3 No-learning benchmark

We start our analysis with the benchmark case without learning, which allows us

to disentangle how learning affects the decentralized equilibrium and the socially

optimal solution.

When there is no learning but the common belief stays constant, the agents’

stopping problem is myopic. An agent stops if and only if his type is so high that

the expected payoff is positive: xvH(θ) + (1−x)vL(θ) ≥ 0. Hence, the no-learning

policy is characterized by the following myopic cutoff:

xmyop(q) = −vL(q)
vH(q)− vL(q) ,

where vω(q) := vω(θ(q)).

Individual optimization and socially optimal policies coincide when there is no

learning.
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3.4 Decentralized equilibrium

We next characterize the decentralized equilibrium defined in Definition 1. An

optimal stopping time for an individual agent trades off the cost of waiting with

the option value of waiting. Because the belief process changes endogenously as

the stock of stopped agents increases, waiting not only brings more information

but also faster learning. Despite this, we show that we can solve equilibrium

stopping times by first solving a sequence of stopping problems where each agent

finds the optimal time to stop when the stock is fixed. That is, we fix qt = q̂ for all

t and find the optimal stopping time for type θ(q̂) assuming that qt is constant and

equal to q̂. This problem is a one-dimensional stopping problem and can be solved

using standard techniques in the literature (see e.g. Dixit and Pindyck (1994) and

the team problem in Bolton and Harris (1999)). We show that the equilibrium in

the original problem corresponds to this “shortsighted” problem in which agents

do not take future stopping decisions by other agents into account.4

The intuition for the equivalence between the shortsighted problem and the

original problem is the following: because later expansions in the stock happen

only when it is optimal for lower type agents to stop, all higher type agents strictly

prefer stopping always when the stock expands (Lemma 1). Hence, higher type

agents want to stop even before the expansion, which means that future expansions

do not change the optimal stopping times. The equivalence with shortsighted

optimization is hence an equilibrium property and may be violated against other

(non-equilibrium) stock processes. In Appendix B, we formalize this argument to

get the following result:

Proposition 1. There is a unique decentralized equilibrium, which is characterized

by an increasing policy function xE:

xE(q) := −β(q)vL(q)
(β(q)− 1) vH(q)− β(q)vL(q) ,

where β(q) := 1
2

(
1 +

√
1 + 8rσ2

q

)
.

4Our method to solve the decentralized equilibrium is inspired by an industry investments
paper by Leahy (1993) who shows that under exogenous uncertainty the competitive equilibrium
behavior coincides with that of ‘myopic’ investors who ignore the effect the future investments
have on the price.
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According to Proposition 1, an agent of type θ waits until the belief reaches

the cutoff xE(q(θ)). The decentralized equilibrium is thus a boundary policy: the

policy function xE defines a boundary so that whenever the belief is about to cross

the boundary, more agents stop.

Notice that the cutoff xE(q) is increasing in the signal precision (decreasing in

σ), which means that a better learning technology decreases the stock of agents

who are willing to stop at any given belief. This is because the better the learning

technology, the greater the option value of waiting and hence the higher the belief

threshold at which an agent stops. The no-learning benchmark is a special case

of the decentralized equilibrium as we take σ →∞, which directly gives:

Corollary 1. For all beliefs in (xstat(0), 1), the stock of stopped agents is strictly

smaller in the decentralized equilibrium than in the no-learning benchmark.

The intuition behind Corollary 1 is that agents want to fully utilize the infor-

mation provided by other agents. Proposition 1 implies that in the decentralized

equilibrium only past stopping decisions affect individual agents’ behavior because

from an individual agent’s perspective past actions determine the speed of learn-

ing. In the next section, we analyze the socially optimal policy which takes into

account the informational externality between agents. Then both past and future

stopping decisions affect the solution.

3.5 Social optimum

We now consider the problem in Definition 2 where a benevolent social planner

seeks to maximize agents’ expected joint payoff. The problem is identical to a

problem of a single decision maker who controls a path of incremental expansions.

Solving the problem is the main analytical contribution of this paper.

From Lemma 2, we know that the skimming property holds for the social

optimum and hence the problem is reduced to finding the policy Q that maximizes

the expected social welfare. We denote the planner’s payoff in state (x, q) as

U(Q;x, q) = E
[ ∫ 1

q
e−rτ(s)(xτ(s)vH(s) + (1− xτ(s))vL(s))ds

∣∣∣∣x, q;Q]. (4)

13



The planner’s problem is then to find supQ U(Q;x, q). By applying Itô’s lemma

and using the properties of the Brownian motion, we have the following Hamilton-

Jacobi-Bellman (HJB) equation for the planner’s problem:

rV (x, q) = max
q∗≥q

(
r
∫ q∗

q
(xvH(s) + (1− x)vL(s))ds+ 1

2Vxx(x, q
∗)x

2(1− x)2

σ2 q∗
)
.

(5)

We solve the planner’s problem by showing that the HJB equation is solved by a

boundary policy that cuts the state space into an expansion region and a wait-

ing region. A verification argument then shows that our candidate solution also

maximizes the original objective (4).

The optimal policy could in principle consist of several waiting and expansion

regions. We proceed by guessing that there is only one expansion and only one

waiting region and then later verify this guess (in Appendix C). Let x∗ : [0, 1] →

[0, 1] denote our candidate for the socially optimal policy, which we derive next.

Function x∗ splits the state space in two so that for a given q the planner waits for

beliefs x < x∗(q) and expands for beliefs x ≥ x∗(q). Since the planner internalizes

the value of information for further decisions, we should intuitively expect the

socially optimal expansion region to be larger than in the case of decentralized

equilibrium, i.e. x∗(q) < xE(q). We shall verify that this property indeed holds.

We start by finding the value function that solves the HJB equation (5). In

the waiting region below x∗, we have q∗ = q and hence (5) reduces to a differential

equation. the value consists of the value of potential future actions. Solving the

differential equation yields:5

V (x, q) = B(q)Φ(x, q), (6)

where B(q) is a function to be determined and

Φ(x, q) :=xβ(q)(1− x)1−β(q) and β(q) = 1
2

(
1 +

√
1 + 8rσ2

q

)
as in Proposition 1.

The next step is to find functions B and x∗ that maximize the right-side of

the HJB equation. To characterize these, we apply value matching and smooth
5We have discarded the other root of the characteristic equation, Φ̃(x, q) := x1−β(q)(1−x)β(q),

as we must have that the value converges to the static solution as x→ 0 and x→ 1.
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pasting conditions, which are necessary for the optimality of policy x∗. Be-

cause the planner controls the intensity of experimentation, the conditions ap-

ply to a marginal increase of the stock q. The value matching condition is thus

Vq(x∗(q), q) = −x∗(q)vH(q)− (1−x∗(q))vL(q) and the smooth pasting condition is

Vqx(x∗(q), q) = −vH(q) + vL(q). Notice that the HJB equation consists of only fu-

ture, not past, stopping payoffs and therefore the value matching condition equates

the marginal value of increasing the stock with the lost stopping payoff.

Using Equation (6), we can write the value matching and smooth pasting

conditions as

x∗(q)vH(q) + (1− x∗(q))vL(q) +Bq(q)Φ(x∗(q), q) +B(q)Φq(x∗(q), q) =0, (7)

vH(q)− vL(q) +Bq(q)Φx(x∗(q), q) +B(q)Φqx(x∗(q), q) =0. (8)

Our candidate policy x∗ must balance the direct payoff effect, the first term in both

equations, against both the option value of waiting and the value of information

generation. The last two show up in the latter terms of each equation as the

derivatives of the value function.

We show in Appendix C that the system (7) - (8) can be transformed into a

non-linear differential equation that defines our candidate policy x∗:

x∗′(q) = g(x∗(q), q), (9)

where

g(x, q) =x(1− x)
[
x
(
β′(q)(β(q)− 1)v′H(q)− ((β(q)− 1)β′′(q)− 2(β′(q))2)vH(q)

)
+ (1− x)

(
β′(q)β(q)v′L(q)− (β(q)β′′(q)− 2(β′(q))2)vL(q)

)]
/[(

x(β(q)− 1)2vH(q) + (1− x)(β(q))2vL(q)
)
β′(q)

]
.

The appropriate initial condition for the differential equation is x∗(1) = 1 because

the solution must equal the no-learning benchmark when the belief equals one.

The denominator of function g is zero at (1, 1) and hence a potential singularity

problem arises. However, we show in Appendix C that the initial value problem has

a unique solution below the decentralized solution i.e. a solution satisfying x∗(q) ≤
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xE(q) for all q ∈ [0, 1] (proof of Lemma 5 in Appendix C.2).6 We then verify that

together with the value function in (6) this candidate policy x∗ solves the HJB

equation, and we further verify that it also maximizes the original objective (4).

In the process, we show that the policy function x∗ is continuous and strictly

increasing in q and hence satisfies the requirements for a boundary policy.

Proposition 2. The socially optimal policy is a boundary policy. It is charac-

terized by the unique solution to the initial value problem x∗′(q) = g(x∗(q), q) and

x∗(1) = 1 satisfying x∗(q) ≤ xE(q) for all q ∈ [0, 1].

Proposition 2 confirms that we can solve the potentially complicated history-

dependent problem with a simple boundary policy. However, unlike the decentral-

ized equilibrium, we cannot solve the planner’s problem in closed form because

the planner is truly forward-looking. For the socially optimal policy, both past

and future actions are relevant. The past generates information that is useful in

evaluating the right decision today, whereas future decisions can be based on in-

formation generated by today’s action. The socially optimal policy balances the

resulting trade-off between the efficient use of information (option value effect)

and the efficient production of information (information generation effect).

0.0 0.2 0.4 0.6 0.8 1.0
q0.0
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Figure 2: Socially optimal policy x∗(q) for different σ when vH(q) = 1− q, vL(q) = −1/2, and
r = 0.1.

Figure 2 provides a numerical example of the effects of the signal precision.
6To see that the uniqueness can only hold in a restricted domain, note that g(1, q) = 0 and

hence the initial value problem has a trivial solution x(q) = 1 for all q ≤ 1.
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Figure 3: Different policies when vH(q) = 1− q, vL(q) = −1/2, σ = 0.5, and r = 0.1.

The smaller the noise parameter σ is, the more precise the signals are. Better

learning technology decreases the cutoff belief x∗(q) when the stock is small and

increases it when the stock is high. This arises because improved learning ampli-

fies both information generation and option value effects. The former dominates

in the beginning, when the existing stock is low and there are many uncommitted

agents who benefit from more information. Conversely, the option value effect

dominates later when there are few such agents. Notice that the policies with

learning (finite σ) are first below and later above the myopic policy without learn-

ing (σ =∞). Hence, gradual learning may either increase or decrease expansions

as the informational trade-off suggests. The following proposition generalizes this

observation (see Appendix C.3 for the proof).

Proposition 3. There exists x ∈ (xmyop(0), 1) and x ∈ [x, 1) such that the optimal

stock is strictly larger than the no-learning benchmark for all beliefs in (x∗(0), x)

and strictly lower for all beliefs in (x, 1).

Figure 3 illustrates the relationship between the solutions. Compared to the

no-learning benchmark, gradual learning first increases and then decreases optimal

expansions over time. The decentralized policy requires a higher belief for further

expansions than the other policies.

Finally, it is illuminating to look at what happens to the actual speed of learn-

ing when the learning technology improves. To do that, let q∗σ(x) and qEσ (x) denote

the socially optimal and the decentralized stocks for signal precision σ.
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Proposition 4. (a) The socially optimal signal-to-noise ratio
√
q∗σ(x)/σ →∞ as

σ → 0 for all x ∈ (0, 1). (b) The decentralized signal-to-noise ratio
√
qEσ (x)/σ →

a(x) as σ → 0 where a(x) = 0 for all x ≤ xstat(0) and a(x) ∈ (0,∞) for all

x ∈ (xstat(0), 1).

Learning gets arbitrarily fast in the socially optimal solution when the learning

technology improves, whereas learning remains slow in the decentralized equilib-

rium. The latter is caused by informational free-riding: no-one wants to be the

first one to stop if information arrives fast. This result suggests that the signal

precision σ is an important determinant of welfare implications of the model as we

will highlight in section 4.3. In Appendix C.4, we prove Proposition 4 and derive

the functional form for a(x).

4 Mechanism design

We have seen that the social planner’s solution and the decentralized equilibrium

differ from each other. In this complementary section we bridge this gap by show-

ing how to implement a given policy in a decentralized manner with anonymous

posted prices. We complement the analysis by deriving a revenue maximizing

mechanism. Lastly, we demonstrate the results of this paper in the context of a

market for a new durable good.

4.1 Posted prices

We now show how a designer can implement a boundary policy by using anony-

mous posted prices.7 A posted price rule P : [0, 1] × [0, 1] → R defines a transfer

payment that an agent has to pay to the designer if willing to stop at a given

state. With such a policy in place, the stopping payoff for an agent of type θ who

decides to stop in state (x, q) is

uθ(x, q) = xvH(θ) + (1− x)vL(θ)− P (x, q). (10)

7Depending on the context and sign, these can also be interpreted as taxes or subsidies.
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Let Q be an arbitrary boundary policy with policy function x̃ satisfying x̃(q1) = 1

and its inverse q̃ (x) : [0, 1] −→ [0, q1] with the convention q̃(x) = 0 for x ≤ x̃(0).

Note that we allow here for the possibility that the designer wants to implement a

restricted maximal stock q1 < 1. The following proposition characterizes a posted

price rule that implements Q:

Proposition 5. Fix a boundary policy Q with policy function x̃. Then there exists

a posted price rule P such that Q is a decentralized equilibrium of the game where

the stopping payoff is given by (10). For states along the stopping boundary, the

posted price rule is uniquely pinned down by

P (x̃(q), q) = x̃(q)(vH(θ(q)) + (1− x̃(q))vL(θ(q)))

− E
[ ∫ θ(q)

θ
e−r(τ(s)−τ(θ(q)))

(
x̃(q(s))v′H(s) + (1− x̃(q(s)))v′L(s))

)
ds

∣∣∣∣x̃(q), q
]
. (11)

For states away from the boundary, the posted price rule is not uniquely deter-

mined. For states x > x̃(q), we can assign P (x, q) = P (x, q̃(x)). For states

x < x̃(q), we can assign any sufficiently high value to P (x, q).

We prove the proposition in Appendix D. The posted price at the boundary

is pinned down by the envelope theorem of Milgrom and Segal (2002) and we

verify that incentive compatibility holds globally along the stopping boundary.

To guarantee that the agents do not have an incentive to stop at any state below

the boundary, the designer only needs to make sure that the transfer payment

is high enough to make the cost of stopping prohibitive. The posted price that

implements a desired policy is hence unique at the boundary but not away from

it.8

The posted price rule considered here responds to changes in both x and q.

In Online Appendix, we investigate two alternative posted price rules that only

depend on the stock or the belief, respectively. Such rules are of special interest

because they are often easier to use in practice. For example, a seller of a new

durable good can set the price based on the cumulative past sales instead of both

sales and reviews or other feedback from past buyers.
8Above the stopping boundary, we must guarantee that those agents needed for the state

to move to the boundary do indeed want to stop. Setting P (x, q) = P (x, q̃(x)) is one way to
accomplish that.
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4.2 Revenue maximizing designer

In some applications a designer maximizes an objective other than social surplus.

Here we show how we can adapt our techniques to find a mechanism that max-

imizes the revenues from the transfers. For this subsection we assume that the

type distribution F is twice continuously differentiable and has monotone hazard

rate.

Consider a designer whose objective is to maximize the expected sum of trans-

fers, E [
∫∞

0 e−rtPtdqt], where Pt is the transfer that the agent pays if he stops at

time t. For a given policy, the incentive compatible posted price is pinned down

by (11). To back out the incentive compatible revenue, we change the order of

integration to get a virtual surplus representation for the designer’s payoff (see

Appendix D for the proof):9

Lemma 3. Incentive compatibility implies that the designer’s expected revenue is:

E
[ ∫ ∞

0
e−rtPtdqt

]
= E

[ ∫ θ

θ
e−rτ(θ)φω(θ)dθ

]
,

where φ(θ) is the virtual stopping payoff: φω(θ) := vω(θ)− v′ω(θ)1−F (θ)
f(θ) .

Using this result we can solve the revenue maximizing designer’s problem by

using the planner’s solution in Proposition 2. We only need to replace the stopping

payoffs with virtual stopping payoffs and use the revenue maximizing quantity

under complete information as the initial value. We demonstrate this in the next

subsection where we analyze the problem of a durable goods monopolist.

4.3 Application: markets for new durable goods

We now pull together our theoretical results to discuss an application. Consider

a new durable good with uncertainty about the product quality. Gradual social

learning naturally arises: after an individual buyer purchases the product, he

starts using it and observes how well it functions over time. As a result, potential
9 The approach extends a result in Laiho and Salmi (2021) and shares similar features with

Board (2007) who analyzes the optimal sale of options.
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future buyers learn gradually from the fleet of existing users. This is in contrast

to experience goods, such as movies, where consumption is one-shot and hence

instantaneous learning is a natural modeling approach. The existing literature on

experimentation has focused solely on experience goods.

The model is as follows. Neither the monopolist nor the buyers know the true

quality of the product, ω ∈ {H,L}, but they observe a public signal process (1),

generated by past sales, qt. Each buyer wants to purchase one unit and exits

after purchase. Similar to the general model, a buyer’s utility from consumption

depends on his private type, θ ∈ [θ, θ], and the common quality: E[u(θ, ω)] =

E[1ω=H ·θ] = xtθ where xt is the current belief that the quality is high. In addition,

we assume that the type distribution F is twice continuously differentiable and has

monotone hazard rate. The monopolist faces marginal cost of production c > 0

and commits to a pricing scheme, Pt.

The monopolist’s problem is a mechanism designer’s problem whose objective

is to maximize the expected sum of transfers, E [
∫∞
0 e−rtPtdqt]. Using Lemma 3,

the monopolist’s objective can be written as

E
[ ∫ ∞

0
e−rtPtdqt

]
= E

[ ∫ θ

θ
e−rτ(θ)φω(θ)dθ

]
,

where φω is the virtual valuation: φH(θ) := θ − 1−F (θ)
f(θ) and φL(θ) := 0.

The monopolist seeks to maximize the expected sum of virtual valuations net

of the cost of production. With this in mind, we can use the planner’s solution in

Proposition 2 to characterize the monopolist’s solution:10

Corollary 2. The monopolist’s policy xM is characterized by xM(qM) = 1 and

xM
′(q) = g(q, xM(q)), where qM solves θ(qM)− (1−F (θ(qM)))/f(θ(qM)) = c and

g is given in (9) for vH(θ) = θ − (1− F (θ))/f(θ)− c and vL(θ) = −c.

The monopolist sells more whenever the belief reaches the boundary xM(q)

and waits otherwise. The posted prices that implement the solution satisfy (11)
10Notice that the monotone hazard rate condition is important as it guarantees that the virtual

valuation is increasing in θ and hence the problem satisfies all our assumptions in Section 2. In
addition, because the solution in Proposition 2 is a boundary policy, Proposition 5 guarantees
that posted prices are without loss of generality and hence the revenue maximizing policy can
be implemented.
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in Proposition 5.

We contrast the monopoly solution with the planner’s socially optimal solution

and the competitive market equilibrium. The planner’s solution can be found also

by applying Proposition 2 but with different payoff functions:

Corollary 3. The social planner’s policy xP is characterized by xP (qP ) = 1 and

xP
′(q) = g(q, xP (q)), where qP solves θ(qP ) = c and g is given in (9) for vH(q) =

θ(q)− c and vL(q) = −c.

Suppose next that there are no barriers of entry to the market so that the price

equals the marginal cost: Pt = c. An individual buyer’s purchasing problem then

coincides with the decentralized equilibrium with vH(q) = θ(q)−c and vL(q) = −c,

and we have the following corollary to Proposition 1:

Corollary 4. The competitive market policy is

xC(q) = β(q)c
(β(q)− 1)θ(q) + c

.

The planner’s solution and the competitive equilibrium are the socially optimal

and the decentralized solutions of the same problem, whereas the monopoly solu-

tion uses different stopping payoffs. This difference leads to different inefficiencies

in monopoly and competitive markets.

Figure 4: Different solutions for uniform (0, 1) types, c = 0.2, r = 0.1, and σ = 0.5.

Figure 4 gives a numerical example of the solutions. The left panel shows the

policy functions. The monopolist’s and the competitive policies are everywhere
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above the planner’s policy: both markets require inefficiently high belief for new

consumers to purchase the product. The monopoly policy is first below and then

above the competitive policy. This is because the information generation effect

encourages the monopolist to sell in the beginning and because early sales do not

generate large information rents to other buyers. Later on, the monopolist re-

duces sales as the option value effect gets stronger and because later sales impose

information rents to higher type buyers. The competitive market ignores the infor-

mation generation effect but is otherwise efficient and therefore competitive sales

are larger for high beliefs. This comparison in fact holds for all type distributions

and parameter values (see Online Appendix).

The right panel shows the corresponding posted prices (11) at the stopping

boundary. The monopoly starts at a price below marginal cost in order to initially

boost information generation, but then increases the price steeply to extract more

revenues. The social planner prices everywhere below the marginal cost in order

to fully internalize the informational externality.

The monopolist’s incentives to generate information are weaker than the plan-

ner’s because the monopolist cannot capture all value from the buyers. This

creates a distortion at the top of the type distribution, which is not present when

the quality is known. In other words, a higher initial belief is needed for the

monopolist to be willing to launch the product: xM(0) > xP (0).

With endogenous learning, the quality of the learning technology is a key deter-

minant of welfare differences between different market structures. The parameter

that captures this in our model is the noise parameter σ. The left panel in Fig-

ure 5 shows the difference in total welfare between the planner’s solution and the

competitive solution as a function of initial belief and with different values of σ.11

The better the learning technology, i.e. the lower the value of σ, the greater the

welfare loss in competitive equilibrium. This is because the social planner takes

full advantage of improved learning technology, whereas informational free-riding

limits how much the actual speed of learning in equilibrium increases when the
11 The kink at initial belief 0.2 is the threshold at which the first unit is sold in competitive

equilibrium.
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learning technology improves (see Proposition 4).

Figure 5: Difference in total welfare in the social planner vs. competitive solution (left panel)
and in monopoly vs. competitive solution (right panel) as a function of the initial belief for
uniform (0, 1) types, c = 0.2, and r = 0.1.

A striking implication of endogenous learning in the current context is that

market power can benefit consumers. Although a monopoly harms consumers by

distorting the allocation in the usual way, it also spills benefits to the consumers

from its ability to internalize the informational externality. The right panel in

Figure 5 shows the difference in total welfare between the monopoly solution and

the competitive equilibrium. Positive values indicate that the monopoly solution

has a greater total welfare. Since consumers get a positive share of the total

surplus in information rents and since consumer surplus is zero in the competitive

solution for initial beliefs below 0.2, this implies that for a range of initial beliefs

the consumers are better off in the monopoly solution than in the competitive

solution. Again, we see that the quality of the learning technology plays a key

role: the better the learning technology, the greater the scope for the consumers

to benefit from market power.

As a final remark, notice that a regulator can implement the socially efficient

consumption in both monopoly and competitive markets by using appropriate

subsidies but there is a crucial difference between the two different competitive

environments. To encourage the monopolist to sell more, the regulator should use

back-loaded subsidy that increases over sales: s(x, q) = x(1 − F (θ(q)))/f(θ(q)).

A back-loaded subsidy scheme incentivizes the monopolist to sell the socially op-

timal amount because she internalizes the benefits of information generation. If
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the market is competitive, however, the subsidy must be front-loaded because

competition eliminates dynamic incentives (see the difference between the social

planner’s price and marginal cost in the right panel of Figure 4).

5 Concluding remarks

We conclude by summarizing a few compelling reasons why the gradual arrival of

endogenous information matters. First, gradual learning enables the analysis of

various real-life situations where the long-run consequences of a decision determine

its profitability. Because gradual learning creates a novel informational trade-off

on the social level between information generation and the option value of waiting,

it dramatically shapes the incentives of experimentation.

A second important motive to model the gradual arrival of information is

technical. As demonstrated in this paper, the decentralized equilibrium can be

solved in a closed form under gradual learning. We further show how mechanism

design techniques can be utilized to conduct policy analysis in our environment.

The solution method extends to richer environments, such as to models with payoff

externalities (see Laiho, Murto and Salmi 2022).

An important takeaway from the paper is that the signal precision has subtle

implications for learning and welfare. We show that even if signals get arbitrarily

precise, learning remains slow in the equilibrium. This contrasts with the socially

optimal solution, in which the true state is learned arbitrarily fast as the learning

technology improves. As a result, the equilibrium welfare loss is particularly severe

if the learning technology is good.
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Appendix

A Additional material for Sections 2 and 3.1

A.1 Learning process as the continuous limit

Consider a discrete model where the number of agents is n and where the period

length is dt. Let the signal process be such that in each period, each agent who

has stopped generates a normally distributed conditionally iid. signal:

yit ∼ N

(
µωdt

n
,
σ2dt

n

)
.

This normalization keeps the informativeness of the aggregate signal constant

while letting the number of small agents to grow as in Bergemann and Välimäki

(1997).

When the number of agents who has stopped is k ≤ n, this implies the following

aggregate signal:
k∑
i=1

yit ∼ N

(
µωdt

k

n
, σ2dt

k

n

)
.

Let q = k/n denote the fraction of agents who have stopped. Now, the signal

process (1) follows once we take the limit when n→∞ (and k →∞ so that k/n

stays fixed) and dt→ 0.

Notice that the limiting distribution for the aggregate signal depends only on

the mean and the variance of yit (the central limit theorem). Hence, the signal

process (1) is also the limiting process for the case where yit is not normally dis-

tributed, including the case where agents communicate through binary signals.

Furthermore, we can rewrite the model so that the individual signals represent

realized payoffs in a model where agents start receiving a stochastic flow payoff

after stopping: πt(θ) = πω(θ) + εt(θ) where εt(θ) ∼ N (0, σ2(πH(θ)− πL(θ))2).

The noise term is scaled so that every increment in q is equally informative.

This assumption is not necessary: we analyze in Online Appendix the case of

heterogeneous informativeness and show that both the analysis and the qualita-

tive results remain unchanged if the stopping profile is monotone. When we set
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πω(θ) = rvω(θ), the expected stopping payoff is xtvH(θ) + (1−xt)vL(θ) just like in

the main text. Since there are no further actions after stopping, it does not matter

how fast the agents learn privately after they have stopped: the parameter σ can

be interpreted to capture both the noise in the private learning and the noise in

communication.

A.2 Proof of Lemma 1

Proof. Let policy Q be fixed. Type θ wants to stop at time t if

xtvH(θ) + (1− xt)vL(θ) ≥ E[e−r(τ−t)(xτvH(θ) + (1− xτ )vL(θ))|Ft;Q],

for all stopping rules τ . Or equivalently,

vL(θ)(1− xt − E[e−r(τ−t)(1− xτ )|Ft;Q]) + vH(θ)(xt − E[e−r(τ−t)xτ |Ft;Q]) ≥ 0.

The left-hand side is increasing in θ because expressions (1−xt−E[e−r(τ−t)(1−

xτ )]) and (xt−E[e−r(τ−t)xτ ]) are positive (follows from that xτ is a martingale and

e−r(τ−t) < 1) and vω is increasing. Therefore, if type θ wants to stop, type θ′ > θ

wants to stop too.

A.3 Proof of Lemma 2

Proof. T and T mon are both consistent with Q. We show that monotone stopping

ordering maximizes ex post welfare for all realized paths of (X,Q). The claim

follows once we show that for all types θ, θ′ ∈ [θ, θ] such that θ > θ′ and for all

realized stopping times t, t′ ∈ R+ such that t ≤ t′,

e−rtvω(θ) + e−rt
′
vω(θ′) ≥ e−rt

′
vω(θ) + e−rtvω(θ′).

The above condition is equivalent with (e−rt − e−rt′)(vω(θ) − vω(θ′)) ≥ 0, which

necessarily holds as t ≤ t′ and vω(θ) ≥ vω(θ′) by assumption if θ > θ′.
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B Decentralized equilibrium

B.1 Proof of Proposition 1

Throughout the proof, we will also utilize the solution to the auxiliary optimal

stopping problem, where the stock is assumed to be fixed at qt ≡ q forever:

Lemma 4. Take the policy Q, where the stock is fixed at qt ≡ q forever. Then, it

is optimal for θ to stop if and only if xt ≥ x̂θ (q), where

x̂θ(q) = β(q)vL(θ)
β(q)vL(θ) + (1− β(q))vH(θ) .

Proof. This is a standard one-dimensional optimal stopping problem. See e.g.

Dixit and Pindyck (1994) or the team problem in Bolton and Harris (1999) for

derivations in equivalent problems.

We denote by F θ (x; q) the value function of the problem where the stock is

fixed.

We now start with the uniqueness part of Proposition 1. Assume that Q

is a decentralized equilibrium. By Lemma 1 the optimized stopping times are

monotone in θ. Hence, in equilibrium, θ cannot stop before qt reaches q (θ), nor

can she delay stopping until qt has reached a level higher than q (θ). Take some

history ht such that qt = q (θ) and denote by Fθ (ht) the equilibrium continuation

value of type θ. It follows that the optimized continuation value for θ at q (θ)

cannot exceed the continuation value of the constrained problem where qt stays

fixed at q forever, i.e. we have Fθ (ht) = F θ (x; q (θ)). Any policy other than

stopping at threshold x̂θ (q (θ)) = xE (q (θ)) would give Fθ (ht) < F θ (x; q) and so

stopping at the threshold is a necessary condition in a decentralized equilibrium.

Since this holds for all types θ, we can conclude that if a decentralized equilibrium

exists, then it must be the cutoff policy in Proposition 1.

Next, we show that the policy in Proposition 1 is indeed a decentralized equi-

librium. Fix policy Q to be the cutoff policy in Proposition 1, and consider optimal

stopping for θ against it. Note that Q defines a feasible region X in (x, q)-space

such that (xt, qt) ∈ X for all t > 0: X =
{

(x, q) : 0 ≤ q ≤ 1, 0 < x ≤ xE (q)
}
.
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Figure 6: Optimal stopping for type θ.

Since Q is a Markovian process, an optimal stopping rule against it can be ex-

pressed as some stopping region Sθ ⊆ X in the feasible region. Denote by Fθ (x, q)

the value function under optimally chosen stopping region Sθ:

Fθ (x, q) = E
(
e−rτ(Sθ)uθ

(
xτ(Sθ)

) ∣∣∣∣x, q) ,
where τ(Sθ) = inf (t : (xt, qt) ∈ Sθ) is the time of hitting Sθ and uθ (x) := xvH (θ)+

(1− x) vL (θ) is the stopping value. Clearly, Fθ (x, q) = uθ (x) whenever (xt, qt) ∈

Sθ. At and above the boundary xE (q), where qt increases, we must have:

∂

∂q
[Fθ (x, q)]x≥xE(q) = 0. (12)

The plan for the rest of the proof is to show that the optimal stopping region

Sθ is the shaded region in Figure 6, i.e.

Sθ =
{

(x, q) : q ≥ q (θ) , x ∈
[
x̂θ (q) , xE (q)

]}
. (13)

As a first step, we note that it can never be optimal to stop for q < q (θ).

This follows from the observation that for q < q (θ) any (x, q) ∈ X satisfies

x < x̂θ (q), i.e. it is not optimal to stop even assuming qt to stay fixed forever.

The continuation value in the equilibrium where qt may increase in the future must

be at least as high as the continuation value in the problem where qt stays fixed

forever. Hence, F θ (x; q) > uθ (x, q) implies Fθ (x, q) > uθ (x, q) for all x < x̂θ (q)

and so it cannot be optimal to stop.
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As a second step, we will show that when q ≥ q (θ), it is always optimal to stop

at the boundary of X, i.e. at x = xE (q). Suppose, to the contrary, that there is

some (x, q) /∈ Sθ, where x = xE (q) and q ≥ q (θ). This amounts to assuming that

Fθ(xE (q) , q) > uθ(xE (q)), and we will show that this leads to a contradiction.

First, suppose that it is optimal to stop at some (x′, q), where x′ < xE (q). In

that case Fθ (x′, q) = uθ (x′). Since Fθ (x, q) is convex in x and we necessarily have

Fθ (x, q) ≥ uθ (x) for all x ∈ (x′, xE(q)), we get that

∂

∂x
[Fθ (x, q)]x=xE(q) ≥ vH (θ)− vL (θ) = ∂

∂x
[uθ (x)]x=xE(q) (14)

Now, suppose that it is optimal to wait for all (x, q), where x < xE (q), in

which case Fθ (x, q) > uθ (x) for all x < xE (q) and Fθ (0, q) = 0. In that case,

following the same argument as with the value function F θ(x; q) for fixed q, the

value function Fθ (x, q) must take the form Fθ (x, q) = Aθ (q) Φ (x, q) for some func-

tion Aθ (q) and hence ∂
∂x

[Fθ (x, q)]x=xE(q) = Aθ (q) Φx

(
xE (q) , q

)
. Our assumption

Fθ(xE(q), q) > uθ(xE (q)) is equivalent to

Aθ (q) Φ
(
xE (q) , q

)
> xE (q) vH (θ) +

(
1− xE (q)

)
vL (θ) ,

which further implies

∂

∂x
[Fθ (x, q)]x=xE(q) >

Φx (x (q) , q)
Φ (x (q) , q)

[
xE (q) vH (θ) +

(
1− xE (q)

)
vL (θ)

]
= β (q)− xE (q)

(1− xE (q)) vH (θ) + β (q)− xE (q)
xE (q) vL (θ) .

The last expression is greater than vH (θ)− vL (θ) if and only if

x′ ≥ β (q) vL (θ)
β (q) vL (θ) + (1− β (q)) vH (θ) = x̂θ (q) ,

which is the case if and only if q ≥ q (θ). Therefore, we may conclude that (14)

holds in this case too.

Given that (14) holds, the rate of change in Fθ (x, q) along the boundary is

d

dq
Fθ
(
xE (q) , q

)
= ∂

∂x
[Fθ (x, q)]x=xE(q)

d

dq
xE (q) + ∂

∂q
[Fθ (x, q)]x=xE(q)

= ∂

∂x
[Fθ (x, q)]x=xE(q)

d

dq
xE (q) ≥ [vH (θ)− vL (θ)] d

dq
xE (q) = d

dq
uθ
(
xE (q)

)
,
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where the second term of the first line disappears by (12) and where the inequality

is implied by (14).

But if Fθ(xE(q), q) > uθ(xE(q)) implies d
dq
Fθ
(
xE (q) , q

)
≥ d

dq
uθ
(
xE (q)

)
, then

it must further imply Fθ(xE(q′), q′) > uθ(xE(q′)) for all q′ ∈ [q, 1], and in particular

Fθ(xE(1), 1) > uθ(xE(1)). But xE(1) = 1, so this yields Fθ(xE(1), 1) > vH(θ),

which is a contradiction since the value cannot be higher than the stopping payoff

under certainty of state ω = H.

We conclude that it is optimal to stop at all boundary points for q > q (θ). To

see that this implies that it is also optimal to stop within the whole shaded region

in Figure 6, i.e.
{

(x, q) : q ≥ q (θ) , x ∈
[
x̂θ (q) , xE (q)

]}
∈ Sθ, note that qt can only

increase if xt reaches xE (q). Since θ stops at latest when xt reaches xE(q), the

optimal continuation value Fθ (x, q) cannot exceed the corresponding value with q

fixed, i.e. F θ (x; q). To reach that value, θ must stop at all points
[
x̂θ (q) , xE (q)

]
.

We have now shown that the stopping rule defined in (13) maximizes (3) for

policy Q. Since qt can only increase at the boundary points xE(q), the first point

in Sθ ever reached is (x̂θ (q (θ)) , q (θ)) and so the optimal stopping rule commands

θ to stop exactly when qt reaches 1−F (θ) and is therefore consistent with Q. We

can conclude that Q is a decentralized equilibrium.

C Socially optimal policy

We use the derivatives of Φ(x, q) in many proofs of this section:

Φ =
(

x

1− x

)β(q)
(1− x),Φq = Φβ′(q) ln

(
x

1− x

)
,

Φx =Φ(β(q)− x)
x(1− x) ,Φxx = Φβ(q) (β(q)− 1)

x2(1− x)2 ,

Φqx =Φβ′(q)x−1(1− x)−1

1 + (β(q)− x) ln
(

x

1− x

),
Φxxq =Φ β′(q)

x2(1− x2)

[
β(q) + (β(q)− 1)(1 + β(q) ln

(
x

1− x

)
)
]
.
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Deriving the differential equation

We first show that the value matching and smooth pasting conditions, (7) and

(8), imply the differential equation in (9). Solving (7) and (8) for Bq(q) and B(q)

yields

Bq (q) = A1 (x∗(q), q)x∗(q) + A2 (x∗(q), q) , (15)

B (q) = U1 (x∗(q), q)x∗(q) + U2 (x∗(q), q) , (16)

where

A1 (x, q) : = −Φqx (x, q) (vH(q)− vL(q))
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) ,

A2 (x, q) : = Φqx(x, q)(−vL(q)) + Φq (x, q) (vH(q)− vL(q))
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) ,

U1 (x, q) : = Φx (x, q) (vH(q)− vL)
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) ,

U2 (x, q) : = −Φx (x, q) (−vL(q))− Φ (x, q) (vH(q)− vL(q))
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) .

Differentiating (16) with respect to q and using the chain rule gives

Bq (q) =
[
U1
x (x∗(q), q)x∗′(q) + U1

q (x∗(q), q)
]
x∗(q) + U1 (x∗(q), q)x∗′(q)

+ U2
x (x∗(q), q)x∗′(q) + U2

q (x∗(q), q) (17)

Equating (15) and (17), solving for x∗′(q), and simplifying yields the expression

(9) in the text.

Any solution that satisfies the differential equation (9) must be continuous.

C.1 Proof of Proposition 2

The proof contains three parts. In part 1, we show that the initial value problem

(9) has a unique solution x∗(q) with the property x∗(q) < xE(q) for all q < 1.

We also show that x∗(q) is continuous and strictly increasing and hence defines

a boundary policy. In part 2, we show that our candidate policy x∗(q) satisfies

the HJB equation (5). In part 3, we verify that the solution to the HJB equation

solves the original problem.
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Part 1: solution to the initial value problem (9)

We first establish some key properties of function g in (9) (all proofs of the lemmas

are in Appendix C.2):

Lemma 5. For all (x, q) such that q < 1 and x ≤ xE(q), function g(x, q) in (9)

is strictly positive and strictly increasing in x and it is Lipschitz continuous for

all q ∈ [0, q1] if q1 < 1 and for all x ≤ xE(q). Furthermore, g(xE(q), q) > xE
′(q)

for q < 1 and limq→1 g(xE(q), q) = xE
′(1).

The singularity at (1,1) prevents us from directly applying the Picard-Lindelöf

theorem to show the existence and uniqueness of a solution to the initial value

problem (9). Instead, we note that the requirements for the Picard-Lindelöf the-

orem are satisfied for all initial conditions x(q1) = x1 where x(q1) ≤ xE(q1) and

q1 < 1, and hence each such initial value problem defines a unique solution. Since

g is increasing in x, these solutions diverge when approaching (1, 1) and hence

at most one path can approach (1, 1) from below the decentralized policy. The

fact that limq→1 g(xE(q), q) = xE
′(1) implies that there is a path that approaches

(1, 1) from the same direction as the decentralized policy xE(q) and the fact that

g(xE(q), q) > xE
′(q) for q < 1 implies that such a path must be strictly below the

decentralized solution for all q < 1. It follows that the initial value problem has a

unique solution below the decentralized solution.

We have now shown that the initial value problem (9) has a unique solution

x∗ such that x∗(q) ≤ xE(q) for all x ≤ q. This solution x∗(q) is continuous and

strictly increasing in q, and it is our candidate policy.

Part 2: our candidate x∗ solves the HJB equation

Fix x∗(q) to be the candidate policy defined in the proposition and let q∗ (x) be its

inverse with the convention q∗ (x) = 0 for x ≤ x∗ (0). Its associated value function

is

V (x, q) =


∫ q∗(x)
q (xvH (s) + (1− x) vL (s)) ds+ V (x, q∗ (x)) , for q < q∗ (q)

B (q) Φ (x, q) , for q ≥ q∗ (x) ,
(18)
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where B(q) is given by (16). By construction, for q ≥ q∗ (x), V (x, q) satisfies

rV (x, q) = 1
2Vxx (x, q) x

2 (1− x)2

σ2 q (19)

and at the boundary q = q∗ (x), the value matching and smooth pasting conditions

(7) and (8) hold:

Vq (x, q∗ (x)) + xvH (q∗ (x)) + (1− x) vL (q∗ (x)) = 0, (20)

Vqx (x, q∗ (x)) + vH (q∗ (x))− vL (q∗ (x)) = 0. (21)

Differentiating (19) with respect to q, we have

rVq (x, q) = 1
2Vxx (x, q) x

2 (1− x)2

σ2 + 1
2Vxxq (x, q) x

2 (1− x)2

σ2 q, (22)

which allows us to re-write (20) as:

r [xvH (q∗ (x)) + (1− x) vL (q∗ (x))] + 1
2Vxx (x, q∗ (x)) x

2 (1− x)2

σ2

+1
2Vxxq (x, q∗ (x)) x

2 (1− x)2

σ2 q = 0. (23)

We next state three lemmas that concern the partials of the value function

below, above, and at the boundary, respectively. Their proofs are in a separate

section, Appendix C.2.

Lemma 6. For q ≥ q∗ (x), we have Vq (x, q) + xvH (q) + (1− x) vL (q) ≤ 0.

Lemma 7. For q < q∗ (x), we have Vxx (x, q) = Vxx (x, q∗ (x)), Vqq (x, q) =

Vqq (x, q∗ (x)), and Vxxq (x, q) = 0.

Lemma 8. For q = q∗ (x), we have Vxxq (x, q) < 0.

We are now ready to show that our candidate policy satisfies the HJB-equation

(5), which we re-write here using notation q′ instead of q∗ for the maximizer (this

is to avoid confusion with boundary q∗ (x)):

rV (x, q) = max
q′>q

(
r
∫ q′

q
(xvH (s) + (1− x) vL (s)) ds+ 1

2Vxx (x, q′) x
2 (1− x)2

σ2 q′
)
.

(24)
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The right-hand side of this equation is a continuous function in q′ and its derivative

with respect to q′ is

r (xvH (q′) + (1− x) vL (q′)) + 1
2Vxx (x, q′) x

2 (1− x)2

σ2 + 1
2Vxxq (x, q′) x

2 (1− x)2

σ2 q′.

(25)

Let us inspect the sign of this for different values of q′. For q′ ≥ q∗ (x), we can use

(22) to write (25) as

r (xvH (q′) + (1− x) vL (q′)) + rVq (x, q) ,

which is negative by lemma 6. It follows that whenever q ≥ q∗ (x), the right-hand

side of (24) is maximized by choosing q′ = q, i.e. keeping q fixed.

For q′ < q∗ (x), we can use lemma 7 to write (25) as

r (xvH (q′) + (1− x) vL (q′)) + 1
2Vxx (x, q∗ (x)) x

2 (1− x)2

σ2 ,

which is decreasing in q′. Moreover, combining (23) and Lemma 8 we can conclude

that it is positive in the limit q′ → q∗ (x), and hence it is positive for all q′ <

q∗ (x). Since the right-hand side of (24) is continuous, and its derivative is positive

(negative) for q′ < q∗ (x) (q′ ≥ q∗ (x)), it is maximized at q′ = q∗ (x) if q < q∗ (x).

We have now shown that for any x ∈ (0, 1), the right-hand side of the HJB

equation is maximized by choosing q′ = max{q, q∗(x)}. Furthermore, since V (x, q)

satisfies (19) for q ≥ q∗ (x), the left- and right-hand sides of (24) coincide with

this choice of q′. Hence, we have shown that V (x, q) defined in (18) satisfies the

HJB-equation.

Part 3: verification

The verification of the solution follows from the standard arguments in the liter-

ature (see e.g. Fleming and Soner (2006)). Let V ∗ solve the HJB equation (5)

and let q∗(x, q) = max{q, q∗(x)} be the corresponding q∗. Then, let T ≥ t be the

time at which the candidate value function is evaluated. From generalized Itô’s
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formula we have12

e−rTV ∗(xT , qT ) = e−rtV ∗(xt, qt)−
∫ T

t
e−rsrV ∗(xs, qs)ds+

∫ T

t
e−rsV ∗x (xs, qs)dxs

+
∫ T

t
e−rsV ∗q (xs, qs)dqs + 1

2

∫ T

t
e−rsV ∗xx(xs, qs)d[x]s + 1

2

∫ T

t
e−rsV ∗qq(xs, qs)d[q]s

+
∫ T

t
e−rsV ∗qs(xs, qs)d[q, x]s

where d[x]t and d[q]t are the quadratic variations of x and q and d[x, y]t is their

quadratic covariation. The process Qt has bounded variation and hence d[q]t =

d[x, y]t = 0. Notice also that dxt = xt(1 − xt)σ−1√qtdwt and d[x]t = x2
t (1 −

xt)2σ−2qtdt. We can further simplify the equation by noting that V ∗q dq = −(xvH(q)+

(1−x)vL(q))dq. The HJB equation gives an upper bound for qs
σ2x

2
s(1−xs)2V ∗xx(xs, qs)−

rV ∗(xs, qs) ≤
∫ q∗(xs,qs)
qs

(xvH(q) + (1− x)vL(q))dq, which equals zero for almost all

s. Combining gives:

e−rTV ∗(xT , qT ) ≤ e−rtV ∗(xt, qt)−
∫ T

t
e−rs(xsvH(qs) + (1− xs)vL(qs)))dqs

+
∫ T

t
e−rsVx

∗(xs, qs)
√
qs
σ
xs(1− xs)dws.

Taking conditional expectations , multiplying by −ert and simplifying then

gives

V ∗(xt, qt) ≥ E

 ∫ T

t
e−r(t−s)(xsπH(qs) + (1− xs)πL(qs))ds+ e−r(T−t)V ∗(xT , qT )|Ft

.
The candidate value function is bounded and therefore clearly satisfies the

transversality condition: limT→∞ E[e−r(T−t)V ∗(xT , qT )] = 0. Hence, taking the

limit T →∞ gives that V ∗(x, q) ≥ maxQ U(Q;x, q).

The last step is to use the fact that Q, induced by policy x∗, achieves the

pointwise maximum of the HJB-equation and thus the inequalities above become

equalities: V ∗(x, q) = maxQ U(Q;x, q). Our solution solves the original problem.
12To see that V ∈ C2 check Vx at the boundary. The continuity of Vxx and Vqq follows from

Lemma 7 and the continuity of Vq and Vqx are implied by the value matching and smooth pasting
conditions.
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C.2 Proof of Lemmas 5, 6, 7, and 8

Proof of Lemma 5. Taking the derivative of g(x, q) with respect x gives:

gx(x, q) =−
[
β′′(q)

(
x2(1− 2x)(β(q)− 1)3vH(q)2 − 2(1− x)xβ(q)(β(q)− 1)

× vH(q)vL(q)((1− 2x)β(q)− x) + (1− x)2(1− 2x)β(q)3vL(q)2
)

+ β′(q)
(

2x2(2x− 1)(β(q)− 1)2vH(q)2β′(q) + (1− x)2β(q)2vL(q)

×
(

2(1− 2x)vL(q)β′(q)− 2x(β(q)− 1)v′H(q)− (1− 2x)β(q)v′L(q)
)

+ xvH(q)
(

4(1− x)vL(q)β′(q)
(
(1− 2x)β(q)2 + 2xβ(q) + x

)
− x(β(q)− 1)2

(
(1− 2x)(β(q)− 1)v′H(q) + 2(1− x)β(q)v′L(q)

)))]
/[

(x(β(q)− 1)2vH(q) + (1− x)(β(q))2vL(q))2β′(q)
]
.

Both g(x, q) and gx(x, q) are bounded if their denominators are bounded away

from zero. We show that this is true if q < 1 and x ≤ xE(q) by showing that it

hold at x = xE:

xE(q)(β(q)− 1)2vH(q) + (1− xE(q))(β(q))2vL(q) < 0, (26)

for all q ∈ [0, 1). Notice that the left-side is increasing in x and hence (26) implies

the same inequality for all lower x. The condition (26) is equivalent with

β(q)(β(q)vL(q)− (β(q)− 1)vH(q))
β (q)2 vL (q)− (β (q)− 1)2vH (q)

> 1 ⇐⇒ (β(q)− 1)vH(q) > 0,

which holds as β(q) > 1 and vH(q) > 0. We can conclude that g and gx are

bounded and continuous in both x and q for all (x, q) such that q < 1 and x ≤ xE(q)

and hence g is Lipschitz when we gap q away from 1. The denominator of g(x, q)

is strictly positive.

To see that g(x, q) > 0, it is now enough to show that the numerator of (9) is

strictly positive. First notice that the second term inside the brackets is always

positive but the first term can be negative.13 The first term is scaled by x, while

the second therm is scaled by (1 − x). Therefore, if the numerator is positive at

a belief above the boundary, it must be positive for the belief at the boundary
13This follows from vL(q) < 0,v′ω(q) < 0, β′(q) < 0, β(q) > 1 and that β(q)β′′(q) > 2(β′(q))2.
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as well. Since the decentralized belief, xE(q), is always above the fully optimal

boundary, we can use it to show that the numerator is positive.

Plugging in xE(q) to the numerator of (9) and dividing by x(1− x) gives:

β(q)vL(q)
(
β′(q) (β(q)− 1) v′H(q)−

(
(β(q)− 1) β′′(q)− 2 (β′(q))2

)
vH(q)

)
β(q)vL(q) + (1− β(q))vH(q)

+
(1− β(q)) vH(q)

(
β′(q)β(q)v′L(q)−

(
β(q)β′′(q)− 2 (β′(q))2

)
vL (q)

)
β (q) vL (q) + (1− β (q)) vH (q) .

Since the denominator is negative (vL < 0 and β > 1), this is proportional to

[vH(q)v′L(q)− v′H(q)vL(q)]β′(q)β(q)(β(q)− 1)− 2vH(q)vL(q)(β′(q))2,

which is always positive because vH(q) > 0 and vL(q), v′H(q), v′L(q) < 0. Hence,

q(x, q) > 0 for all q ∈ [0, 1) and x ≤ xE(q).

Similar direct calculations show that gx > 0 for all (x, q) such that q < 1 and

x ≤ xE(q).

Next, insert xE(q) to (9):

g(xE(q), q) =
−β(1−β)vLvH

(βvL+(1−β)vH)2

β′β(1−β)vLvH
βvL+(1−β)vH

(
β′β(1− β)(vLv′H − v′LvH)

βvL + (1− β)vH

+ βvLγH(−2β′2 + (β − 1)β′′)
βvL + (1− β)vH

+ (β − 1)vLvH(−2β′2 + ββ′′)
βvL + (1− β)vH

)

=vH (2vLβ′ − (β − 1)βγ′L) + (β − 1)βvLv′H
((β − 1)vH − βvL)2 .

The derivative of the decentralized policy xE is

xE
′(q) =vH (vLβ′ − (β − 1)βv′L) + (β − 1)βvLv′H

((β − 1)vH − βvL)2 .

By subtracting xE ′(q) from g(xE(q), q), we get

g(xE(q), q)− xE ′(q) = β′(q)vL(q)vH(q)
(β(q)vL(q) + (1− β(q))vH(q))2 .

This expression is strictly positive for q < 1 and goes to zero as q goes to 1 (since

vH(q)→ 0).

Proof of Lemma 6. If the claim is not true, there must be some x and q > q∗(x)

such that

Vq(x, q) + xvH(q) + (1− x)vL(q) > 0. (27)
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We show that this leads to a contradiction by showing that (27) implies Vqx(x, q)+

vH(q) − vL(q) > 0, which further implies that (27) holds also for all beliefs in

[x, x∗(q)], including Vq(x∗(q), q) + x∗(q)vH(q) + (1 − x∗(q))vL(q) > 0, which con-

tradicts the value matching condition (20).

It remains to show that (27) implies Vqx(x, q) +vH(q)−vL(q) > 0. First notice

that Vq(x, q) = Bq(q)Φ(x, q)+B(q)Φq(x, q), which then together with (27) implies

Bq > −
Φq

Φ B − xvH + (1− x)vL
Φ

where we have left out all dependencies to simplify notation. We now get the

following lower bound:

Vqx + vH − vL = BqΦx +BΦqx + vH − vL

> −ΦqΦx

Φ B − Φx

Φ (xvH + (1− x)vL) +BΦqx + vH − vL

= Φ−1[B(ΦqxΦ− ΦqΦx) + Φ(vH − vL)− Φx(xvH + (1− x)vL)]. (28)

The first term can be simplified as

Φ−1B(ΦqxΦ− ΦqΦx) = BΦβ′
x(1− x) = Φβ′

x(1− x)
Φ∗x(x∗vH + (1− x∗)vL)− Φ∗(vH − vL)

Φ∗qxΦ∗ − Φ∗qΦ∗x

= x∗(1− x∗)
x(1− x)

Φ
Φ∗Φ∗ [Φ

∗
x(x∗vH + (1− x∗)vL)− Φ∗(vH − vL)],

where the notation Φ∗ refers to Φ(x∗(q), q).

Now, (28) becomes

x∗(1− x∗)
x(1− x)

Φ
Φ∗Φ∗ [Φ

∗
x(x∗vH + (1− x∗)vL)− Φ∗(vH − vL)]

− 1
Φ[Φx(xvH + (1− x)vL)− Φ(vH − vL)]

= 1
x(1− x)

( Φ
Φ∗ ((β − 1)x∗vH + β(1− x∗)vL)− ((β − 1)xvH + β(1− x)vL)

)
,

(29)

where we have used the following for both terms inside the brackets:

Φ(vH − vL)− Φx(xvH + (1− x)vL) = Φ(vH − vL)− Φ β − x
x(1− x)(xvH + (1− x)vL)

= −Φ
x(1− x)((β − 1)xvH + β(1− x)vL).
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To conclude that (29) is larger than 0, notice first that (β−1)xvH+β(1−x)vL < 0

whenever x < xE(q) and that it is increasing in x. Then observe that Φ/Φ∗ ∈ (0, 1)

and hence (β − 1)xvH + β(1− x)vL < (Φ/Φ∗)((β − 1)x∗vH + β(1− x∗)vL).

We conclude that Vq + xvH + (1− x)vL > 0 implies Vqx + vH − vL > 0 and the

proof is complete.

Proof of Lemma 7. Fixing some (x, q) such that q < q∗ (x), differentiating (18)

twice with respect to x, and simplifying gives:

Vxx (x, q) = Vxx (x, q∗ (x)) (30)

+2 (q∗)′ (x) (Vqx (x, q∗ (x)) + vH (q∗ (x))− vL (q∗ (x)))

+ (q∗)′′ (x) (Vq (x, q∗ (x)) + xv′H (q∗ (x)) + (1− x) v′L (q∗ (x)))

+
(
(q∗)′ (x)

)2
(Vqq (x, q∗ (x)) + xv′H (q∗ (x)) + (1− x) v′L (q∗ (x))) .

The second term on the right-hand side vanishes by the value-matching condition

(20) and the third term vanishes by the smooth-pasting condition (21). Let us

look at the last term. First, since (20) holds along the boundary (x, q∗ (x)), we

can totally differentiate it with respect to x to get:

0 = Vqx (x, q∗ (x)) + Vqq (x, q∗ (x)) (q∗)′ (x) + vH (q∗ (x))− vL (q∗ (x))

+ [xv′H (q∗ (x)) + (1− x) v′L (q∗ (x))] (q∗)′ (x) .

Applying (21), several terms disappear and this reduces to

Vqq (x, q∗ (x)) + xv′H (q∗ (x)) + (1− x) v′L (q∗ (x)) = 0.

The last term in (30) vanishes as well, and it follows that Vxx (x, q) = Vxx (x, q∗ (x)).

Since this holds for any q < q∗ (x), it immediately implies that Vxxq (x, q) = 0.

Proof of Lemma 8. This is by direct computation. Recall that the value function

for q ≥ q∗(x) is V (x, q) = B(q)Φ(x, q) and hence

Vxxq =Bq(q)Φxx(x, q) +B(q)Φxxq(x, q).
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Plugging in the expressions for Bq(q) and B(q) from (15) and (16), multiplying

by r, simplifying, and evaluating at q = q∗(x) gives:

rVxxq (x, q∗ (x)) = (β (q∗ (x))− 1)2 + x (1− x)
x2 (1− x)2 vL (q∗ (x))

−β (q∗ (x)) (β (q∗ (x))− 1)
x2 (1− x)2 (vH (q∗ (x))− vL (q∗ (x))) .

Noting that β (q∗ (x)) > 1, vL (q∗ (x)) < 0, and vH (q∗ (x)) − vL (q∗ (x)) > 0, it

follows that Vxxq (x, q∗ (x)) < 0.

C.3 Proof of Proposition 3

Proof. First, recall that x∗(0) < xE(0) = xstat(0) by the proof of Proposition 2.

Using this together with the continuity of the policy functions we find that there

exists q > 0 such that xstat(q) > x∗(q) for all q < q. As the policy functions are

strictly increasing and continuous, the stocks q∗(x) and qstat(x) are pinned down

as the inverse of the policy functions for all x ≥ x∗(0) and x ≥ xstat(0) respectively.

In addition, q∗(x) = 0 for all x ≤ x∗(0) and qstat(x) = 0 for all x ≤ xstat(0), and

hence q∗ and qstat are continuous.

Let x := xstat(q) > xstat(0) where the inequality follows from xstat being strictly

increasing. Then, qstat(x) < q∗(x) for all x ∈ [xstat(0), x) by that q∗ and qstat are

the inverse functions of x∗ and xstat. Furthermore, qstat(x) = 0 < q∗(x) for all

x ∈ [x∗(0), xstat(0)], which completes the proof.

Next, we show the other direction by showing that x∗(1) = xstat(1) = 1 and

x∗q(1) < xstatq (1). The first part is immediate. For the second part, use Lemma 5

and the uniqueness of the solution to get x∗q(1) = xEq (1). Now it is enough to show

that the derivative of the equilibrium is smaller than of the myopic solution:

xEq(1)− xstatq(1) =(β − 1)βvLv′H
(βvL)2 − vLv

′
H

(vL)2 = −vLv
′
H

βv2
L

< 0.

The myopic and optimal solutions meet at q = 1 but the optimal solution

reaches the point above the myopic solutions. Hence, by continuity there must
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exist q < 1 such that x∗(q) > xstat(q) for all q ∈ (q, 1), which then further implies

the existence of x < 1 by the same argument as used above for x.

C.4 Proof of Proposition 4

Proof. Part (a): We show the result by contradiction. By using the solution from

Proposition 2 and the value function derived in its proof, we show that q∗ = 0

cannot maximize the HJB equation (5) in the limit as σ → 0 unless
√
q∗σ(x)/σ →

∞. If q∗(x) goes to any other value than 0, the claim immediately follows.

By taking the first order condition from (5), we get

xvH(q∗) + (1− x)vL(q∗) + 1
2
x2(1− x)2

σ2 (Vxx(x, q∗) + Vxxq(x, q∗)q∗).

The first order condition is necessarily strictly positive at q∗ = 0 in the limit as

σ → 0 once we show that Vxx(x, q) > 0 and Vxxq(x, q) is finite.

Recall that the value function is V (x, q) = B(q)Φ(x, q) and its derivatives are

then Vxx = B(q)Φxx and Vxxq = Bq(q)Φxx + B(q)Φxxq. By plugging in the values

of Φxx, we get

Vxx =B(q)β(q)Φ(β(q)− 1)
x2(1− x)2 .

We know that B > 0 for all q < 1 in the optimal solution and that Φ > 0

for all x ∈ (0, 1). Then, Vxx > 0 whenever β > 1 which is true whenever the

signal-to-noise ration is finite.

We can write Vxxq as

Vxxq =(ΦxΦxxq − ΦqxΦxx)(xvH + (1− x)vL)
ΦΦqx − ΦqΦx

+ (ΦqΦxx − ΦΦxxq)(vH − vL)
ΦΦqx − ΦqΦx

.

The first term equals (β−x)2+x(1−x)
x2(1−x)2 (xvH + (1 − x)vL) and the second term equals

−β+(β−1)ln( x
1−x)

x(1−x) (vH − vL). Both are finite for all x ∈ (0, 1).

Hence, we conclude that for the first order condition to be satisfied, we must

have
√
q∗σ(x)/σ →∞ as σ → 0.

Part (b): We fix the belief to be x ∈ (0, 1). By rearranging the solution in
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Proposition 1, we get

β(q) = xvH(q)
xvH(q) + (1− x)vL(q) .

We take the limit limσ→0 β(qEσ (x)) = xvH(0)
xvH(0)+(1−x)vL(0) , which is strictly larger than

1 for all x > xstat(q) and hence further implying that limσ→0

√
qEσ (x)/σ < ∞.

More precisely, we get the limit of the signal-to-noise ratio as a(x) satisfying
xvH(0)

xvH(0)+(1−x)vL(0) = 1
2

(
1 +

√
1 + 8ra(x)−2

)
.

D Mechanism design

D.1 Proof of Proposition 5

Proof. Fix policy Q and posted price P (x, q) as in Proposition 5. To show that

Q is a decentralized equilibrium, we have to show that it is optimal for type θ to

stop at τ (θ) := inf {t : qt ≥ 1− F (θ)}. We call τ (θ) the intended stopping time

for type θ.

For an individual player this is a Markovian stopping problem with fixed policy

Q and stopping payoff given by (10). From the structure of the problem it is clear

that it is optimal for θ to stop at the first hitting time of some boundary point.

To see this, note that whenever the state (x, q) is above the boundary, it moves

immediately to the boundary point (x, q̃(x)) and since we have defined P (x, q) =

P (x, q̃ (x)) above the boundary, any player is indifferent between stopping at (x, q)

or (x, q̃(x)) (or any point between those). Furthermore, we have defined P (x, q)

to be so large below the boundary that no player wants to stop there. Since every

boundary point is an intended stopping point for some θ ∈
[
θ, θ

]
, we only have to

show that it is better for θ to stop at the intended stopping time τ (θ) than at the

intended stopping time for some other type τ
(
θ̃
)
, θ̃ 6= θ.

Denote by U
(
θ, θ̃

)
the expected value at time zero for type θ who intends to

stop at τ
(
θ̃
)
, θ̃ 6= θ. To complete the proof, we must show that U(θ, θ) ≥ U(θ, θ̃)

for all θ and for all θ̃.

We next proceed to derive the expression for U(θ, θ̃). Denote by P0
(
θ̃
)
the
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expected discounted transfer payment that θ has to pay if she stops at the intended

stopping time τ
(
θ̃
)
:

P0
(
θ̃
)

:= E
[
e−rτ(θ̃)P

(
x
τ(θ̃), qτ(θ̃)

)]
.

Using (11), this can be written as:

P0
(
θ̃
)

= E
[
e−rτ(θ̃)x

τ(θ̃)vH
(
θ̃
)

+
(

1− x
τ(θ̃)

)
vL
(
θ̃
)]

−E
[∫ θ̃

θ
e−rτ(s)

(
xτ(s)v

′
H (s) +

(
1− xτ(s)

)
v′L (s)

)
ds

]
.

With this, we get an expression for U
(
θ, θ̃

)
:

U
(
θ, θ̃

)
= E

[
e−rτ(θ̃)(x

τ(θ̃)vH(θ) + (1− x
τ(θ̃))vL(θ))

]
− P0

(
θ̃
)
.

Its partial derivative with respect to θ is

U1
(
θ, θ̃

)
= E

[
e−rτ(θ̃)(x

τ(θ̃)v
′
H(θ) + (1− x

τ(θ̃))v′L(θ))
]
. (31)

The key property that we want to prove is that U1
(
θ, θ̃

)
is increasing in θ̃. To do

that, note that applying the law of iterated expectations, we can write U1
(
θ, θ̃

)
in terms of the initial belief x0 as

U1
(
θ, θ̃

)
= x0E

(
e−rτ(θ̃)v′H (θ) |ω = H

)
+ (1− x0)E

(
e−rτ(θ̃)v′L (θ) |ω = L

)
= x0v

′
H (θ)E

(
e−rτ(θ̃) |ω = H

)
+ (1− x0) v′L (θ)E

(
e−rτ(θ̃) |ω = L

)
.

Since v′H (θ) ≥ 0 and v′L (θ) ≥ 0 (with at least one of the inequalities strict), both

terms in the above expression are positive. Type θ̃ enters the expression only

through the discounting terms E
(
e−rτ(θ̃) |ω

)
. Since θ′′ > θ′ implies that τ (θ′′) :=

inf {t : qt ≥ 1− F (θ′′)} ≤ τ (θ′) := inf {t : qt ≥ 1− F (θ′)} with probability 1, it

follows that E
(
e−rτ(θ̃) |ω

)
is increasing in θ̃ irrespective of state ω, and hence

U1
(
θ, θ̃

)
is increasing in θ̃ as well.

We now utilize this property to complete the proof. Note first that we have:

U(θ, θ) = E
[
e−rτ(θ)(xτ(θ)vH(θ) + (1− xτ(θ))vL(θ))

]
− P0(θ)

= E
[∫ θ

θ
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s))

)
ds

]
.
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Therefore, for arbitrary θ′ and θ′′, we have

U(θ′′, θ′′)− U(θ′, θ′) = E
[∫ θ′′

θ′
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s))

)
ds

]
. (32)

We can now write:

U
(
θ, θ̃

)
= U

(
θ̃, θ̃

)
+
∫ θ

θ̃
U1
(
s, θ̃

)
ds

≤ U
(
θ̃, θ̃

)
+
∫ θ

θ̃
U1 (s, s) ds =

= U
(
θ̃, θ̃

)
+ E

[∫ θ

θ̃
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s))

)
ds

]
= U (θ, θ) ,

where the inequality uses the property that U1
(
θ, θ̃

)
is increasing in θ̃, the second

last equality uses (31), and the last equality uses (32).

D.2 Proof of Lemma 3

Proof. Here, we show how to derive the virtual valuation representation for the

designer’s value. Suppose transfers follow an arbitrary policy, Pτ , adapted to Ft.

The designer’s expected revenue can be written as
∫ θ

θ
E
[
e−rτ(θ)

(
xτ(θ)vH(θ) + (1− xτ(θ))vL(θ)−W (θ, xτ(θ))

)]
f(θ)dθ

=
∫ θ

θ

(
E
[
e−rτ(θ)

(
xτ(θ)vH(θ) + (1− xτ(θ))vL(θ)

)]
f(θ)dθ

−
∫ θ

θ
E
[ ∫ θ(q)

θ
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s)

)
ds
]
f(θ)dθ,

where we have used the envelope theorem for the agent’s value W (θ, x). We can

use Fubini’s theorem to change the order of integration in the second term:
∫ θ

θ
E
[ ∫ θ(q)

θ
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s)

)
ds
]
f(θ)dθ

=E
[ ∫ θ

θ

∫ θ

s
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s)

)
f(θ)dθds

]

=E
[ ∫ θ

θ
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s)

)
(1− F (s))ds

]
.
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The rest is simply to plug the above expression back into the designer’s payoff

and to write the integral over quantities rather than types (where we use 1 −

F (θ(q)) = q). The profit maximizing designer’s objective becomes

E
[ ∫ 1

0
e−rτ(q)(xτ(q)φH(q) + (1− xτ(q))φL(q))dq

]
,

where τ(q) is the stopping time of the q highest type buyer and φ(q) is his virtual

valuation:

φω(q) := vω(θ(q))− v′ω(θ(q))1− F (θ(q))
f(θ(q)) .
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