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Abstract

We study the robustness of cheap-talk equilibria to infinitesimal private infor-

mation of the receiver in a model with a binary state-space and state-independent

sender-preferences. We show that the sender-optimal equilibrium is robust if and

only if this equilibrium either reveals no information to the receiver or fully reveals

one of the states with positive probability. We then characterize the actions that

can be played with positive probability in any robust equilibrium. Finally, we

fully characterize the optimal sender-utility under binary receiver’s private infor-

mation, and provide bounds for the optimal sender-utility under general private

information.

1 Introduction

The literature on strategic communication studies how and to what extent an informed

party can influence the behavior of others solely through the selective revelation of in-

formation. Two of the most-studied models of strategic communication are cheap talk

(Crawford and Sobel, 1982) and Bayesian persuasion (Kamenica and Gentzkow, 2011).1

In cheap talk, an informed party (the sender) strategically chooses what information to

reveal to an uniformed party (the receiver), and the latter then takes the former’s prefer-

ences into account when interpreting and acting on the revealed information. Bayesian

persuasion is similar, except that the sender has the additional power to commit to how
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1Other models include costly signaling (Spence, 1978) and disclosure of verifiable information (Gross-

man, 1981; Milgrom, 1981).
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she will reveal information prior to observing it herself. Both models have been widely

studied in the past decade and have been instrumental in shaping our understanding of

how information can be used to affect behavior.

In many models of cheap talk and Bayesian persuasion, the sender-optimal equilibria

are well understood—see Lipnowski and Ravid (2020) for the former and Kamenica and

Gentzkow (2011) for the latter. In this paper we analyze the informational robustness

of these equilibria, and determine the extent to which they survive the introduction of

an infinitesimal amount of private information to the receiver. We show that, while

under Bayesian persuasion all equilibria are informationally robust, under cheap talk

some equilibria are much more vulnerable to private information.

Although the robustness of cheap-talk equilibria to other modeling modifications

has been studied before,2 robustness to the receiver’s private information is particularly

important. A main goal in models of strategic communication is to determine the degree

to which informational manipulation can influence behavior, and to this end the standard

cheap-talk model makes the extreme assumption that only the manipulating party has

any information. But the assumption that the receiver has no other source of information,

and relies solely on the sender, is typically not entirely accurate. And if the model’s

conclusions change dramatically when the assumption is only approximately true—that

is, when the receiver does have some other information source, no matter how minor—

then the model’s predictions are no longer reliable. The main question, then, is whether

or not the conclusions of the cheap-talk model are sensitive to minor deviations from the

assumption of complete ignorance on the part of the receiver.

In this paper we study this question under state-independent sender utilities (as in

Lipnowski and Ravid, 2020), and focus on a binary state-space. Our first main result,

Theorem 1, provides a necessary and sufficient condition for the sender-optimal equi-

librium to be robust to infinitesimal private information of the receiver. We show that

robustness holds if and only if the sender-optimal equilibrium is either trivial or fully

reveals one of the states to the receiver with positive probability. This second condition

implies that the utility of the sender in the optimal equilibrium without private infor-

mation of the receiver is equal to the minimal utility from actions taken by the receiver

under complete information.

2See the literature review below.
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When the sender-optimal equilibrium is not informationally robust, there may nonethe-

less exist other equilibria that are. In a natural follow-up to the characterization of

Theorem 1, we proceed to characterize such informationally robust equilibria. First, in

Theorem 2, we fully characterize the subset of tuples of actions that can be played in

a robust cheap-talk equilibrium. We also show that a tuple of actions is information-

ally robust if and only if it is informationally robust when the receiver’s (infinitesimal)

private information has binary support.

Next, we turn to study the optimal utility that the sender can achieve under private

information of the receiver. Theorem 3 provides a full characterization of the sender’s

maximal utility under infinitesimal private information with binary support. We show

that this utility is a maximum of three expressions: (i) the utility under no information;

(ii) the utility under an equilibrium in which one of the sender’s messages reveals the

state; and (iii) the value of a particular finite two-player zero-sum game that is based on

the sender’s utility function. In Theorem 4 we then make use of the above to provide

bounds for the sender’s maximal utility under general infinitesimal private information

of the receiver. Taken together, our results provide a comprehensive characterization of

informationally robust cheap-talk communication.

It is worth noting that, unlike some results on equilibrium robustness in the cheap-

talk model (see, e.g., Diehl and Kuzmics, 2021), our results are not necessarily negative

in nature. That is, the degree of vulnerability of the sender’s maximal utility to the

receiver’s private information depends on the problem. As Theorem 1 suggests, in some

cases, infinitesimal private information will have no effect on this maximal utility. Fur-

thermore, as our other theorems suggest, even when this maximal utility is not robust

there may exist other non-trivial equilibria that are.

1.1 Illustrative Examples

We illustrate our results with an example adapted from Lipnowski and Ravid (2020).

Example 1. There are two states of the world, 0 and 1. A receiver (decision maker,

policymaker, he) must decide whether to implement policy P0, which he finds best in

state 0, policy P1, which he finds best in state 1, or no policy at all (P∅). Suppose the

receiver will implement policy Pω for ω ∈ {0, 1} if he believes the probability of state
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Figure 1: The solid gray line is the sender’s indirect utility, the dashed line is its quasi-

concave envelope, and the dotted line is its concave envelope.

ω is at least 0.6. The receiver’s initial belief is that the two states are equally likely,

but there is a sender (expert, she) who knows the true state of the world. The sender

has state-independent preferences over the receiver’s decision—policy P0 yields utility 3,

policy P1 yields utility 4, and policy P∅ yields utility 1, regardless of the realized state

of the world.

Observe that, without communication, the receiver will choose P∅, yielding the sender

a utility of 1. Can the sender communicate with the receiver in a way that increases her

expected utility in equilibrium?

To characterize the gain from communication, consider the sender’s indirect utility

function—namely, the sender’s utility at any belief of the receiver, assuming that the

receiver chooses an optimal action given that belief. The solid gray line in Figure 1a is

the indirect utility in our example, where the x-axis is the receiver’s belief that the state

is 1. As noted, at the prior π = 0.5 the indirect utility is 1.

Now, if communication between the sender and the receiver takes the form of Bayesian

persuasion—in which the sender commits to how she will communicate with the receiver

before observing the realized state—then the maximal utility attainable by the receiver

is the concave envelope of the indirect utility (Kamenica and Gentzkow, 2011). This

is illustrated by the dotted line in Figure 1b, and can be seen to equal about 3.8. If

communication takes the form of cheap talk—in which the sender cannot commit, but

rather sends a message after observing the state—then the maximal utility attainable by
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the receiver is the quasiconcave envelope (Lipnowski and Ravid, 2020). This is illustrated

by the dashed line in Figure 1b, and can be seen to equal 3.

It is worth examining how the utility of 3 be sustained in an equilibrium with cheap

talk. Suppose the sender sends one of two messages, m0 or m1. In state 1, she always

sends the message m1. In state 0 she mixes between m0 and m1 in such a way that

the receiver’s posterior upon receiving message m1 is precisely 0.6. Thus, the sender’s

messages induce beliefs 0 and 0.6. Furthermore, upon receiving message m1, the receiver

is indifferent between policies P1 and P∅; suppose in this case he mixes, and chooses

P1 with probability 2/3. This implies that the sender’s expected utility upon sending

message m1 is 3, which is equal to her utility on sending message m0. Since the sender

is indifferent between the two messages, regardless of the realized state, this strategy

profile forms an equilibrium.

Suppose now that the receiver obtains additional information through an information

structure F . Suppose for simplicity that the information structure is binary and symmet-

ric, yielding realized signals s0 and s1 with probabilities P (s0|ω = 0) = P (s1|ω = 1) = q,

for some q ∈ (1/2, 1). How does this affect the sender’s equilibrium utility?

Observe first that, under Bayesian persuasion, such information can only harm the

sender. This is because the sender’s commitment is optimal, and if such additional

information were beneficial then the sender would have committed to it already. However,

the harm to the sender approaches 0 as q → 1/2 and the information structure becomes

uninformative.

In contrast, under cheap talk, such private information is actually beneficial to the

sender. To see this, consider the following equilibrium profile: In state 1, the sender

again always sends message m1. In state 0, the sender mixes, but this time in such a

way that the induced belief on message m1 and realized signal s0 of the receiver is 0.6.

Furthermore, on message m1 and signal realization s0, the receiver mixes between policy

P1 and no policy. He mixes in such a way that the sender’s indirect utility on belief 0.6

is x, where x is such that the expected utility conditional on state 0 and message m1

is equal to 3: xq + 4(1 − q) = 3. This implies that, in state 0, the sender is indifferent

between messages m0 and m1. Note also that, conditional on state 1, the sender’s utility

is x(1 − q) + 4q > 3. This does not violate the sender’s incentive constraints, since in

state 1 she always sends message m1 (and so need not be indifferent between the two
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Figure 2: The solid dots are the induced beliefs, and the hollow circles are the sender’s

expected utilities at these beliefs (given the receiver’s mixing). The arrows illustrate the

possible changes in beliefs caused by the receiver’s private information.

messages). Note, however, that the sender’s unconditional utility is strictly higher than

3: it is equal to 3 in state 0, but x(1 − q) + 4q > 3 in state 1. This is illustrated in

Figure 2a.

Surprisingly, then, under cheap talk, additional information to the receiver can be

beneficial to the sender. Observe, however, that as the receiver’s information structure

becomes less informative—namely, as q → 1/2—the sender’s utility converges to 3,

the same utility as without the receiver’s signal. As we show in Theorem 1, this last

statement is true for any vanishing information structure of the receiver. In this case we

say that the utility of 3 is informationally robust.

The difference between the no-private-information case and the infinitesimal-private-

information case lies in the sender’s incentive constraint. In the former, when the in-

centive constraint is satisfied and the sender is indifferent between both messages, she

is indifferent regardless of the state. In the latter, however, the sender’s expected utility

depends both on the message sent and on the receiver’s signal. In Example 1, the ex-

pected utilities of the two messages are equal in state 0, and so in that state the sender

can mix between them. In state 1, however, the sender is no longer indifferent, since the

expected utility under message m1 is higher. However, because here the sender always

sends message m1, she need not be indifferent between the messages.

Are all utilities of cheap-talk equilibria informationally robust? In this paper we show

6



|
0.2

|
0.4 π

| |
0.6

|
1

receiver’s belief

−0

−1

−2

−3

−4

(a) Indirect utility

|
0.2

|
0.4 π

| |
0.6

|
1

receiver’s belief

−0

−1

−2

−3

−4

(b) Envelopes

Figure 3: The solid lightgray line is the sender’s indirect utility, the dashed line is its

quasiconcave envelope, and the dotted line is its concave envelope.

that they are not. Consider the following modification to Example 1:

Example 2. Everything is as in Example 1, except that the receiver now has a third

potential policy, R0. This policy is best for the receiver only if he believes the state is 0

with probability at least 0.8. The policy is worst for the sender, and yields her utility 0.

The indirect utility function of Example 2, as well as the concave and quasiconcave

envelopes, are illustrated in Figure 3. Observe that the value of the quasiconcave envelope

at the prior is still equal to 3; the addition of R0 as an option does not affect the sender’s

attainable utility under cheap talk.

When the receiver has additional private information, however, this equilibrium util-

ity can no longer be sustained. In fact, Theorem 1 provides a precise necessary and

sufficient condition under which a cheap-talk equilibrium utility is informationally ro-

bust: namely, that this utility can be attained at the prior, or that it arises by a pair of

sender messages such that at least one message induces either the belief 0 or the belief 1.

In Example 1, message m0 induces belief 0, and so this utility is informationally robust.

In Example 2, however, the utility of 3 can only be sustained by beliefs that are interior.

Thus, Theorem 1 implies that the utility of 3 is not attainable: even if the receiver’s

information is only infinitesimally informative, the sender cannot get the same utility as

when the information is completely uninformative. The intuition is that, because neither

induced belief is an endpoint, the sender must mix between both messages in both states,
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and must thus be indifferent between both messages in both states. In other words, in

equilibrium both of the sender’s incentive constraints require indifference. Theorem 1

shows that this dual indifference is impossible to attain for the quasiconcave envelope.

However, although the utility of 3 is unattainable, there are other equilibria where

the dual indifference is feasible, and so other utilities that are informationally robust.

Theorem 2 characterizes the actions that can be played in an informationally robust

equilibrium, and Theorems 3 and 4 characterize the utilities that are possible. In Ex-

ample 2 with a binary, symmetric information structure of the receiver, a sender-utility

of 2 can be attained in an informationally robust equilibrium. This equilibrium is illus-

trated in Figure 2b. We defer discussion of the construction and underlying intuitions to

Section 3.1, as these will be more illuminating after we develop the necessary definitions.

1.2 Related Literature

Our paper is most closely related to that of Lipnowski and Ravid (2020), who take a

belief-based approach to study cheap-talk equilibria when the sender has state-independent

preferences. A main result of Lipnowski and Ravid (2020) is that the attainable sender

utilities equal the quasiconcave envelope of the indirect utility function.3 This contrasts

with the analogous approach of Bayesian persuasion (Kamenica and Gentzkow, 2011),

in which the attainable utilities are the concave envelope of the indirect utility func-

tion. Our baseline setting is identical to that of Lipnowski and Ravid, except that we

restrict our analysis to a binary state-space. We analyze the robustness of equilibria to

infinitesimal receiver private-information, and characterize conditions under which the

utilities of the quasiconcave envelope are robustly attainable. When these utilities are

not attainable, we characterize the equilibrium actions and utilities.

Our work is related to numerous papers that study cheap-talk models in which the

receiver has some private information, including Chen (2009, 2012); De Barreda (2010);

Lai (2014); Ishida and Shimizu (2016, 2019). Most study variants of the Crawford-Sobel

model, in which the state and action spaces are unit intervals, the receiver would like to

match the state, and the sender would like to do the same but with some offset (Crawford

and Sobel, 1982). Ishida and Shimizu (2016) is closer to our paper, since they consider

a binary-state setting. The main insight in these papers is that, typically, the receiver’s

3See also Chakraborty and Harbaugh (2007, 2010), who study cheap talk in multidimensional settings.
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private information hinders information transmission, and that the more accurate the

receiver’s information the coarser the information transmitted in equilibrium. For ex-

ample, Ishida and Shimizu (2016) show that, if the receiver’s information is sufficiently

accurate, then there is no informative equilibrium even when the players’ preferences are

close.

There are two main differences between these papers on informed receivers and our

work. Most significantly, we focus on infinitesimally informative receiver information,

and show that even this has a substantial impact on equilibria. Second, our model

departs from that of Crawford and Sobel, and instead, we consider a sender with state-

independent preferences (as in Chakraborty and Harbaugh, 2010; Lipnowski and Ravid,

2020).

Other papers look at different forms of communication robustness. Diehl and Kuzmics

(2021) consider the multidimensional cheap-talk model of Chakraborty and Harbaugh

(2010), and show that, when the receiver has Harsanyi-type uncertainty about the

sender’s utility function, there cannot be any informative communication in equilib-

rium. Dilmé (forthcoming) studies a Crawford-Sobel model with a small communication

cost, and shows that the only equilibria that are robust to this small cost are highly

informative ones.

Finally, our paper has the same motivation as the literature on the robustness of

equilibria to a small amount of incomplete information (Kajii and Morris, 1997; Ui, 2001;

Morris and Ui, 2005). This literature is concerned with the robustness of predictions

in complete information games to a small amount of uncertainty about higher-order

beliefs. Our paper has an analogous flavor: We are concerned with the robustness

of predictions in communication games to a small amount of uncertainty about the

receiver’s information.

2 Model

Consider a binary state-space Ω = {0, 1} with a common prior π = P(ω = 1), and a

finite set of receiver actions A with |A| = ℓ. The receiver has a state-dependent utility

function uR : A× Ω → R. He is an expected utility maximizer, and so the set of beliefs

for which each action is optimal is a segment. We henceforth assume that action ai is
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optimal for beliefs λ ∈ Ii = [xi−1, xi], where 0 = x0 < x1 < x2 < · · · < xℓ = 1.

The sender has a state-independent utility function uS : A→ R. We assume that this

utility function is generic, namely, uS(a) ̸= uS(b) for any two distinct actions a, b ∈ A.

Define the indirect utility of the sender as a set mapping v : ∆(Ω) ↠ R where, for each

belief λ about the probability that the state is ω = 1, the set v(λ) ⊂ R consists of all

possible utilities for the sender, assuming the receiver best-replies to λ.

For any belief λ, let lr(λ) = log
(

λ
1−λ

)
. Thus, for i = 1, . . . , ℓ, the intervals Ii =

[xi−1, xi] in which action ai is optimal are translated to Ji = [yi−1, yi], where yi =

lr(xi) ∈ R ∪ {−∞,∞} for every 0 ≤ i ≤ ℓ. For any such interval, let |Ji| = yi − yi−1,

and note that |J1| = |Jℓ| = ∞. All other intervals are of finite length.

The receiver obtains private information from an information structure F = (S, F0, F1),

where S is some measurable space and Fω ∈ ∆(S) are two probability measures, one

for each ω ∈ Ω. As usual, identify with each element s ∈ S the induced posterior belief

starting with a prior of 1
2
. Given some prior belief π, a receiver who receives a signal

s ∈ S will update to a posterior πs, where lr(πs) ≡ lr(π) + lr(s). We assume that F0

and F1 are mutually absolutely continuous with respect to each other, and thus no signal

fully reveals the state.

The sender sends the receiver a message from some finite spaceM . In any equilibrium,

each message m ∈ M induces a posterior belief about the likelihood that ω = 1. We

will henceforth identify the message m with the posterior in [0, 1] of ω = 1 it generates.

Our underlying assumption is that the sender does not observe the realized signal of the

receiver. She can thus not base the chosen message on this realized signal, but only on

the information structure F . Therefore, the sender’s message and the receiver’s private

signals are conditionally independent given the state ω.

We next define the notion of a cheap-talk equilibrium in our setting with private

information of the receiver. A sender’s strategy is a mapping σ : Ω → ∆(M) for some

message space M ⊆ [0, 1]. A receiver’s strategy is a measurable mapping ρ : M × S →

∆(A). The pair of strategies together with the information structure F and the prior π

generates a probability distributions p ∈ ∆(Ω×M × S). Without loss of generality, we

assume that p(ω = 1|m) = m.

A pair (σ, ρ) constitute a cheap-talk equilibrium if

1. The support of ρ(m, s) is contained in the set argmaxa∈A p(ω = 1|m, s)uR(a, 1) +
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p(ω = 0|m, s)uR(a, 0).

2. For everym ∈M and ω ∈ Ω it holds that if p(m|ω) > 0, then
∫
s
uS(ρ(m, s))dFω(s) ≥∫

s
uS(ρ(m

′, s))dFω(s) for every m
′ that is sent with positive probability.

We say that the cheap-talk equilibrium is binary if M consists of two elements. We

note that by standard considerations the best sender equilibrium can be attained using

a binary cheap-talk equilibrium. For this reason, in most of the paper, we will restrict

attention to binary equilibria. In addition, we mostly suppress the dependence of the

equilibrium on the receiver’s strategy and identify a binary cheap-talk equilibrium with

the two posteriors mL < π < mH it induces.

Consider the case of a binary equilibrium mL < π < mH . We distinguish two cases,

one where mL,mH ∈ (0, 1) and one where {mL,mH} ∩ {0, 1} ≠ ∅. In the first case,

the two messages are sent with positive probability in both states ω ∈ {0, 1}. This

implies that a necessary and sufficient condition for (σ, ρ) to be a cheap-talk equilibrium

is that for both states ω, the conditional expected sender’s utility given ω and mH equals

her expected utility given ω and mL. Consider now the second case, and suppose 0 =

mL < π < mH < 1.4 In this case, the two messages are sent with positive probability

only in state ω = 0, whereas in state ω = 1 the message mH is sent with probability

one. Therefore, the equilibrium condition asserts that the conditional expected sender’s

utility given ω = 0 and mH equals his expected utility given ω = 0 and mL. In addition,

in state ω = 1 the sender’s utility from misreporting and sending mL is not higher than

sending the message mH (but need not be equal to it). This simple observation will play

a significant role in our analysis.

Denote the sender’s maximal equilibrium utility under information structure F and

prior π as v∗F (π). If F is uninformative, denote that utility by v∗0(π). By Lipnowski

and Ravid (2020), the optimal value the sender can obtain in any equilibrium with an

uninformative F is the quasiconcave closure evaluated at the prior. If the prior is π,

then this optimal value is equal to

v∗0(π) = min

{
max
λ≤π

v(λ),max
µ≥π

v(µ)

}
.

If v∗0(π) = v(π), we say that v∗0(π) can be trivially supported.

4From our genericity assumption, the case where mL = 0 and mH = 1 can never hold in a cheap

talk equilibrium. Also, the case 0 < mL < π < mH = 1 is symmetric to the one under consideration.
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In this paper, our main question is: What is the maximal guaranteed utility for the

sender under a cheap-talk equilibrium, subject to infinitesimal private information of the

receiver? To formalize this question, for any δ > 0 let Fδ be the set of all information

structures with support contained in [1
2
− δ, 1

2
+ δ]. For any prior π ∈ [0, 1] define the

informationally robust equilibrium utility for the sender at π as

v̂(π) = lim
δ→0

inf
F∈Fδ

v∗F (π).

Our main questions are, does v̂(π) = v∗0(π), or is there a utility discontinuity at the

limit? And, in the latter case, what is v̂(π)?

3 Results

We begin this section with our first result, a necessary and sufficient condition under

which v̂(π) = v∗0(π). In the subsequent subsections we then characterize informationally

robust equilibria and utilities, thereby shedding light on the sender-optimal equilibria in

cases where v∗0(π) is not informationally robust.

Throughout, we fix a prior π that lies in the interior of some segment Ij, namely,

π ∈ int(Ij), for some j ∈ [1, ℓ]. At π, it either holds that v∗0(π) = v(π) or that v∗0(π) >

v(π). In the former case, v∗0(π) is trivially supported. In the latter case, by definition,

v∗0(π) = uS(ai) for some i ∈ [1, ℓ] with i ̸= j. Given this observation, we now state our

first result:

Theorem 1. For every interval Ij and prior π ∈ int(Ij) it holds that v̂(π) = v∗0(π) if

and only if either v∗0(π) is trivially supported or v∗0(π) = uS(ai) for i = 1 or for i = ℓ.

If v∗0(π) is trivially supported then the sender can attain her optimal utility without

sending any message. This equilibrium is clearly informationally robust. In the more

interesting case in which communication is necessary, Theorem 1 asserts that, in order for

the optimal sender-utility to be informationally robust, the sender-optimal equilibrium

with no private information must fully reveal one of the states with positive probability.

This implies that the sender’s optimal utility v∗0(π) must be equal to the smaller of uS(a1)

and uS(aℓ). Note that this is exactly what happens in Example 1, where message m0 of

the sender reveals that the state is ω = 0 to the receiver, leading to a sender-utility of 3.
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Observe also that this does not happen in Example 2, and there the utility of 3 is not

equal to either uS(a1) or uS(aℓ).

The main intuition underlying Theorem 1 is the following. The sufficiency of the

condition is straightforward, and follows the logic of Example 1. Suppose, as in that

example, that message m0 = 0, that is, that it fully reveals that the state is ω = 0. In

that state, the sender mixes between her two messages in such a way that her expected

utility given messagem1 is equal to uS(a1), where the expectation is over the randomness

of the receiver’s private information as well as the receiver’s mixing over actions. In the

proof of Theorem 1 we show that, under the condition in the theorem, such mixing by

the sender and receiver is always possible.

To prove the necessity of the condition in Theorem 1, we consider the simple binary,

symmetric information structure. Suppose that, without private information, the sender-

optimal equilibrium is supported on 0 < mL < π < mH < 1. This implies that the sender

must mix between both messages, in both states of the world. Her incentive constraints

are thus that ∫
s

uS(ρ(mL, s))dFω(s) =

∫
s

uS(ρ(mH , s))dFω(s)

for each ω ∈ {0, 1}. In the proof of Theorem 1 we show that it is impossible to simul-

taneously satisfy both of these, even for the binary, symmetric information structure,

and even when the accuracy of the information provided by that information structure

is infinitesimal.

A family of examples in which the sender-optimal utility is informationally robust is

where the indirect utility v : [0, 1] → R changes its trend (from increasing to decreasing

or vice versa) at most once. If v first increases and then decreases, then the sender-

optimal equilibrium is trivially supported. If v first decreases and then increases, then

v∗0(π) = v̂(π) = min{uS(a1), uS(aℓ)}.

If the conditions in Theorem 1 are not satisfied, the sender can no longer attain the

maximal, no-private-information utility v∗0(π). However, this does not mean that com-

munication is useless. In the following subsections we characterize the informationally

robust equilibria and utilities, encompassing cases in which v̂(π) < v∗0(π), and analyze

the extent to which communication can benefit the receiver.
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3.1 Robust Equilibrium Characterization

In this section, we characterize the structure of informationally robust equilibria by

providing a necessary and sufficient condition for a particular action tuple to be played

in such an equilibrium.

Observe first that, in any cheap-talk equilibrium with infinitesimal private informa-

tion, the number of distinct actions that can be played by the receiver in that equilibrium

is either one, three, or four. To see this, suppose the sender’s messages in equilibrium

are mL and mH , and the prior π ∈ int(Ij). If mL,mH ∈ int(Ij) then the equilibrium is

trivially supported, and only one action is played in equilibrium. On the other hand, if

mL ∈ Ii andmH ∈ Ik, where i < k, then either three or four actions are played: IfmL lies

in the interior of Ii, then only action ai can be played in equilibrium following message

mL. If mL lies on the edge of Ii rather then the interior, then the actions played are

either ai and ai+1 or ai−1 and ai, depending on which edge. The same holds analogously

for mH . But note that it cannot be the case that both mL and mH lie in the interior of

their respective segments, due to our genericity assumption that uS(ai) ̸= uS(ak).

Thus, when an equilibrium is not trivially supported, the action tuples that can be

played are either quadruples or triples. However, not all such tuples can be played in an

informationally robust equilibrium. In particular, only tuples that belong to one of two

sets, Q and T , can be played, and we now turn to define these sets.

We first define a set Q of action quadruples. Recall that π ∈ int(Ij) for some j. For

i ≤ j − 1 and k ≥ j for which i + 1 < k, let Q be the subset of quadruples of actions

ā = (ai, ai+1, ak, ak+1) ∈ A4 that satisfy one of the four conditions below:

1. uS(ai) < uS(ak) < uS(ai+1) < uS(ak+1).

2. uS(ak+1) < uS(ai+1) < uS(ak) < uS(ai).

3. uS(ak) < uS(ai) < uS(ak+1) < uS(ai+1).

4. uS(ai+1) < uS(ak+1) < uS(ai) < uS(ak).

The four conditions describe different orderings of sender-utilities. For example, the

sender’s utilities from the four actions in Example 2 satisfy condition 1 above. Condition

2 is a mirror image of condition 1. Condition 3 is similar to condition 1, except that the
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first two actions are swapped with the latter two actions. Finally, condition 4 is a mirror

image of condition 3.

Observe that common to these conditions is that the sender-utility from one of the

two first actions of a ∈ Q lies between the utilities from the latter two actions (and

vice versa). Thus, these orderings capture only a fraction of all possible orderings—

in particular, they exclude orderings where the two first actions yield higher or lower

utilities than the latter two actions, or orderings where the first two actions yield the

maximal and minimal utilities. Note also that in some cases Q = ∅. This happens for

example when the number of actions ℓ ≤ 3, or when the indirect utility changes its trend

at most once.

Now, given a cheap-talk equilibrium, say that it is supported in the interior if there

are four distinct actions that are played with positive probability by the receiver and

that, when ordered according to their indices, these four actions are in Q.

We next define a set T of action triples. For 1 < i < n, consider the set of all action

triples of the following form:

1. (a1, ai, ai+1), where 1 < j ≤ i and uS(ai) < uS(a1) < uS(ai+1).

2. (ai−1, ai, aℓ), where i ≤ j < n and uS(ai+1) < uS(a1) < uS(ai).

Let T be the set of all such triples. Given a cheap-talk equilibrium, say that it is supported

by an endpoint if three actions are played with positive probability by the receiver, and

that, when ordered according to their indices, these three actions lie in T .

Finally, say that a tuple of actions a is robustly supported if there exists a δ0 > 0 such

that, for every δ < δ0 and every F ∈ Fδ, there exists a cheap-talk equilibrium where the

actions that are played with positive probability are a. Given these definitions, we can

state our second result:

Theorem 2. A non-singleton tuple of actions a is robustly supported if and only if

either a ∈ T or a ∈ Q.

Action triples T essentially cover those equilibria in which one of the sender’s messages

reveals the state to the receiver. The intuition for why such triples are robustly supported

is identical to the sufficiency condition of Theorem 1.

Action quadruples Q are a bit more subtle, so let us illustrate this case of Theorem 2

using Example 2. Suppose for simplicity that the information structure is binary and
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symmetric, and observe that the four policies (R0, P0, P∅, P1) belong to the set Q. How

can an informationally robust equilibrium be sustained?

Consider the following strategy profile: the sender sends messages m0 and m1 such

that the induced belief on message m0 and signal realization s0 is 0.2, and the induced

belief on message m1 and signal realization s1 is 0.6. Furthermore, on belief 0.2 the

receiver mixes so that the sender’s utility is 1, and on belief 0.6 the receiver mixes so

that the sender’s utility is 3. This implies that, regardless of the message sent by the

sender, if the receiver’s signal realization is s0 then the sender’s utility is 1, and if the

receiver’s signal realization is s1 then the sender’s utility is 3. Thus, regardless of the

state, the sender is indifferent between sending messages m0 and m1. This constitutes

an equilibrium, and is illustrated in Figure 2b. Furthermore, Theorem 2 implies that

this kind of equilibrium exists for any vanishing information structure of the receiver.

3.2 Optimal Sender-Utility in Binary Information Structures

In the previous section we characterized the sets of actions that can be played in an

informationally robust equilibrium. But which equilibrium leads to the sender’s optimal

utility, and, moreover, what is the optimal utility?

In this section we fully characterize the sender’s optimal utilities for the specific case

of binary information structures. In Section 3.3 below we then use this characterization

to provide bounds for the sender’s optimal utilities under general information structures.

Recall that the informationally robust equilibrium utility for the sender at π is

v̂(π) = lim
δ→0

inf
F∈Fδ

v∗F (π).

In this section we will limit our attention to receiver’s information structures with binary

supports, and so we define the binary informationally robust equilibrium utility for the

sender at π as

v̂b(π) = lim
δ→0

inf
F∈Bδ

v∗F (π),

where Bδ ⊂ Fδ is the set of all information structures with binary support.

We now provide a full characterization of v̂b(π). Consider the case where Q ̸= ∅, and

suppose that Q = {ā1, . . . , āq}. Define a matrix B with q rows and 2 columns as follows:

for every l ∈ [q] if āl is of type 1 or 2 above, then let Bl,1 = uS(ak) and Bl,2 = uS(ai+1).

If āl is of type 3 or 4 then let Bl,1 = uS(ai) and Bl,2 = uS(ak+1). Let V al(B) be the
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value of the zero-sum game that is defined by B, where the row player is the maximizer

and the column player is the minimizer.

Next, say that uS(a1) (resp., uS(aℓ)) is achievable if there exists a ∈ T of type 1

(resp., type 2) above. For i ∈ {1, ℓ} let v∗i = uS(ai) if ai is achievable, and v∗i = −∞

otherwise. Our characterization of v̂b is then the following:

Theorem 3. v̂b(π) equals the maximum of v∗1, v
∗
ℓ , V al(B), and v(π) = uS(aj).

The main idea behind the proof of Theorem 3 is the following. Consider Example 2,

and the equilibrium that is described at the end of Section 3.1 and illustrated in Figure 2b.

This equilibrium is supported on the unique quadruple (a1, a2, a3, a4) ∈ Q, a quadruple

that is of type 1. In this example, the zero-sum game defined by B consists of one row

(since there is only one element in Q), and its values are B1,1 = uS(ak) = uS(a3) =

uS(P∅) = 1 and B1,2 = uS(ai+1) = uS(a2) = uS(P0) = 3. The value of this game is thus

1. We will now show that this is equal to the sender maximal robust utility.

First, observe that the sender’s utility is uS(a3) = 1 if the receiver receives the low

signal s0, and uS(a2) = 3 if the receiver receives the high signal s1. This is true regardless

of the realized message m. Note that v̂b(π) is the infimum over all binary information

structures. Since there exists an infinitesimal, binary information structure for which

realization s0 is arbitrarily more likely than realization s1, the value of v̂b(π) in this

example is 1, the same as V al(B).

More generally, if the private information of the receiver is binary and the probability

of the high signal is α, then the sender’s equilibrium utility when playing a ∈ Q is

αuS(ak) + (1 − α)uS(ai+1) if a is of type 1 or 2, and αuS(ai) + (1 − α)uS(ak+1) if a

is of type 3 or 4. This implies that, given α, the sender’s maximal utility across all

equilibria that are supported on the interior is max1≤l≤ℓ αBl,1 + (1− α)Bl,2. Minimizing

this maximum across all possible values of α yields V al(B), the robust sender-utility

across all equilibria that are supported on the interior.

Let us illustrate this more general application of Theorem 3 with an example, a

further modification of Example 2.

Example 3. Everything is as in Example 2, except that the receiver now has a fourth

potential policy, R1. This policy is best for the receiver only if he believes the state is 1

with probability at least 0.8. This policy yields the sender utility x ∈ (1, 3).
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Figure 4: Example 3

The indirect utility for Example 3 is illustrated in Figure 4. Observe that, in this

example, Q contains two quadruples of actions: a1 = (a1, a2, a3, a4), which is of type 1,

and a2 = (a2, a3, a4, a5), which is of type 4.

We now use Theorem 3 to derive v̂b(π). First, observe that the matrix B is

1 3

3 x

The value of B is V al(B) = 9−x
5−x

. In addition, we have that v∗1 = −∞, v∗5 = x, and

v(π) = uS(a3) = 1. Since V al(B) > x > 1, Theorem 3 implies that v̂b(π) =
9−x
5−x

.

3.3 Optimal Sender-Utility in General Information Structures

In the previous section we characterized the maximal sender-utility that is robustly

attainable under binary information structures of the receiver. In this section we use that

result in order to provide bounds on the maximal sender-utility under general information

structures. To this end, consider the matrix B from Section 3.2. Let V (B) be the pure

min-max value of the zero-sum game defined by B, where the maximizing row player is

restricted to pure strategies. The following theorem bounds v̂(π):
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Theorem 4. v̂(π) is bounded from above by v̂b(π) and bounded from below by the

maximum of v∗1, v
∗
ℓ , V (B), and v(π).

We note that the upper bound in Theorem 4 is trivial, since Bδ ⊂ Fδ. The lower

bound follows a similar logic as that of Theorem 3. However, there is an important

difference. Under the binary information structures of Theorem 3, each such structure

yields realization s0 with some probability α and realization s1 with probability 1 − α.

For any messagem of the sender, withm ∈ Ii for some interval, the information structure

then leads either to action ai or to pairs (ai−1, ai) or (ai, ai+i), where the first element

of the pair is played with probability α and the latter with probability 1 − α. This

distribution over actions, α and 1 − α, is the same distribution for any message m of

the sender. However, when the information structure is no longer binary, then different

messages could potentially lead to different distributions over actions. In this case, the

value of the zero-sum game may no longer capture the precise utility attainable.

Nonetheless, we can still use Theorem 4 to derive bounds on the optimal informa-

tionally robust sender-utility under general information structures. In Example 3, for

instance, note that, since 1 < x < 3, the pure min-max value of the matrix B (defined

above) is x. Hence, V (B) = x. Theorem 4 thus implies that x ≤ v̂(π) ≤ 9−x
5−x

.

4 Conclusion

In this paper we studied the informational robustness of cheap-talk equilibria. We derived

a necessary and sufficient condition under which the utility at the quasiconcave closure

is robust, and characterized the structure of equilibria and the maximal robust sender-

utilities when the quasiconcave closure is not robust. One immediate question still left

open by our work is to provide a full characterization of the optimal robust sender-

utilities under general information structures. Our conjecture is that, like with binary

information structure, the optimal robust sender-utility is captured by the value of the

zero-sum game B. An additional open question is to generalize our results to a larger

state-space.
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Appendix

A Proofs

A.1 Lemmas

We begin with some lemmas that will be useful in our proofs.

Lemma 1. Let µ ∈ ∆(R) be any probability measure with bounded support. For every

y ∈ R, let ψy = y+µ be the y translation of µ. For any z, c, d ∈ R define a correspondence

H : R ↠ [0, 1] as follows:

H(y) = {cψy((−∞, z)) + dψy((z,∞)) + ψy({z})(rc+ (1− r)d)|r ∈ [0, 1]}.

Then the range of H is [c, d] if c < d and [d, c] if d < c.

Proof of Lemma 1. Assume without loss of generality that c < d. LetH∗(y) = ψy((−∞, z))c+

ψy([z,∞))d, and H∗(y) = ψy((−∞, z])c+ ψy((z,∞))d. It is enough to show for every y

that if h = limx→y+ H
∗(x) < h = limx→y− H

∗(x), then H(y) = [h, h]. To see this note

that ψx weakly converges to ψy as x approaches y. Therefore, by the Portmanteau The-

orem (Theorem 2.1 in Billingsley, 2013) it holds that limx→y+ ψx([z,∞)) ≤ ψx([z,∞)).

Therefore, H∗(y) ≥ limx→y− H
∗(x). But since c < d and since H∗ is monotonically non-

decreasing we have that limx→y− H
∗(x) = H(y) = h. Similarly, limx→y+ ψx((−∞, z]) ≤

ψy((−∞, z]). Therefore, H∗(y) ≤ limx→y+ H∗(x). The monotonicity of H∗ then implies

that H∗(y) = limx→y+ H∗(x) = h, as desired.

In the following, denote by δ(c) the Dirac delta function at c, and by βδ(c)+(1−β)δ(c′)

the distribution over distributions δ(c) and δ(c′), where the former has probability β.

Lemma 2. Let π be the prior. Let F be private information for the receiver with binary

signals S = {s0, s1} that induce the posterior distribution βδ(a) + (1− β)δ(b) for some

β ∈ (0, 1) and 0 < b < a such that βa + (1 − β)b = 1
2
. Let (ml,mh) be the sender’s

messages in a cheap-talk equilibrium with two messages, where 0 < ml < π < mh < 1.

For k ∈ {0, 1} let rl,k and rh,k be the expected utilities of the sender conditional on

the private signal sk of the receiver, given the messages ml and mh, respectively. Then

rh,k = rl,k for each k ∈ {0, 1} .

22



Proof of Lemma 2. Assume that s1 induces the high posterior a and s0 the low posterior

b. Note that since ml and mh induce a cheap-talk equilibrium and since {ml,mh} ∩

{0, 1} = ∅, both signals are sent with positive probability conditional on the two

states ω ∈ {0, 1}. Therefore, the sender must be indifferent between the two mes-

sages ml,mh condition on any state ω ∈ {0, 1}. It follows from Bayes rule that the

posterior distribution of the receiver’s private belief conditional on state ω = 1 is

F1 = 2aβδ(a) + (1− 2aβ)δ(b), and the posterior distribution conditional on state ω = 0

is F0 = 2(1− a)βδ(a) + (1− 2(1− a)β)δ(b). The indifference conditional on state ω = 1

implies the inequality

2aβrh,1 + (1− 2aβ)rh,0 = 2aβrl,1 + (1− 2aβ)rl,0. (1)

Similarly, the indifference conditional on state ω = 0 implies

2(1− a)βrh,1 + (1− 2(1− a)β)rh,0 = 2(1− a)βrl,1 + (1− 2(1− a)β)rl,0. (2)

Since 2aβ ̸= 2(1−a)β the two inequalities can hold simultaneously if and only if rh,1 = rl,1

and rh,0 = rl,0, as claimed.

The following lemma will be used both for Theorem 1 and Theorem 2.

Lemma 3. Every a ∈ T is robustly supported.

Proof of Lemma 3. Let F ∈ ∆([0, 1]) be an information structure supported on [1
2
−

δ, 1
2
+ δ] such that 2ϵ := log

(
1
2
+δ

1
2
−δ

)
< |Jk| for every 1 ≤ k ≤ ℓ. Recall that Fω be

its conditional distribution given state ω ∈ {0, 1} and Gω ∈ ∆(R) is the corresponding

log-likelihood distribution to Fω. Note that Gω is supported on [−ϵ, ϵ].

Without loss of generality assume that a = (a1, ai, ai+1) for some 1 < i < ℓ. We will

show there exists a binary cheap talk with a support a.

Let λ ∈ (0, 1). Consider a decision problem for the receiver where the prior is λ and

the private signal is drawn according to F . Assume that y = lr(λ) ∈ [yi− ϵ, yi+ ϵ]. Note

that the log-likelihood of the posterior belief for the receiver is distributed according to

the measure y + λG1 + (1 − λ)G0. By construction, for y ∈ [yi − ϵ, yi + ϵ] the support

of the log-likelihood distribution lies in Ji ∪ Ji+1. Therefore, the posterior belief of the

receiver lies in Ii ∪ Ii+1. Let ψy = y + G0 be the conditional log-likelihood distribution

of posteriors given state ω = 0 as a function of y. Assume that in case of indifference
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between actions ai and ai+1 (which happens for the posterior xi) the receiver plays action

ai with probability r and action ai+1 with probability 1− r.

The conditional expected utility for the sender, given the state ω = 0, is

uS(ai)ψy(−∞, yi) + uS(ai+1)ψy(yi,∞) + [ruS(ai) + (1− r)uS(ai+1)]ψy(yi).

We note that the set of all possible expected utilities given the state ω = 0, as a

function of y and when the receiver plays rationally in the above decision problem, is

given exactly by the set of values H(y) that is defined in Lemma 1. Since uS(ai) <

uS(a1) < uS(ai+1) we can rely on Lemma 1 and have a point y′ ∈ [yk − ϵ, yk + ϵ] and a

value r such that

uS(a1) = uS(ai)ψy(−∞, yi) + uS(ai+1)ψy(yi,∞) + [ruS(ai) + (1− r)uS(ai+1)]ψy(yi).

Let λ′ = lr−1(y′).

We consider the following cheap-talk equilibrium. The sender sends two messages

{ml,mh}. Message ml reveals the state ω = 0 and corresponds to a posterior 0. Message

mh corresponds to the posterior λ′. We assume that if, after observing his private

information, the receiver is indifferent between ai and ai+1, then he plays action ai

with probability r. We note that conditional on state ω = 1, the message mh is sent

with probability one. Conditional on state ω = 0 both messages are sent with positive

probability. Therefore, in order to show that the above signals constitute a cheap-talk

equilibrium we need to show that (i) in state ω = 0 the sender is indifferent between the

two messages and (ii) in state ω = 1 sending mh is better than sending ml. Condition

(i) follows directly from the construction. Condition (ii) Follows since F1 first order

stochastically dominates F0 and Therefore, F1((xi, 1]) is higher than F0((xi, 1]). This

implies that the utility of mh conditional on state ω = 1 is larger than uS(a1). Therefore,

signal mh yields a higher utility to the sender than the message ml conditional on ω = 1.

This completes the converse direction.

The following lemma is complementary to Lemma 3.

Lemma 4. Every a ∈ Q is robustly supported.

Proof of Lemma 4. Choose δ0 > 0 small enough so that |Ji| > 2 log
(

1
2
+δ0

1
2
−δ0

)
for every i.

Let Fω be the conditional distribution of F given state ω ∈ {0, 1}, and let Gω ∈ ∆(R)
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be the corresponding log-likelihood distribution of Fω. Let inf supp(Gω) = −η and

sup supp(Gω) = ε. Note that, by construction, |Ji| > η + ε. Recall the notation that

Ji = [yi−1, yi].

We begin by considering the cases in which the quadruple (ai, ai+1, ak, ak+1) ∈ Q is

of type 3 or 1. In the former case, let x1 = yi−1, x2 = yi, x3 = yi+1, x4 = yk−1, x5 = yk,

and x6 = yk+1. In the latter case, let x1 = yk−1, x2 = yk, x3 = yk+1, x4 = yi−1, x5 = yi,

and x6 = yi+1.

For both cases, let U(x)|r be the corresponding utility of the sender when the re-

ceiver’s belief (in terms of log-likelihood) is x, and when the receiver randomizes and plays

the higher action (the one on the right) with probability r when indifferent. Lemma 6

now implies that there exist vb < vw and rb, rw ∈ [0, 1] such that |vb − x2| ≤ max{ε, η},

|vw − x5| ≤ max{ε, η}, and the following two qualities hold:

EZ∼vb+G0 [U(Z)|rb] = EZ∼vw+G0 [U(Z)|rw] and EZ∼vb+G1 [U(Z)|rb] = EZ∼vw+G1E[U(Z)|rw].

When the sender sends messages leading to log-likelihood ratios vb and vw, then, both

indifference conditions hold. Thus, this forms a cheap-talk equilibrium with private

information F . Furthermore, in this equilibrium only the actions (ai, ai+1, ak, ak+1) are

played, as required.

Finally, if the quadruple (ai, ai+1, ak, ak+1) ∈ Q is of type 4 or 2, then swap the

labeling of the states ω ∈ {0, 1}. By symmetry, the proof above goes through in an

identical fashion.

A.2 Proof of Theorem 1

We next proceed to the proof of Theorem 1.

Proof of Theorem 1. We first show the converse direction. Clearly, v∗0(π) = uS(aj)

implies that v̂(π) = uS(aj). Assume that v∗0(π) = uS(ai) ̸= uS(aj) for i ∈ {1, ℓ}. Without

loss of generality assume that v∗0(π) = uS(a1). Since v
∗
0(π) = min {maxλ≤π v(λ),maxµ≥π v(µ)},

there exists an interval i ≥ j such that uS(ai) < uS(a1) < uS(ai+1). Therefore,

(a1, ai, ai+1) ∈ T , and, by Lemma 3, there exists δ0 such that for every δ < δ0 and

any F ∈ Fδ there exists a cheap-talk equilibrium supported on (a1, ai, ai+1). It readily

follows from the construction that the sender’s utility in any equilibrium supported on

(a1, ai, ai+1) approaches uS(a1) as δ approaches zero.
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We next show that if v∗0(π) > uS(aj) and v∗0(π) ̸= uS(ai) for i = 1, ℓ, then v̂(π) <

v∗0(π). Assume that v∗0(π) = uS(ai). Without loss of generality, we can assume that

v∗0(π) = maxk>j uS(ak). Assume by way of contradiction that v̂(π) = v∗0(π).

For every n let F n be a binary information structure that generates the posterior

distribution 1
2
δ
(
1
2
− 1

n

)
+ 1

2
δ
(
1
2
+ 1

n

)
. We identify the low posterior 1

2
− 1

n
with the

signal sn0 and the high posterior with the signals sn1 . By the contradiction assumption,

we can find a sequence of equilibria that yield a utility of cn to the sender such that

limn c
n = uS(ai). Without loss of generality, we can further assume that each of the

equilibria is induced by two messages {mn
l ,m

n
h} such that mn

h > π and mn
l < π.

We first note that since signals become uninformative, we must have that the total

variation distance of F n
1 and F n

0 approaches zero with n. We contend that the conditional

expected utility to the sender given the high message mn
h approach v∗0(π) = uS(ai) as n

goes to infinity. For if not, then the conditional utility must lie η > 0 below uS(ai) for

some η > 0 and for some subsequence {mnk
l ,m

nk
h }k. This implies that the conditional

utility given the low signal mnk
l lies η > 0 above uS(ai) for some η > 0. Therefore,

sending the high message yields a strictly larger utility to the sender than sending the low

message conditional on both states ω. We thus have a contradiction to the equilibrium

assumption.

Since the conditional expectation to the sender given the high messagemn
h approaches

uS(ai), we must have that mn
h ∈ [xi−1, xi] for all sufficiently large n. In addition, the

conditional expectation to the sender given the low signal also approaches uS(ai) as n

goes to zero. Since uS(a0) ̸= uS(ai) it follows that {mn
l ,m

n
h}∩{0, 1} = ∅ for all sufficiently

large n. As a result, conditional on both states ω ∈ {0, 1} the sender’s expected utility

from sending both signals is equal.

As in Lemma 2, for k ∈ {1, 0}, let rnh,k and rnl,k be the expected utility to the sender

conditional on the private signal snk of the receiver given the messagesmn
l ,m

n
h respectively.

It follows from Lemma 2 that rnh,1 = rnl,1 and r
n
h,0 = rnl,0. Since the conditional expectation

to the sender given the high message mn
h approaches uS(ai), we must have that both

rnh,0 and rnh,1 approaches uS(ai) as n goes to infinity. Since there exists a value k ̸= i

such that, for all sufficiently large n, either rnl,0 = uS(ak) or rnl,1 = uS(ak), it must

hold that uS(ak) = uA(ai). This, however, stands in contradiction to our genericity

assumption.

26



A.3 Proof of Theorem 2

We begin with the following lemma.

Lemma 5. Let F be a private binary information structure for the receiver that is

supported on [1
2
− δ, 1

2
+ δ] for some δ > 0 such that 2 log(

1
2
+δ

1
2
−δ
) < |Ji| for every i ∈

[l]. If 0 < ml < π < mh < 1 defines a non-trivial binary cheap-talk equilibrium,

then the equilibrium is supported in the interior. Moreover, in this case it holds that

if the equilibrium actions are of types 1 or 2 from Q then rh,0 = rl,0 = uS(ak) and

rh,1 = rl,1 = uS(ai+1), and if they are of types 3 or 4 then rh,0 = rl,0 = uS(ai) and

rh,1 = rl,1 = uS(ak+1).

Proof of Lemma 5. The condition over F guarantees that for any posterior m ∈ [0, 1]

the agents’ private beliefs are supported on at most two distinct intervals [xi−1, xi].

This means that no more than 4 actions are played with a positive probability at the

equilibrium.

We claim that rh,0 ̸= rh,1. Assume by way of contradiction that rh,0 = rh,1. Then,

since at most two actions are played conditional on any message, it follows from the

genericity assumption that rh,0 = rh,1 = uS(ai) for some i. By Lemma 2 this implies

that rl,0 = rl,1 = uS(ai) for all n. This is possible only if ai = aj which means that

the equilibrium is trivial. Similarly, we must also have that rl,0 ̸= rl,1. Therefore, con-

ditional on ml two consecutive actions ai, ai+1 are played with positive probability, and

conditional on mh two consecutive actions ak, ak+1 are played with positive probability.

Assume first that uS(ai) < uS(ai+1), we show that either condition 1. or condition 3.

must hold.

We first note that conditional on ml and the low signal s0 action ai is played with

positive probability for otherwise since the receiver’s posterior probability given ml and

s1 is strictly higher, action ai would have been played with probability zero. This is

a contradiction to the fact four distinct actions are played with positive probability.

Similarly, conditional on ml and the high signal s1 action ai+1 is played with positive

probability.

We distinguish two cases. Assume first that action ai+1 is also played with positive

probability given ml and the low signal s0. In this case, since both actions are played

with positive probability, the receiver must be indifferent hence his posterior given ml
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and s0 is xi. Therefore, since the receiver’s posterior given ml and s1 is strictly larger,

action ai+1 is uniquely played. Therefore, rl,0 < rl,1 = uS(ai+1). Lemma 2 implies that

rh,0 < rh,1 = uS(ai+1). Since only actions ak, ak+1 are played with positive probability

given mh it follows from our genericity assumption both actions ak and ak+1 are played

with positive probability given mh and the high signal s1. That is the receiver’s posterior

given mh and the high signal s1 is xk. Therefore, since the receiver’s posterior given mh

and s0 is lower we must have that rh,0 = uS(ak). Since rh,0 = rl,0 = uS(ak) and since rl,0 <

rl,1 = rh,1 = uS(ai+1). We must have that uS(ai) < uS(ak) < uS(ai+1) < uS(ak+1). Thus

a = (ai, ai+1, ak, ak+1) ∈ Q satisfies the first condition and in addition, the conditions

over the utilities hold.

Assume next that action ai+1 is played with probability zero given ml and the low

signal s0. In this case, we must have that rl,0 = uS(ai). Since uS(ai+1) > uS(ai) we have

rl,0 < rl,1. Since rl,0 = rh,0 it follows from the genericity assumption that both actions ak

and ak+1 are played with positive probability given mh and s0 and action ak+1 is played

with probability one given mh and s1. Since by Lemma 2 rh,0 < rh,1 it must hold that

uS(ak) < uS(ak+1). Moreover since rl,0 = rh,0 we must have that uS(ak) < uS(ai) <

uS(ak+1). Since action ak+1 is played with probability one given ml and s1 we must

have that rh,1 = rl,1 = uS(ak+1). This is possible only if uS(ai) < uS(ak+1) < uS(ai+1).

Altogether, we have that uS(ak) < uS(ai) < uS(ak+1) < uS(ai+1). Thus the equilibrium

satisfies condition 3. and it is supported in the interior as desired.

The fact that if uS(ai) > uS(ai+1), then only conditions 2. or 4. are possible, is

shown similarly. This completes the proof of the lemma.

We get the following corollary from Lemma 5.

Corollary 1. LetG be a private binary information structure for the sender as in Lemma

5 that generates the posterior distribution βδ(a)+(1−β)δ(b). Let 0 < ml < π < mh < 1

define a non-trivial cheap-talk equilibrium that is indeterminately supported on four

actions a = (ai, ai+1, ak, ak+1) that corresponds to row l ∈ [q] in the above matrix B.

Then the sender equilibrium utility is: βBl,1 + (1− β)Bl,2.

Proof. Assume that a satisfies condition 1., then it follows from Lemma 5 that the

sender’s utility is βuS(ak) + (1 − β)uS(ai+1). This by the definition of the matrix B

equals βBl,1 + (1 − β)Bl,2. The case where a satisfies one of the conditions 2-4 follows
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similarly.

Before proving Theorem 2, we need one additional lemma. Let x1 < x2 < x3 and

x4 < x5 < x6 be six real numbers such that either x3 < x4 or x6 < x1, and such that all

of x2−x1, x3−x2, x5−x4, and x6−x5 are strictly greater than η+ ε, for some η, ε > 0.

Consider two measures G0, G1 ∈ ∆([−η, ε]). Assume that both measures have the same

support, and that it contains both −η and ε. Assume that G1 first order stochastically

dominates G0 with a strict inequality for any point x ∈ (−η, ε). Let γ < α < δ < β

and let U be a function such that U(x) = α for x ∈ [x1, x2), U(x) = β for x ∈ (x2, x3],

U(x) = γ for x ∈ [x4, x5), and U(x) = δ for x ∈ (x5, x6]. At x = x2 (resp., x = x5),

the utility U(x) is the range [α, β] (resp., [γ, δ]). The exact value will be determined

by a mixing parameter r ∈ [0, 1], and so denote by U(x2)|r = (1 − r)α + rβ, and by

U(x5)|r = (1 − r)γ + rδ. For any x ̸∈ {x2, x5}, let U(x)|r = U(x). Finally, for every

x ∈ R and ω ∈ {0, 1} denote by x+Gω the shift of Gω by x.

We now state and prove Lemma 6.

Lemma 6. Under the above conditions there exist vb < vw and rb, rw ∈ [0, 1] such that

|vb − x2| ≤ max{ε, η}, |vw − x5| ≤ max{ε, η}, and the following two qualities hold:

EZ∼vb+G0 [U(Z)|rb] = EZ∼vw+G0 [U(Z)|rw] and EZ∼vb+G1 [U(Z)|rb] = EZ∼vw+G1E[U(Z)|rw].

Proof of Lemma 6. For each p ∈ [0, 1], let f0(p) = (1 − p)α + pβ. By Lemma 1, for

every p there exist a pair (vp, rp) with vp ∈ [x2 − ε, x2 + η] and rp ∈ [0, 1] that satisfy

the following: Given mixing parameter rp, we have f0(p) = EZ∼vp+G0 [U(Z)|rp].5 Let

f1(p) = EZ∼vp+G1 [U(Z)|rp]. Furthermore, let s(p) satisfy f1(p) = (1− s(p))γ + s(p)δ.

In words, f0(p) is the expected utility of the sender when the receiver plays the higher

action β with probability p, and the lower action α with probability 1− p. In addition,

f1(p) is the expected utility of the sender when the receiver plays the higher action β

with probability s(p), and the lower action α with probability 1 − s(p), where s(p) is

chosen such that the belief vp and mixing probability rp that lead to p in state ω = 0

lead to s(p) in state ω = 1. Note that, since G0 and G1 have the same support, and

by the assumptions on the distributions, s(p) ≥ p. In particular, this also implies that

f1(p) ≥ f0(p). Finally, note that both f0 and f1 are continuous with continuous inverses.

5This pair may not be uniquely defined and in this case we can choose the pair (vp, rp) arbitrarily.
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Similarly, for each p ∈ [0, 1], let h0(p) = (1 − p)γ + pδ. Each such p defines a

pair (vp, rp) with vp ∈ [x5 − ε, x5 + η] and rp ∈ [0, 1] that satisfy the following: Given

that the receiver plays the action yielding δ with probability rp and the action yielding

γ with probability 1 − rp when indifferent, we have h0(p) = EZ∼vp+G0 [U(Z)|rp]. Let

h1(p) = EZ∼vp+G1 [U(Z)|rp]. Furthermore, let t(p) satisfy h1(p) = (1 − t(p))γ + t(p)δ.

Note that, as above, t(p) ≥ p, and so h1(p) ≥ h0(p). Finally, note that both h0 and h1

are continuous with continuous inverses.

Fix some c ∈ [0, 1] such that f1(c) = δ. For p ∈ [0, c], let

H0(p) = h−1
0 (f0(p)),

H1(p) = h−1
1 (f1(p)),

and

d(p) = H1(p)−H0(p).

We now show that d(0) ≤ 0. First, by the definition of U and the fact that the

support of Gω is contained in [−η, ε] it follows that fω(0) = α for both ω ∈ {0, 1}. In

addition, since x5−x4 > η+ ε, it also holds that hω(0) = γ. Since γ < α < β there exist

zω ∈ (0, 1) such that hω(zω) = α for each ω ∈ {0, 1}. We have

h0(z0) = (1− z0)γ + z0δ = α

and

h1(z1) = (1− t(z1))γ + t(z1)δ = α,

but t(z1) ≥ z1 implies that z1 ≤ z0. Finally, observe that z1 = H1(0) and z0 = H0(0),

and so d(0) = z1 − z0 ≤ 0.

Next, we show that d(c) > 0. Recall that c satisfies f1(c) = δ. The set H1(c) is thus

equal to all y ∈ [0, 1] for which h1(y) = δ. In order for this equality to hold, we must

have H1(c) = 1. Next, note that, since f0(p) ≤ f1(p), we have that f0(c) ≤ δ. This

implies that H0(c) cannot be equal to 1. Thus, d(c) = 1−H0(c) > 0.

We have shown that d(0) ≤ 0 and d(c) > 0. By the Intermediate Value Theorem,

there exists b ∈ [a, c] such that d(b) = 0. This implies that there exists w ∈ [0, 1] such

that f0(b) = h0(w) and f1(b) = h1(w). Noting that b maps to (at least one) pair (vb, rb)

and w maps to (at least one) pair (vw, rw) completes the proof of the lemma.
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We next prove Theorem 2.

Proof of Theorem 2. The fact that every a ∈ Q ∪ E is robustly supported follows

from Lemma 3 and Lemma 4. It follows from Lemma 5 that if F is a binary information

structure supported on [1
2
− δ, 1

2
+ δ] and 2 log

(
1
2
+δ

1
2
−δ

)
< |Ji| for every 1 ≤ i ≤ n then any

nontrivial cheap talk binary equilibrium with 0 < sl < π < sh < 1 is supported in the

interior.

To complete the proof of Theorem 2 we will show that if F supported on [1
2
−δ, 1

2
+δ]

and 2 log
(

1
2
+δ

1
2
−δ

)
< |Ji|, then any binary equilibrium with ml = 0 < π < mh < 1 or with

0 < ml < π < mh = 1 is supported by an endpoint.

Assume without loss of generality that ml = 0 < π < mh. We note that the condition

on F implies that at most three actions are played with positive probability. Moreover,

the genericity assumption implies that conditional on sh two consecutive actions ai, ai+1

are played with positive probability. To complete the proof, we need to show that

uS(ai) < uS(a1) < uS(ai+1). Since conditional on state ω = 0 both messages ml and mh

are sent with positive probability, the sender has the same conditional utility from sl and

sh at state ω = 0. This means that we only need to rule out the case where uS(ai+1) <

uS(a1) < uS(ai). Let α be the probability that action ai is played given mh and state

ω = 0. From the indifference condition, we must have that αuS(ai) + (1 − α)uS(ai+1).

But since F1 first order stochastically dominates F0 the probability that ai is played given

state ω = 1 and mh is strictly smaller than α. This means that the sender’s conditional

utility given the state ω = 1 and mh is strictly smaller than uS(a1). This implies that

sending the message ml on state ω = 1 yields a profitable deviation for the sender as

it guarantees a utility of uS(a1). This stands in contradiction to the assumption that

ml = 0 < π < mh is an equilibrium.

A.4 Proofs of Theorems 3 and 4

We next turn to prove Theorem 3.

Proof of Theorem 3. Consider a binary information structure G with a support that

is contained in [1
2
−δ, 1

2
+δ] as in Lemma 5. Assume that F induces the belief distribution

βδ(a)+(1−β)δ(b). Then, by Corollary 1 the optimal utility for the sender in a cheap-talk

equilibrium that is supported in the interior is max1≤l≤q βBl,1+(1−β)Bl,2. In addition,
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cheap-talk equilibria that are supported in the interior are the only non-trivial equilibria

with 0 < ml < π < mh < 1.

Conversely, it follows from Theorem 2 and Lemma 5 that for all sufficiently small

δ < 0, any F ∈ Bδ, and every al ∈ Q there exists a cheap-talk equilibrium with a utility

βBl,1 + (1 − β)Bl,2 for the sender. Thus, for every F , the maximal sender’s utility of a

cheap-talk equilibrium is βBl,1 + (1 − β)Bl,2. Note that for every δ > 0 and β ∈ (0, 1)

there exists a binary signal F with posterior distribution βδ(a) + (1− β)δ(b) supported

on [1
2
− δ, 1

2
+ δ] for some a < 1

2
< b. Therefore, the maximal utility of the sender from a

cheap-talk equilibrium that is supported in the interior can be made arbitrarily close to

min
0≤β≤1

max
0≤l≤q

βBl,1 + (1− β)Bl,2 = V al(B).

Furthermore, if a1 is achievable, the same logic as in the proof of the Theorem 1

shows that for F ∈ Bδ and sufficiently small δ there exists an equilibrium (ml,mh) with

ml = 0. Moreover, the sender’s utility from such an equilibrium approaches uS(a1) as

δ goes to zero. A similar conclusion holds for the case an is achievable. Overall we

conclude that

v̂b(π) = lim
δ→0

inf
F∈Bδ

v∗F (π) = max{V al(B), v∗1, v
∗
0, uS(aj)},

as desired.

We next prove Theorem 4.

Proof of Theorem 4. The facts that v̂(π) ≥ v∗1 and v̂(π) ≥ v∗0 follow as in the proofs

of Theorem 1 and Theorem 3. Furthermore, it follows from Theorem 2 that there

exists δ0 such that for every δ < δ0 any al ∈ Q and G ∈ Bδ there exists a cheap-talk

equilibrium that is supported in the interior. Theorem 2 implies that that the utility

in this equilibrium is at least min{Bl,1, Bl,2}. Therefore, v̂(π) ≥ min{Bl,1, Bl,2} for any

l ∈ [q]. Thus, v̂(π) ≥ V (B). This completes the proof of Theorem 4.
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