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Abstract

A sender seeks hard evidence to persuade a receiver to accept a project by design‐

ing a quality test. Testing is not perfectly reliable and produces evidence only with

some probability. If the sender obtains the evidence, she can choose to disclose it

or pretend to not have obtained it. We show that when reliability is low, the sender

chooses a pass/fail test which reveals whether the quality is above or below a thresh‐

old. Moreover, the equilibrium pass/fail threshold is always monotone in reliabil‐

ity but whether it is increasing or decreasing depends on whether the acquisition is

overt or covert.
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1 Introduction

Hard evidence is often sought and disclosed by one party (sender) to persuade an‐

other (receiver) to take a certain action. For example, pharmaceutical companies

test new drugs and seek approval from the US Food and Drug Administration, star‐

tups build and test prototypes to secure funding from investors, sellers certify qual‐

ity of their products to persuade consumers to buy them, etc. However, in many

cases the receiver may be uncertain about whether the sender has obtained the

evidence. In the above examples, it could be that by the time of the final decision

the testing results may not have come back or came back inconclusive. In this

case, even if the sender has evidence, she might be able to pretend to not have

obtained any evidence. In other words, she can conceal sufficiently unfavorable

evidence by claiming ignorance. This paper studies the trade‐off that arises due

to the conflict between the sender’s preferences over disclosures before and after

she obtains the evidence.

In principle, when the state and message spaces are rich and information ac‐

quisition is costless, one might expect to see complex communication between

the agents. In reality, however, senders often rely on coarse verifiable informa‐

tion. In many cases, it is as simple as a pass/fail test, that is, a signal that reveals

only whether the state of the world is sufficiently good. For example, sellers ob‐

tain certifications that their products have high enoughquality, job candidates take

professional exams with pass or fail grades, etc. This paper shows that the mere

opportunity to conceal information as described above in equilibrium can lead to

acquisition of simple information structures such as a pass/fail test.

To study these interactions, we consider a communication game between a

sender (she) and a receiver (he). The state of theworld is continuous and unknown

to both players. The sender wants the receiver to take one of two actions, but the

receiver does so only if his expectation of the state exceeds his privately known

outside option drawn from a unimodal distribution. The sender chooses what in‐

formation to acquire, for example, by designing an informative test about the state.
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However, such testing is not perfectly reliable, in particular, she obtains hard evi‐

dence about the test results only with some probability ρ, referred to as reliability.

Even if she obtains the evidence, she can then voluntarily disclose it or pretend to

not have obtained it. Otherwise, she cannot prove that she is uninformed. We dis‐

tinguish between two versions of the model. In the case of overt acquisition, the

sender’s choice of information is always observed. In the case of covert acquisition,

the sender’s choice of information is unobserved by the receiver unless evidence is

disclosed. The covert case captures situations in which the sender cannot commit

to which evidence she will seek.

Our results (Theorems 1 and 2) characterize the equilibrium evidence struc‐

tures in the overt and covert cases and show that they are essentially unique. The

first key implication of the characterization is that low reliability leads to simplic‐

ity of the equilibrium evidence structure chosen by the sender. In particular, we

show that if ρ is below a certain cutoff, the equilibrium structure takes the form of

a pass/fail test: it reveals only whether the state is above or below a certain thresh‐

old. Otherwise, when ρ is above the threshold, it takes the form of a two‐sided

censorship, which is similar to a pass/fail test, but also perfectly reveals some in‐

termediate states (see Figure 1). For example, with discrete states, two‐sided cen‐

sorship can be represented by a five‐star rating system such that the 5‐star grade

correspond to the states below some lower threshold, 1‐star grade – to the states

above some upper threshold, and each of 2‐, 3‐, and 4‐star grades – to some inter‐

mediate state.

0 1state space Θ

FAıL PAſſ

(a) Pass/fail test

0 1state space Θ

FAıL PAſſreveal θ

(b) Two‐sided censorship

FıGURE 1: Two types of equilibrium evidence structures.

Second, we show that the equilibrium pass/fail threshold is monotone in reli‐

ability. However, while it is increasing under overt acquisition, it is decreasing
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under covert acquisition. In other words, whether the sender publicly or privately

acquires the evidence affects how testing standards react to improvements in reli‐

ability. In addition, we show that covert equilibrium pass/fail threshold is always

strictly higher than the overt one and that the difference between them shrinks as

reliability improves.
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FıGURE 2: Equilibrium evidence structures for the uniformly distributed state and

triangular distribution of the receiver’s outside option with the peak at 3/5.

Figure 2 illustrates the key features of the equilibrium evidence structures for

the uniformly distributed state and the receiver’s outside option following the tri‐

angular distribution the peak at 3/5. For each reliability level ρ ∈ (0, 1], the cor‐

responding horizontal line segment illustrates the optimal partition of the state

space. When reliability is low (ρ < ρ), there is a pass/fail threshold, such that

states are pooled above and below it. When reliability is high (ρ > ρ), the states

are pooled above the upper threshold, pooled below the lower threshold, and fully

revealed otherwise.

To get some intuition for these results, note that information is affected by

three key forces arising due to voluntary disclosure, information design, and the
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(c)overt nature of the acquisition. First, because the sender does notwant to reveal

bad news, this prevents the receiver from learning detailed information about low

states. Hence, the voluntary disclosure force drives the lower pooling region. Sec‐

ond, because the sender is uncertain about the receiver’s cutoff for action and the

distribution of the receiver outside options is unimodal, there are increasing re‐

turns to disclosing more (less) information about low (high) states. In particular,

the Bayesian persuasion literature1 has established that a sender with full com‐

mitment and convex‐concave indirect utility over posterior means will choose an

upper censorship of the state, that is, a signal which reveals all states below a cer‐

tain threshold and pools all states above it. In other words, the information design

force drives the imprecision of information about high states which leads to the

pooling of high states.

Moreover, whether and how these two forces interact depends on the level of

reliability and the third force—whether acquisition is covert. Note that for high re‐

liability, only the lower pooling region is affected by reliability. In fact, in this

case we show that the lower threshold corresponds to the disclosure threshold

in the voluntary disclosure game with full information (conditional on being re‐

liable) and the constant upper threshold corresponds to the information design

game with full commitment (which coincides with ρ = 1). That is, for ρ > ρ the

two thresholds are determined independently by the two forces anddonot interact.

Notably, the equilibria of the overt and covert cases coincide. Since, compared to

the covert case, overt case essentially adds commitment to evidence structure (but

not disclosure), thismeans that the corresponding additional incentive constraints

of the covert case are slack. In other words, the overt equilibrium signal can re‐

sist potential ex‐ante deviations by the sender which would not be detected under

non‐disclosure. We show that this is because the only additional benefit from an

ex‐ante covert deviation compared to the overt case comes from a lower would‐be

non‐disclosure receiver’s posterior that turns out to be minimized by equilibrium

1See, for example, Alonso and Câmara (2016a), Kolotilin (2018), and, for a recent characteriza‐

tion, Kolotilin, Mylovanov, and Zapechelnyuk (2022).
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two‐sided censorship.2

In contrast, under ρ < ρ, the equilibrium signal is a pass/fail test and the thresh‐

old is determined jointly by the interaction between voluntary disclosure and in‐

formationdesign. In the overt case, the receiver fully observes the sender’s ex‐ante

choice and, hence, solving for equilibria boils down to an optimization problem.

We show that such sender’s costless acquisition problem that takes into account

voluntary disclosure can be reformulated as a costly information design problem.

That is, her ex‐ante expected value from seeking an evidence structure is propor‐

tional to her perfect‐reliability commitment value from actually choosing a distri‐

bution of R’s posteriors minus the ‘concealment loss’ arising due to strategic non‐

disclosure of bad news. We first show that the solution to this costly information

design problem shares similarities with the full‐commitment (ρ = 1) case in that

the solutionmust be disclosure‐equivalent to anupper‐censorship. Then, focusing

on equilibria in which the sender does not acquire more information than needed

given her strategic concealment yields a two‐sided censorship or a pass/fail test

depending on whether the disclosure threshold is above or below the upper pool‐

ing threshold. We then show that the concealment loss features substitutability

between reliability and the testing standards implying that the overt equilibrium

pass/fail threshold is increasing in reliability.

In the covert case, the sender’s ex‐ante choice is unobservable and, thus, solv‐

ing for equilibria instead involves afixed‐point problemwith respect to the sender’s

ex‐ante choice of experiment π and the receiver’s non‐disclosure posterior x∅: (i)

π must be best‐responding to x∅ and (ii) x∅ must be Bayes‐consistent given π. We

show that the problemoffinding the sender’s best response to any given x∅ is equiv‐

alent to an auxiliary informationdesignproblem inwhich the sender’s indirect util‐

ity is modified but again leads to an upper censorship solution. Finally, we show

that the best‐responding upper pooling threshold is increasing in x∅ and does not

2As explained in Section 3.5, this is related to the minimum principle of DeMarzo, Kremer,

and Skrzypacz (2019) which is both necessary and sufficient for covert equilibria in the case of

uniformly distributed outside option.
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depend on reliability. At the same time, higher reliability leads to more skeptical

receiver and so to a lower Bayes consistent non‐disclosure posterior. This implies

that the covert equilibrium pass/fail threshold is decreasing in reliability.

Related literature. This paper is related to the literature on disclosure of verifi‐

able information (for a survey, see Milgrom, 2008).3 The seminal works of Gross‐

man (1981), Milgrom (1981), and Milgrom and Roberts (1986) study disclosure un‐

der complete provability, that is when the sender can prove any true claim. The

key insight of those papers is that complete provability implies “unraveling”, which

leads to full information revelation in equilibrium.4 Our model is based on the

model of Dye (1985) also analyzed by Jung and Kwon (1988), in which evidence is

obtained with some probability and there is partial provability: if the sender is

uninformed, she cannot prove this.5

The paper contributes to the literature endogenizing the sender’s endowment

of evidence in voluntary disclosure games. In Matthews and Postlewaite (1985),

the sender makes a binary evidence acquisition decision before playing a volun‐

tary disclosure game under complete provability. Lizzeri (1999) and Ali, Hagh‐

panah, Lin, and Siegel (2021) study disclosure of verifiable information designed

byaprofit‐maximizingmonopolistic intermediary. GentzkowandKamenica (2017)

study overt costly acquisition of evidence in a disclosure model where each type

can perfectly self‐certify and show that one or more sender(s) disclose everything

3Coarseness of information is also a common feature in cheap‐talkmodels (Crawford andSobel,

1982) with exogenously given soft information. There coarseness follows from partially aligned

preferences of the players. In our model, information is hard, acquired endogenously, and the

senderhas state‐independent preferences. SeePei (2015) andArgenziano, Severinov, andSquintani

(2016) on information acquisition in a cheap‐talk model.
4For a recent generalization, see Hagenbach, Koessler, and Perez‐Richet (2014).
5Other approaches in which unraveling fails include costly disclosure (Jovanovic, 1982; Verrec‐

chia, 1983) and multidimensional disclosure Shin (1994); Dziuda (2011). Okuno‐Fujiwara, Postle‐

waite, and Suzumura (1990) provide sufficient conditions for unraveling in two‐stage games, where

in the first stage players can disclose private information, and give examples in which unraveling

does not happen.
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they acquire.6 Kartik, Lee, and Suen (2017) study a multi‐sender disclosure game,

where senders can invest in higher reliability, while taking the evidence structure

as given. Ben‐Porath, Dekel, and Lipman (2021) study a mechanism design prob‐

lem with privately informed agents who can acquire evidence about their types.

Some recent papers endogenize the sender’s evidence in the Dye (1985) frame‐

work. Kartik, Lee, and Suen (2017) study a multi‐sender disclosure game, where

senders can invest inhigher reliability, while taking the evidence structure as given.

Dasgupta, Krasikov, and Lamba (2022) study hard information design in a monop‐

olistic screening model.

Bertomeu, Cheynel, and Cianciaruso (2021) study a closely related problem, in

which the firm ismaximizing its expected valuation by choosing an asset measure‐

ment system, subject to strategic withholding and disclosure costs. Their costless

disclosure case can be mapped into our overt case, where the density of the re‐

ceiver’s outside option is increasing so that it would be optimal to acquire a fully‐

informative evidence structure for any reliability. DeMarzo, Kremer, and Skrzy‐

pacz (2019) study a problem that can be related to our covert case with the uniform

outside option andwhere the sender’s choice can be across any constrained collec‐

tion of experiments of potentially heterogeneous reliability.7 They show that an

experiment is an equilibrium one if and only if satisfies the ‘minimum principle’,

that is, it must minimize the Bayes‐consistent receiver’s non‐disclosure posterior.

Notably, their results imply that there show that there is always an equilibrium

with ‘simple tests’ equivalent to our pass/fail tests. In theirmodel, the sender’s indi‐

rect utility over posterior means is linear and, therefore, she is ex‐ante indifferent

between all information structures, so the equilibrium condition boils down to the

ex‐ante incentive compatibility. In contrast to this paper, in Bertomeu, Cheynel,

and Cianciaruso (2021) and DeMarzo, Kremer, and Skrzypacz (2019) the informa‐

6Escudé (2019) provides an analogous result in a single‐sender setting with covert costless ac‐

quisition and partial verifiability.
7Ben‐Porath, Dekel, and Lipman (2018) study a related voluntary disclosure problem, in which

there is an ex‐ante covert choice between risky projects, which, in our setting, would translate into

a choice between priors.
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tion design force is either trivial or absent. Complementary to their findings, we

provide support for pass/fail test to be the unique optimum (up to outcome equiv‐

alence) in environments with the convex‐concave sender’s indirect utility and con‐

stant reliability across experiments in both overt and covert cases.

This paper also contributes to the literature on Bayesian persuasion and infor‐

mation design (for a survey, see Kamenica, 2019). In the special case of our model

when the sender is known to possess the evidence (ρ = 1), the unraveling argu‐

ment applies, and both the overt and covert optimal evidence acquisition prob‐

lems become equivalent to Bayesian persuasion (Aumann andMaschler, 1995; Ka‐

menica and Gentzkow, 2011). In particular, a number of papers (Alonso and Câ‐

mara, 2016b; Kolotilin, Mylovanov, Zapechelnyuk, and Li, 2017; Kolotilin, 2018;

Dworczak andMartini, 2019) have shown in similar settings that upper censorship

is optimal if the receiver’s type distribution is unimodal.8 Information structures

equivalent to our pass/fail test and two‐sided censorship also appear in Kolotilin

(2018) in cases when the distribution of the receiver’s type is not unimodal. There,

pass/fail test can be optimal because of a particular shape of the receiver’s type

distribution (e.g. bimodal), rather than the interaction between the design and

disclosure incentives.

A standard assumption in this literature is that the sender commits to a signal,

whose realization is directly observed by the receiver, while in our model it is vol‐

untarily disclosed by the sender. 9 Some recent works also relax the assumption

that the receiver directly observes signal realizations. In Felgenhauer (2019), the

sender designs experiments sequentially at a cost and can choose when to stop

experimenting and which outcomes to disclose. Nguyen and Tan (2021) study a

model of Bayesian persuasion with costly messages, where a special case of the

cost function corresponds to verifiable disclosure of hard evidence studied in this

paper. The difference is that their sender can choose not only a signal about the

8Moreover, Kolotilin, Mylovanov, and Zapechelnyuk (2022) show that the converse also holds.
9See also Onuchic (2021) for a model in the sender can commit to a disclosure rule for realiza‐

tions of an exogenously given signal.
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state, but also the reliability. In contrast, ρ is exogenous in our model. If it could

be chosen by the sender, she would set ρ = 1 and obtain her full‐commitment

payoff.

2 Model

Setup. There are two players: a sender (S, she) and a receiver (R, he). The state of

the world is θ ∈ Θ = [0, 1], unknown by both players, who share a prior belief with

a CDF F, a full‐support density f and a mean x0. R has a privately known outside

option ω ∈ Ω = [0, 1] drawn from some unimodal distribution independent of

θ. In particular, assume that its CDF G admits a strictly quasiconcave full‐support

density g with a peak at some ω̂ > x0.10 R either accepts (a = 1) or rejects (a = 0)

the players’s utility functions are given by uR(a, θ,ω) = a(θ − ω) and uS(a) = a.

That is, R prefers to accept if and only if his expectation of the state is at least as

high as his outside option and S always wants R to accept.

The timing of the game is as follows.

1. S decides which evidence to seek. Formally, S chooses a test, i.e., a measur‐

able mapping π : Θ → ∆M, where M = [0, 1] is the message space.11

2. Nature draws an outside optionω from G, a state θ from F, a messagem from

π(θ), and the set of available messages M̂ as follows:

• With probability ρ ∈ (0, 1], M̂ = {m,∅}which is interpreted as S obtain‐

ing a proof that the realized message is m;

• With probability 1 − ρ, M̂ = {∅}, which can be interpreted either as S

not being able to provewhich outcome realized or that S has not learned

10The assumption ω̂ > x0 always makes equilibrium communication informative and can be

interpreted as the conflict between the players’ preferences being sufficiently large for a given G.

Otherwise, if the conflict is small (ω̂ ⩽ x0), then, for some parameters of the model, equilibrium

communication will be uninformative. In addition, it will always be uninformative if g is close

enough to Dirac δω̂.
11For any compactmetrizable Y, let ∆Y denote the set of all Borel probabilitymeasures endowed

with weak* topology.
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the outcome of the experiment at all.

3. S observes M̂ and chooses m̂ ∈ M̂. That is, even if S obtains evidence, she can

choose whether to disclose it or claim to not have obtained it.12

4. We distinguish between two variants of the game, depending onwhether the

evidence structure chosen by S is observed by R:

• Under covert evidence acquisition, R observes m̂ and, if m̂ 6= ∅, also ob‐

serves π. Then he updates his belief and chooses an action;

• Under overt evidence acquisition, R observes m̂ and π, updates his belief

and chooses an action.

Note that in both variants of the game, R observes π if S discloses evidence. This

assumption enables the ‘hard evidence’ interpretation of information. That is, if

S discloses a piece of evidence certifying some statement about the state, such a

certificatemust also include a non‐falsifiable description of the test that generated

it.13

We refer to the probability ρ as the reliability of the testing environment and

assume that it is fixed and commonly known. In many settings, this is motivated

by the uncertainty about how long collecting evidence will take. Then, if there is a

point in time at which the parties are planning to sign a contract, S might or might

no be able to obtain the evidence by this deadline independently from the chosen

test π.

There exist a number of interpretations of the payoff environment. First, as

described above, ω can be interpreted as a single receiver’s private information.

Second, the set Ω can be viewed as a population of receivers. In this interpretation,

12In principle, there can be many ‘cheap‐talk’ messages that are always available to S. However,

in this environment, any cheap‐talk communication is uninformative because S’s payoff is strictly

increasing in R’s posterior mean. Thus, it is without loss of generality to assume there is a unique

‘cheap‐talk’message m̂ = ∅which can be interpreted as a S’s claim that she does not have any proof.
13An alternative but equivalent formulation of this conceptual assumption is that each test is a

mapping π : Θ → ∆(M×Π) such that each “extendedmessage” (m′, π′) also encodes the description

of the experiment, i.e. π(M × {π}|θ) = 1 for all θ and π. In this formulation, R would observe π

only through the extended message in the event of disclosure.
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S publicly discloses evidence and aims to maximize the mass of those who accept.

Third, consider a setting in which R does not have a private type, but the action

space is continuous. For example, suppose that R is taking an action a ∈ A = [0, 1]

to match the state (uR(a, θ) = −(a − θ)2), and S has a state‐independent utility

function that is convex‐concave in the action, i.e. uS = G.14 Then such a model is

strategically equivalent to the one we study.15

We study perfect Bayesian equilibria of the game. However, because of the as‐

sumptions on the players’ preferences, the analysis is amenable to the belief‐based

approach as explained below. Since it is straightforward to recover the players’ ac‐

tual strategies from beliefs, it will be convenient to abstract away from strategies

in the main text of the paper.16

Belief‐based approach. Wewill follow a framework of representing information

structures with convex functions which has proven convenient in information‐

design problems (Gentzkow and Kamenica, 2016; Kolotilin, 2018).

Fix any R’s posterior belief β ∈ ∆Θ with the mean xβ :=
∫
Θ θ dβ(θ). Then, the

best response of R with an outside option ω coincides with aω(β) := 1{xβ ⩾ ω}
for all ω 6= xβ. Therefore, S’s interim expected payoff is given by the probability R

accepts given xβ, i.e. ∫
Ω
uS(aω(β))dG(ω) = G(xβ).

In other words, R’s outside‐option CDFG plays the role of S’s indirect utility function

defined on the set X := [0, 1] of posterior means.

Because both players’ interim expected payoffs depend only on the mean of

a posterior belief, each test π can be associated with a posterior‐mean distribution,

14Dworczak and Martini (2019) provide an example of a continuous‐action game in which the

sender’s objective is convex‐concave.
15To seewhy, note thatGmeasures S’s indirect utility as a function of the induced posteriormean

in either interpretation, the belief‐based approach section below elaborates on this.
16Appendix A.1 presents a formal definition of an equilibrium.
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whichwewill identify with the corresponding CDF Fπ.17 Without loss of generality,

since all relevant distributions have support inside [0, 1] and cannot havemass at 0,

we treat CDFs as functions on [0, 1]. We will further identify each posterior‐mean

distribution with the corresponding integral CDF (ICDF), which is an increasing

convex function Iπ defined as the antiderivative of the CDF Fπ
18

Iπ : [0, 1] → [0, 1],

x 7→
∫ x

0
Fπ.

Clearly, the CDF is pinned down by ICDF as its right derivative Fπ = I′π.19

To describe the set of all feasible ICDFs, first note that the posterior‐mean distri‐

bution of a fully‐revealing test coincides with the prior F because each posterior is

degenerate at the corresponding state. Second, the posterior‐mean distribution F

of any uninformative test has unit mass at the the priormean x0. Let I and I denote

the ICDFs corresponding to full information and no information, respectively.

Third, it is well known that the Blackwell informativeness order on information

structures translates into mean‐preserving spreads over distributions of posterior

means.20 Hence, we say that an ICDF J is more informative than a posterior‐mean

ICDF I (and I is less informative than J) if and only if J(x) ⩾ I(x) for all x ∈ [0, 1]

with equality at x = 1.

Because every test π is more (less) informative than an uninformative (fully in‐

formative) one, the corresponding posterior‐mean ICDF Iπ is a convex function sat‐

isfying ⩾ I ⩾ I. Gentzkow and Kamenica (2016) and Kolotilin (2018) showed that
17That is, let β : M → ∆Θ be the beliefmap, i.e. anymeasurablemap that satisfies the Bayes rule,∫

Θ̂ π(M̂|·)dF =
∫
Θ
∫
M̂ β(Θ̂|·)dπ(·|θ)dF(θ) for all Borel Θ̂, M̂ ⊆ [0, 1]. Then the posterior‐mean CDF

corresponding to β is given by Fπ(x) :=
∫
Θ π({m ∈ M : xβ(m) ⩽ x}|·)dF.

18We omit the variable of integration whenever it is not ambiguous, adopting the following no‐

tation:
∫ b
a f :=

∫ b
a f(x)dx,

∫ b
a fdg :=

∫ b
a f(x)dg(x).

19Throughout the paper, for any convex I : [0, 1] → [0, 1], let I′(x) denote the right derivative of I

at x for all x ∈ [0, 1) and I′(1) := 1.
20Rothschild and Stiglitz (1970) show equivalence in the context of a risk averter’s preferences

over monetary lotteries (see Leshno, Levy, and Spector, 1997, for a correction of the proof). Black‐

well and Girshick (1954) prove a decision‐theoretic equivalence result in the finite case.
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the converse also holds, that is for any convex I such that I ⩾ I ⩾ I, there exists a

test π such that Iπ = I. Thus, we can define the set of all feasible posterior‐mean

ICDFs as

I := {I : [0, 1] → [0, 1] : I convex and I ⩾ I ⩾ I}.

Finally, in addition to the informativeness partial order ⩾ on I, we also define

the strict informativeness order > as an asymmetric part of ⩾. That is, J is strictly

more informative than I if andonly if J > I, i.e., J ⩾ I and J 6= I. In the current setting,

this notion has the following interpretation: J is strictly more informative than I if

and only if R is ex‐ante strictly better off having posterior‐mean ICDF J than I for

any strictly increasing CDF of the outside option (see Corollary 6 in Appendix A.2).

3 Analysis

In this section, we characterize the equilibria of the game. We start by analyzing an

auxiliary disclosure game in which the evidence structure is fixed and commonly

known. Then, we characterize the resulting S value and show that the ex‐ante ac‐

quisition problem can be stated as an optimization problem in the overt case and

as a fixed‐point problem in the covert case. Finally, we characterize the equilib‐

rium evidence acquisition.

3.1 Voluntary disclosure

In this section, we revisit an auxiliary Dye (1985) disclosure game in which the

evidence structure I is fixed and commonly known. Analyzing this game is useful

to understand the on‐path R beliefs and S disclosure decisions. Moreover, in the

overt case, I is always observed by R and so the auxiliary game can be treated as a

subgame of the main game.

Fix any feasible posterior‐mean ICDF I ∈ I with the corresponding CDF F := I′.

Which realizations of I should S disclose? Let x∅ ∈ X denote non‐disclosure R’s

posterior mean and note that it is strictly optimal for S (not) to disclose x if and only
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if it is above (below) x∅ since her interim payoff function G is strictly increasing.

Thus, in equilibrium, the best‐responding disclosure threshold dρ,I must coincide

with x∅ which itselfmust be Bayes‐consistent given the dρ,I‐disclosure strategy, the

reliability ρ, and F, which can be written as

dρ,I = x∅ =
(1− ρ)

1− ρ + ρF(dρ,I)
x0 +

ρF(dρ,I)

1− ρ + ρF(dρ,I)
EF(x|x ⩽ dρ,I). (1)

The following lemma provides a convenient characterization of the solution of (1)

using the ICDF approach.

Lemma 1. In the Dye (1985) game with a known I ∈ I, the disclosure threshold dρ,I

solves

I(dρ,I) =
1− ρ

ρ
(x0 − dρ,I). (2)

Moreover,

(i) there is a unique solution to (2) in co(supp I);21

(ii) more information leads to more disclosure: dρ,I is strictly decreasing in ρ, and de‐

creasing in I with respect to the informativeness order ⩾;

(iii) perfect reliability leads to unraveling: d1,I = min supp I, that is, S discloses all

(except, possibly, the lowest) realizations of I.

The proof is omitted (all omitted proofs are presented in Appendix A.2) and the

intuition is as follows. The equivalence of (1) and (2) is a straightforward applica‐

tion of the integration by parts in (1). Parts (i‐iii) can be clearly seen from Figure 3.

The uniquness holds because the equilibrium disclosure threshold must be at the

intersection of the increasing (strictly on [min supp I, 1]) ICDF and the straight line

whose negative slope (strictly if ρ < 1) depends on ρ.

At ρ = 1, the lines intersect on [0,min supp I] which means that S will disclose

all (except, possibly, the lowest) realizations in supp I. Intuitively, under full re‐

liability, R is fully skeptical of non‐disclosure which forces S to reveal everything.
21Moreover, there is a unique solution to (2) in [0, 1] if and only if ρ 6= 1 or min supp I = 0. In

principle, Rmayhave anoff‐pathnon‐disclosureposteriormean x∅ < min supp I. Wewill however,

define d1,I := limρ↗1 dρ,I = min supp I for convenient continuity in ρ. While this is least permissive

in terms of equilibria outcomes, it turns out to be without loss of generality.
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This can be seen as a special case of amore general unraveling principle (Milgrom,

1981; Grossman, 1981).

As ρ decreases or I becomes less informative, the intersection occurs at a higher

point. Intuitively, when S is less informed, R’s skepticism is more ‘muted’ which

allows S to credibly conceal more evidence in equilibrium.22

10

1− x0

x0

I

dρ,I

1− ρ
ρ

(x0 − x)

I

FıGURE 3: Construction of the disclosure threshold dρ,I.

3.2 Equilibrium Evidence Acquisition

In this section, we endogenize the evidence structure as S’s ex‐ante choice.

We begin with a few definitions. Say that I is an (c‐) o‐equilibrium structure if

there exists a PBE (formally defined in Appendix A.1) of the (covert) overt acqui‐

sition game in which S chooses π such that Iπ = I. Next, let vρ(I|x∅) denote S

expected value assuming (i) some fixed R’s non‐disclosure belief mean x∅ ∈ X, (ii)

some chosen evidence structure I ∈ I, and (iii) S discloses realizations x > x∅.

Formally,

vρ(I|x∅) := [1− ρ + ρI′(x∅)]G(x∅) + ρ
∫ 1

x∅
GdI′ − G(x0).

22Similar uniqueness and comparative statics results were established in Propositions 1 and 2

in Jung and Kwon (1988) and (see also Proposition 1 in Acharya, DeMarzo, and Kremer, 2011) for

continuous distributions and in Corollary 2 and Proposition 2 of DeMarzo, Kremer, and Skrzypacz

(2019) for general distributions.
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Note that by subtracting the no‐information payoff G(x0), we normalize vρ(I|x∅) to

zero for all x∅ ∈ X and ρ ∈ (0, 1]. This definition enables the following preliminary

characterization of equilibria.

Lemma 2. For any evidence structure I∗ ∈ I,

(i) I∗ is an o‐equilibrium structure if and only if

I∗ ∈ argmax
I∈I

vρ(I|dρ,I), (Overt)

(ii) I∗ is an c‐equilibrium structure if and only if

I∗ ∈ argmax
I∈I

vρ(I|dρ,I∗), (Covert)

Notice an important difference between the two seemingly similar programs:

while (Overt) is an optimization problem, (Covert) is a fixed‐point problem. Con‐

ceptually, in the overt case, S can commit to the way information is acquired (up

to reliability) but not to the way it is disclosed. That is, a deviation to any I will

lead to a Bayes‐consistent R’s non‐disclosure posterior mean dρ,I. Then, since the

disclosure subgame for each I has a unique outcome, S will choose the best such

outcome across all feasible evidence structures.

In contrast, in the covert case, a deviation to some evidence structure I is not

detected by R and so his non‐disclosure posterior remains the same as on the equi‐

librium path. Therefore, S chosen evidence structure I∗ must be best‐responding

to a fixed non‐disclosure posterior mean x∅ which itself must be Bayes‐consistent

with I∗, that is, x∅ = dρ,I∗.

An immediate corollary of the above lemma is the existenceof o‐ andc‐equilibria

by the Weierstrass Theorem and the Kakutani‐Glicksberg‐Fan Theorem, respec‐

tively.

Corollary 1. For any ρ ∈ (0, 1], an o‐equilibrium and a c‐equilibrium exist.

An alternative way to understand the (Overt) objective is to relate it to the S

full‐commitment problem in which she is able to directly design R’s information.
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Define the S indirect value function over R’s posterior‐mean ICDF as

v : I → R,

I 7→ v1(I|0) =
∫ 1

0
GdI′ − G(x0),

so that the S full‐commitment problem can be written as

max
I∈I

∫ 1

0
GdI′ = max

I
v. (FC)

Next, for any given I ∈ I, what is the resulting distribution IDρ ∈ I correspond‐

ing to the disclosed evidence structure or, equivalently, the actual distribution of R

posteriors? Since S does not disclose either when she is uninformed or when the

realized evidence is below dρ,I and otherwise R’s posterior mean equals exactly the

realized evidence, a direct computation yields the disclosed CDF

ID′ρ (x) =

0, x < dρ,I

1− ρ + ρF(x), x ⩾ dρ,I

which gives the following simple expression for the disclosed ICDF

IDρ (x) :=
[
ρI(x) + (1− ρ)(x− x0)

]+
, (Discl)

where [z]+ := max(z, 0).

Then, Lemma 1 and (Discl) imply that the (Overt) objective evaluated at some

ICDF can be written as the (FC) objective evaluated at the disclosed ICDF, that is

vρ(I|dρ,I) = [1− ρ + ρI′(dρ,I)]G(dρ,I) + ρ
∫ 1

dρ,I

GdI′ − G(x0)

=

∫ 1

0
G(x)d

[
ρI(x) + (1− ρ)(x− x0)

]+′ − G(x0)

= v(IDρ )

3.3 Benchmark: Perfect Reliability

Before we characterize the equilibrium evidence structure, it will be instructive to

look at the extreme case of ρ = 1, that is, when S always obtains the evidence she
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seeks. Recall that in this case, a standard unraveling argument applies (Item (iii)),

that is, S fully discloses whatever she acquires due to R being fully skeptical, hence,

ID1 = I.

Then, both (Overt) and (Covert) programs reduce to (FC). This means that two

out of three forces affecting R’s information—voluntary disclosure and observabil‐

ity of acquisition strategy—are irrelevant in this case and an equilibrium is char‐

acterized by a pure information design problem. Kolotilin, Mylovanov, Zapechel‐

nyuk, and Li (2017), Kolotilin (2018) study a model of Bayesian persuasion with R’s

private payoff type which is similar to the above. In particular, their results im‐

ply that if the distribution of R types is unimodal, the optimal signal is a t upper

censorship – it reveals (pools) all states below (above) some threshold t ∈ Θ.23

That is, one can solve the overt and covert cases under full reliability using this

well‐known result from information design using various existing methods. Nev‐

ertheless, below we explicitly state a useful lemma (based on the ICDF approach

of Lipnowski, Ravid, and Shishkin (2021)) which not only implies the (FC) optimal‐

ity of upper censorships, but also turns out to be able to significantly simplify the

analysis of the imperfect reliability case as we will in the next sections.

Intuitively, when the distribution of outside options is unimodal, the S ex‐post

payoff function G is convex below and concave above ω̂. Therefore, when the state

is low (high), more information benefits (hurts) S because her indirect utility func‐

tionG is convex‐concave. To formalize this intuition, it will be useful to rewrite the

objective function v by integrating by parts twice as follows

v(I) =
∫ 1

0
GdI′ − G(x0) =

∫ 1

0
Gd(I′ − I′) =

∫ 1

0
(I− I)dg.

Such an integral representation implies that the S’s value can be visualized (see

Figure 4a) as the ‘area’ between I and I ‘weighted’ by the density g of R’s outside

option and can be decomposed into the positive part
∫ ω̂
0 (I− I)dg and the negative

part
∫ 1
ω̂(I− I)dg.

23Optimality of upper censorship in similar settings also appears in Alonso and Câmara (2016b)

and Dworczak and Martini (2019).
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x0
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I
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v(I) =
∫ ω̂
0 (I− I)dg+

∫ 1
ω̂(I− I)dg

(a) v(I) as the sum of the positive and the

negative parts.

10 x0

J

I
I

I

t x

0 ω̂

g

(b) Lemma 4: J is an S‐improvement over I.

FıGURE 4: Graphical representation of v and Lemma 4.

This decomposition motivates the following definitions. Call J a pivoted I if J

is weakly above I on [0, ω̂] and weakly below I on [ω̂, 1] and I 6= J. Call J an S‐

improvement over I if v(J) − v(I) =
∫
(J − I)dg > 0 for all strictly quasiconcave g

with a peak at ω̂. The next lemma shows that these two relations coincide.24

Lemma 3. For any I, J ∈ I, J is an S‐improvement over I if and only if J is a pivoted I.

Lipnowski, Ravid, and Shishkin’s (2021) Lemma 5 shows how to pivot any I and

obtain some upper censorship J as a result. The following lemma based on that

construction states that only upper censorships are immune to S‐improvements.

Lemma 4. For any I ∈ I there exists some upper censorship which either coincides with

or is an S‐improvement over I.

The construction is illustrated in Figure 4b. Fix any I ∈ I. By Lemma 3, we need

to construct a t upper censorship J which either coincides with I or is a pivoted I.

Take the line tangent to I going through the point (ω̂, I(ω̂)), and let (t, I) and (x, I)

24Note that if ω̂ = 1, then S‐improvements correspond to strictly more informative structures,

and pivoting correspond to a mean‐preserving spread. Hence, Lemma 3 can be seen as a general‐

ization of the strict version of the Blackwell‐Rothschild‐Stiglitz equivalence result (see Corollary 6

in Appendix A.2).
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be the points of tangencywith I and intersectionwith I, respectively. Let J be equal

to the tangent line on [t, x], to I on [0, t], and to I on [x, 1]. It is easy to verify that J is

a t upper censorship and that either I 6= J and then J is an S‐improvement, or I = J,

then no improvement exists.

Since any non‐upper‐censorship can be S‐improved and v is simultaneously the

(FC) objective, and (Overt) and (Covert) objective under ρ = 1, we immediately

obtain the following characterization of the perfect reliability case.

Corollary 2. If ρ = 1, then there exists some t∗1 ∈ (0, ω̂) such that the t∗1 upper censorship

is the unique solution of the (FC), (Overt), and (Covert) problems.

3.4 Overt Acquisition

Now we turn to the general overt case with imperfectly reliable testing. We start

by introducing the following class of information structures that nests the upper

censorship defined in Section 3.3.

Call an evidence structure I ∈ I a (θl, θh) two‐sided censorship of J ∈ I if it is a

garbling of Jwhich perfectly reveals all realizations in [θl, θh], pools the ones above

θh, and also pools the ones below θl. Formally, I is the lowest ICDF that coincides

with J on [θl, θh] as illustrated in Figure 5. This class includes three important spe‐

cial cases: I is a θh upper censorship of J if θl = 0; a θl lower censorship of J if θh = 1;

and a θ pass/fail test of J if θl = θh = θ. Whenever J = I in the above notions, we

will omit saying ‘of I’ for brevity.

A test inducing a two‐sided censorship can be interpreted as a grading system

that assigns the PAſſ grade to the states above the upper cutoff, the FAıL grade to

the states below the lower cutoff, and has a variety of intermediate grades corre‐

sponding exactly to each state in between. In addition, if θl = 0 and θh = 1, both

pooling intervals are empty, which corresponds to the fully informative structure

I. And if θl = θh ∈ {0, 1}, then all states are pooled, which corresponds to the

uninformative structure I.

In order to state the main results, we now introduce a notion of disclosure‐
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1− θ0

θl θh

J
I

lower pooling separation upper pooling

FıGURE 5: Two‐sided censorship.

equivalence to address themultiplicity of equilibriumevidence structures that nat‐

urally arises in the model.

Definition 1. Call I and J disclosure‐equivalent if their (Discl) transforms coincide,

that is, IDρ = JDρ .

To illustrate this definition, suppose I is an equilibrium evidence structure in‐

duced by a test which is perfectly informative about states below some x ⩽ dρ,I.

Then, although S obtains precise information about states below x, she will end

up not disclosing any of the corresponding realizations of I. Now consider Jwhich

is a x lower censorship of I, that is, J pools all realizations of I below x. But then

this is observationally equivalent from R’s perspective since the same realizations

of I and J are disclosed and so it does not matter whether S learns more or less

bad news which will be concealed anyway. As a result, disclosure equivalence af‐

fects neither the Bayes‐consistent non‐disclosure posterior, nor whether (MP) is

satisfied, nor whether (Overt) and (Covert) equilibrium conditions are satisfied.

It is also easy to verify that Definition 1 and the (Discl) transformation imply

I and J are disclosure equivalent if and only if they coincide on [dρ,I, 1]. This im‐

plies that the disclosure‐equivalence class of any I has the least informative el‐

ement given by the dρ,I lower censorship of I. From now on, we will focus on
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such least informative equilibria structures. The reason for such a selection from

disclosure‐equivalence classes is three‐fold. First, it is straightforward to construct

a disclosure‐equivalence class from the least informative structure and so it is easy

to recover all equilibria.25 Second, this selection can be seen as a ‘revelation princi‐

ple’: for every equilibriumof the game, there exists a ‘canonical’ outcome‐equivalent

equilibrium, in which there is a unique bad‐news realization which is the only one

not disclosed by S. Third, one can also view this as a selection based on vanishing

Blackwell‐monotone cost of information.

The following theorem provides a characterization of o‐equilibria.

Theorem 1. There exists ρo ∈ [0, 1) such that any o‐equilibrium evidence structure is

disclosure equivalent to a pass/fail test if ρ < ρo, and to the (dρ,I, t∗1) two‐sided censorship

if ρ > ρo.

Moreover, for all except countably many ρ < ρo, the equilibrium pass/fail threshold

toρ ∈ (0, dρo,I) is unique and strictly increasing in ρ.

Recall that in isolation, the voluntary disclosure force leads to pooling at the bot‐

tom and the information design force leads to pooling at the top of the state space

as evident from Sections 3.1 and 3.3, respectively. Theorem 1 then demonstrates

that whether and how these two forces interact depends on reliability. When re‐

liability is above ρ, the interaction between the two forces is trivial and optimal

evidence structure is a two‐sided censorship of the state. The lower threshold dρ,I

is not affected by the design of the evidence structure and coincides with the dis‐

closure threshold under fully‐revealing evidence structure. Moreover, the upper

threshold t∗1 is unaffected by voluntary disclosure: it stays constant and coincides

with the optimal upper threshold that the sender would use under ρ = 1. In other

words, the optimal structure is a straightforward combination of the two forces.

However, when reliability is below ρ, the interaction between the two forces

becomes non‐trivial and the sender switches to a pass/fail test. From the ex‐ante

perspective, S prefers more information at the bottom and, therefore, voluntary
25Indeed, the set of all structures disclosure‐equivalent to I is the ⩾‐interval between the dρ,I

lower‐censorship of I and pointwise maximum over all structures coinciding with I on [dρ,I, 1].
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disclosure hurts S because it induces pooling of low states. In other words, while

shewouldwant to commit to reveal low states, she cannot if disclosure is voluntary.

When ρ drops below ρ, it becomes optimal to design evidence structure in order

to reduce the ex‐ante loss from lower pooling. This is achieved by a pass/fail test,

as it allows to reduce the lower pooling interval by enlarging the upper pooling

interval because, under pass/fail test, S discloses if and only if she passes the test.

Moreover, as reliability falls so does the total probability of disclosure, if the

signal is kept the same. Then, it is optimal to lower the pass/fail test threshold

in order to enlarge the upper pooling interval and increase the probability of dis‐

closure conditional on obtaining evidence thereby compensating for falling total

probability of disclosure.

Formally, the result is based on two observations.

Corollary 3 (of Lemma 4). Every o‐equilibrium structure is disclosure‐equivalent to an

upper censorship.

Proof. Takeanyo‐equilibriumstructure I. ByLemma4, there exists anS‐improvement

upper‐censorship J. Then, J− I is non‐negative on [0, ω̂] and non‐positive on [ω̂, 1]

and so is JDρ − IDρ . If JDρ = IDρ , then I is disclosure equivalent to an upper censor‐

ship. Otherwise, JDρ is an S‐improvement over IDρ and therefore I does not maxi‐

mize v(IDρ ) = vρ(I|dρ,I) which contradicts with it being an o‐equilibrium structure,

by Lemma 2.

This observation suggests that the information design force has a similar effect

as we observed in the case of perfect reliability in Section 3.3. It allows to relax the

(Overt) program to a one‐dimensional optimization with respect to upper censor‐

ship thresholds t ∈ Θ. But then every upper censorship is disclosure‐equivalent

to either a two‐sided censorship or to a pass/fail test depending on whether the

optimal upper censorship threshold toρ is above or below the corresponding non‐

disclosure posterior.

Second, we demonstrate that the relaxed optimization objective has the increas‐

ing differences property with respect to t and ρ so that the set of optima is in‐
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creasing in ρ in the sense of strong set order. Moreover, it has strictly increasing

marginal differences for low values of t which implies that the set of optima is ei‐

ther equal to {t∗1} or weakly below t∗1 it with every selection strictly increasing in

ρ. Denoting by ρo the switching point, this implies that the o‐equilibrium upper

censorship threshold is unique for all ρ > ρo and all except possibly a countable

subset of ρ ⩽ ρo.

3.5 Covert Acquisition

We now turn to the case in which the S acquisition strategy is unobserved by R un‐

less S discloses evidence. The following result shows that despite the additional

ex‐ante S incentive constraint, c‐equilibria structures share some qualitative prop‐

erties of o‐equilibria. At the same time, the comparative statics result with respect

to reliability is reversed.

Theorem 2. There exists ρc ∈ [0, ρo] such that every c‐equilibrium evidence structure is

disclosure equivalent to a pass/fail test if ρ ⩽ ρc, and to the (dρ,I, t∗1) two‐sided censorship

if ρ > ρc.

Moreover, for all ρ < ρc, the c‐equilibrium pass/fail threshold tcρ ∈ (dρc,I, x0) is unique

and strictly decreasing in ρ.

To explain the intuition behind the result, it will be useful to establish some

preliminary observations. First, we make the following difference‐in‐difference

comparison between deviations in the overt and covert cases.

Lemma 5. The net benefit to S from an ex‐ante deviation in the covert case is higher

(lower) than that in the overt case if and only if the corresponding non‐disclosure poste‐

rior is higher (lower).

Proof. The desired difference in net benefits of a deviation from I∗ to some I be‐
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tween the covert and overt cases equals26

[vρ(I|dρ,I∗)− vρ(I∗|dρ,I∗)]− [vρ(I|dρ,I)− vρ(I∗|dρ,I∗)]

= (1− ρ) [G(dρ,I∗)− G(dρ,I)] + ρ
∫ dρ,I∗

dρ,I

I′ dg,

and, thus, has the same sign as dρ,I∗ − dρ,I.

Intuitively, this result holds because the only way S may benefit from covertly

deviating to I in addition to her gain from an overt deviation to the same I is by

‘hiding’ a Bayes‐consistent‐with‐deviation non‐disclosure posterior which is lower

than the on‐path one.

Second,we can establish the equivalence betweeno‐ and c‐equilibria structures

for high reliability by pointing out a connection to the so‐called “minimum princi‐

ple” of DeMarzo, Kremer, and Skrzypacz (2019) which studies (in our language) a

constrained covert evidence acquisition game with a uniform distribution of out‐

side options. Their results imply that c‐equilibria in the uniform case are charac‐

terized by the minimum principle which can be stated in our setting as

I∗ ∈ argmin
I∈I

dρ,I. (MP)

Intuitively, in the absence of information design incentives for S in the uniform

case, I∗ is a c‐equilibrium structure if and only if S has no profitable deviation ex‐

ante.27 By Lemma 5, the only way S may benefit from a deviation to some I is if I

has a lower correspondingnon‐disclosureposteriormeandρ,I. Hencenoprofitable

deviation exists if and only if I∗ is minimal in the sense of (MP).

In our non‐uniform case, the minimum principle is no longer necessary in the

non‐uniform case, but it turns out that the combination of (MP) and (Overt) opti‐

mality is sufficient to solve the (Covert) program.

Corollary 4 (of Lemma 5). If the set of o‐equilibria satisfying the minimum principle

(MP) is non‐empty, then this set coincides with the set of c‐equilibria.
26For any a, b ∈ [0, 1], we follow the notational convention

∫ b
a Fdg :=

∫ b
0 Fdg−

∫ a
0 Fdg.

27Indeed, with G(x) = x on [0, 1], any I ∈ I would solve the (Overt) (and also (FC)) problem as

vρ(I|dρ,I) =
∫ 1
0 xdI′ − G(x0) = 0.
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Now notice that with high reliability the unique o‐equilibrium satisfies themin‐

imum principle. Intuitively, the o‐equilibrium two‐sided censorship is disclosure

equivalent to the t∗1 upper‐censorshipwhich is perfectly informative about lowstates.

This implies R is least skeptical—for a given ρ—about non‐disclosure and has the

lowest possible Bayes‐consistent non‐disclosure posterior. Hence, it is also a c‐

equilibrium structure as S cannot benefit from R’s ‘fixed’ non‐disclosure posterior

by deviating (Lemma 5). In otherwords, with high reliability, not only information

design and voluntary disclosure do not interact, but also the covertness of acquisi‐

tion has no impact because S chooses a relatively detailed test.

In contrast, with low reliability, the o‐equilibrium pass/fail test fails the min‐

imum principle, because the threshold is always strictly below the minimal non‐

disclosure posterior dρ,I. So there is an additional benefit to S from deviating from

such a signal to some structure with a lower corresponding non‐disclosure poste‐

rior which explains why c‐equilibriamay differ from o‐equilibria. Still, a combina‐

tion of Lemmas 4 and 5 allows to quickly establish that every c‐equilibrium struc‐

ture is disclosure‐equivalent to an upper censorship. Namely, similarly to the argu‐

ment in Corollary 3, if I is a c‐equilibrium which is not disclosure‐equivalent to its

S‐improvement upper censorship J, then JDρ is an S‐improvement over IDρ . Hence,

by Lemma 5, the benefit from deviating from I to J is strictly positive, because it

would be a strict improvement in the overt case and J has a lower corresponding

non‐disclosure posterior.

However, to establish the comparative statics result of Theorem 2, the above

observation is insufficient because it does not bear any implications off the equi‐

librium path. It turns out that a straightforward modification of Lemma 4 can be

used to establish the dominance of the upper censorship class even off‐path in the

following sense. Then, solving the (Covert) program is equivalent to finding a pair

(I, x∅) such that S is best‐responding to R’s non‐disclosure belief (i.e., I maximizes

vρ(·|x∅) over I), and that the R’s belief is Bayes consistent (i.e., x∅ = dρ,I). The

following observation implies that every best‐response is payoff‐equivalent to an

upper censorship.
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Corollary 5 (of Lemma 4). For all x∅ ∈ [0, x0], every maximizer of vρ(·|x∅) over I

coincides on [x∅, 1]with some upper‐censorship, and the set ofmaximizers is independent

of ρ.

Proof. For any x∅ ∈ [0, x0], rewrite the objective vρ(I|x∅) can be rewritten as

argmax
I∈I

vρ(I|x∅) = argmax
I∈I

[1− ρ + ρI′(x∅)]G(x∅) + ρ
∫ 1

x∅
GdI′ − G(x0)

= argmax
I∈I

∫ 1

0
G∨x∅ d(I′ − I′)

= argmax
I∈I

∫ 1

0
(I∨x∅ − I)dg

where we define J∨x∅(x) := max{J(x), J(x∅)} for all x ∈ X, J ∈ I and I∨x∅ :=

{J∨x∅ : J ∈ I}. It follows immediately that the set of maximizers is independent

of ρ. Then, the definition of the function v and the notion of S‐improvement can

be readily extended to I∨x∅. The rest of the argument is very similar to the proof

of Corollary 3.

Take any solution I of the above program and consider its upper censorship S‐

improvement J as given by Lemma 4. Then, J− I is nonnegative on [0, ω̂] and non‐

positive on [ω̂, 1] and so is J∨x∅ − I∨x∅. If J∨x∅ = I∨x∅, then I and J coincide on [x∅, 1]

andwe are done. Otherwise, J∨x∅ 6= I∨x∅ and so J∨x∅ is an S‐improvement over I∨x∅,

hence v(J∨x∅) > v(I∨x∅), which contradicts with I solving the program.

In otherwords, whenS is choosing a test under somefixednon‐disclosure belief

x∅, she can always guarantee herself a payoff of G(x∅) by non‐disclosing. Hence,

best‐responding to x∅ is equivalent to solving the full‐commitment problem with

the ex‐post payoff function G∨x∅ which is equal to G truncated from below at G(x∅).

Therefore, Lemma4 implies that pivoting the ICDFon [x∅, 1] constitutes anS‐improvement

to which only upper censorship are immune to.

Next, the (Covert) problem reduces to finding a pair (t, x∅) such that x∅ = dρ,It

and the t upper censorship It is a best response to x∅, that is tmaximizes
∫ 1
0 G∨x∅ dI′t

overΘ. Figure 6 illustrates the graphsof thebest‐response and theBayes‐consistency

mappings and their intersections for various reliability levels. It is easy to show
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that the S best response is unique, continuous in x∅, equals t∗1 for x∅ ⩽ t∗1 and

strictly increasing otherwise. But then since the Bayes consistency mapping t 7→
dρ,It is continuous, equal to dρ,I below the diagonal and strictly decreasing above.

The intersection of the graphs of the best‐response and Bayes‐consistency map‐

pings then exists and unique. Moreover, since higher reliability does not change

the best response and lowers the Bayes consistent non‐disclosure belief, the inter‐

section is constant when dρ,I ⩽ t∗1 and strictly decreasing otherwise. Therefore,

one can define ρc := inf{ρ ∈ (0, 1] : dρ,I ⩽ t∗1} to obtain the result.

x0non‐disclosure posterior x∅0

th
re
sh

ol
d
t

x0
d0.1,Itd0.5,Itd0.9,Itd0.99,It dρc,It

BR(x∅)t∗0.1

t∗0.5
t∗ρ∈[ρc,1]

FıGURE 6: C‐equilibrium thresholds obtained for various reliability levels as intersections

of the best‐response and Bayes‐consistency mappings for the case of uniform θ and

triangularly distributed ω with the peak at 3/5.

4 Conclusion

This paper studies overt and covert acquisition of hard information subject to an

exogenous reliability constraint. Despite the fact that the sender lacks full commit‐

ment, we show how tools from information design can be adapted to fully charac‐
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terize the equilibrium evidence structure without putting parametric restrictions

ona rich environment. Themain results demonstratehoweachof themain forces—

information design, voluntary disclosure, and covert/overt nature of acquisition—

contribute to the equilibrium structure. When the reliability is high, the three

forces do not interact: the sender acquires essentially the same signal (upper cen‐

sorship) as under full commitment and thenatureof acquisition is irrelevant. When

the reliability is low, the equilibrium signal takes a very simple form of a pass/fail

test with the threshold jointly determined by the three forces. In particular, the

pass/fail threshold is monotone in reliability but whether it is increasing or de‐

creasing depends on whether acquisition is overt or covert.

Our analysis under the assumptions of costless acquisition and exogenous reli‐

ability may also shed some light at situations when these assumptions fail to hold.

First, if acquiring a test comes at some Blackwell‐monotone cost, our results sug‐

gest that in some cases it may have little impact on the equilibrium structure. In

particular, when reliability is low, if a pass/fail test—a very coarse information

structure—arises in the costless case, then the sender would be even less likely

to choose a more informative and complex structure with a positive cost. Second,

suppose the sender could make an investment in reliability. Then our results can

be seen as deriving the value of reliability which can then be compared to the cost

of investment.

Alternatively, suppose the sender could jointly choose among tests with various

reliability levels which are all below some technological limit ρmax. Then, in the

overt case, it could be easily shown28 that the sender always strictly benefits from

higher reliability and so she would prefer tests with reliability equal to ρmax which

could then be interpreted the exogenous reliability in ourmodel. The replicability

principle does not hold in the covert case and so it is possible that the sender may

actually prefer lower reliability due to equilibrium effects. However, analyzing

28This holds because of replicability: any disclosed information structure that is feasible under

lower reliability is also feasible under higher reliability. Formally, rewrite the (Overt) problem as

max{IDρ : I∈I} v and note that the constraint set is monotone in ρ with respect to set inclusion.
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when this occurs appears to be challenging without additional (e.g. parametric)

restrictions on F and H appear to be intractable.

A Appendix

A.1 Equilibrium Definition

Let Π be the set of all tests, i.e., measurable mappings Θ → ∆M endowed with

the discrete σ‐algebra. For any convex measurable space Y, given a probability

measure ν ∈ ∆Y, let Eν :=
∫
Y ydν(y) ∈ Y denote the barycenter of ν.

Under both overt and covert acquisition, an equilibriumconsists of four objects:

an S testing strategy π ∈ Π, an S’s disclosure strategy (in terms of the probability

of disclosure) δ : M×Π → [0, 1], a R’s belief map β : (M∪{∅})×Π → ∆Θ, and a R’s

acceptance strategy (in terms of the probability of acceptance) α : (M∪{∅})×Ω×
Π → [0, 1]. For convenience, for all π ∈ Π and ω ∈ Ω, denote δπ := δ(·, π), βπ :=

β(·, π), αω
π := α(·,ω, π),uω

R := uR(·,ω) and let ℓπ,ρ,δ : Θ → ∆(M ∪ {∅}) denote the

likelihood function of the experiment π with reliability ρ, i.e., for all BorelM′ ⊆ M,

ℓπ,ρ,δ(M′|θ) := ρ
∫
M′ δπ dπ(·|θ).

Now, an overt‐acquisition equilibrium, or o‐equilibrium, is a tuple (π∗, δ, α, β) of

measurable mappings such that, for all m ∈ M,ω ∈ Ω, π ∈ Π,

βπ is derived from Bayes rule given μ0 and ℓπ,ρ,δ. (o‐Bayes)

supp αω
π (m) ⊂ argmax

a∈[0,1]

∫
Θ
uω

R(a, θ)dβπ(θ|m), (R‐IC)

δπ(m) ∈ argmax
d∈[0,1]

∫
Ω
(dαω

π (m) + (1− d)αω
π (∅))dG(ω), (S‐IC)

π∗ ∈ argmax
π′∈Π

∫
Θ

∫
M∪{∅}

∫
Ω
αω

π′(m)dG(ω)dℓπ′,ρ,δ(m|θ)dF(θ), (Ex‐Ante)

The definition of a covert‐acquisition equilibrium, or c‐equilibrium, is equiva‐
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lent, except condition (o‐Bayes) is replaced with

βπ is derived from Bayes rule given μ0 and

ℓπ,ρ,δ, on M,

ℓπ∗,ρ,δ, on {∅}.
(c‐Bayes)

That is, in contrast to the overt case, R’s beliefs depend only on the on‐path S’s

choice of π∗ in the event of non‐disclosure as she then cannot detect S’s ex‐ante

deviations.

A.2 Proofs

A.2.1 Proof of Lemma 1

To obtain (2), integrate by parts to obtain

EF(x|x ⩽ x∅) =
1

F(x∅)

∫ x∅

0
xdF(x) = x∅ − I(x∅)

F(x∅)
,

then plug it into (1) and rearrange the terms.

Next, we establish (i). By Lemma 1, the set of solutions is given by the roots of

a function

ξρ,I : [0, 1] → R

x 7→ ρI(x) + (1− ρ)(x− x0).

If ρ 6= 1 or min supp I = 0, then it is continuous, strictly increasing, and has

ξρ,I(0) ⩾ 0 and ξρ,I(x0) ⩽ 0,with thefirst (second) inequality strict if ρ = 1 (min supp I =

0). Thus, it has a unique root by the Intermediate Value Theorem.

If ρ = 1, then ξρ,I = I equals zero on [0,min supp I] and is strictly increasing on

[min supp I, 1]. Therefore, d1,I = min supp I is unique root of I in supp I (which also

establishes (iii)).

Finally, (ii) holds because ξρ,I(x) is strictly increasing in ρ and increasing in I

(with respect to ⩾) for all x.
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A.2.2 Proof of Lemma 2

First, note that equilibrium conditions (R‐IC) and (S‐IC) can be viewed as maxi‐

mizations of linear functions on [0, 1] and are, therefore, equivalent to

αω
π (m) = 1(Eβπ(m) ⩾ ω) (R‐IC′)

for all m ∈ M and ω ∈ Ω (except, possibly, for Eβπ(m) = ω), and

δπ(m) = 1(Eβπ(m) ⩾ Eβπ(∅)) (S‐IC′)

for all m ∈ M (except, possibly, when Eβπ(m) = Eβπ(∅)).

Then, one can rewrite the (Ex‐Ante) objective function as∫
Θ

∫
M∪{∅}

∫
Ω
αω

π′(m)dG(ω)dℓπ,ρ,δ(m|θ)dF(θ)

=

∫
Θ

∫
M∪{∅}

G(Eβπ′(m))dℓπ′,ρ,δ(m|θ)dF(θ)

= ρ
∫
Θ

∫
M

G(Eβπ′(m))d [δπ′(m)π′(m|θ)] dF(θ)

+ G(Eβπ′(∅))

(
1− ρ + ρ

∫
Θ

∫
M
(1− δπ′(m))dπ′(m|θ)dF(θ)

)
= ρ

∫
Θ

∫
{m∈M : Eβπ′ (m)>Eβπ′ (∅)}

G(Eβπ′(m))dπ′(m|θ)dF(θ)

+ G(Eβπ′(∅))

(
1− ρ + ρ

∫
Θ
π′({m ∈ M : Eβπ′(m) ⩽ Eβπ′(∅)}|θ)dF(θ)

)
.

By the definition of Fπ′, the (Ex‐Ante) objective function can be further rewritten

as

ρ
∫ 1

Eβπ′ (∅)

G(x)dFπ′ + G(Eβπ′(∅))
[
1− ρ + ρFπ′(Eβπ′(∅))

]
= vρ(Iπ′ |Eβπ′(∅))

To sumup, (π∗, δ, α, β) satisfies (R‐IC), (S‐IC), and (Ex‐Ante) if and only if it satisfies

(R‐IC′) and (S‐IC′), and

π∗ ∈ argmax
π′∈Π

vρ(Iπ′ |Eβπ′(∅)). (Ex‐Ante′)
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Now consider the overt case. Since (o‐Bayes) implies Eβπ′(∅) = dρ,Iπ′ for all π
′ ∈ Π,

if I∗ is an o‐equilibrium structure then

I∗ ∈ argmax
I∈I

vρ(I|dρ,I),

which is exactly the (Overt) program.

Next, consider the covert case. Note that (c‐Bayes) implies, for all π′′ ∈ Π,

Eβπ′′(∅) = dρ,Iπ∗ . Hence, if I∗ is a c‐equilibrium structure then

I∗ ∈ argmax
I∈I

vρ(I|dρ,I∗),

which is exactly the (Covert) program.

Finally, to show the sufficiency of the two programs for the corresponding equi‐

libria, we use {Iπ′ : π′ ∈ Π} = I. Given a solution I∗ to the (Overt) (respectively,

Covert) program, take any π∗ ∈ Π such that Iπ∗ = I∗, any βπ satisfying (o‐Bayes)

(respectively, c‐Bayes) and let α and δ be defined as in (R‐IC′) and (S‐IC′) to con‐

struct a profile (π∗, δ, α, β) which is an o‐equilibrium (c‐equilibrium, respectively)

by the above arguments.

A.2.3 Proof of Corollary 1

Endow I with a topology corresponding (induced under μ 7→ (t 7→
∫ t
0 μ[0, x]dx)) to

the weak* topology on ∆[0, 1]. Then, the (Overt) program admits a solution since it

has a compact domain and a continuous objective.

For the covert case, consider the correspondence

Φ : I × [0, 1] ⇒ I × [0, 1]

(I, x∅) 7→ argmax
I′∈I

vρ(I′|x∅)× {dρ,I}.

Note that x∅ 7→ argmaxI′∈I vρ(I′|x∅) is non‐empty‐, convex‐, compact‐valued and

upper‐hemicontinuous by Berge’s Theorem and I 7→ dρ,I is a continuous mapping

as follows from Lemma 1. Therefore, Φ is a non‐empty‐, convex‐, compact‐valued

andupper‐hemicontinuous correspondenceona compact and convexdomain and,

thus, it admits a fixed point by the Kakutani‐Glicksberg‐Fan theorem.
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A.2.4 Proof of Lemma 3

Wefirst establish the following result which implies both the equivalence between

pivoting and S‐improvements of Lemma 3 and the equivalence between strict in‐

formativeness and (ex‐ante) R‐improvements.

Lemma 6. Let z1, . . . , z2k−1 ∈ [0, 1] and Z+
i := [z2i, z2i−1], Z−

i := [z2i−1, z2i] for all i =

1, . . . , k, where z0 := 0, z2k = 1. Then, for any I, J ∈ I the following statements are

equivalent:

(i) J is weakly above (below) I on each Z+
i (Z−

i ) and J 6= I,

(ii)
∫ 1
0 (J − I)dh > 0 for all h : [0, 1] → R strictly increasing (decreasing) on each Z+

i

(Z−
i ).

Proof. First, suppose J is weakly above (below) I on each Z+
i (Z−

i ) and let h : [0, 1] →
R be strictly increasing (decreasing) on each Z+

i (Z−
i ). Then,

∫ 1
0 (J − I)dh ⩾

∫
N(J −

I)dh for any interval N ⊆ [0, 1]. If J 6= I, then there exists ε > 0, i ∈ {0, . . . , 2k} and
0 ⩽ z < z ⩽ 1 such that either J − I > ε on [z, z] ⊆ Z+

i or I − J > ε on [z, z] ⊆ Z−
i . In

both cases, we have h(z) 6= h(z) and hence∫ 1

0
(J− I)dh ⩾

∫ z

z
(J− I)dh ⩾ ε|h(z)− h(z)| > 0.

Second, suppose
∫ 1
0 (J−I)dh > 0 for all h : [0, 1] → R strictly increasing (decreas‐

ing) on each Z+
i (Z−

i ), which immediately implies J 6= I. Next, take any x ∈ [0, 1] and

suppose x ∈ Z+
i for some i. Define hx := 1[x,1] : [0, 1] → R and and consider a se‐

quence of ramp functions hx
n := [1− n(x− id)+]+ : [0, 1] → R. Note that hx

n → hx

in the sense of weak convergence and, by assumption,
∫ 1
0 (J − I)dhx > 0 for all n.

Hence,

J(x)− I(x) =
∫ 1

0
(J− I)dhx = lim

n→∞

∫ 1

0
(J− I)dhx

n ⩾ 0

Finally, the case of x ∈ Z−
i for some i is analogous with hx := 1[0,x) and hx

n :=

[1− n(id − x)+]+.

Proof of Lemma 3. The result follows immediately from Lemma 6 by letting k =

1, z1 = ω̂.
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Nownote that Lemma6 is related to the following strict version of the Blackwell‐

Rothschild‐Stiglitz Theorem.

Corollary 6. For all I, J ∈ I, the following statements are equivalent

(i) J is strictly more informative than I: J > I,

(ii) J is an R‐improvement over I: w(J) − w(I) =
∫ 1
0 (J − I)dG > 0 for all strictly

increasing G.

Proof. The result follows immediately from Lemma 6 by letting k = 1, z1 = 1.

A.2.5 Proof of Lemma 4

Take any I ∈ I. By Lemma 5 in Lipnowski, Ravid, and Shishkin (2021), we can find

some t ∈ [0, ω̂], θ ∈ [ω̂, 1], and J ∈ I such that

• J = I on [0, t], J is affine on [t, θ], and J is affine with unit slope on [θ, 1],

• J is a pivoted I or J = I.

Because the first part simply states that J is a t upper censorship, by Lemma 3, this

implies that either J coicides with or is an S‐improvement of I.

A.2.6 Proof of Corollary 2

First, note that by Lemma 4, any (FC) solution is an upper censorship since other‐

wise it could be S‐improved. Therefore, a t upper censorship It solves (FC) if and

only if t maximizes v0 := t 7→ v(It) over [0, 1]. As follows from Lemma 7 (below)

part (SQC) with x∅ = 0, there is a unique maximizer t∗1 ∈ (0, ω̂).

Next, as v1(I|d1,I) = v(ID1 ) = v(I), the t∗1 upper censorship is also the unique

o‐equilibrium structure.

Finally, by Lemma 1, d1,I∗1 = min supp I∗1 = 0, and so for any I ∈ I, v1(I|d1,I∗1 ) =
v1(I|0) = v(I). Hence, the t∗1 upper censorship is the unique c‐equilibriumstructure

with 0 being the lowest point in the support. Now, by contradiction, suppose there

is some (Covert) solution I with x := min supp I > 0. This implies I cannot be
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an upper censorship and so, by Lemma 4, there exists its S‐improvement upper

censorship J so that v(J) > v(I). Also, J|[0,x] ⩾ 0 = I[0,x]. But then

v1(J|d1,I)− v1(I|d1,I) = v1(J|x)− v1(I|x) = v(J)− v(I) +
∫ x

0
J′ dG > 0,

which means J is a strictly profitable deviation.

A.2.7 Proof of Corollary 4

Suppose I∗ is an o‐equilibrium which satisfies (MP) and take any I ∈ I. We will

show that I is a o‐equilibrium satisfying (MP) if and only if it is a c‐equilibrium. By

Lemma 5, it is weakly beneficial to covertly deviate from I to I∗ because it is weakly

beneficial to overtly deviate from I to I∗ and there is an additional non‐negative

benefit since I∗ satisfies the minimum principle. But then I is a c‐equilibrium if

and only if both of these non‐negative benefits are zero which is equivalent to I

being an o‐equilibrium satisfying (MP).

A.2.8 Towards the Proofs of Theorems 1 and 2

In this section,weconsider the relaxedmaximizationoverupper censorship thresh‐

olds. We establish some properties of its objective function and introduce some

notation which will be used in the proofs of the main results.

Properties of upper censorships. Fix any t ∈ Θ. Let It denote the t upper cen‐

sorship of I, Ft := I′t be the corresponding CDF, xt :=
∫ 1
t θ dF(θ)/(1 − F(t)) be the

conditional mean of the upper pooling. That is,

It(x) =

I(x), x ⩽ t,

I(t) + F(t)(x− t), x > t,
Ft(x) =


F(x), x ⩽ t,

F(t), x ∈ (t, xt),

1, x ⩾ xt,

xt =
x0 + I(t)− tF(t)

1− F(t)
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Given our assumptions on I, xt for t = 0 defined this way is consistent with our

notation x0 for the prior mean. Moreover, xt > t for all t ∈ [0, 1) and xt is strictly

increasing in t. In particular, this implies that, by the Intermediate Value Theorem,

there exists a unique t ∈ (0, ω̂) such that

xt = ω̂.

Clearly, It(x), Ft(x), and xt are almost everywhere continuous and differentiable

in t. In particular,

d
dtIt(x) = 1[t,xt](x)f(t)(x− t), for all (t, x) ∈ [0, 1]2 such that x 6= xt,

d
dtFt(x) = 1[t,xt](x)f(t), for all (t, x) ∈ [0, 1]2 such that x /∈ {t, xt},

d
dtxt =

(xt − t)f(t)
1− F(t)

, for all t ∈ [0, 1).

Next, fix any ρ ∈ (0, 1]. Then, the Bayes‐consistent non‐disclosure posterior

equals

dρ,It =


ρ[F(t)t− I(t)] + (1− ρ)x0

1− ρ(1− F(t))
, if t ⩽ dρ,I,

dρ,I, if t > dρ,I.

and is differentiable in t and ρ everywhere except at (t, ρ) = (0, 1) with

d
dtdρ,It = −

ρf(t)
[
dρ,I − t

]+
1− ρ(1− F(t))

⩽ 0,

d
dρdρ,It = − It(dρ,It) + x0 − dρ,It

1− ρ(1− F(t) ∧ F(dρ,It))
< 0,

and satisfies

t > dρ,I ⇐⇒ t > dρ,It ,

t < dρ,I ⇐⇒ t < dρ,It .

For convenience, we extend this mapping by continuity: d0,It := limρ→0 d0,It = x0.
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Properties of the relaxed (FC) objective with the truncated G. We begin with the

following lemma which will be key in both overt and covert cases. For any t ∈ Θ,

let vx∅(t) denote the expected full‐commitment S payoff from choosing ICDF It of

R’s posterior means given optimal disclosure and some fixed R’s non‐disclosure

posterior x∅ ∈ [0, x0], that is define

v : Θ× [0, x0] → R,

(t, x∅) 7→ vx∅(t) :=
∫ 1

0
G∨x∅ dFt − G(x0)

where G∨x∅(x) := max{G(x),G(x∅)} for all x ∈ X. Note that vx∅ is exactly what

S is maximizing when she is best‐responding to R’s non‐disclosure belief in the

covert case. In addition, for the overt case, we will use the fact that the function

v0(t) = v(It) coincides with the (relaxed) full‐commitment objective.

Lemma 7. The function v has the following properties:

(Cont) vx∅ is continuous for all x∅ ∈ [0, x0],

(Incr) vx∅ is strictly increasing on [0, t] for all x∅ ∈ [0, x0],

(SQC) vx∅ is strictly quasiconcave with the peak in (0, ω̂) for all x∅ ∈ [0, x0],

(ZMD) v has zero marginal differences on {(t, x∅) ∈ [0, 1]× [0, x0] : x∅ < t},

(SIMD) v has strictly increasingmarginal differences on {(t, x∅) ∈ (0, 1)×(0, x0) : x∅ > t}.

Proof. First, (Cont) holds since F,G, t 7→ xt are continuous and we have

vx∅(t) =
∫ t

0
G∨x∅f+ (1− F(t))G(xt)− G(x0).

Second, (ZMD) and (SIMD) both follow from the observation that

d2

dtdx∅
vx∅(t) =

d2

dtdx∅

∫ 1

0
G∨x∅ dFt

=
d2

dtdx∅

[
Ft(x∅)G(x∅) +

∫ 1

x∅
GdFt

]
=

d2

dtdx∅

[
1−

∫ 1

x∅
Ft dG

]
=

d
dt

[Ft(x∅)g(x∅)]

= 1[t,xt](x∅)f(t)g(x∅).

39



which is strictly positive if 0 < t < x∅ < x0 and zero if x∅ < t.

Third, we show (Incr) and (SQC). Denote the tangent lines to G and G∨x∅ at t as

GT(s|t) := G(t) + g(t)(s− t),

GT
∨x∅(s|t) := G∨x∅(t) + 1[x∅,1](t)g(t)(s− t).

for all s ∈ [0, 1]. Fix any x∅ ∈ [0, x0] and note that strict convexity (concavity) of G

below (above) ω̂ implies

for all t, s ∈ [0, ω̂], t 6= s : G(s) > GT(s|t),

for all t, s ∈ [ω̂, 1], t 6= s : G(s) < GT(s|t),

and, therefore,

for all t, s ∈ [0, ω̂], s 6= t G∨x∅(s) ⩾ GT
∨x∅(s|t), (wConvexity)

for all t, s ∈ [0, ω̂], s 6= t, s ∨ t ⩾ x∅ G∨x∅(s) > GT
∨x∅(s|t), (sConvexity)

for all t, s ∈ [ω̂, 1], s 6= t : G∨x∅(s) < GT
∨x∅(s|t). (sConcavity)

By definition of vx∅, we have for all t 6= x∅

vx∅(t) =
∫ 1

0
G∨x∅ dFt − G(x0) =

∫ t

0
G∨x∅ dF+ (1− F(t))G (xt)− G(x0),

v′x∅(t) = f(t)
[
G∨x∅(t)− G(xt)− g(xt)(t− xt)

]
= f(t)

[
G∨x∅(t)− GT(t|xt)

]
.

Thus, to show (Incr), it is sufficient to show thatG∨x∅(t) > GT(t|xt) for all t ∈ [0, t].

But t ∈ [0, t] implies 0 ⩽ t < xt ⩽ ω̂, and, hence, the desired inequality holds for all

t ∈ [0, t] by (sConvexity).

Similarly, to prove (SQC), it is sufficient to show that for all 0 < t1 < t2 < 1,

G∨x∅(t2) ⩾ GT
∨x∅(t2|y2) =⇒ G∨x∅(t1) > GT

∨x∅(t1|y1), (3)

G∨x∅(t1) ⩽ GT
∨x∅(t1|y1) =⇒ G∨x∅(t2) < GT

∨x∅(t2|y2), (4)

where y1 := xt1 < xt2 =: y2.

To prove (3) and (4), consider the following exhaustive cases:
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1. Suppose y1 ⩽ ω̂. Then, t1, y1 ∈ (0, ω̂] and t1 6= y1 > x0 ⩾ x∅. Hence, both (3)

and (4) hold since (sConvexity) implies the conlusion of (3) always holds and

the premise of (4) never holds.

2. Suppose t2 ⩾ ω̂. Then, t2, y2 ∈ [ω̂, 1) and y2 > t2. Hence, both (3) and (4) hold

since (sConcavity) implies the conlusion of (4) always holds and the premise

of (3) never holds.

3. Suppose t2 < ω̂ < y1. Then, 0 < t1 < t2 < ω̂ and x∅ ⩽ x0 ⩽ ω̂ < y1 < y2 ⩽ 1.

First, to prove (3), suppose G∨x∅(t2) ⩾ GT
∨x∅(t2|y2). Note that

g(y1) > g(y2) >
G(ω̂)− G∨x∅(t2)

ω̂ − t2
> g(t2), (5)

where the first inequality followsmonotonicity of g on [ω̂, 1], the third— from

(sConvexity) for t = t2, s = ω̂ and the second — from the premise of (3) and

(sConcavity) for t = y2, s = ω̂ as G∨x∅(t2) − g(y2)(t2 − y2) ⩾ G(y2) > G(ω̂) −
g(y2)(ω̂ − y2). Now, the conclusion of (3) follows from

G∨x∅(t1) ⩾ g(t2)(t1 − t2) + G∨x∅(t2) by (wConvexity) for t = t2, s = t1

⩾ g(t2)(t1 − t2) + G(y2) + g(y2)(t2 − y2) by the premise of (3)

> g(y2)(t1 − t2) + G(y2) + g(y2)(t2 − y2) by (5)

= g(y2)(t1 − y2) + G(y2)

> g(y2)(t1 − y2) + G(y1)− g(y2)(y1 − y2) by (sConcavity) for t = y2, s = y1

= g(y2)(t1 − y1) + G(y1)

> g(y1)(t1 − y1) + G(y1). by (5)

Finally, to prove (4), suppose G∨x∅(t1) ⩽ GT
∨x∅(t1|y1) and note that

G(ω̂)− G∨x∅(t1)
ω̂ − t1

> g(y1) > g(y2), (6)

where the second inequality follows frommonotonicity of g on [ω̂, 1] and the

first — from the premise of (4) and (sConcavity) for t = y1, s = ω̂ as G∨x∅(t1)−
g(y1)(t1 − y1) ⩾ G(y1) > G(ω̂) − g(y1)(ω̂ − y1). Thus, the conclusion of (4)
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follows from

g(y2)(t2 − y2) + G(y2)

> g(y2)(t2 − y2) + G(y1)− g(y2)(y1 − y2) by (sConcavity) for t = y2, s = y1

= g(y2)(t2 − y1) + G(y1)

> g(y1)(t2 − y1) + G(y1) by (6)

> g(y1)(t2 − y1) + G(ω̂)− g(y1)(ω̂ − y1) by (sConcavity) for t = y1, s = ω̂

= g(y1)(t2 − ω̂) + G(ω̂)

>
G(ω̂)− G∨x∅(t1)

ω̂ − t1
(t2 − ω̂) + G(ω̂) by (6)

> G∨x∅(t2). chordal slopes ↑: G(ω̂)−G∨x∅ (t2)
ω̂−t2 >

G(ω̂)−G∨x∅ (t1)
ω̂−t1

Finally, thepeak is positiveby (Incr) and strictly below ω̂ since v′x∅(s) = G∨x∅(t) <

G(xt)− g(xt)(xt − s) for all s ⩾ ω̂ by (sConcavity).

Properties of the relaxed (Overt) objective. Now consider the optimization prob‐

lem

max
t∈Θ

ṽρ(t), (Overt′)

where

ṽ : Θ× (0, 1] → R,

(t, ρ) 7→ ṽρ(t) :=
vρ(It|dρ,It)

ρ
.

Lemma 8. The function ṽ has the following properties:

(CD) ṽρ is continuous and (Lebesgue‐a.e.) differentiable for all ρ ∈ (0, 1],

(Incr) ṽρ is strictly increasing on [0, t] for some t ∈ (0, ω̂) and all ρ ∈ (0, 1],

(SQC) ṽ1 is strictly quasiconcave with the peak in (0, ω̂),

(Diff) ṽ1 − ṽρ is strictly increasing on [0, dρ,I], and constant on [dρ,I, 1].

(ID) ṽ has increasing differences,

(SIMD) ṽ has strictly increasing marginal differences on (0, dρ′,I)× (0, ρ′] for all ρ′ ∈ (0, 1],
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Proof. First, (CD) follows from continuity and differentiability of It(x) and dρ,It in t.

Second, (Incr) and (SQC) follows directly from (Incr) and (SQC) of Lemma 7 and

the fact that v0 = ṽ1.

Third, we establish (Diff). We have

ṽρ(t) =
vρ(It|dρ,It)

ρ

=
v
(
[It]Dρ

)
ρ

=
1
ρ

∫ 1

0

([
ρIt(x) + (1− ρ)(x− x0)

]+ − I(x)
)
dg(x)

=

∫ 1

dρ,It

[
It(x) +

(1− ρ)
ρ

(x− x0)−
I(x)
ρ

]
dg(x).

and hence by Lemma 1

ṽ1(t)− ṽρ(t) =
∫ 1

0
(It − I)dg−

∫ 1

dρ,It

[
It(x) +

(1− ρ)
ρ

(x− x0)−
I(x)
ρ

]
dg(x)

=

∫ dρ,It

0
It dg+

∫ x0

dρ,It

(1− ρ)
ρ

(x0 − x)dg(x)

=

∫ x0

0
It(x) ∨

(1− ρ)
ρ

(x0 − x)dg(x).

Thus, ṽ1 − ṽρ is strictly increasing on [0, dρ,I] and constant on [dρ,I, 1] because so is

t 7→ It(x)∨ (1−ρ)
ρ (x0 − x) = It(x) for all x ∈ [t, dρ,It ] (since dρ,It > dρ,I > t if t < dρ,I and

dρ,It = dρ,I otherwise).

Finally, notice that (ID) and (SIMD) are equivalent to ṽ1 − ṽρ having increasing

differences everywhere and strictly increasing marginal differences on (0, dρ̃,I) ×
(0, ρ̃] for all ρ̃ ∈ (0, 1]. To prove this, consider

d2

dρ dt
[
ṽρ(t)− ṽ1(t)

]
= − d2

dρ dt

[∫ dρ,It

0
It dg+

∫ x0

dρ,It

(1− ρ)
ρ

(x0 − x)dg(x)

]

= − d
dρ

[∫ dρ,It

t
f(t)(x− t)dg(x) +

ddρ,It

dt

(
It(dρ,It)−

(1− ρ)
ρ

(x0 − dρ,It)

)]

= −ddρ,It

dρ
f(t)(dρ,It − t)+g′(dρ,It),
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where It(dρ,It) −
(1−ρ)

ρ (x0 − dρ,It) = 0 by the definition of dρ,It. Therefore, ṽρ has the

desired properties because, for all ρ̃ ∈ (0, 1], t ∈ (0, 1), the terms g′(dρ̃,It), −
ddρ̃,It

dρ̃
and dρ̃,It − t are (strictly) positive (for dρ̃,I > t).

A.2.9 Proof of Theorem 1

Denote the solution correspondence of the (Overt′) program as

To : (0, 1] → [0, 1]

ρ 7→ argmax
t∈[0,1]

ṽρ(t),

andnote thatTo
ρ := To(ρ) = argmax[0,1] ṽρ = argmax[0,1] ρṽρ = argmaxt∈[0,1] vρ(It|dρ,It).

Hence, by Lemma 2 andCorollary 3, I is an o‐equilibrium evidence structure if and

only if I is disclosure equivalent to Itoρ for some toρ ∈ To
ρ.

It is then sufficient to show that there exists ρo ∈ [0, 1] such that

(i) To is non‐empty‐valued, compact‐valued, and upper hemicontinuous,

(ii) To is increasing in the strong set order,

(iii) To
ρ = {t∗1} for all ρ > ρo, where {t∗1} := argmax[0,1] ṽ1,

(iv) 0 < toρ < dρ,I for all toρ ∈ To
ρ \ {t∗1},

(v) ρo < 1,

(vi) every selection from To is strictly increasing on (0, ρo].

Now we show that all these properties follow from the properties of ṽ shown in

Lemma 8. First, (CD) implies (i) by Berge’s Maximum Theorem. Second, (ID) im‐

plies (ii) by theWeakMonotone Comparative Statics Theorem (Topkis, 1978, Theo‐

rem 6.1). Third, since (SQC) implies To
1 = {t∗1}, we define ρo := inf{ρ ∈ (0, 1] : To

ρ =

{t∗1}} ∈ [0, 1] so that (iii) automatically holds.

Fourth, (iv) holds because (Incr) implies ṽρ is strictly increasing below t > 0

and (SQC) and (Diff) imply argmax[dρo,I,1]
ṽρ = {t∗1}. Moreover, the same properties

imply

To
ρ ∩ [dρ,I, 1] = argmax

[0,1]
ṽρ ∩ [dρ,I, 1] ⊆ argmax

[dρ,I,1]
ṽρ = argmax

[dρ,I,1]
ṽ1 = {t∗1}

44



and so for ρ close enough to 1,wehave t∗1 ∈ [dρ,I, 1] (sincedρ,I →
ρ→1

d1,I = min supp I =

0) which implies (v) by upper hemicontinuity of To.

Finally, we prove (vi) by contradiction.29 Suppose some selection from To is

not strictly increasing on (0, ρo]. Since To is increasing in the strong set order, this

means there exist 0 < ρ1 < ρ2 ⩽ ρo, t ∈ To
ρ1 ∩ To

ρ2. Since t ∈ (0, 1), we have

ṽ′ρ1(t) = ṽ′ρ2(t) = 0. If t 6= t∗1, then t < dρ,I by (iv) and so we get a contradiction with

the implication of (SIMD)

0 = ṽ′ρ2(t)− ṽ′ρ1(t) =
∫ ρ2

ρ1

d2

dρ dt
ṽρ(t)dρ > 0.

If t = t∗1, then by definition of ρo, there exists s ∈ To
ρ1 \ {t} such that s < dρ2,I ⩽ t and

so by (SIMD) we get

ṽρ1(s)− ṽρ1(t) ⩾ ṽρ2(s)− ṽρ2(t) +
∫ ρ2

ρ1

∫ t

s

d2

dρ dt
ṽρ(t)dtdρ > 0,

which is a contradiction with t ∈ To
ρ1.

A.2.10 Proof of Theorem 2

By Lemma 2 and Corollary 5, I is a c‐equilibrium evidence structure if and only if

I is disclosure equivalent to some It∗ such that

t∗ ∈ argmax
t∈[0,1]

vρ(It|dρ,It∗ ). (Covert′)

The proof of the theorem follows directly from the following two claims establish‐

ing the properties of the (Covert′) fixed‐point program.

Claim 1. The S best response correspondence

BR : [0, x0] → [0, 1]

x∅ 7→ argmax
t∈[0,1]

vx∅(t).

has the following properties:
29Although the logic here is very similar to Edlin and Shannon (1998), their Strict Monotonic‐

ity Theorem 1 is not directly applicable here due to the fact that the strictly increasing marginal

differences property (SIMD) holds on a contracting domain [0, dρ,I].
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(i) BR is a singleton‐valued and, thus, can be treated as a function,

(ii) BR is continuous,

(iii) BR(x∅) = t∗1 for all x∅ ∈ [0, t∗1 ∧ x0],

(iv) BR(x∅) ∈ [t∗1, t∗1 ∨ x∅] for all x∅ ∈ [t∗1, x0],

(v) BR is strictly increasing on [t∗1, x0] if t∗1 < x0.

Proof. First, by Berge’s MaximumTheorem, we have |BR(x∅)| ⩾ 1 and upper hemi‐

continuity of BR. Second, we have |BR(x∅)| ⩽ 1 due to strict quasiconcavity of vx∅.

Thus, we have (i) and (ii).

Third, since by (ZMD) and (SIMD), we have vx∅ − v0 strictly increasing on [0, x∅]

and constant on [x∅, 1]. Recall that v0 = ṽ1 is strictly quasiconcave with the peak

t∗1 ∈ (0, ω̂). Therefore, vx∅ = (vx∅−v0)+ ṽ1 is strictly increasing on [0, t∗1] and strictly

decreasing on [t∗1 ∨x∅, 1], which immediately implies (iii) and (iv). In addition, this

implies that maximizers are always interior, that is,

BR(x∅) ∈ [t∗1, t∗1 ∨ x∅] ⊂ (0, ω̂ ∨ x0) ⊆ (0, 1) =⇒ v′x∅(BR(x∅)) = 0 for all x∅ ∈ [0, x0].

Fourth, to show (v), suppose, by contradiction, there exist t∗1 ⩽ x1 < x2 ⩽ x0
such that BR(x1) ⩾ BR(x2). Note that BR is weakly increasing by the Weak Mono‐

tone Comparative Statics Theorem (Topkis, 1978) because (ZMD) and (SIMD) imply

increasing differences. Thus, BR(x1) = BR(x2) = t ∈ (t∗1, x1) and v′x1(t) = v′x2(t) = 0.

But then
∫ x2
x1

d2
dx∅ dtvx∅(t) = v′x2(t)− v′x1(t) = 0 which contradicts (SIMD).

Claim 2. There exists ρc ∈ [0, 1] such that the fixed‐point correspondence

Tc : (0, 1] → [0, 1]

ρ 7→ Tc
ρ := {t ∈ [0, 1] : t ∈ BR(dρ,It)}

has the following properties:

(a) Tc is a singleton‐valued and, thus, can be treated as a function,

(b) Tc is continuous,

(c) Tc
ρ = t∗1 for all ρ ∈ [ρc, 1],

(d) Tc
ρ < dρ,I for all ρ ∈ [ρc, 1],
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(e) Tc is strictly increasing on (0, ρc),

(f) ρc ∈ [0, ρo].

Proof. Define ρc := inf{ρ ∈ (0, 1] : dρ,I ⩽ t∗1} ⩽ ρo. For any ρ ∈ (0, 1], define a

function

d̃ρ : [0, 1] → [0, x0)

t 7→ dρ,It .

First, fix any ρ ⩾ ρc so that dρ,I ⩽ t∗1. Then, Claim 1 implies Tc
ρ = {t∗1} because

{BR (dρ,It) : t ∈ [0, t∗1]} = BR
(
[dρ,I, x0]

)
⊆ [t∗1, 1],

{BR (dρ,It) : t ∈ (t∗1, 1]} = BR (t∗1 ∧ x0) = {t∗1}.

Second, fix any 0 < ρ < ρc so that x0 > dρ,It ⩾ dρ,I > t∗1 for all t ∈ [0, 1]. Then, we

have Tc
ρ ⊆ [t∗1, x0] since

{BR (dρ,It) : t ∈ [0, 1]} = BR
(
[dρ,I, x0]

)
⊆ BR ([t∗1, x0]) ⊆ [t∗1, x0].

Now let t = BR(x0) > t∗1 and note Tc
ρ is the set of the roots of the function

∆ρ : [t∗1, t] → R

t 7→ BR−1(t)− dρ,It

is continuous, strictly increasing, and has ∆ρ(t∗1) = t∗1 − dρ,It∗1
< 0 and ∆ρ(t) = x0 −

dρ,I > 0. Hence, by the Intermediate Value Theorem, there exists a unique root of

∆ρ continuous in ρ. Moreover, since d
dρ∆ρ = − d

dρdρ,It > 0 for all t ∈ [0, 1], ρ ∈ (0, 1],

the root is strictly decreasing in ρ, which completes the proof of the claim.
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