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Abstract

We develop a dynamic contracting theory of asset- and cash flow-based financing

that demonstrates how firm, intermediary, and capital market characteristics shape

firms’ financing constraints. A firm with imperfect access to equity financing covers fi-

nancing needs through costly sources—an intermediary and retained cash. The firm’s

financing capacity is endogenously determined by either the liquidation value of assets

(asset-based) or the intermediary’s going-concern valuation of the firm’s cash flows

(cash flow-based). We implement the optimal contract between the firm and interme-

diary with both unsecured and secured debt (credit lines) in an overlapping pecking

order: the firm simultaneously finances cash flow shortfalls with unsecured debt and

either cash reserves (if available) or secured debt (otherwise). Improved access to eq-

uity financing increases debt capacity, thus debt and equity are dynamic complements.

When the firm does well, it repays its debt in full, while when in distress, repayment

dynamics mirror U.S. bankruptcy procedures.

Keywords: Risk Management, Security Design, Dynamic Intermediation, Optimal Contracts,

Secured Debt, Liquidity Constraints, Bankruptcy, Financing Capacity

JEL Codes: G32, G35, G20, D86
∗A previous version of the paper circulated under the title “Waiting for capital with on-demand financing”.

We thank Hengjie Ai, Andres Almazan, Harry DeAngelo, William Diamond (discussant), Jason Donaldson,
Mike Fishman, Niels Gormsen, Brett Green, Denis Gromb, Sebastian Gryglewicz (discussant), Sharjil Haque,
Zhiguo He, Yunzhi Hu, Benjamin Iverson, Victoria Ivashina, Young Soo Jang, Paymon Khorrami (discus-
sant), Arthur Korteweg, Ye Li, Yueran Ma, Loriana Pelizzon, Giorgia Piacentino, Adriano Rampini, Philipp
Schnabl, Adi Sunderam, Felipe Varas, Yenan Wang (discussant), Junyuan Zou (discussant) and seminar
and conference participants at Northwestern Kellogg (Brownbag), UCLA (Brownbag), AFA 2023, BSE In-
termediation Summer Workshop 2023, SFS Cavalcade 2022, FIRS 2022, FTG Meeting in Budapest 2022,
Stockholm School of Economics, UNC Junior Roundtable 2022, University of Utah Eccles, University of
Rochester Simon, USC Marshall, University of Texas Dallas, University of Texas Austin, INSEAD, and
Goethe Universität Frankfurt for helpful comments.

†Anderson School of Management, UCLA. E-mail: bhglaser@anderson.ucla.edu
‡Tepper School of Business, Carnegie Mellon University. E-mail: simonmay@andrew.cmu.edu
§Kellogg School of Management, Northwestern & NBER. E-mail: milbradt@northwestern.edu

mailto:bhglaser@anderson.ucla.edu
mailto:simon.r.mayer@gmail.com
mailto:milbradt@northwestern.edu


What determines firms’ financing constraints or borrowing capacity? Recent work by

Lian and Ma (2021) highlights the importance of firm characteristics, specifically the liq-

uidation value of assets or the going-concern value of cash flows, as key determinants of

financing constraints. These constraints can be classified as asset-based and cash flow-based

respectively. In this paper, we present a dynamic contracting theory of endogenous asset-

and cash flow-based financing, shedding light on the impact of firm, capital market, and

financial intermediary characteristics on financing capacity.

In our theory, a second-best holder of assets, an intermediary, provides interim financing

to a liquidity constrained firm subject to endogenous financing capacity. If the intermediary’s

valuation of the firm’s cash flows plus the option to raise new equity capital from first-best

holders in the future is above the liquidation value of the firm’s assets, then the intermediary

provides financing against the going concern value of cash flows. Otherwise, it provides

financing against the liquidation value of assets. The key implications are that (i) the optimal

financing contract with the intermediary consists of both secured and unsecured debt, (ii)

improved access to equity financing increases cash flow-based debt capacity making debt and

equity dynamic complements, (iii) the firm uses secured debt when low on cash primarily for

financing while using unsecured debt in all states primarily for hedging, and (iv) endogenous

bankruptcy and bankruptcy resolution arise from the dynamics of the model.

In more detail, a firm owned by risk-neutral and penniless investors produces risky cash

flows and has imperfect access to capital markets. The firm’s current owners cannot inject

cash into the firm. However, as in Hugonnier, Malamud, and Morellec (2015), the firm can

raise external financing only at infrequent random times from newly arriving risk-neutral

and competitive investors. Such intermittent access captures capital supply uncertainty or

frictions that cause a delay between the firm’s need for financing and its access to capital

markets. Outside such access, the firm finances cash flow shortfalls with internal cash reserves

and/or funds provided by an intermediary. However, both liquidity facilities are costly. First,

cash held in the firm earns a return below the risk-free rate. Second, the intermediary requires

compensation for any cash flow risk it bears. This compensation reflects the intermediary’s

own financial or regulatory constraints which limit its risk-bearing capacity.

We derive the optimal contract between the firm’s investors and the intermediary that

maximizes the value of the firm, subject to the intermediary’s limited commitment which

requires its continuation payoff to remain non-negative. Intuitively, in the optimal contract,

the risk-neutral investors act as the firm’s shareholders, and external financing takes the form

of equity. The intermediary, in turn, provides debt-like bridge financing to the firm, covering

financing needs between infrequent equity financing rounds. As such, the intermediary may

represent a bank or non-bank lender, or a group or syndicate of different lenders.
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Crucially, we can summarize the firm’s state with a single variable that we term excess

liquidity. This variable equals the firm’s cash holdings less the risk-adjusted present value

of future transfers to and from the intermediary. Under the optimal contract, the share-

holders’ value function solves an ordinary differential equation over excess liquidity with two

free boundaries. The firm only pays dividends to its shareholders at the upper boundary.

Because the firm has infrequent access to equity financing, negative cash flow shocks can

induce financial distress, and the firm’s shareholders become effectively risk-averse. Thus,

they optimally share cash flow risk with the intermediary even though the intermediary

requires compensation for bearing such risk. The intensity of risk-sharing between the inter-

mediary and the shareholders decreases in excess liquidity. Further, the firm relaxes liquidity

constraints by delaying some payouts to the intermediary until the next equity market access.

If the firm runs out of cash, which under the optimal contract happens when excess

liquidity hits zero, the firm continues operations by relying purely on intermediary financing

until it has equity market access. However, the firm faces an endogenous financing capacity

vis-a-vis the intermediary, in that promised repayments to the intermediary cannot exceed

this financing capacity. This financing capacity pins down the lower boundary on excess

liquidity and coincides with the intermediary’s valuation of the entire firm. Intuitively,

repayment promises must be be backed by the firm as a collateral asset and so cannot

exceed the intermediary’s valuation of this collateral asset. When the intermediary values

the firm above its liquidation value, financing capacity is cash flow-based, i.e., determined by

the intermediary’s going concern value of the firm’s cash flows. Otherwise, it is asset-based,

i.e., determined by the liquidation value of the firm’s assets.

Once the firm exhausts its financing capacity, i.e., when excess liquidity approaches its

lower boundary, the intermediary effectively takes ownership of the entire firm. It seizes the

collateral backing its promised repayments and existing equity holders are wiped out. When

financing capacity is cash flow-based, the intermediary keeps the firm alive until it can sell

the firm to new risk-neutral equity investors. The intermediary never liquidates the firm

under this kind of financing. Intuitively, if the intermediary’s valuation of the firm — equal

to the risk-adjusted expected value of receiving all interim cash flows plus the resale value —

supports cash flow-based financing, then the intermediary prefers continuing to run the firm

for however long it takes to locate new outside equity financing rather than liquidating. In

contrast, when financing capacity is asset-based, the intermediary liquidates the firm once

repayment promises to the intermediary reach the liquidation value of assets.

The optimal contract with the intermediary involves two key elements, risk-sharing and

financing. To implement this optimal contract via standard securities, we first show that the

sum of past transfers to and from the intermediary, compounded at an endogenous rate, is a
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sufficient statistic for the firm’s state. This sum resembles a credit line balance, motivating

an implementation via a risky unsecured and a risk-free secured credit line. The unsecured

credit line implements risk-sharing, while the secured credit line implements financing against

promises. For low excess liquidity, the firm is in financial distress and there are conflicting

interests between shareholders and creditors when recapitalizing the firm with new equity.

The implementation of the optimal contract resolves financial distress in a manner that

resembles U.S. bankruptcy procedures. Specifically, an appropriate debt covenant (e.g.,

balance sheet or earnings-based covenant) allocates control rights in distress to the creditors.

When the firm raises new equity financing outside of distress, it fully repays credit lines while

existing equity claims are diluted. When the firm is in distress, creditors force Chapter 11

bankruptcy, facilitating continued operation. The firm emerges from bankruptcy when it

finds new equity investors, repays the secured credit line in full, while partially defaulting on

the unsecured credit line and wiping out the existing equity claims. It may also emerge from

bankruptcy after a string of positive cash flow realizations. While in bankruptcy the firm

may fully exhaust its financing capacity. It then optimally liquidates, effectively converting

to Chapter 7 bankruptcy, repays the secured credit line in full, while wiping out both the

unsecured credit line and existing equity claims. In all cases, repayments respect the absolute

priority rule (APR).

The implementation also sheds light on how different financing instruments, here debt,

equity, and internal cash reserves, interact. First, debt and equity are static substitutes,

but dynamic complements. When the firm raises new equity, it retires all debt; in this

case, equity substitutes for debt. However, absent current access to equity financing, the

prospect of future access increases debt capacity because it raises the likelihood that debt

is repaid. Second, our implementation suggests an overlapping pecking order: when the

firm holds (runs out of) cash, it finances cash flow shocks by drawing on cash reserves (the

secured credit line) and the unsecured credit line. Third, unsecured and secured debt are

complements. Unsecured debt allows the firm to share risk with the intermediary to stave

off liquidation, ensuring repayment of secured creditors and raising secured debt capacity.

Fourth, according to the definitions of cash flow- and asset-based debt in Lian and Ma (2021),

the firm relies both on asset-based (secured by assets) and cash flow-based debt (unsecured

or secured by blanket lien, i.e., senior unsecured).

We emphasize that the types of debt used by the firm and the drivers of financing

capacity are related but distinct objects. Whether a firm’s financing capacity is cash flow-

or asset-based depends on which fundamentals drive the total amount of financing available

to the firm: Financing capacity is asset-based (cash flow-based) if it increases in (is invariant

to) the liquidation value of assets. Moreover, financing capacity coincides with the firm’s
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secured debt capacity in our implementation. In contrast, whether a particular debt within

the firm’s capital structure is cash flow- or asset-based depends on the determinants of that

debt’s payoff in bankruptcy. In our implementation, a firm with cash flow-based financing

capacity uses both cash flow- and asset-based debt. A fraction of the secured debt is backed

by the liquidation value of assets, i.e., asset-based, whereas the secured debt balance in

excess of the liquidation value of assets is cash flow-based (secured by a blanket lien). In

addition, the firm always uses cash flow-based debt financing in the form of unsecured debt.

While an increase in the liquidation value of asset does not raise total amount of financing

available to this firm, i.e., its financing capacity, it does lead to more asset-based debt. A

similar logic applies to a firm with asset-based financing capacity.

Our theory endogenizes not only financing constraints, but also their tightness, that is, a

firm’s utilization of intermediary financing relative to its capacity. We find that firms whose

financing capacity is either very high or low use intermediary financing the least, and so face

on average the least tight financing constraints. Thus, firms with large financing capacity do

not rely much on the intermediary because their endogenous financing capacity reflects strong

firm fundamentals that reduce the need for intermediary financing. Further, better firm

fundamentals, higher intermediary risk-bearing capacity, or better access to equity financing

— all associated with larger financing capacity —may increase utilization more than capacity

of intermediary financing, thus tightening financing constraints.

Next, we consider that shareholders cannot commit to lowering their continuation value

upon raising equity, limiting the extent to which equity can be diluted in distress resolution.

Although the optimal contract can still be implemented via secured and unsecured debt,

shareholders’ limited commitment leads to the violation of absolute priority in bankruptcy

and thus effectively implies weak creditor rights. We show that weaker creditor rights cause a

shift from cash flow-based towards asset-based financing and from Chapter 11 (with reorgani-

zation) to Chapter 7 bankruptcy (with liquidation). This extension can inform international

comparisons of financing arrangements and the underlying legal systems.

To capture lenders’ monitoring (e.g., via covenants) or engagement in distress resolution

often observed in practice, we introduce that the intermediary improves the performance of

the firm through costly (monitoring) effort. We show that this monitoring effort is propor-

tional to the extent of risk-sharing between firm and intermediary. This implies monitoring

increases following negative cash flow shocks, and thus credit line drawdowns.

Finally, we give a brief overview of the main empirical implications of our theory; Section 6

provides a more detailed summary. First, better access to equity financing, e.g., due to more

liquid private or public equity markets, improves access to cash flow-based financing, and

expands financing capacity. Thus, our theory rationalizes why large public and private
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equity (PE) backed firms use more cash flow-based financing than private firms with limited

access to equity financing (Lian and Ma, 2021; Haque, Jang, and Mayer, 2022). Second,

intermediaries with higher risk-bearing capacity, for instance, non-bank lenders (Chernenko,

Erel, and Prilmeier, 2022), provide more cash flow-based financing (Jang, 2022; Block, Jang,

Kaplan, and Schulze, 2023). Consequently, a shock to the intermediary sector implies a shift

from cash flow-based toward asset-based financing. Third, cash flow-based financing is more

prevalent among firms with high profitability, low cash flow volatility, or low liquidation value

(Kermani and Ma, 2023). Fourth, firms tend to use unsecured debt in all states and secured

debt primarily when low on cash or in distress (Benmelech, Kumar, and Rajan, 2020a). Fifth,

in financial distress, cash flow-based financing is associated with Chapter 11 bankruptcy

and reorganization, while asset-based financing is associated with Chapter 7 bankruptcy

and liquidation. Sixth, weak creditor protection reduces cash flow-based financing capacity,

leading to more asset-based financing and liquidations. Seventh, cash flow-based financing

is associated with high creditor monitoring in distress (Kermani and Ma, 2020). Eight, in an

alternative application in which the intermediary represents a distress investor (e.g., PE or

hedge fund) that acquires a (debt or equity) stake in the firm in distress, distress investment

activity is hump-shaped with respect to firms’ access to equity financing.

By providing a micro-foundation of financing constraints through the lens of dynamic

contracting theory, our paper can provide guidance on reduced-form financing constraints,

for instance, in dynamic macroeconomic models. While most papers in the macroeconomic

literature focus on collateral, i.e., asset-based, constraints as key financing constraint (Kiy-

otaki and Moore, 1997; Bernanke, Gertler, and Gilchrist, 1999; Dávila and Korinek, 2018),

Greenwald (2019), Drechsel and Kim (2022), and Drechsel (2023) introduce cash flow-based

financing constraints in general equilibrium models. According to our theory, a firm’s total

(debt) financing Bt from intermediaries at time t is either constrained by the liquidation

value of assets Lt or an increasing function of expected cash flows Et, suggesting a reduced-

form financing constraint Bt ≤ max{Lt, AtEt}. Although this constraint differs from the

micro-founded one, it can capture its key qualitative aspects despite its simplicity. Our

findings reveal that At should increase with intermediary risk-bearing capacity and a firm’s

access to equity financing as well as reflect firm characteristics; the exact functional form of

At could be calibrated or structurally estimated which is left for future research.1

Related Literature. Our paper mainly relates to the literature on dynamic corporate

liquidity management in continuous time, pioneered by Bolton, Chen, and Wang (2011)

and Décamps, Mariotti, Rochet, and Villeneuve (2011). In a unified model of corporate

investment, financing, and liquidity management, Bolton et al. (2011) demonstrate how

1Drechsel (2023); Greenwald (2019) use a cash flow-based borrowing constraints with constant At ≡ A.
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liquidity management and firm financing interacts with a firm’s investment decisions. Bolton,

Wang, and Yang (2021) study dynamic liquidity management with short-term debt financing,

thereby highlighting the interaction between the endogenous pricing of debt and the optimal

the equity payout and issuance strategies. Further contributions in this literature include

Gryglewicz (2011); Bolton, Chen, and Wang (2013); Décamps, Gryglewicz, Morellec, and

Villeneuve (2016); Hugonnier and Morellec (2017); Malamud and Zucchi (2018), and, more

recently, Abel and Panageas (2022); Dai, Giroud, Jiang, and Wang (2020); Bolton, Li, Wang,

and Yang (2021). We add to this literature in two ways. First, methodologically, we introduce

a second-best holder of the asset, an intermediary, who can however provide continuous

financing, combining optimal long-term contracting with dynamic liquidity management.

Second, while existing papers typically feature exogenous financing constraints or capital

structure or both, we endogenize (i) the firm’s capital structure, including the optimal use

of secured and unsecured (or asset- and cash flow-based) debt, and (ii) financing constraints

and capacity, thereby generating novel empirical implications.2

Our paper relates to the corporate finance literature on dynamic moral hazard without

liquidity management. Bolton and Scharfstein (1990) show that financial constraints, in their

case, early termination of a positive NPV project, may arise as dynamic solution to agency

conflicts between investors and a firm’s managers. Recent contributions include DeMarzo

and Sannikov (2006); Biais, Mariotti, Plantin, and Rochet (2007); DeMarzo and Fishman

(2007); Sannikov (2008); DeMarzo, Fishman, He, and Wang (2012); Malenko (2019). In this

literature, financial constraints arise endogenously as part of the optimal contract in order to

incentivize the agent. We contribute by solving for the optimal contract between principal

(the firm’s shareholders) and agent (the intermediary) when the principal faces liquidity

constraints and therefore must both manage its liquidity and design the contract, inducing

endogenous financing capacity.3

In particular, our work contributes to the dynamic contracting literature that studies

optimal risk-sharing between a principal and an agent under limited commitment, such as

Ai and Li (2015) and Ai, Kiku, and Li (2019), while the closest to our paper is Bolton,

Wang, and Yang (2019). Our model differs as we introduce a deep-pocketed, costly inter-

mediary that provides financing to the firm subject to endogenous constraints. Our work

is complementary in that it highlights optimal financing from a costly intermediary in the

presence of physical cash constraints and limited commitment. In contrast, their model is

2For instance, Bolton et al. (2011) consider a fully-equity financed firm with access to a credit line with
an exogenous credit line limit. Their paper does not feature an exogenous financing capacity and does not
distinguish between asset- and cash flow-based financing or secured vs. unsecured debt.

3The baseline model has no agency conflict. We also present a model extension in which the intermediary
(the agent) exerts hidden effort, here monitoring, subject to a private cost, leading to a moral hazard issue.
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driven by the connection between investment, firm scale, and the scale of the manager’s out-

side option. Rampini and Viswanathan (2010) and Rampini, Sufi, and Viswanathan (2014)

provide models in which limited enforcement constrains financing and creates a role for col-

lateral. Rampini and Viswanathan (2020) applies their framework to distinguish between

secured and unsecured debt. Abel (2018) develops a dynamic trade-off theory in which a

(cash flow-based) borrowing constraint prevents shareholders from defaulting immediately.

The paper also is related to static contracting models, such as Holmstrom and Tirole

(1997) and Holmström and Tirole (1998), in which external financing is constrained by the

firm’s “pledgeable income,” akin to a cash flow-based financing constraint. The key differ-

ences between this classic literature and our model framework is that we consider dynamic

market access and risk sharing. These elements allow us to differentiate between asset-

based and cash flow-based financing, and their dynamic impact, such as bankruptcy and

bankruptcy resolution arising from an optimal contract.

Paper overview. Section 1 sets up the model, while Section 2 solves it. Section 3 anal-

yses the optimal contract and establishes the link to cash flow- and asset-based financing.

Section 4 implements the optimal contract via secured and unsecured credit lines. Section 5

provides the weak creditor rights and monitoring extensions, as well as robustness consider-

ations. Section 6 summarizes the empirical predictions of the model. Section 7 concludes.

1 Model Setup

Time t ≥ 0 is continuous and infinite. We consider a firm whose assets produce cash flows

Xt with stationary increments

dXt = µdt+ σdZt, (1)

where dZt is the increment of a standard Brownian Motion. The firm is owned by its current

risk-neutral and penniless investors. Access to external financing from newly arriving risk

neutral investors occurs only intermittently. An intermediary (distinct from the investors)

is available to continuously provide (bridge) financing at a cost. Both the investors and

the intermediary discount the future at the risk-free rate of r > 0. The intermediary and

investors sign a long-term contract C at time t = 0. This contract, C = (Div, I,∆M),

stipulates cumulative payouts Divt to investors, money raised from new investors upon

access to external financing ∆Mt, and cumulative transfers It to and from the intermediary.

Cash flows dXt are publicly observable, verifiable, and contractible.

As will become clear later, within the optimal contract, the investors act as the firm’s

shareholders, who receive dividend payouts dDivt, and external financing takes the form
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of private or public equity financing. The intermediary provides debt-like financing, and

thus may represent a bank or non-bank lender. In anticipation of this result, we refer in

the following to investors already as the firm’s shareholders and to the value of their stake

as the firm’s equity value. However, we emphasize that we do not impose specific ex-ante

restrictions on the investor-intermediary contract to take this form.

As in Hugonnier et al. (2015), the firm can only raise external (equity) financing from

competitive and risk-neutral investors at Poisson times that arrive with constant intensity

π ≥ 0. Here, dΠt = 1 means access to external financing or refinancing at time t, with dΠ0 =

1 to reflect access to equity financing at inception. Once outside investors provide financing,

they become part of the current owners. This assumption reflects capital supply uncertainty

or proxies for frictions that cause a delay between the firm’s need for financing and its access

to broader markets.4 We assume no additional costs of refinancing upon dΠt for the main

analysis. Online Appendix M extends our baseline by introducing a cost of refinancing. We

denote capital infusions by new investors upon market access by ∆MtdΠt ≥ 0. The key

assumption is that dividend payouts to existing shareholders must be non-negative. That

is, dDivt ≥ 0 at all times t ≥ 0, including at refinancing times with dΠt = 1. This reflects

that the firm’s existing shareholders are penniless and cannot inject cash into the firm.

Alternatively, dDivt ≥ 0 may capture existing shareholders’ limited liability.

The firm’s financial constraints and the fact that cash flow shocks can be negative imply

that the firm has an incentive to accumulate cashMt via retained earnings. The cash balance

held within the firm accrues interest at the rate (r− λ) where r is the common interest rate

and λ ∈ (0, r) represents a carrying cost of cash.5 The dynamics of cash reserves Mt are

dMt = dXt + (r − λ)Mtdt− dDivt − dIt +∆MtdΠt. (2)

Absent access to equity financing, all cash flow realizations dXt, payouts to investors dDivt ≥
0, and transfers to/from the intermediary dIt ≷ 0 flow through the cash balance Mt. Unlike

investors, the intermediary can provide financing and inject cash into the firm at any time,

so dIt can be negative. However, this source of financing is costly, as we formalize below.

The cash balance of the firm at t = 0−, i.e., before the contract is signed, to zero so

that M0− = 0. We assume that the firm cannot borrow, except from the intermediary,

so that cash holdings must remain non-negative, Mt ≥ 0 for all t ≥ 0. This constraint

implies that if Mt reaches zero, the intermediary must either inject the necessary funds

4One may interpret the time it takes to arrange for financing as proxying for asymmetric information —
outside investors take time to verify information. The intermediary as a specialist does not face such a delay.

5This assumption is standard (see, e.g., Décamps et al. 2011 and Bolton et al. 2011) and prevents the
firm from saving itself out of the constraint. Assuming impatient investors leads to similar results.
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or the firm must liquidate. Liquidation thus occurs at a stopping time τ ∈ [0,∞], and

dDivt = dIt = dXt = 0 for all t > τ . We assume that the liquidation value of the firm’s

assets excluding cash is L ∈ [0, µ/r), so that the firm’s total liquidation value is Mτ + L

and liquidation is costly compared to first-best. In parallel with the current legal system,

in liquidation, rights on the liquidation value L can be pre-assigned and cannot be reneged

upon. We denote intermediary’s payment of liquidation proceeds by dIτ ∈ [0, L].6

1.1 Optimal Contracting Problem

We stipulate that, given a contract C, the intermediary’s continuation value (in certainty

equivalent or dollar terms) is

Yt = Et

[∫ τ

t

e−r(s−t) (dIs − ksds)

]
. (3)

We also refer to Yt as the intermediary’s (future) promised payments or as the intermediary’s

stake because it represents a portion of firm value promised to the intermediary. In (3), kt

is the intermediary’s endogenous cost of providing financing to the firm. We will discuss kt

and specify its functional form once we characterize the dynamics of Yt. As the intermediary

may represent a bank or non-bank lender, we interpret kt as a proxy for the intermediary’s

limited risk-bearing capacity stemming from regulatory constraints, under-diversification, or

limited capital of its own. We micro-found the representation (3) and the cost of funds ks

in Online Appendix L, where we assume that the intermediary has CARA preferences, deep

pockets, and a private savings technology.

We assume that the intermediary has an outside option, which we normalize to zero. It

can always part from the contract and receive its outside option whenever it is privately

optimal to do so and is thus subject to limited commitment, i.e., Yt ≥ 0 at any time t ≥ 0.7

We denote the firm’s equity value, i.e., shareholders’ value function, at time t by Pt. Upon

access to equity financing dΠt = 1, the firm raises ∆Mt dollars from competitive risk-neutral

investors at fair value by issuing ∆Mt dollars worth of new equity. Refinancing changes total

equity value from lims↑t Ps pre-refinancing to Pt := lims↓t Ps post-refinancing, i.e., Pt equals

its right-limit at time t, while existing shareholders’ are diluted and their post-refinancing

payoff is Pt −∆Mt. Recall that existing shareholders cannot inject cash into the firm, i.e.,

dDivt ≥ 0 for all t ≥ 0 including t such that dΠt = 1. Thus, their payouts and payoff are

6The constraint dIτ ∈ [0, L] reflects the limited commitment of shareholders and intermediary: neither
can promise payments upon liquidation in excess of liquidation proceeds.

7The model’s results remain qualitatively unchanged for a negative lower bound Y , i.e., Yt ≥ Y . For
simplicity, we normalize Y = 0. This constraint also prevents the firm from raising a large amount of cash
upon refinancing and saving with intermediary to circumvent the internal cost of cash.
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non-negative, i.e., Pt − ∆Mt ≥ 0. The maximum amount of cash the firm can raise upon

market access equals the post-refinancing equity value, i.e., ∆Mt = Pt. If the firm raises this

maximal amount of financing, newly arriving investors buy the firm’s entire equity at fair

price Pt, while existing shareholders are fully diluted.

At time t and given contract C, equity value is the expected discounted stream of future

dividend payouts net of the costs of refinancing via dilution

Pt = Et

[∫ τ

t

e−r(s−t)(dDivs −∆MsdΠs)

]
, (4)

As dDivt ≥ 0 and ∆Mt ≤ Pt, we have Pt ≥ 0.8 The optimal contract maximizes

P0− = max
C

E
[∫ τ

0−
e−rt(dDivt −∆MtdΠt)

]
s.t. Yt,Mt, dDivt ≥ 0, and ∆Mt ∈ [0, Pt] (5)

for all t ≥ 0, where intermediary’s stake Yt is given by (3) with initial value Y0− = 0 and

cash Mt follows (2) with initial balance M0− = 0, and equity value Pt is given by (4).

2 Model Solution

In this section, we solve the model and derive the optimal contract. We gain tractability

by showing that a sufficient statistic for the state of the firm is the difference between the

firm’s cash holdings and the intermediary’s future promised payouts, which we term excess

liquidity. The following Lemma, proven in Online Appendix A, derives the dynamics of Yt.

Lemma 1. The intermediary’s continuation payoff evolves according to

dYt + dIt = (rYt + kt) dt+ βtσdZt + αt(dΠt − πdt), (6)

where βt captures the intermediary’s exposure to Brownian cash flow shocks dZt and αt

captures the intermediary’s exposure to the (compensated) market access process (dΠt − πdt).

We refer to equations (3) and (6) as the promise keeping constraints. It means that

current transfers dIt must be accompanied by a commensurate change in future promised

transfers dYt. Notice that promise-keeping requires that at the time of liquidation τ , the

intermediary receives a lumpy payout of dIτ = limt↑τ Yt dollars, where the left limit limt↑τ Yt

denotes the continuation payoff “just before” liquidation. In Online Appendix B, we impose

8To express Pt recursively, let τt = inf{s ≥ t : dΠs = 1} denote the next time of refinancing after time t.

Then Pt = Et

[∫ τt∧τ

t
e−r(s−t)dDivs + 1{τt<τ}e

−r(τt−t)
(
Pτt −∆Mτt

)]
. Pt ≥ 0 follows from Pt −∆Mt ≥ 0.
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standard regularity conditions on αt and βt which are needed in the formal proofs but do

not play a role in the main text.

Intermediary cost of financing. Next, we specify kt to coincide with the intermediary’s

cost of financing obtained under CARA(ρ) preferences:

kt = σ2 · ρr

2
β2
t︸ ︷︷ ︸

≡kZ(βt)

+ π ·
(
αt −

1− e−ρrαt

ρr

)
︸ ︷︷ ︸

≡kΠ(αt)

. (7)

The intermediary charges a risk-premium kZ(β) for β exposure to dZt (scaled by σ2), while

charing kΠ(α) for α exposure to (dΠt − πdt) (scaled by π). Thus, using financing from the

intermediary to absorb a fraction of cash flow shocks, i.e., βt > 0, and delaying payouts to

the intermediary to random future refinancing dates, i.e., αt > 0, are both costly.

The specific form of kt is micro-founded in Online Appendix L by the intermediary having

CARA preferences with risk-aversion ρ and a private savings/borrowings technology at rate

r.9 We interpret 1/ρ as the intermediary’s limited risk-bearing capacity due to regulatory

or capital constraints. Further, we assume this risk-bearing capacity is constant for two

reasons: First, the intermediary, which may represent a group of bank or non-bank lenders

investing in many firms, is large relative to the firm. Thus, while the intermediary requires

some compensation for bearing firm risk, its risk-bearing capacity is not significantly affected

by the performance of one individual firm. Second, this assumption lends tractability to our

model; otherwise, one would have to track the additional state variables that drive the

intermediary’s risk-bearing capacity such as net worth.10

Benchmarks. Finally, we introduce two benchmark valuations of the firm. First, consider

the firm’s value when π → ∞ so that it has continuous access to new equity financing. In

this case, the firm does not need to retain any cash as it can cover cash flow shortfalls by

raising new financing at will. The value of the firm then is simply its first-best net present

value (NPV)

NPV ≡ Et

[∫ ∞

t

e−r(s−t)dXs

]
=

µ

r
. (8)

Next, consider the autarky value of the firm to the intermediary. Suppose the intermediary

owns the entire firm without access to outside financing and commits to continue opera-

9Our results remain qualitatively similar if we assume a simpler non micro-founded functional form for kt,
e.g., kt = ρσ2βt with βt ≥ 0 and kΠ(α) = 0. Under this specification, the intermediary exhibits risk-aversion
only toward Brownian risk. A linear cost kt thus allows one to aggregate individual, identical intermediaries
cleanly into one representative intermediary. See Online Appendix N for details.

10We could assume that equity investors are risk-averse, in that they apply a stochastic discount factor.
As long as it is not optimal to sell the entire firm to the intermediary, the model’s dynamics remain similar.
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tions indefinitely. The firm does not retain cash due to the firm’s carry-cost-of-cash. The

intermediary then must fully absorbs all shocks. Setting dIs = dXs, βs = 1, and αs = 0 in

equation (3), we calculate the autarky value of the firm to the intermediary under continued

operation as

Y A ≡ µ− σ2kZ(1)

r
=

µ

r
− ρ

2
σ2. (9)

Then, if Y A < L, the intermediary is unwilling to operate the firm in autarky, and instead

immediately liquidates the firm for a value L. The net value of the firm is the sum of the

shareholders’ value function Pt and the intermediary’s stake Yt less the current cash-holdings

Mt. For finite π and positive ρ, the net value satisfies

max
{
Y A, L

}
≤ Pt + Yt −Mt < NPV. (10)

2.1 Dynamic Program and HJB Equation

In principle, the dynamic optimization of the shareholders’ value function depends on two

state variables: the intermediary’s continuation payoff Yt, and the firm’s cash holdings Mt.

We heuristically show how to reduce the problem to a single state variable called excess

liquidity which is the difference of cash and continuation value:

Ct ≡ Mt − Yt. (11)

Combining (2) and (6), excess liquidity C has the following law of motion:

dCt = dMt − dYt = µCdt+ σCdZt + (C∗
t − Ct) dΠt − dDivt, (12)

where

µC,t = µC(Ct) =µ+ (r − λ)Ct − λYt − σ2kZ(βt) + π (αt − kΠ(αt)) ,

σC,t = σC(Ct) =σ (1− βt) ,

C∗
t = C∗(Ct) =∆Mt + Ct − αt,

and C∗
t is the level of excess liquidity immediately after refinancing. As we show below, Ct

becomes a sufficient state variable of the firm, so we can express drift and volatility of dCt

as well as C∗
t as functions of Ct, i.e., µC,t = µC(Ct), σC,t = σC(Ct), and C∗

t = C∗(Ct).

Reduction of the state space. Let us rotate the state space and, instead of (Mt, Yt), we

work with (Ct, Yt) as state variables (the formal argument is given in Online Appendix B.1).
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Under the promise-keeping constraint (6), a transfer of cash dIt between the balance Mt of

the firm and the intermediary must be accompanied by a commensurate increase or decrease

in the intermediary’s stake Yt. Thus, Ct = (Mt − dIt)− (Yt − dIt) = Mt − Yt is invariant to

transfers dIt. Since dIt can be positive or negative, we can use transfers to adjust Yt freely

without affecting excess liquidity Ct. Therefore, Yt is effectively a control variable, albeit a

constrained one: First, the intermediary’s limited commitment requires Yt ≥ 0. Second, the

definition of excess liquidity (11) and the physical constraint on cash Mt ≥ 0 together imply

that Yt ≥ −Ct. Combining,

Yt ≥ max {0,−Ct} . (13)

Excess liquidity Ct is negative if promised payments to the intermediary Yt are larger than

the cash balance Mt. Since Yt is now a control variable, the only relevant state variable is

Ct. Thus, the shareholders’ value Pt only depends on Ct so that we can write Pt = P (Ct).

In what follows, we omit time subscripts unless necessary.

Refinancing limits. Refinancing via equity issuance moves excess liquidity from its pre-

financing level C to the post-refinancing level C∗, with a prescribed increase of the interme-

diary’s payoff Y + I by α as per (6). Upon refinancing, the firm raises ∆M = C∗ − C + α

dollars of cash to transition from C to C∗ with an increase in Y + I of α. Thus, refinancing

in state C to C∗ changes existing shareholders’ payoff from P (C) to P (C)+J(C) by amount

J(C) ≡ P (C∗)−∆M − P (C) = [P (C∗)− C∗]− [P (C)− C]− α, (14)

while changing total equity by the amount P (C∗) − P (C). Because existing shareholders

cannot inject cash into the firm, their payouts as well as payoff are necessarily non-negative

at all times. In particular, P (C) + J(C) ≥ 0 at refinancing times. This is equivalent to

P (C∗) ≥ ∆M , implying that the maximum dollar amount of new equity financing that can be

raised equals the post-refinancing value P (C∗). When P (C∗) = ∆M , existing shareholders

are fully diluted and newly arriving investors buy the firm’s entire equity at fair price P (C∗).

Note that P (C) + J(C) ≥ 0 implies the following constraint on α:

α ≤ [P (C∗)− C∗] + C. (15)

We denote S (C∗, C) = {x : x ≤ [P (C∗)− C∗] + C} the set of all admissible choices for α.11

The HJB Equation. We now conjecture and verify that Pt can be expressed as a function

of excess liquidity only, Pt = P (Ct), which in turn implies that total net value of the firm

11For robustness, Section 5.1 introduces the generalized constraint J(C) ≥ −νP (C), ν ∈ [0, 1], which is
tighter than (15) for ν < 1. We show that qualitatively the results remain unchanged.
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also reduces to a function of excess liquidity only, Pt + Yt −Mt = P (Ct)− Ct. To solve the

shareholders’ dynamic problem (5), we first maximize equity value P (C) for a given level

of excess liquidity C and then determine the optimal level of initial excess liquidity C0. We

conjecture that the firm optimally makes dividend payouts to investors at an endogenous

upper boundary C = C, and that it either liquidates or receives sufficient financing to stay

alive at some endogenous lower boundary C. The intuition behind this payout policy is

that the firm’s investors are the firm’s shareholders and can only receive positive dividend

payouts. Thus, dividends are only paid out when the firm has performed sufficiently well in

the past and accumulated enough liquidity. For C ∈
(
C,C

)
, dDiv = 0 and equity solves

rP (C) = max
β,Y≥max{0,−C}

{
P ′ (C)

[
µ+ (r − λ)C − λY − σ2kZ(β)

]
+ P ′′ (C)

σ2

2
(1− β)2

}
+ π max

C∗,α∈S(C∗,C)

{
P ′ (C) [α− kΠ(α)] + [P (C∗)− C∗]− [P (C)− C]− α

}
. (16)

Note that the right-hand-side of (16) only depends on the state variable C and control

variables (α, β, Y, C∗) with constraints that depend on C and exogenous constants, confirm-

ing the conjecture that we can express equity value as a function of C alone, Pt = P (Ct).

Optimal control variables determined according to (16) are functions of C too.

Payout boundary. Payout boundary satisfies smooth pasting and super contact conditions,

P ′(C) = 1 and P ′′(C) = 0. (17)

For C > C, the firm pays out C − C > 0 dollars, and C drops immediately to C, implying

P (C) = P (C)+
(
C − C

)
for C ≥ C. For now, we assume that a well-behaved, non-negative,

and twice continuously differentiable solution to (16) exists on the endogenous state space

(C,C) subject to (17). In Online Appendix I, we establish existence of such a solution, and

show that the dynamic contracting problem (5) has a unique solution.

The following Proposition summarizes our findings, formally proven in Online Appendix B.

Proposition 1. Equity value under the optimal contract can be expressed as function of C

only, Pt = P (Ct), and solves the HJB equation (16) on the endogenous state space (C,C)

subject to (17). Equity value is strictly concave on (C,C), so that P ′′(C) < 0 and P ′(C) > 1

for C < C. Optimal dividend payouts dDiv cause C to reflect at C and are zero in the

interior of the state space. The payout boundary is strictly positive, C > 0.

For C < C, the value function is strictly concave, so P ′′(C) < 0 and P ′(C) > 1. The

concavity of equity value implies that the firm’s shareholders are effectively risk-averse, since

access to external equity financing is limited and hence negative cash flow shocks can trigger
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financial distress. To be able to withstand cash flow shocks absent access to equity financing,

the firm accumulates cash and delays payouts until C reaches a strictly positive C.12

2.2 Optimal State-Dependent Control Variables

We solve the optimization in the HJB equation (16) to characterize the four control variables:

Refinancing target C∗. First, the first order condition with respect to C∗ yields P ′ (C∗ (C)) =

1, so that refinancing occurs up until a point at which the internal value of cash is equalized

with the value of paying it out. Recall that P ′(C) = 1 at the payout boundary C and

P ′(C) > 1 for C < C, so that without loss of generality we set C∗ = C∗(C) = C.13

Intermediary stake Y . Second, since P ′ (C) > 0 and λ > 0, the optimal contract picks

the lowest Y possible subject to constraint (13), so that

Y (C) = max {−C, 0} and M (C) = max {C, 0} . (18)

As holding cash is costly, it is optimal to minimize cash holdings M = C + Y given excess

liquidity C. If C > 0, the firm holds cash M = C > 0, and the intermediary’s stake Y is

zero. If C < 0, the firm holds no cash, but the intermediary’s stake Y = −C is positive.

Thus, by (12), changes in promised payments to the intermediary follow

dY =

0 for C > 0

[rY − µ+ σ2kZ(β)− π (α− kΠ(α))] dt− (1− β)σdZ − Y dΠ for C < 0.
(19)

Combining this with the promise keeping constraint (6), we have that for any α, β the

transfers to/from the intermediary before liquidation are given by

dI =

[σ2kZ(β)− π (α− kΠ(α))] dt+ βσdZ + αdΠ for C > 0

µdt+ σdZ + (α + Y ) dΠ for C < 0.
(20)

Alternatively, we write (20) as dI = µIdt + σIdZ + αIdΠ with drift µI = µI(C), volatility

σI = σI(C), and αI = αI(C). We note that upon liquidation at time τ (with τ = ∞
possible), promise-keeping (6) requires that the intermediary receives a lumpy payout dIτ

equal to the value of promised payments Yτ at or “just before” liquidation.

12To see that C > 0, evaluate the ODE (16) at C (with α(C) = β(C) = 0 as shown later) to obtain

P
(
C
)
− C = µ

r − λ
r

(
C1{C≥0}

)
. This must be strictly lower than the NPV µ

r , implying C > 0.
13Any C∗ > C fulfills the first-order condition but leads to an immediate payout of C∗ − C > 0, causing

C to drop to C. Setting C∗ = C minimizes these round-trip transactions.
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Intermediary exposure to market access α. Third, setting the derivative with respect

to α in (16) to zero when (15) is not binding yields

α = αU(C) ≡ lnP ′ (C)

ρr
, (21)

while if (15) is binding we have α = αC(C) ≡ P (C)−C +C. The optimal α = α(C) is then

characterized by

α(C) = min {αU(C), αC(C)} , (22)

As α(C) > 0 is a promised payout to the intermediary upon (stochastic) access to equity

financing dΠ, all else equal, it lowers the intermediary’s required flow compensation, i.e., the

drift of dY + dI, and thus increases the drift of dC. Intuitively, α(C) > 0 shifts payouts to

the intermediary from states in which the firm is financially constrained to states in which

the firm is effectively unconstrained. As we show later in Lemma 2, the lower boundary

satisfies C ≥ −[P (C)− C], which implies α(C) ≥ 0.

Instantaneous risk-sharing β. Fourth, the first order condition with respect to β yields

β (C) =
P ′′ (C)

P ′′ (C)− ρrP ′ (C)
∈ [0, 1] . (23)

Setting β > 0 transfers cash-flow risk to the intermediary, reducing the volatility of excess

liquidity. However, setting β > 0 is costly due to the intermediary’s required risk-premium

kZ(β), also reducing the drift of excess liquidity.

2.3 The Lower Boundary for Excess Liquidity

In this section, we determine the lower boundary C. First, note that total firm value Y +P (C)

is lower than the firm’s first-best value (with cash reserves M), i.e., Y + P (C) ≤ µ
r
+ M .

Due to P (C) ≥ 0, we have Y ≤ µ
r
+ M and C ≥ −µ

r
, so C is bounded from below with

probability one. Therefore, there must exist an endogenous lower boundary C ≥ −µ
r
such

that Ct ≥ C at all times t. For C to be a lower bound for C with dynamics (12), it must be

that either (i) the firm liquidates at C, in which case we denote the lower boundary by CL,

or that (ii) C is either a reflection, inaccessible or an absorbing state (absent refinancing), in

which case we denote the lower boundary by CS and the firm is not liquidated at C = CS.

Liquidation. First, consider liquidation, i.e., case (i). As long as L > 0, the firm can always

be kept alive until C reaches−L without violating promise keeping vis-a-vis the intermediary.

Thus, the firm need not liquidate the first time it runs out of cash at C = M = 0. Next,
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we establish that conditional on liquidation, it is optimal to liquidate at the lowest value

C that does not violate promise keeping, leading to C = CL = −L, zero cash holdings at

liquidation M(CL) = 0, and P (CL) = 0. The total liquidation value at any level of excess

liquidity C is M(C) + L, which is divided between the intermediary and the investors, so

that P (C) + Y (C) = M(C) + L at the time of liquidation. Consider liquidation at a value

Ĉ > −L with payouts Y (Ĉ) to the intermediary and P̂ (Ĉ) = M(Ĉ)+L−Y (Ĉ) = L+ Ĉ to

the investors. Compare this to the value function obtained under liquidation at CL = −L,

which satisfies P (−L) = 0, P ′(C) > 1 for C ∈ (−L,C), and P ′(C) = 1 for C ≥ C. Then

P (Ĉ) > Ĉ + L = P̂ (Ĉ) and it is sub-optimal to liquidate at Ĉ > −L. Intuitively, because

liquidation is costly, it is optimal to delay it as long as possible without violating promise

keeping. Thus, conditional on liquidation, the firm optimally liquidates at C = −L, with the

intermediary receiving the full liquidation value of assets as a lump sum payout, dIτ = L.

Survival. Second, consider no liquidation, i.e., case (ii). For C = CS to be a lower bound

of C in the absence of liquidation, which we term “survival”, it must not be crossed. This

requires that as C approaches C the volatility of excess liquidity σC(C) must vanish, requiring

β(C) = 1, while its drift µC(C) and the shareholders’ value function P (C) both must stay

non-negative. The intuition is that at C = C, the intermediary keeps the firm alive by

providing continuous financing and absorbing all cash flow risks through β(C) = 1. However,

it is optimal to delay setting β = 1 as long as possible due to the intermediary’s cost of bearing

risk. Thus, the lower boundary CS is determined as the lowest level C at which µC(C) ≥ 0,

P (C) ≥ 0, and β(C) = 1 simultaneously hold. In Online Appendix C.2 we show that these

inequalities hold with equality at C = CS, as well as α(CS) = αC(C
S), so

CS =
w
(

π
r
exp

{
ρr
[
λ
r
C + π

ρr2
− ρ

2
σ2
]})

− π
r

ρr
− Y A, (24)

where w(·) is the primary branch of the Lambert-W function.

Combining, we have the following Lemma (formally proven in Online Appendix C):

Lemma 2. The lower boundary and the associated value of equity are given by

C = min
{
CS, CL

}
with P (C) = 0, (25)

where CS is given in (24) and CL = −L. When C = CS, the firm is never liquidated, and

τ = ∞. When C = CL, the firm defaults the first time Ct attains CL, i.e., τ = inf{t ≥ 0 :

Ct = CL}. The lower boundary satisfies C ∈ [−(P (C)− C),−L], where P (C)− C ≤ µ
r
.

At the lower boundary C, the shareholders’ value function equals P (C) = 0, the con-
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straint (15) binds, and the intermediary’s stake Y (C) = −C coincides with total firm value.

In other words, the intermediary owns the entire firm at C, and Y (C) = −C is the inter-

mediary’s valuation of the entire firm. On the one hand, when C = −L, the intermediary

finds it optimal to liquidate the firm at the lower boundary, so the intermediary’s valuation

of the firm equals its liquidation value L. On the other hand, when C = CS, the interme-

diary optimally provides all necessary financing to keep the firm alive and the firm is never

liquidated, so the intermediary’s valuation of the firm exceeds its liquidation value.14

To gain intuition about how the intermediary values the firm at C = CS, we consider an

approximation in which we remove the limit on the intermediary’s risk-bearing capacity for

the uncertain refinancing time, i.e., πkΠ(α) = 0:15

Y (CS) = −CS ≈
{

r

r + π
Y A +

π

r + π

[
P
(
C
)
− C

]}
. (26)

The (approximate) intermediary’s valuation of the entire firm Y (CS) is the weighted average

of its autarky valuation Y A and the gains from selling the firm to outside investors at the

fair price
[
P
(
C
)
− C

]
upon the next equity financing opportunity. Provided that the resale

value
[
P
(
C
)
− C

]
or the frequency of equity financing opportunities π are large enough,

the intermediary might keep the firm alive, i.e., C < −L, even when Y A < L.

The following Proposition, formally proven in Online Appendix E, states that if the

lower boundary is CS, whilst conditionally absorbing, it is never attained, which implies the

existence of a non-degenerate stationary distribution over C even when π = 0. We will use

this stationary distribution at a later point in our analysis to simulate firm outcomes.

Proposition 2. When C = CS, then the lower boundary is never attained and a non-

degenerate stationary distribution of states C exists with support (C,C).

2.4 Optimal Contract and Dynamics

We now characterize the optimal financing arrangement by summarizing our previous results.

Proposition 3. Under the optimal contract, the shareholders’ value function P (C) solves

on (C,C) the HJB equation (16) with boundary conditions (17) and P (C) = 0 where C is

given by (25). Dividend payouts cause C to reflect at the payout boundary C > 0. Optimal

controls are characterized by (18) (22), (23), and C∗ = C. The value function is concave,

14The intermediary never liquidating the firm for C = CS is a consequence of stationarity of dXt and dΠt.
15For a derivation, set β(C) = 1, α(C) = P (C)−C+C, Y (C) = −C, and πkΠ(αt) = 0 into the drift term

of (12) to obtain µC(C) = µ− σ2kZ(1) + (r+ π)C + π[P (C)−C]. By Y A from (9), we can solve µC(C) = 0
for the result. This approximation is precise for ρ → 0 or π → 0, since either limit implies πkΠ(α) → 0.
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i.e., P ′′(C) < 0 for C < C. Before liquidation at time τ , the associated transfers dI = dI(C)

and promises to the intermediary dY = dY (C) are given in (20) and (19).

If C = CL = −L, the firm liquidates once C reaches the lower boundary C and β(C) < 1

for all C ≥ C. Then, the intermediary receives a lump-sump payment of dIτ = L, equal to

the value of her promised payments at liquidation Y (CL) = L. If C = CS, the firm never

liquidates (i.e., τ = ∞) and β (C) = 1 while β(C) < 1 for all C > C.

The formal proof is given in Online Appendix F. The firm’s initial liquidity C0 coincides

with the payout boundary

C ∈ argmax
C0

[P (C0)− C0], (27)

which is strictly positive. The initial value of the original shareholders in (5) is P0− =

P0 −∆M0 = P
(
C
)
− C as the firm raises ∆M0 = C from new investors who pay fair value

and, since Y0 = Y (C) = 0 and α0 = 0, the intermediary does not provide initial financing.

How does the firm finance cash flow shortfalls under the optimal contract? When C > 0,

the firm holds cash M(C) = C > 0 and covers a negative cash flow shock dZ < 0 partially

out of the cash balance and through the intermediary, while the intermediary does not have

a stake in the firm. Specifically, a fraction 1 − β(C) of a negative cash flow shock dZ < 0

is covered from the firm’s cash and the fraction β(C) is covered by the intermediary as part

of the risk-sharing agreement; that is, the volatility of dI equals σβ(C) in this case as (20)

shows. In contrast, when C ≤ 0, the firm’s cash balance is exhausted and the intermediary

provides financing in exchange for future promised payments. A negative cash flow shock

of, say, one dollar (σdZ = −1) is fully financed by the intermediary (so dI = −1), in that

the volatility of payouts dI equals σ. The intermediary is only partially compensated via an

increase of future promised payments by dY = (1− β(C)) for covering this cash flow shock

of one dollar, hence it bears fraction β(C) of cash flow risk according to the risk-sharing

agreement. Section 4 shows that there is a natural implementation of the intermediary

financing contract via the combination of an unsecured, risky credit line, implementing risk-

sharing, and a secured, risk-free credit line, implementing financing against promises.

Numerical illustration. To illustrate the contract dynamics, we present numerical exam-

ples based on the parameters given in Table 1. We follow Bolton et al. (2011) in setting r, µ, λ.

We set the liquidation value to L = 1, which is about 33.3% of the firm’s NPV = µ/r = 3

in line with the liquidation values of nonfinancial firms reported in Kermani and Ma (2023).

We take the intermediary’s CARA coefficient ρ = 6, similar to He (2011), and normalize

σ = 1, which also normalizes Y A = 0. In the absence of refinancing opportunities, that is,

π = 0, the firm is liquidated at C = CL = −L. In the baseline, we pick π = 0.5 (that is,

expected time until the next market access is 1/π = 2 years) leading to C < −L and the firm

19



Parameter Value Interpretation

r 0.06 Common discount & interest rate
λ 0.01 Internal carry cost of cash
µ 0.18 Drift of cash flow process
σ 1 Volatility of cash flow process
ρ 6 Intermediary’s CARA coefficient
π 0.5 Arrival rate of equity financing opportunities

NPV 3 First-best value of firm (µ/r)
Y A 0 Autarky value of firm to intermediary
L 1 Liquidation value

Table 1: Baseline Parameter Values for all Figures.

does not liquidate; we also provide a plot for π = 0.01 in which case the firm is liquidated

at C = CL = −L.16 The model’s qualitative outcomes are robust to the choice of these

parameters. Figure 1 illustrates the contract dynamics by plotting β(C) and α(C), αU(C)

against C in the state space (C,C), both for π = 0.5 (see Panels A and C) and π = 0.01 (see

Panels B and D). The payout boundary C (lower boundary C) is indicated as a vertical red

(blue) line. In the right panels for π = 0.01, the firm liquidates at CL = −L, with β(C) < 1.

In the left panels, π = 0.5 and CS < −L, so the firm never liquidates and limC→C β(C) = 1.

The upper row of Figure 1 (see Panels A and B) shows that the intensity of risk-sharing

β(C) decreases with C or, alternatively, increases with how financially constrained the firm

is. Due to financial constraints, shareholders are effectively risk-averse, i.e., P ′′(C) < 0. It

now becomes optimal to share risk with the intermediary through β(C) > 0, which is costly

due to the intermediary’s limited risk-bearing capacity. Because the effective risk aversion of

shareholders decreases in C, while the intermediary’s risk-bearing capacity 1/ρ is constant,

β(C) decreases with C.

The lower row of Figure 1 (see Panels C and D) shows that, provided (15) does not bind,

α(C) = αU(C) smoothly decreases with C. Recall that α can be understood as a costly

financing or risk-sharing instrument. Setting α(C) > 0 essentially transforms flow payouts

to the intermediary today (i.e., from states in which the firm is constrained) into a promised

lumpy payout upon refinancing in the future (i.e., a state in which the firm is financially

unconstrained). This transfer of promised payments to the future is relatively more beneficial

when excess liquidity is lower and the firm is more constrained, but exposing the intermediary

to shock dΠ through α > 0 is costly. The optimal choice of α trades off relaxation of financial

16Our choice π = 0.5 follows Hugonnier et al. (2015) who assume an arrival rate of refinancing opportunities
of 2 and incumbent shareholders’ bargaining power of 0.25, resulting in an effective arrival rate of 0.25·2 = 0.5.
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Figure 1: Contract Dynamics. This figure plots β(C) and α(C) against C both for π = 0.5
(Panels A and C) and π = 0.01 (Panels B and D). The parameters follow Table 1.

constraints now versus larger payments to the intermediary in the future, so unconstrained

αU(C) decreases with financial slack C. However, limited liability limits what amount α(C)

can be promised, as shown in the constraint (15). It is binding when C is low and close

to C, which we term financial distress. In this case, α(C) mechanically increases with C,

as additional liquidity C relaxes the constraint (15). In summary, intermediary financing

through the three instruments α, β, Y can be seen as a form of bridge financing that helps

the firm cover financing needs and bridges the gap between equity financing rounds.

3 Analysis and Discussion

3.1 Cash Flow- vs. Asset-Based Financing Capacity

In the optimal contract, the intermediary provides financing against promised repayments,

as long as the value of these promises Y does not exceed the firm’s financing capacity defined

as Y := Y (C). As formalized in the implementation of the optimal contract via secured and

unsecured debt in Section 4, promises to the intermediary Y resemble a collateralized debt

claim in the firm, with the firm as the collateral backing the claim. Financing capacity

Y = −C = max{L,−CS} is determined by either the liquidation value of assets L (asset-

based) or the intermediary’s going concern value of the firm’s cash flows (cash flow-based).
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When C = −L, financing capacity is asset-based, andt the firm’s financing from the

intermediary is constrained by the liquidation value of its assets. Nonetheless, when C < 0,

the firm taps into intermediary financing against future promised payments Y (C) > 0 and

pledges the firm’s assets to the intermediary so as not to default on the promises. Upon

liquidation at C = −L, the intermediary seizes the entire liquidation value L equal to its

continuation payoff Y (C) = −L.

When C = CS, financing capacity is cash flow-based, and the intermediary provides suf-

ficient financing to prevent firm liquidation, for which it is compensated via future promised

payments. The intermediary effectively obtains a stake in the firm which secures and collat-

eralizes future promised repayments. Since this stake cannot exceed the value of the entire

firm, the intermediary’s valuation of the firm, including the value of future refinancing oppor-

tunities, constrains the amount of financing that the intermediary provides against promised

repayments. Notably, cash flow-based financing capacity implies τ = ∞ and so is associated

with lower liquidation risk than asset-based financing capacity with τ < ∞ (almost surely).

Intuitively, for the firm to be able to obtain financing against future cash flows, the firm

must not be liquidated beforehand so that these cash flows indeed realize.17

A cash flow-based financing capacity implies that cash flow-based financing becomes

the marginal source of financing as C approaches C, but need not preclude asset-based

financing altogether. For example, suppose that financing capacity is cash flow-based and

Y ≥ Y > L. Then, some part of the promises to the intermediary (i.e., min{Y, L} dollars)

are backed by the asset liquidation value L, while the promises in excess of liquidation value

(i.e., max{Y − L, 0} dollars) are cash flow-based. Indeed, as the implementation of the

optimal contract from Section 4 illustrates, the firm generally relies on both asset- and cash

flow-based credit line debt.

3.2 Determinants of Financing Capacity

When is the firm’s financing capacity determined by the value of future cash flow or the

liquidation value of assets? To this end, Figure 2 plots C and C against the expected time

to refinancing 1/π (Panel A), cash flow drift µ (Panel B), cash flow volatility σ (Panel C),

and intermediary CARA coefficient ρ (Panel D). Figure 2 shows that the firm’s financing

capacity Y = −C increases with access to equity financing π, i.e., C increases with 1/π, and

the firm’s cash flow rate µ, while it decreases with cash flow volatility σ and intermediary

CARA coefficient ρ (recall that 1/ρ is the intermediary’s risk-bearing capacity). Thus,

financing capacity is cash flow-based (asset-based) for low (high) values of 1/π, σ, ρ or when

17When the firm’s financing capacity is asset-based, i.e., C = −L < CS , the firm could guarantee survival
by using intermediary financing only up to CS . However, this is sub-optimal as shown in Online Appendix C.
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Figure 2: Boundaries: Comparative statics of the boundaries C,C with respect to to the
expected time until refinancing 1/π (top left panel), profitability µ (top right panel), cash
flow volatility σ (bottom left panel), intermediary risk aversion ρ (bottom right panel). The
parameters follow Table 1.

µ is high (low). Intuitively, intermediaries are more willing to provide financing against cash

flow for firms with high profitability µ and less volatile cash flows σ. At the same time, low

values of µ and large values of σ are associated with larger target cash holdings C. 18 19

A key insight from the model is that a firm’s financing capacity not only depends on

firm characteristics but, as Figure 2 and the following Corollary show, also on intermediary

characteristics, here the intermediary’s risk-bearing capacity 1/ρ, as well as market charac-

teristics, here the firm’s access to equity financing π.

Corollary 1. When ρ is sufficiently large (small), then C = −L (C = CS) and financing

capacity is asset-based (cash flow-based). Further, for Y A < L, when π ≥ 0 is sufficiently

small (large) the financing capacity is asset-based (cash flow-based).

To gain some intuition behind Corollary 1, consider the benchmark ρ → ∞, so the

intermediary has zero risk-bearing capacity, leading to β(C) = α(C) = 0 and C = −L. Note

that the intermediary is still willing to provide financing against future promised payments as

18More volatile cash flows raise the risk of financial distress and the need for precautionary cash holdings
(Décamps et al., 2011) which is exacerbated because an increase in σ also reduces financing capacity.

19C is non-monotone in µ because an increase in µ raises profitability and thus makes liquidation more
costly while reducing the need for precautionary cash. The liquidation effect dominates for low µ because
financing capacity is asset-based. Otherwise the precautionary saving effect dominates.
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long as these promises are collateralized by the firm’s liquidation value L. From (20) and (19),

the intermediary provides asset-backed financing against the firm’s liquidation value (which it

seizes upon liquidation), with dI = (dX+Y dΠ)1{C<0} and dY = (rY dt−dX−Y dΠ)1{C<0}

before the default time τ . Thus, although the intermediary covers all cash flow shocks

when C < 0 (that is, the volatility of dI is σ), financing is risk-free because future promised

payments grow at rate r and are fully backed by the liquidation value of assets, i.e., dI+dY =

rY dt. Hence, the firm’s financing capacity Y is asset-based for sufficiently large values of

ρ. On the contrary, when ρ → 0, so the intermediary has unlimited risk-bearing capacity,

the intermediary values the firm at its NPV µ/r, so the firm’s financing capacity Y is cash

flow-based as µ/r > L.

More generally, as Corollary 1 and Panel D of Figure 2 show, financing capacity decreases

with ρ and is cash flow-based only for low values of ρ, while target cash holdings C increase

with ρ. That is, a negative shock to intermediary risk-bearing capacity tightens financing

constraints. Furthermore, intermediaries with higher risk-bearing capacity tend to provide

more cash flow-based financing. This result is notable and perhaps counterintuitive, because

cash flow-based financing is associated with no liquidation and thus seemingly risk-free,

whereas the firm faces the risk of liquidation under asset-based financing. However, the

reason is that cash flow-based financing requires the intermediary to have a high valuation

for the firm which serves as collateral backing promised repayments. Since the firm’s cash

flows are risky and access to equity financing is uncertain, the intermediary’s valuation of the

firm as a going-concern is high only if the intermediary has sufficiently risk-bearing capacity.

In reality, different types of intermediaries may exhibit different risk-bearing capacities.

For instance, because banks face regulatory capital constraints, they effectively have lower

risk-bearing capacity and are likely to be characterized by lower 1/ρ. On the other hand,

direct lenders or private debt funds face less regulatory constraints than banks but still

might be capital-constrained, so they are likely characterized by higher 1/ρ, in line with

their documented lending to riskier borrowers in practice (Chernenko et al., 2022).

To examine how capital market characteristics affect financing capacity, we first consider

the limit case π → ∞, leading to continuous and costless equity financing. Then, the

financing capacity satisfies Y = µ/r > L and thus is cash flow-based. Next, recall that

financing capacity equals the intermediary’s valuation of the entire firm, reflecting both the

intermediary’s autarky valuation as well as the resale option value. More frequent access

to equity financing improves the intermediary’s opportunities to exit by selling the firm to

equity investors, hence boosting resale option value. As a result, it raises the intermediary’s

willingness to provide financing against promises and also the firm’s financing capacity.

Panel A shows that lower 1/π, allowing the firm to raise new equity capital more frequently,
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increases financing capacity and reduces the reliance on costly precautionary cash holdings

as captured by C. An immediate consequence is that the better access to equity financing,

the more likely the firm’s financing capacity is cash flow-based rather than asset-based.

Finally, as formalized in Section 4, intermediary financing can be seen as (collateralized)

debt financing. Thus, our results imply that debt-like intermediary financing and equity

financing are static substitutes but dynamic complements. When the firm raises equity new

financing, it repays the intermediary, in that C jumps to C ≥ 0 and Y to Y (C) = 0; that

is, equity financing substitutes for financing from the intermediary. On the other hand, the

prospect of future access to equity financing improves financing capacity and thus the firm’s

access to financing against promises absent access to equity financing. The intuition is that

the prospect of future access to equity financing ensures that the intermediary is repaid.

3.3 Tightness of Financing Constraints

In our model, not only is financing capacity endogenously determined, but also its utiliza-

tion. To better connect to the empirical literature, we refer to the level of the firm’s financing

constraint Y as the firm’s financing capacity. Further, we refer to the level of its usage of

financing Yt as utilization and its usage Yt relative to its limit Y as the tightness of its

financing constraint. As recent studies show, both the nature and tightness of financing con-

straints matter for corporate policies and investment (Chaney, Sraer, and Thesmar, 2012;

Adler, 2020) as well as pin down firms’ exposure to economic shocks that affect the availabil-

ity of intermediary financing (e.g., financial crises) or the determinants of firms’ financing

constraints (e.g., aggregate profitability or uncertainty shocks like Covid-19).20

One key implication of our model is that firms with very high or low financing capacity Y

tend to utilize intermediary financing the least and face on average the least tight financing

constraints. This implication has several interesting aspects. First, better access to equity

financing, higher profitability, or lower cash flow volatility — all of which imply a larger

financing capacity Y — may increase the utilization of the financing capacity more than

the capacity itself, thereby leading to tighter financing constraints. Second, firms with large

financing capacity actually end up utilizing very little of it, precisely because their financing

capacity reflects strong firm fundamentals (e.g., high profitability or low cash flow risk) that

reduce the need for intermediary financing.

For analyzing the determinants of utilization of intermediary financing and constraint

tightness, we focus on model parameters that induce survival C = CS and thus admit a sta-

tionary distribution of the state variable Ct on the interval (C,C) as shown in Proposition 2.

20See, for instance, Ivashina, Laeven, and Moral-Benito (2020), Caglio, Darst, and Kalemli-Özcan (2021),
Drechsel (2023), and Cloyne, Ferreira, Froemel, and Surico (2023).

25



1 2 3 4 5

0.1

0.2

0.3

1 2 3 4 5

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5

0.02

0.04

0.06

0.08

0.1

0.12

0.2 0.3 0.4 0.5

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5

0.08

0.1

0.12

0.14

0.2 0.3 0.4 0.5

0.1

0.15

0.2

0.6 0.8 1 1.2 1.4

0.2

0.3

0.4

0.6 0.8 1 1.2 1.4

0.06

0.08

0.1

0.12

0.14

0.6 0.8 1 1.2 1.4

0.06

0.08

0.1

0.12

0.14

Figure 3: Intermediary financing under survival. This figure plots the average uti-
lization of intermediary financing avg(Yt) (top row), the average tightness of financing con-
straints avg(Yt)/Y (middle row), and crisis exposure Prob(Yt > L) (bottom row) against
1/π (left column), µ (middle column), and σ (right column). The parameters follow Table 1.

We then use the stationary distribution to calculate firms’ average utilization of intermediary

financing, i.e., avg(Yt), the average tightness of their financing constraints, i.e., avg(Yt)/Y ,

and the frequency that promises exceed liquidation value, i.e., Prob(Yt > L). We interpret

Prob(Yt > L) as capturing the exposure to unforeseen economic shocks or financial crises. If

there is a sudden unanticipated shock that sends intermediary risk-bearing capacity to zero

(1/ρ → 0) or freezes markets (π → 0), cash flow-based intermediary financing evaporates.

Thus, only asset-based intermediary financing is available and the financing capacity of all

firms drops to L. Consequently, a fraction Prob(Yt > L) of the firms immediately default.

Figure 3 shows that avg(Yt), avg(Yt)/Y , and Prob(Yt > L) are all hump-shaped in 1/π,

µ, and σ. Firms with a relatively low financing capacity Y — characterized by high 1/π,

low µ, or high σ as seen in Figure 2 — do not rely much on intermediary financing, so their

financing constraints on average are relatively loose. The intuition is that these types of

firms accumulate a larger precautionary cash buffer M(C) = C to rely less on intermedi-

ary financing. Surprisingly, even though these firms are characterized by a lower financing

capacity, they face on average less tight financing constraints. Thus, an increase in µ or π,
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for example, can increase the utilization of intermediary financing more than the financing

capacity, thereby tightening financing constraints. Finally, firms with intermediate financ-

ing capacity — characterized by intermediate levels of 1/π, µ, or σ — rely on intermediary

financing the most and so face the tightest financial constraints on average.

4 Implementing the Contract

Up to this point, the state variable for the contract was the net liquidity position of the firm

C = M − Y , which contains the forward looking promises Y to the intermediary. While

this is a natural variable for shareholders to consider when deciding on payout and financing

policies, standard securities typically do not explicitly specify payouts contingent on the cash

balance or similar measures of the firm’s liquidity. For example, the relevant state variable

for debt contracts and in particular credit lines is the borrowed amount or balance. We

now provide an implementation for the optimal contract characterized by the past transfer

process dIt. Specifically, we first derive a variable that tracks past cumulative compounded

transfers between the firm and the intermediary, reflecting an accrued principal balance that

serves as a sufficient statistic for the contract. We then use this variable as the basis of our

implementation of the contract in terms of credit lines.

4.1 Tracking the State of the Firm with Past Transfers

For any time t > 0, define the last refinancing time τΠ(t) = sup{s ≤ t : dΠs = 1}. Next,

define the cumulative net transfers received from the intermediary over s ∈ (τΠ(t), t), with

each transfer compounded at some rate
∫ t

s
r̂udu:

Tt ≡ −
∫ t

τΠ(t)

e
∫ t
s r̂ududIs. (28)

The balance Tt quantifies the net amount of money that the intermediary has contributed to

the firm over the time interval (τΠ(t), t). To base the implementation of the optimal contract

on Tt, it must be a sufficient statistic for Ct. Specifically, we are looking for a process r̂t that

makes Tt Markovian in Ct, with Tt = T (Ct) and T (C) = 0 because Tt is reset upon equity

financing.

Proposition 4. There exists a unique function r̂(C) with r̂(Ct) = r̂t which results in a

unique (non-degenerate) Markovian process Tt = T (Ct). Under the optimal β(C), T (Ct)

satisfies

T (Ct) = αU(Ct) + Y (Ct), (29)
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T (C) = 0, and T ′(C) > 0. For any αt = α(Ct) differentiable almost everywhere, we have

r̂(Ct)T (Ct) =
λ

ρr
1{Ct≥0} + rY (Ct) + π

(
eρr[αU (Ct)−α(Ct)] − 1

ρr

)(
1− α′ (Ct)

eρrαU (Ct)

)
. (30)

For a heuristic derivation of (29), notice from (28) that dTt has volatility −σI(C). At

the same time, by Ito’s Lemma, the volatility of dT (C) is T ′(C)σC(C). Matching terms and

using σI(C) from (20) and σC(C) from (12), we have that T (C) solves the first-order ODE

−σI(C) = T ′(C)σC(C) ⇐⇒ T ′(C) = −

([
1{C<0} + 1{C≥0}β(C)

]
[1− β(C)]

)
(31)

with boundary condition T (C) = 0. Solving the ODE yields (29). The formal proof is given

in Online Appendix G.

With Proposition 4 in hand, we can change the state variable from Ct to Tt = T (Ct). In

general, T (Ct) exhibits characteristics of a credit line balance, in that it records payments

from the intermediary to and from the firm and compounds at “rate of return” r̂(Ct). The

balance increases (decreases) after negative (positive) cash flow shocks in that the inter-

mediary draws on (repays) the credit line. Moreover, the balance is retired upon equity

financing through at least partial lump-sum repayment. In the following, we present an

implementation that links the balance T (Ct) to the balance of two separate credit lines.

4.2 Secured and Unsecured Credit Line Debt

Motivated by Proposition 4, we implement the optimal contract through a combination of

secured and unsecured credit line debt, whose balances add up to the “joint balance” T (C).

The two credit lines implement the structure of intermediary financing and, as such, the

control variables Y (C), α(C), β(C). In summary, the secured credit line implements Y (C),

while the unsecured credit implements contracted risk-sharing α(C) and β(C).

Proposition 5. The optimal contract can be implemented via two securities that respect

absolute priority: (1) A secured, risk-free credit line with balance Y (C) and (2) an unse-

cured, risky credit line with balance D(C) = αU(C) for C ∈ (C,C]. At the dividend payout

boundary, these balances are Y (C) = D(C) = 0. For C ∈ (C,C), the following holds:

1. The balance of the secured credit line Y (C) grows with interest at rate r and rises and
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falls with transfers dIY (C):

dY (C) = rY (C)dt− dIY (C) (32)

dIY (C) =
(
[µ− σ2kZ(β(C)) + π (α− kΠ(α))]dt+ σC(C)dZ + Y (C)dΠ

)
1{C≤0}. (33)

Upon refinancing, the secured credit line is repaid in full.

2. The balance of the unsecured credit line D(C) increases with a maintenance fee λ
ρr
1{C≥0},

and rises and falls with transfers dID(C):

dD(C) =
λ

ρr
1{C≥0}dt− dID(C)−∆Π(C)dΠ (34)

dID(C) =
[
σ2kZ(β(C))− π (α− kΠ(α))

]
dt+ σβ(C)dZ + α(C)dΠ. (35)

∆Π(C) = D(C)− α(C). (36)

Upon refinancing, if α = αC(C), the firm defaults on ∆Π(C) > 0 of the unsecured

credit line, while existing equity claims are wiped out. Otherwise, the unsecured credit

line is repaid in full and existing equity claims retain some value.

Creditors have control rights over the firm’s assets for all C such that J(C) ≤ 0. Finally,

Y (C) is the total secured debt capacity of the firm.

The formal proof is given in Online Appendix H. First, observe that within the optimal

contract, equity holders may commit to a value loss through dilution when raising new equity,

i.e., J(C) ∈ [−P (C), 0). Intuitively, the firm faces a debt-overhang problem when it raises

equity in such states: raising equity financing is only possible if part of the existing debt is

written off and shareholders are fully diluted. To implement refinancing with a value loss

to the existing shareholders, we thus need to give creditors control rights for all states C

with J(C) < 0. We can achieve this via bankruptcy or the threat of bankruptcy from debt

covenant violation, and structure the covenant so that it is violated whenever J(C) < 0. It

can be a balance sheet covenant, e.g., a maximum debt-to-asset ratio, or a financial covenant,

e.g., an earnings-based covenant which is violated after a sufficient string of negative cash

flow realizations.21 For low C, Figure 1 shows that (15) binds, i.e., J(C) = −P (C). In this

case, the creditors enforce the covenant and force bankruptcy. If the opportunity to raise

new equity arrives while the firm is in bankruptcy, the existing shareholders are wiped out as

the proceeds from raising new equity are insufficient to pay all claims in full, a situation we

term distress. The creditors then distribute the refinancing proceeds according to seniority.

21An earnings-based covenant, such as typically stipulate that a firm’s total debt or interest expenses
cannot exceed a multiple of EBITDA.
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In contrast, for J(C) ∈ (−P (C), 0), the covenant is violated and existing shareholders face

the threat of bankruptcy. However, in these states refinancing proceeds are sufficient to

repay the creditors in full. Thus, shareholders pay off the credit lines upon finding new

equity financing, in the process lowering their own continuation value rather than facing

bankruptcy and losing all value.

Bankruptcy. Given the preceding discussion, there are four cases to credit line repayment.

First, credit lines are gradually repaid after positive cash flow realizations. Second, when

the firm’s liquidity reserves are sufficiently high, i.e., high C, credit lines are repaid in full

while existing equity claims are partially diluted upon refinancing. Third, when the firm is

in distress, i.e., for low C such that (15) is binding, its creditors force it to enter Chapter

11 bankruptcy and the firm continues operations. If the firm finds new equity investors, the

unsecured credit line is retired with a write-down, essentially a partial default, the secured

credit line is repaid in full, and the existing equity claims are wiped out.22 The firm then

emerges from bankruptcy under the new ownership, completing the reorganization. The

firm may also emerge from bankruptcy following a string of positive cash flow realizations

without new equity infusions. Fourth, while in bankruptcy, the firm may hit its financing

capacity, i.e., for C = C, in which case it is optimally liquidated, akin to converting Chapter

11 to Chapter 7. The secured credit line is repaid in full with the liquidation proceeds, while

both the unsecured credit line and existing equity claims are wiped out.23 In all cases, repay-

ments respect the absolute priority rule (APR).24 It follows that cash flow-based financing

is associated with Chapter 11 bankruptcy and reorganization, while asset-based financing

is associated with Chapter 7 bankruptcy and liquidation. Different from bargaining-based

models of bankruptcy, such as Antill and Grenadier (2019), in our model, the current share-

holders have full bargaining power vis-a-vis new shareholders and the intermediary. Thus,

different bankruptcy resolutions are not a consequence of bargaining, but endogenously arise

from the shareholders’ commitment to the optimal contract. Consequently, bankruptcy and

the different paths out of it are an ex-ante efficient outcome.

Secured Credit Line. The purpose of the secured credit line is to implement financing

against future promised payouts, as characterized by Y (C). Thus, the implementation of the

optimal contract formalizes the interpretation of financing against promises as collateralized

22Indeed, restructuring of distressed and bankrupt firms in practice goes often along with partial default
on existing debt claims (see, e.g., Ivashina, Iverson, and Smith (2016)) and write-down of equity claims; the
restructuring process might induce a loss for some types of debt claims (e.g., unsecured debt) and equity,
while benefiting others (e.g., secured debt).

23Under C = CS the firm never exhausts its financing capacity, i.e., Ct never attains C (see Proposition 2).
24The reason is that the states in which there is partial default on the unsecured credit line are exactly

the states in which (15) is binding, implying existing equity holders are wiped out while the firm survives.
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debt financing. Crucially, the balance of the secured credit line Y (C) is always fully backed by

the firm as a collateral asset, and the limit of the secured credit line equals Y (C) = −C and,

as such, coincides with the firm’s financing capacity. Therefore, the secured credit line limit is

either determined by the liquidation of the firm’s assets (“asset-based borrowing constraint”)

in that Y (C) = L or the firm’s going concern value (“cash flow-based or earnings-based

borrowing constraint”) in that Y (C) = −CS. The secured credit line is risk-free and accrues

interest at the risk-free rate r.

Unsecured Credit Line. The firm’s unsecured, risky credit line implements contracted

risk-sharing — that is, α and β. Notice that the interest rate is zero and the credit line only

stipulates a maintenance fee which is waived when C < 0, i.e., intuitively when the firm

undergoes financial distress. The utilization of this (zero-interest) credit line represents a

wealth transfer from the intermediary to the firm for which the intermediary is compensated

ex ante via the maintenance fee. Repayments and drawdowns on the unsecured credit line in

response to Brownian cash flow shocks are proportional to β(C): Upon a negative (positive)

cash flow shock of $1, the firm draws down (repays) the credit line by $β(C). As a result, the

credit line and state-contingent drawdown/repayment as stipulated in Proposition 5 induce

a wealth transfer from (to) the intermediary to (from) the firm upon a negative (positive)

cash flow shock proportional to β(C), thus implementing contracted risk-sharing of Brownian

risk. Similarly, as can be seen from (35), the speed with which the intermediary draws on

the credit line, that is, −dID(C), increases with α(C), while the balance of the credit line is

paid back by the amount α(C) upon refinancing dΠ = 1. Thus, the higher α(C), the higher

the transfer from the intermediary to the firm by means of this subsidized credit line.25

The interaction between secured and unsecured debt. Notably, secured and unse-

cured debt in our implementation exhibit a form of complementarity, in a sense that usage

of one debt instrument stimulates usage of the other one. First, the unsecured credit line

— which implements risk-sharing α and β — is necessary to prevent liquidation at C via

β(C) = 1 and thus for the secured credit line to have capacity beyond L (i.e., for financing

capacity to be cash flow-based). Intuitively, unsecured debt allows the firm to offload risk to

prevent liquidation, ensuring repayment of secured debt. Conversely, the unsecured credit

line is used intensely for low C in that β(C) = 1, if and only if the secured debt capacity

exceeds L and, equivalently, financing capacity Y is cash flow-based.

Next, notice that for C > 0 only the unsecured credit line is used. For C < 0 how-

ever, both credit lines are used, giving rise to direct interactions. Secured and unsecured

25When intermediary risk-bearing capacity vanishes, i.e., ρ → ∞, there is no more risk-sharing and the
unsecured credit line vanishes, and intermediary financing solely occurs via the secured credit line, i.e.,
limρ→∞ D(C) = 0 and limρ→∞ T (C) = Y (C).
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credit lines absorb Brownian cash flow shocks in proportions (1 − β) and β, respectively.

Mechanically, the two credit line therefore are substitutes in covering cash flow short-

falls when C < 0. Further, the secured creditors receive a flow payoff µ less the term

[σ2kZ(β(C))− π (α− kΠ(α))] > 0, while the unsecured creditors receive a flow payoff equal

to this term. Thus, the secured credit line is used to pay off the unsecured credit line, which,

intuitively, ensures safety and seniority of the secured credit line.

Asset- and cash flow-based debt. Importantly, the types of debt used by the firm and

the determinants of financing capacity are related but distinct objects. Whether a firm’s

financing capacity is cash flow- or asset-based depends on which fundamentals drive the

total amount of financing available to the firm: Financing capacity is asset-based (cash flow-

based) if it increases in (is invariant to) the liquidation value of assets. Moreover, financing

capacity coincides with the firm’s secured debt capacity in our implementation. Meanwhile,

the firm utilizes several types of debt. According to the classification of asset- and cash

flow-based debt in Lian and Ma (2021), the firm relies both on asset-based debt (secured by

specific asset) and cash flow-based debt (unsecured or secured by a blanket lien). First, the

secured debt may consist of both asset- and cash flow-based debt. The secured credit line

balance below the liquidation value min{L, Y } is backed by the liquidation value of assets

and thus asset-based debt. The secured credit line balance in excess of the liquidation value

max{Y −L, 0} is then cash flow-based, i.e., secured by a blanket lien. While the firm always

uses asset-based secured debt, it uses cash flow-based secured debt if and only if financing

capacity is cash flow-based.26 Second, the firm always relies on cash flow-based debt in the

form of unsecured debt. Note that secured cash flow-based debt is senior to other forms

of cash flow-based debt. Third, a firm with cash flow-based financing capacity uses both

cash flow- and asset-based debt to achieve the optimal capital structure. An increase in the

liquidation value of asset may lead to more asset-based debt, but does not raise total amount

of financing available to this firm. A similar logic applies to asset-based financing capacity.

4.3 Analysis of the Implementation

Our implementation suggests an overlapping pecking order: First, the firm finances cash

flow shortfalls with internal cash reserves and unsecured credit line debt. It relies on secured

credit line debt only under financial distress when it has run out of cash, that is, for C < 0,

26In principle, we could “slice up” secured debt in asset- and cash flow-based secured debt in many ways,
as both types of debt have the same return properties and the firm never defaults on its secured debt. For
instance, we could stipulate for any ω ∈ [0, 1] that the balance min{ωL, Y } is asset-based, while balance
max{Y − ωL, 0} is cash flow-based. If liquidation occurs, secured cash-flow based debt is senior to any
unsecured debt, and receives any residual liquidation value after asset-based debt is repaid. As long as
L > 0, the firm may always use some asset-based debt.
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Figure 4: Implementation in Steady State. This figure plots the average unsecured debt

avg(Dt) and the average share of secured debt avg
(
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Yt+Dt

)
against 1/π. The parameters

follow Table 1 and throughout we consider parameter configurations under which τ = ∞.

while the unsecured credit line is used in all states for risk-sharing purposes. That is, the firm

first uses unsecured debt financing before it resorts to secured debt financing, consistent with

the findings in Benmelech et al. (2020a); Benmelech, Kumar, and Rajan (2020b); Rauh and

Sufi (2010).27 At first glance, one might expect the opposite, that is, the firm first uses its

available collateral to pledge for secured debt financing and, once collateral is exhausted, the

firm “needs” to raise unsecured debt financing. However, this intuition does not apply in our

context because secured and unsecured credit line debt serve different purposes. Unsecured

debt is used to finance cash flow shortfalls in all states and even when the firm has cash

M(C) > 0 to implement risk-sharing between the firm and the intermediary. Secured debt

is purely a financing instrument that is only used when the firm runs out of cash.

Our theory sheds light on how intermediary characteristics (e.g., risk aversion ρ) or

capital market characteristics (e.g., π) shape firms’ use of secured and unsecured credit line

financing. Notice that as ρ → ∞, the firm only uses secured credit line debt, whereas for

lower levels of ρ, the firm uses both unsecured and secured credit line debt. As such, our

theory suggests that non-bank lenders (e.g., direct lenders or private debt funds) with larger

risk-bearing capacity tend to provide more unsecured debt financing than traditional banks

which tend to provide more secured debt financing. In practice, the two credit lines could also

be provided by two different intermediaries. A bank with provides the relatively “standard”

secured line and a private lender provides the unsecured credit line with “flexible” terms in

distress (i.e., maintenance fee is waived).28

27Rauh and Sufi (2010) find that high-credit-quality firms, which may correspond in our model to the ones
with high liquidity reserves, use more unsecured debt financing than low-credit-quality firms.

28Consistent with this idea, Block et al. (2023) or Jang (2022) document that private lenders indeed tend
to provide more flexible debt terms for borrowers, especially in distress.
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Figure 5: Contract Dynamics under limited creditor protection. This figure plots
β(C) and α(C) against C both for π = 0.5 (Panels A and C) and π = 0 (Panels B and D).
The parameters follow Table 1 and ν = 0 in refinancing constraint (37)

Interestingly, while avg(Yt) is hump-shaped in 1/π (see Figure 3), unsecured debt avg(Dt)

increases in 1/π, as shown in Panel A of Figure 4 . Intuitively, when the firm’s access to equity

financing is limited, the firm relies more on unsecured debt provided by the intermediary to

offload risk. At the same time, large 1/π limits the firm’s financing capacity, thus curbing

the use of secured credit line debt. The share of secured debt (Panel B) is hump-shaped in

1/π. As such, better access to equity financing, i.e., lower 1/π, actually can reduce the use

of secured debt relative to unsecured debt and so the share of secured debt.

5 Further Results and Extensions

5.1 Refinancing and Weak Creditor Rights

Recall that by (15) the shareholders’ continuation payoff must be positive at any point in

time, which implied that the amount α that can be promised to the intermediary upon

refinancing was limited by constraint (15). However, in states C such that J(C) < 0,

existing shareholders are so heavily diluted upon refinancing that they are worse off than

“just before” refinancing. While committing to such a refinancing policy is ex-ante optimal,

shareholders would not want to raise equity financing at dΠt = 1 if they had discretion at t.
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For example, if shareholders can unobservably search for refinancing opportunities at zero

costs, they would have no incentive to search when J(C) < 0.

For ν ∈ [0, 1], consider the following generalized constraint on α that nests our base case:

J(C) ≥ −νP (C) ⇐⇒ α(C) ≤ [P (C)− C]− [(1− ν)P (C)− C]. (37)

Here, ν = 1 yields our baseline constraint (15) implying full commitment, while ν = 0 yields

a tighter constraint we term monotonicity, as refinancing cannot make current shareholders

worse off via dilution. Thus, ν describes shareholders’ strength of commitment, with higher ν

implying higher commitment. The solution of this model variant is now akin to the baseline

with the only difference that constraint (15) is replaced by constraint (37). The boundary

conditions remain the same, specifically the expressions for the lower bound (25), as due

to P (C) = 0, we have J(C) = 0 regardless of ν. For ν = 0, (37) implies that optimal

α(C) always decreases in C. The following proposition shows that weaker commitment, i.e.,

smaller ν, increases the payout boundary and lowers cash flow-based financing capacity.

Proposition 6. The upper bound C and lower bound under survival CS both decrease in ν.

The proof is given in Online Appendix J. Notably, the solution, implementation, and

the key results for ν < 1 remain qualitatively similar to the baseline. Figure 5 illustrates

the dynamics of the optimal contract under ν = 0 using the same parameters as in Figure 1.

The outcomes in Figure 5 are broadly similar to Figure 1, with the differences being that the

constraint (37) now binds for all C and that C and C are larger than in the baseline case.

As Proposition 4 only relies on general α(C), our implementation from Proposition 5 via

two separate credit lines applies after a change to dD(C) and the bankruptcy rules.29 The

key difference to our baseline implementation is that for 0 ≤ ν < 1, absolute priority may

fail in bankruptcy – existing shareholders are not fully wiped out when unsecured creditors

take a partial loss. We thus interpret ν as a proxy for creditor protection. Weaker creditor

rights, i.e., lower ν, lead to a decrease in financing capacity, a shift from cash flow-based

financing C = CS toward asset-based financing C = −L, and more liquidation. Thus, we

would expect that firms in countries with weaker creditor rights rely more on asset-based

financing, provide overall less credit, and self-insure more by holding higher cash balances.

29The interest rate on the unsecured credit line (30) changes as αC(C) is redefined by (37), so that

dD(C) =

[
λ

ρr
1{C≥0} + π (1− ν)

(
eρr[αU (C)−α(C)] − 1

ρr

)]
dt− dID(C)−∆Π(C)dΠ. (38)

Note that the term involving ν, i.e., the second term in [·], is always positive. Effectively, the unsecured
interest rate is higher to compensate the unsecured creditors for the higher expected losses from bankruptcy.
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5.2 Active Intermediaries and Monitoring

Financial intermediaries, such as banks or direct lenders, often monitor borrower firms to

contain credit risk or improve operational performance, or actively engage in financial distress

resolution. In this section, we extend our model to account for such intermediary actions by

allowing the intermediary to affect cash flows via its effort.30 Online Appendix K provides

a detailed description and solution of this variant. Summarizing, we assume that cash flows

evolve according to

dXt = (µ+ at)dt+ σdZt, (39)

where at ≥ 0 is the intermediary’s non-contractible and privately observable effort which

entails a cost
κa2t
2
dt for a constant κ > 0.31 The intermediary’s effort boosts the firm’s cash

flows, which could capture the intermediary’s active role in firm operations (or restructuring)

or its role in disciplining management through monitoring. Such monitoring could also be

related to covenants and to creditor actions taken after covenant violations. The intermedi-

ary’s incentives to exert effort are determined by the incentive condition at =
βt

κ
, and thus

increase with the intermediary’s exposure to cash flow shocks (“skin-in-the-game”) βt. That

is, there is a moral hazard with regard to intermediary’s monitoring effort.32

Panel A of Figure 6 illustrates the dynamics of effort a in two scenarios, (i) π = 0.5 in

which case C = CS and the firm is never liquidated and (ii) π = 0 in which case the firm

is liquidated once C = −L. To facilitate graphical comparison across the two scenarios, we

plot intermediary effort a against the firm’s adjusted liquidity position (C − C)/(C − C) ∈
[0, 1] both for π = 0.5 (solid black line) and for π = 0 (dotted red line). Intermediary

effort decreases upon negative cash flow shocks and is highest in financial distress, that

is, when C is low. Observe that in the event the intermediary provides debt financing, its

monitoring effort could also be related to the enforcement of covenants, which are more likely

to be breached following negative cash flow realizations. Notably, the intermediary exerts

particularly high effort when β(C) is close to one, which occurs at C = C in the case of

cash flow-based financing. Thus, cash flow-based financing is associated with more intense

monitoring under financial distress. This result also aligns with the observation that cash

flow-based debt typically features earnings-based covenants which are violated and trigger

monitoring (creditor actions) following negative cash flow shocks.

30Heitz, Martin, and Ufier (2022) provide empirical evidence that bank monitoring (e.g., via on-site in-
spections) and Nini, Smith, and Sufi (2012) that actions taken by creditors improve borrower performance,
lending support to our modelling in (39) that at boosts firm performance.

31Note that an infinite cost of effort, i.e., κ → ∞, implies at = 0, thus giving our baseline case.
32While this model extension relates to dynamic agency models with moral hazard over monitoring (Pisko-

rski and Westerfield, 2016; Malenko, 2019; Gryglewicz and Mayer, 2021; Gryglewicz, Mayer, and Morellec,
2021), the key novelty is that it considers a financially constrained principal, here the firm’s shareholders.
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Figure 6: Intermediary Incentives. The left panel of this figure plots the intermediary’s
effort incentives a = β/κ both for π = 0.5 (solid black line) and for π = 0 (dotted red
line) in the transformed state space against (C−C)/(C−C) to ensure comparability across
different parameterizations. The right panel plots average effort avg(at) against 1/π under
parameters that ensure C < −L (so that a stationary distribution exists). The parameters
follow Table 1, and we use κ = 10 and σ = 1.25 (for illustrative purposes).

Panel B of Figure 6 plots the intermediary’s average effort (in steady state focusing on

parameters that admit a stationary density) against 1/π, the expected time to refinancing.

Interestingly, better access to equity markets (i.e., lower 1/π) reduces the intermediary’s

incentives to monitor, so that avg(at) increases with 1/π. That is, that lenders monitor

less when borrowers have better access to equity financing. As monitoring intensity may

be related to covenants, the model predicts a less stringent covenant structure for firms

with superior access to equity financing. On the contrary, when liquidity dries up and π is

low (e.g., in a financial crisis), intermediaries, providing debt financing, exerts more effort

to improve firm operations or, similarly, engage more in monitoring. Again, interpreting

monitoring intensity as related to covenants, the model predicts stricter covenant structures

(i.e., more monitoring) in crisis times.

Finally, as argued in Online Appendix K, cash flow-based financing capacity generally

decreases with κ and so increases with the intermediary’s monitoring ability. Intuitively,

when the intermediary can add value to the firm through monitoring, it has a higher valuation

for the firm and so is more willing to provide cash flow-based financing.

5.3 Alternative Application: Distress Investors

Because the intermediary effectively acquires a stake Y in the firm in distress, our theory

also applies to the study of specialized distress investors. Distress investors — which can be

PE or hedge funds — take (equity or debt) stakes in distressed firms and firms in Chapter

11 bankruptcy (see Ivashina et al. (2016) for empirical evidence), often with the goal of
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exiting their position and reselling the stake at a later point, for example, after distress

is resolved. Note that at the lower boundary C, the firm is not liquidated if and only if

the intermediary stake Y (C) exceeds the liquidation value of the firm L and, as such, is

sufficiently large. The intermediary’s willingness to acquire a stake in the firm in distress

crucially depends on the firm’s access to equity financing, allowing the intermediary to exit

her position. Interestingly, the model generates a hump-shaped relationship between the

average intermediary stake avg(Yt), a proxy for distress investment activity, and access to

equity financing, which in the past may have improved with the rise of PE; see Figure 3.

Intuitively, when 1/π is low, the intermediary can exit its positions quickly, reducing its

stake on average. But, when 1/π is large and a successful exit is difficult, the intermediary is

unwilling to acquire a stake in the firm because the option to resell the firm has little value.

As in Section 5.2, we can incorporate the costly intermediary effort to capture investors’

engagement in restructuring, the model illustrates that distress investors exert substantial

effort. The intermediary’s effort is larger when the intermediary holds a larger stake Y . Very

“high” intermediary effort in distress, i.e., β(C = 1 and a(C) = 1/κ, occurs if and only if

C < −L and thus is associated with a low likelihood of liquidation (i.e., τ = ∞) and with

successful restructuring. As shown in Figure 6, average effort increases with 1/π and thus

decreases with the firm’s access to equity financing and the intermediary’s opportunities to

exit. That is, while good exit opportunities are necessary to entice the intermediary to take

a stake in the firm under distress, they also undermine its incentives to exert effort.

6 Empirical Implications

Our theory rationalizes empirical evidence in Lian and Ma (2021) on asset- and cash flow-

based borrowing constraints and produces several novel empirical predictions that relate the

capital market and intermediary characteristics to these constraints. In this Section, we give

an overview of the key empirical implications of our theory.

Firm Characteristics and Financing Constraints. Our results show that firms with

higher profitability or lower cash flow risk have higher cash flow-based financing capacity and

thus are associated with more cash flow-based and less asset-based financing. In addition,

firms with lower liquidation value have lower asset-based financing capacity and thus tend to

use more cash flow-based financing. These model implications are broadly consistent with

Lian and Ma (2021) and Kermani and Ma (2023).

Capital Market Characteristics and Financing Constraints. According to the model,

better access to equity financing, e.g., due to more liquid private or public equity markets,
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improves access to cash flow-based financing, and expands financing and debt capacity. This

result rationalizes why large public firms use more cash flow-based debt than small private

firms (Lian and Ma, 2021) that predominantly rely on asset-based debt (Gupta, Sapriza,

and Yankov, 2021). It also explains why PE-owned firms use more cash flow-based debt

than private firms without PE owner, as documented in Haque et al. (2022). Overall, our

findings suggest that better access to equity financing relaxes financing constraints with other

intermediaries, such as banks and private lenders, too, in accordance with the evidence in

Ivashina and Kovner (2011) and Demiroglu and James (2010).

Financial Intermediary Characteristics and Financing Constraints. The model

predicts that intermediaries with higher risk-bearing capacity tend to provide more cash

flow-based financing and allow for larger debt capacity. Jang (2022), Block et al. (2023),

and Chernenko et al. (2022) show that non-bank lenders with less regulatory or capital

constraints are more willing to lend against cash flows than traditional banks. Moreover,

higher (aggregate) intermediary risk-bearing capacity, which may reflect that the financial

intermediary sector is well-capitalized, implies larger cash flow-based debt capacity and larger

debt capacity for firms. Thus, an aggregate shock to intermediary risk-bearing capacity (e.g.,

financial crisis) causes a shift from cash flow-based toward asset-based financing.

Financing Instruments and Secured vs. Unsecured Debt. In our theory, the firm

essentially has three financing instruments, namely, internal cash reserves, equity financing,

and unsecured and secured debt financing provided by the intermediary. Our model can

therefore shed light on how these financing instruments interact and to what extent they are

used leading to the following predictions. First, debt and equity are dynamic complements.

Thus, firms with better access to equity financing also have higher debt capacity and so may

use more debt financing too. Second, our implementation reveals that, while unsecured debt

is used in all states, the firm uses secured debt only in distress (Benmelech et al., 2020a,b;

Rauh and Sufi, 2010). Third, unsecured and secured debt exhibit features of complements.

Fourth, cash is not negative debt (Acharya, Almeida, and Campello, 2007): The firm uses

cash reserves and credit line financing simultaneously to cover cash flow shortfalls. Fifth,

the model predicts that lenders with high risk-bearing capacity provide more unsecured debt

financing. That is, private or non-bank lenders with less regulatory or capital constraints

and arguably higher risk-bearing capacity provide more unsecured debt as well as more

cash flow-based debt. This is broadly in line with Block et al. (2023) or Jang (2022) which

documents that non-bank lenders allow for more flexible loan terms. Sixth, better access to

equity financing can reduce the share of secured debt of total debt.

Bankruptcy. Endogenous resolution of financial distress resembles U.S. bankruptcy proce-
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dures, namely Chapter 11, facilitating reorganization, and Chapter 7, leading to liquidation.

In line with evidence in Ivashina et al. (2016), distress resolution via Chapter 11 features

dilution of equity holders and junior unsecured debt holders, whereas senior secured debt

is repaid in full. Moreover, the model predicts that cash flow-based financing is associated

with Chapter 11 bankruptcy and reorganization and asset-based financing is associated with

Chapter 7 bankruptcy and liquidation.

Legal Infrastructure and Creditor Protection. In practice, a country’s legal infras-

tructure is key to debt enforcement and creditor protection. Notably, it also affects the

practice of corporate borrowing and distress resolution via bankruptcy. Our results indicate

that weak creditor protection—which limits the extent of dilution of equity in distress reso-

lution— limits the availability and feasibility of cash flow-based financing and debt, leading

to more asset-based financing. Overall, weak creditor protection reduces debt capacity and

is associated with higher cash holdings. In addition, weak creditor protection implies a

shift from Chapter 11 bankruptcy with reorganization toward Chapter 7 bankruptcy and

liquidation for distress resolution. Related to these findings, Antill (2022) documents that

so-called “363 sales,” essentially reflecting weakened creditor protection, lead to liquidations

inefficiently often, which harms creditors.

Tightness of Financing Constraints. As recent studies show (Chaney et al., 2012;

Adler, 2020; Lian and Ma, 2021; Cloyne et al., 2023), both type and tightness of financing

constraints matter for corporate policies and firms’ exposure to shocks that affect the avail-

ability of intermediary financing (e.g., financial crises) or firm characteristics (e.g., shocks to

profitability and cash flow risk like Covid-19). Overall, we find that firms whose financing

capacity is either very high or low use intermediary financing the least, and therefore face

on average the least tight financing constraints. Thus, firms with large financing capacity

do not rely much on the intermediary because their endogenous financing capacity reflects

strong firm fundamentals that reduce the need for intermediary financing. Further, better

firm fundamentals, higher intermediary risk-bearing capacity, or better access to equity fi-

nancing — all associated with larger financing capacity — may increase utilization more

than capacity of intermediary financing, thus tightening financing constraints.

Monitoring. Consistent with evidence on bank monitoring in Gustafson, Ivanov, and

Meisenzahl (2021) and creditor interventions in Nini et al. (2012), the intermediary’s in-

centives to monitor the firm increase after negative cash flow shocks and credit line draw-

downs. Interestingly, cash flow-based debt financing features high creditor monitoring in

distress, in line with Kermani and Ma (2020). Further, an intermediary’s monitoring ability

increases financing and cash flow-based debt capacity. Thus, we expect that firms financed
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by lenders with more expertise and skill in monitoring — such as specialized banks (Par-

avisini, Rappoport, and Schnabl, 2017; Blickle, Parlatore, and Saunders, 2023) — have more

cash flow-based debt. In line with evidence in Badoer, Emin, and James (2023) and Haque,

Mayer, and Wang (2023) that loans to PE-backed firms tend to have less covenants and

are monitored less, we show that monitoring is lower for firms with better access to equity

financing. The model also predicts that, by improving access to cash flow-based financing,

a better legal environment increases lenders’ monitoring in distress. Interestingly, Jiang,

Kundu, and Xu (2022) document such a positive link between legal environment, which, in

their case, reduces loan renegotiation frictions, and bank monitoring.

Distress Investors. Distress investors, which can be PE or hedge funds, take (equity

or debt) stakes in distressed and potentially bankrupt firms under Chapter 11. Our model

predicts that the participation of distress investors is associated with successful restructuring

of firms in Chapter 11 bankruptcy, consistent with evidence in Jiang, Li, and Wang (2012). In

addition, our results suggest that overall distress investment activity is related to firms’ access

to equity financing, which determines distress investors’ exit opportunities. In particular,

distress investment activity is hump-shaped with respect to firms’ access to equity financing:

It is lowest for very liquid or illiquid equity markets.

7 Conclusion

We provide a dynamic theory of liquidity management and optimal long-term contracting

with endogenous asset- and cash flow-based financing constraints. In the model, a firm with

infrequent access to equity financing and a cost of holding cash bridges short-term financing

needs via financing from an intermediary. Optimal financing from the intermediary takes the

form of collateralized debt and is endogenously constrained by the firm’s financing capacity

which is either asset-based, i.e., determined by the asset liquidation value, or cash flow-based,

i.e, determined by the going-concern value of cash flows. Further, we show that debt and

equity are dynamic complements in that better equity market access increases debt capacity.

We then study the determinants of firms’ financing constraints. Higher profitability,

lower cash flow volatility, better access to equity financing, and lower intermediary capital

constraints are all associated with larger financing capacity and more cash flow-based financ-

ing. Further, both type and tightness of financing constraints are endogenously determined.

Surprisingly, we find that firms with very low or high financing capacity use intermediary

financing the least and thus face on average the least tight financing constraints.

We implement the optimal contract with a combination of unsecured and secured credit

lines, yielding an overlapping pecking order: The firm simultaneously finances cash flow
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shortfalls with the unsecured credit line and either cash reserves (if available) or the secured

credit line (otherwise). In good times, credit lines are repaid in full and shareholders and

creditors’ interests are aligned. In bad times, shareholders and creditors’ interests diverge,

requiring resolution via bankruptcy or threat thereof. The firm enters Chapter 11 bankruptcy

and continues operations when its liquidity reserves are low. It emerges from bankruptcy

when it finds new equity investors, repays the secured credit line in full, partially defaults

on the unsecured credit line, wipes out the existing equity claims. While in bankruptcy the

firm may exhaust its financing capacity. It then optimally liquidates, effectively converting

to Chapter 7, repays the secured credit line in full and wipes out both the unsecured credit

line and existing equity claims. In all cases, repayments respect the absolute priority rule.

Going forward, our theory can hopefully be used to micro-found and incorporate endoge-

nous financing constraints in dynamic macroeconomic models.
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Online Appendix

A Proof of Lemma 1

Recall from (3) that Yt = Et

[∫∞
t

e−r(s−t) (dIs − ksds)
]
, and define

At = Et

[∫ ∞

0

e−rs(dIs − ksds)

]
=

∫ t

0

e−rs(dIs − ksds) + e−rtYt. (A.1)

By construction, A = {At} is a martingale. By the martingale representation theorem, there
exist stochastic processes α = {αt} and β = {βt} such that

ertdAt = βt

(
dXt − µdt

)
+ αt(dΠt − πdt), (A.2)

where dZt = dXt−µdt
σ

is the increment of a standard Brownian Motion and (dΠt − πdt) is
the increment of a compensated Poisson process (a martingale). We differentiate (A.1) with
respect to time t to obtain an expression for dAt, then plug this expression into (A.2) and
solve (A.2) to get dYt = (rYt + kt)dt+ βtσdZt + αt(dΠt − πdt).

B Proof of Proposition 1

We prove Proposition 1 in several parts. First, we provide formal arguments for the reduction
in state space and show that equity value can be expressed as function of Ct only and solves
the HJB equation (16). Second we prove the concavity of the value function, assuming a
well-behaved solution exists in the state space. Third, we provide the formal verification
argument that under the optimal contract, the value function indeed solves (16). We impose
the regularity condition that sensitivities are bounded, i.e., |αt|, |βt| ≤ M for arbitrarily
large 0 < M < ∞ (see, e.g., Sannikov (2008)). This assumption is needed in the formal
verification proof, but we pick M sufficiently large so that this constraint never binds in
optimum. We can therefore ignore it in the follow-up analysis.

For convenience and to limit the number of distinct cases to deal with, we already conjec-
ture that the lower boundary of the endogenous state space (C,C) satisfies C ≥ −[P (C)−C].
This conjecture will be verified in the proof of Lemma 2 in Online Appendix C. Further,
we impose that dividend payouts must satisfy dDivt ≤ Ct − C. In Online Appendix D, we
show that dDivt > Ct−C would lead to a violation of promise-keeping, i.e., an inconsistency
with (6), giving rise to the constraint dDivt ≤ Ct −C that applies under a full-commitment
contract C. It turns out that this constraint never binds.

Notably, all arguments in this proof are carried out under the assumption that a well-
behaved, non-negative, and twice continuously differentiable solution P (C) to (16) exists
on the endogenous state space (C,C) (subject to P ′(C) − 1 = P ′′(C) = 0). We formally
establish existence of such a solution in Online Appendix I.

To proceed, we rewrite the law of motion of dCt from (12) as dCt = µC(Ct)dt+σC(Ct)dZt+
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(C∗
t − Ct) dΠt − dDivt, where denote the drift and volatility of dCt by

µC(Ct) =

[
µ+ (r − λ)Ct − λYt −

ρr

2
(βtσ)

2 + π

(
1− e−ρrαt

ρr

)]
;σC(Ct) = σ(1− βt). (B.1)

Note that π (αt − kΠ(αt)) = π
(

1−e−ρrαt

ρr

)
and ρr

2
(βtσ)

2 = σ2kZ(βt). As we verify, αt and βt

will be functions of Ct in optimum, i.e., we can write βt = β(Ct) and αt = α(Ct).

B.1 Part I

The endogeneous state space is two dimensional, with two state variables (M,Y ). The state
space is contained in {(M,Y ) ∈ R2 : M,Y ≥ 0}, due to Y ≥ 0 (intermediary limited
commitment) and M ≥ 0 (non-negativity constraint on cash). Take C := M −Y and rotate
the state space by considering (C, Y ) rather than (M,Y ). To respect M ≥ 0, the state space
must be a subset of {(C, Y ) ∈ R2 : Y ≥ −C}. Given C, the time-t equity value is

Pt = P (Ct, Yt) = Et

[∫ τ

t

e−r(s−t)(dDivs −∆MsdΠs)
∣∣∣Ct = C, Yt = Y

]
.

By the dynamic programming principle, Pt = P (C, Y ) solves the Hamilton-Jacobi-Bellman
(HJB) equation, i.e., the partial differential equation (PDE)

rP (C, Y )) dt = max
dI,∆M,dDiv≥0

dDiv + E[dP (C, Y )−∆MdΠ]. (B.2)

In the following, we prove that P (C, Y ) only depends on C, in that ∂P (C,Y )
∂Y

= ∂2P (C,Y )
∂C∂Y

=
∂2P (C,Y )

∂C2 = 0, and we can write with a slight abuse of notation P (C, Y ) = P (C), and denote
P ′(C) = PC(C, Y ) as well as P ′′(C) = PCC(C, Y ).

First, fix a state (C, Y ) with M = C + Y ≥ 0 as well as Y ≥ 0. By (19) and (12),
payouts to the intermediary dI do not change the level of C, but change the level of Y by
amount −dI. It is always possible to stipulate (negative) payouts dI = −ε < 0 for ε > 0
to the intermediary, which by (19) moves the intermediary’s continuation payoff from Y to
Y + ε and moves the firm’s cash balance from M = C + Y to M + ε = C + Y + ε > 0.
In state (C, Y ), payouts to the intermediary dI = −ε < 0 are possible but not necessarily
optimal, so that P (C, Y ) ≥ P (C, Y + ε). Likewise, in state (C, Y + ε), positive payouts to
the intermediary dI = ε > 0, which move intermediary’s continuation payoff from Y + ε to
Y , are possible but not necessarily optimal, so P (C, Y +ε) ≥ P (C, Y −ε+ε) = P (C, Y ). As
a result, in the entire state space, we obtain P (C, Y + ε) = P (C, Y ) for ε > 0. Thus, above

relationship implies PY (C, Y ) = 0 and PCY (C, Y ) = PY Y (C, Y ) = 0, whenever the respective
derivatives exist. Thus, P (C, Y ) is constant in the Y -dimension, i.e., does not depend on
the state of Y . Thus, we write from now on with slight abuse of notation P (C, Y ) = P (C).

Second, using PY (C, Y ) = PCY (C, Y ) = PY Y (C, Y ) = 0 and Ito’s Lemma, we can expand
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the right-hand-side of (B.2) to obtain:

rP (C, Y )dt = max
dI,∆M,dDiv≥0

{
dDiv + P ′(C)

[
µC(C)dt− dDiv

]
(B.3)

+
P ′′(C)σC(C)2dt

2
+ π[P (C∗)−∆M ]dt

}
,

where the post-refinancing level C∗ satisfies C∗ = ∆M + C − α. As in related papers (e.g.,
Bolton et al. (2011)), dividend payouts are optimal only if P ′(C) ≤ 1, occur at a payout
boundary C, and follow a barrier strategy, that is, they cause C to reflect at C. As such,
we have P (C) = P (C) + C − C and P ′(C) = 1 for C > C. The location of the payout
boundary is determined by smooth pasting and super contact conditions, that is, P ′(C) = 1
and P ′′(C) = 0. We verify the optimality of this dividend payout strategy in the verification
argument in Part III. Due to the (downward) reflection of C at C, the (endogenous) state
space can be written as an interval (C,C), with the boundaries to be characterized later on.

Third, because payouts to the intermediary dI are always possible (when M > 0), do
not change the level of C, but change the level of Y by amount −dI, controlling payouts dI
implies controlling the level of Y . Therefore, Y becomes a control variable in the dynamic
optimization, as its level can be freely adjusted via dI. More generally, the payout process
dI is fully characterized by Y , α, and β, due to (6). Thus, instead of working with dI as
control variable, we work with α, β, and Y . Once we have solved for the optimal contract
and the optimal level of Y , we can back out the payout process dI (see (20)). Likewise, due
to C∗ + α − C = ∆M , controlling ∆M is equivalent to controlling C∗; in what follows, we
work with C∗ rather than ∆M as control variable.

For C ∈ (C,C) where dDiv = 0, the HJB equation (B.3) reduces to the ODE:

rP (C) = max
α,β,Y,C∗

{
P ′ (C)

[
µ+ (r − λ)C − λY − σ2 · kZ(β) + π (α− kΠ(α))

]
+ P ′′ (C)

σ2

2
(1− β)2 + π [P (C∗)− P (C)− (C∗ − C + α)]

}
,

subject to Y ≥ max{−C, 0} and α ∈ S(C∗, C). The above ODE is equivalent to (16) after
rewriting and spelling out the constraints on α and Y into the max operator.

We henceforth assume that a twice continuously differentiable and non-negative solution
P (C) to (16) exists on the endogenous state space (C,C) (subject to P ′(C)−1 = P ′′(C) = 0).
We formally establish existence of such a solution in Online Appendix I. Next, we prove
C > 0. To see this, note that we can evaluate the ODE (16) at the payout boundary C to

obtain P
(
C
)
−C = µ

r
− λ

r

(
C1{C≥0}

)
. This payoff must be strictly lower than the NPV of

the firm, µ
r
, which implies C > 0. Section 2.2 in the main text goes through the maximization

of the HJB equation (16), and derives the optimal control variables as functions of excess
liquidity C, that is, Y = Y (C), M = M(C), α = α(C), β = β(C), and C∗ = C∗(C).
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B.2 Part II — Concavity of Value Function

For convenience, we already conjecture a lower boundary C satisfying C ≥ −(P (C) − C).
Further, we can conjecture and verify that P ′(C) ≥ 1 on the state space.

We can solve the optimization in the HJB equation (16) (see also Section 2.2 in the

main text). We have β(C) = P ′′(C)
P ′′(C)−ρrP ′(C)

if P ′′(C) < 0 and β(C) if P ′′(C) ≥ 0. As, by

assumption, P (C) is twice continuously differentiable, we have that P ′′(C) > −∞ for any
C ∈ (C,C), so that β(C) ∈ [0, 1).

Recall that the jump in the value function upon refinancing J(C) is defined in (14),
and insert the optimal choice of the refinancing target C∗ = C which is independent of C.
When J(C) is differentiable (which is the case when α(C) is differentiable), then J ′(C) =
1− P ′(C)− α′(C). We now rewrite the HJB equation (16) as

rP (C) = max
β∈[0,1]

{
P ′(C)µC(C) +

P ′′(C)

2
σ2(1− β(C))2 + π · J(C)

}
, (B.4)

under the optimal choice of α in (22), β, Y = max{−C, 0} and C∗ = C, and with µC(C)
from (B.1).

When P ′′(C) and α(C) are differentiable, we can use the envelope theorem and differenti-
ate the HJB equation (B.4) under the optimal β = β(C) ∈ [0, 1), satisfying (1−β(C))σ2 > 0,
with respect to C and rearrange to obtain

P ′′′(C) =
2

(1− β(C))2σ2

(
P ′(C)λ1{C≥0} − P ′′(C)µC(C)− π

(
e−ρrα(C)P ′(C)α′(C) + J ′(C)

))
,

(B.5)
where 1{·} denotes the indicator function which is equal to one if {·} is true and is equal to
zero otherwise. The set of points at which either P ′′(C) or α(C) is not differentiable is count-
able; therefore, for any C, the limits limx↑C P ′′′(C), limx↓C P ′′′(C) and limx↑C α′(C), limx↓C α′(C)
exist and are well-defined.

Suppose that α(C) is differentiable, and recall α(C) = min{αC(C), αU(C)}. If α(C) =
αC(C) = P (C)− C + C, then α′(C) = 1 and J ′(C) = −P ′(C) < 0. As such,

π
(
e−ρrα(C)P ′(C)α′(C) + J ′(C)

)
= πP ′(C)

(
e−ρrα(C) − 1

)
≤ 0.

When α(C) = αU(C) = lnP ′(C)
ρr

, then

π
(
e−ρrα(C)P ′(C)α′(C) + J ′(C)

)
= π

(
e−ρrα(C)P ′(C)α′(C) + 1− P ′(C)− α′(C)

)
(B.6)

= π (α′(C) + 1− P ′(C)− α′(C)) = π(1− P ′(C)) ≤ 0.

where it was used that J ′(C) = 1 − P ′(C) − α′(C) and e−ρrα(C) = 1/P ′(C) as well as
P ′(C) ≥ 1. Thus, altogether,

π
(
e−ρrα(C)P ′(C)α′(C) + J ′(C)

)
≤ 0, (B.7)

provided α(C) is differentiable.
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At the payout boundary, it therefore holds that P ′(C) = 1, and P ′′(C) = 0 and

lim
C↑C

(
e−ρrα(C)P ′(C)α′(C) + J ′(C)

)
= lim

C↑C
(1− P ′(C)) = 0. (B.8)

As C > 0, P ′′(C) = 0, P ′(C) = 1, (B.5) and (B.8) imply limC↑C P ′′′(C) > 0. Because

limC↑C P ′′′(C) > 0 for C > 0, we obtain P ′′′(C) > 0, and therefore P ′′(C) < 0 and P ′(C) > 1

and in a left-neighbourhood of C. Suppose to the contrary that there exists C ′ ∈ (C,C), with
P ′′(C ′) ≥ 0. Define Ĉ = sup{C ∈ (C,C) : P ′′(C) ≥ 0}; note that Ĉ < C and P ′′(C) < 0 for
C ∈ (Ĉ, C). By continuity of P ′′(C), P ′′(Ĉ) = 0, and P ′(Ĉ) > 1.

By (B.7), limC↓Ĉ π
(
e−ρrα(C)P ′(C)α′(C) + J ′(C)

)
is weakly negative. Hence, (B.5) implies

limC↓Ĉ P ′′′(C) ≥ 0, where the inequality is strict if Ĉ ≥ 0. Consider Ĉ ≥ 0. Due to

limC↓Ĉ P ′′′(C) > 0, there exists C ′ > Ĉ with P ′′(C ′) > 0, contradiction the definition of Ĉ.

Next, take Ĉ < 0 < C. Distinguish two cases. First, when πJ(Ĉ) > 0 ≥ −πP (Ĉ), then
(15) does not bind in a neighbourhood of Ĉ and α(C) = αU(C). Thus, by (B.6):

lim
C↓Ĉ

π
(
e−ρrα(C)P ′(C)α′(C) + J ′(C)

)
= π(1− P ′(Ĉ)) < 0.

Then, (B.5) implies limC↓Ĉ P ′′′(C) > 0. Thus, there exists C ′ > Ĉ so that P ′′(C ′) > 0, which

contradicts the definition of Ĉ.

Second, suppose πJ(Ĉ) ≤ 0. Because Ĉ ∈ (C,C), P ′(Ĉ) > 1, and P (C) ≥ 0 for all
C ∈ (C,C), it follows that P (Ĉ) > 0 which — by (B.4) — implies that µC(Ĉ) > 0. By
definition of Ĉ and because Ĉ < C, there must exist ϵ > 0 such that P ′′(C) < 0, µC(C) > 0,
and P ′′′(C) exists with P ′′′(C) < 0 for C ∈ (Ĉ, Ĉ+ ϵ). But, using P ′′(C) < 0 and µC(C) > 0
as well as (B.7), we obtain from (B.5) that P ′′′(C) > 0 for C ∈ (Ĉ, Ĉ + ϵ), a contradiction.

Either way, it follows that P ′′(C) < 0 for all C ∈ (C,C), which concludes the proof.

B.3 Part III — Verification Argument

Let C be the contract which implements the controls according to the optimization in the HJB
equation (16) and under which equity value Pt = P (Ct) solves (16) on (C,C) with dividend
payout boundary C subject to P ′(C)− 1 = P ′′(C) = 0. And, consider any other contract Ĉ
that respects the intermediary’s and the investors’ limited commitment and dDivt ≤ Ct−C.
We show that contract C yields higher payoff at t = 0 than any other admissible contract Ĉ.

For t ≤ τ (possibly τ = ∞), define LP (Ct) = P ′(Ct)µC(Ct) +
σC(Ct)2P ′′(Ct)

2
, with µC(Ct)

and σC(Ct) from (B.1), and

GP
t =

∫ t

0

e−rs(dDivs −∆MsdΠs) + e−rtP (Ct)I{t<τ},

where ∆Mt = C∗
t −Ct+αt. Note that G

P
t is the equity value when the contract Ĉ is followed
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up to time t and after time t the contract C is followed. By Itô’s Lemma for t < τ :

ertdGP
t = {−rP (Ct) + LP (Ct)} dt+ (P (C∗

t )− P (Ct))dΠt

−∆MtdΠt +
(
1− P ′(Ct)

)
dD̂ivt + σCtP

′(Ct)dZt

≡ µG
t dt+

(
1− P ′(Ct)

)
dDivt + σCtP

′(Ct)dZt + (P (C∗
t )− P (Ct)−∆Mt)(dΠt − πdt).

We define µG
t as

µG
t = −rP (Ct) + LP (Ct) + π(P (C∗

t )− P (Ct)−∆Mt).

Next, note that we can rewrite the HJB equation (16) as

rP (Ct) = max
αt,βt,Yt,C∗

{LP (Ct) + π [P (C∗
t )− P (Ct)−∆Mt]} , (B.9)

subject to all relevant constraints, where we use time subscripts in this part of the proof.

As a result, the HJB equation (B.9) implies that the drift term of ertdGP
t — that is,

µG
t = −rP (Ct) +LP (Ct) + π(P (C∗

t )− P (Ct)−∆Mt) — is zero under the controls obtained
via the optimization in the HJB equation (16). Moreover, any other strategy Ĉ and choice
of (αt, βt, Yt, C

∗
t ) makes this term (weakly) negative, so that µG

t ≤ 0 for t < τ . Because
of dDivt ≥ 0, P ′(Ct) > 1 for Ct < C, and P ′(Ct) = 1 for Ct ≥ C, the term

(
1 − P ′(Ct))

is (weakly) negative under any dividend payout policy dDivt and zero under the dividend
payout policy dDivt that causes Ct to reflect at C.

Next, our regularity conditions ensure that αt, βt are bounded. Thus, σCt = σ(1 −
βt) is bounded too. In addition, P ′(C) and P (C) are bounded over (C,C), as P (C) is

twice continuously differentiable on the same interval. Thus, E
[ ∫ t

0
e−rsσCsP

′(Cs)dZs

]
=

0. for all t ≤ τ . As αt and P (Ct) are bounded, we obtain likewise E
[ ∫ t

0
e−rs(P (C∗

s ) −

P (Cs) − ∆Ms)(dΠs − πds)

]
= 0. Therefore, the process {GP

t } follows a supermartingale

(i.e., decreases in expectation) up to τ . By the optional stopping theorem, the process {GP
t∧τ}

follows a supermartingale too, so E[GP
t∧τ ] ≤ GP

0 . Taking the limit t → ∞ yields

P (C0)− C0 = GP
0 ≥ lim

t→∞
E[GP

t∧τ ] = E[GP
τ ] = E

[ ∫ τ

0

e−rs
(
dDivs −∆MsdΠs

)]
.

At inception, the firm is penniless and has access to equity financing, i.e., dΠ0 = 1 and
∆M0 = C0, so ex-ante payoff under C is P (C0)−C0. Because contract C yields equity value
GP

0 = P (C0) − C0, it maximizes the equity value over all admissible contracts that respect
the intermediary’s and the investors’ limited commitment.
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C Proof of Lemma 2

The proof is split in three parts. Part I presents auxiliary results and conditions that the
lower boundary satisfies in the survival scenario. Part II derives (24). Part III demonstrates
that the firm optimally never liquidates and C = CS if and only if CS ≤ −L; otherwise,
liquidation occurs in finite time and C = −L. In either scenario, P (C) = 0.

C.1 Part I — Auxiliary Results

Lemma 3. Suppose the firm never liquidates (i.e., τ = ∞) and P (C) solves the HJB
equation (16). Define CS = inf{C ≥ −µ

r
: µC(C) ≥ 0, P (C) ≥ 0, σC(C) = 0}. Then,

µC(C
S) = σC(C

S) = 0, β(CS) = 1, P (CS) = 0, and α(CS) = P (C)− C + CS.

Proof of Lemma 3. Rewrite the HJB equation (16) under the optimal controls α(C) (see
(22)), β(C) (see (23)), Y (C) = max{−C, 0}, J(C) (see (14)), and C∗ = C as

rP (C) = P ′(C)µC(C) +
P ′′(C)(σC(C))2

2
+ πJ(C). (C.1)

Holding α = α(C) fixed, J(C) decreases with C, as P ′(C) ≥ 1.

Note that σC(C) = σ(1− β(C)) = 0 is equivalent to β(C) = 1. As µC(C) increases with
C, decreases with β(C), and increases with α(C), as J(C) decreases with α(C), as the right
hand side of (15) (with C∗ = C) increases with C, and as equity value P (C) is characterized
by (C.1), it follows that σC(C

S) = 0 ⇐⇒ β(CS) = 1, J(CS) = 0, µC(C
S) = 0, and

P (CS) = 0 (so J(CS) = −P (CS) and (15) is tight at C = CS). In more detail, if it were
µC(C

S) > 0, there would exist C ′ < CS such that the contract could implement σC(C
′) = 0

and µC(C
′) ≥ 0 with the same choice of β (i.e., β(C ′) = β(CS) = 1) and α such that

J(C ′) ≥ 0 ≥ −P (C ′) holds and P (C ′) ≥ 0 due to (C.1), contradicting the definition of CS.

Likewise, if it were J(CS) > −P (CS), then there would exist C ′ < CS, such that the
contract can stipulate J(C ′) ≥ −P (C ′), α(C ′) ≥ α(CS) ≥ 0, β(C ′) = 1, and µC(C

′) ≥ 0
as µC(C) increases with α which leads to P (C ′) ≥ 0, contradicting the definition of CS.
Finally, P (CS) > 0 while β(CS) = 1 would imply µC(C

S) > 0 or J(CS) > 0, again leading
to a contradiction. Thus, σC(C

S) = 0, J(CS) = 0, µC(C
S) = 0, and P (CS) = 0.

Next, we show that P (CS) = 0 implies β(CS) = 1, J(CS) = 0, and µC(C
S) = 0

under the optimal controls from (16). According to the optimization in (16), the optimal
choice of α(CS) and β(CS) induces P (CS) = 0. Setting β(CS) = 1 and α(CS) such that
J(CS) = 0 implies, by definition of CS, µC(C

S) = σC(C
S) = J(CS) = 0 and therefore

rP (CS) = P ′(CS)µC(C
S) + P ′′(CS)(σC(CS))2

2
+ πJ(CS) = 0. Thus, setting β(CS) = 1 and

α(CS) such that J(CS) = 0 is optimal and consistent with the optimization in (16).

C.2 Part II — Derivation of (24)

As shown in Lemma 3, we have µC(C) = P (C) = 0 and β(C) = 1 for C = CS. To derive
an expression for CS, one first uses (12) to calculate the drift of excess liquidity under the
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optimal choice of Y derived in the previous section (that is, Y (C) = max{−C, 0}):

µC (C) = µ+
(
r − λ1{C≥0}

)
C − ρr

2
σ2β (C)2 + π

(
1− e−ρrα(C)

ρr

)
, (C.2)

where 1{·} denotes the indicator function, i.e., it is 1 if {·} is true and 0 otherwise. The HJB
equation (16) evaluated under the optimal controls α(C) and β(C) as well as C∗ = C can be
rewritten as in (C.1). Due to µC(C) = P (C) = σC(C) = 0, we have by means of (C.1) that
J(C) = 0 and therefore α (C) = P

(
C
)
−
[
C − C

]
= µ

r
− λ

r
C + C. The last equality uses

that at the payout boundary C > 0, the HJB equation (16) implies P (C) = µ
r
+ C − λC

r
,

due to β(C) = α(C) = P ′(C)− 1 = P ′′(C) = 0.

Substituting in for the optimal policies, and using α (C) from above in µC (C) = 0 while
using that σC(C) = 0 ⇐⇒ β (C) = 1, we have

0 = µC (C) = µ+ rC − ρr

2
σ2 +

π

ρr

(
1− e−ρr[µr −

λ
r
C+C]

)
. (C.3)

We use the following Lemma to solve for C:

Lemma 4. The solution to
0 = a+ x+ e(b+c·x) (C.4)

is given by

x = −w (c · exp {b− a · c}) + a · c
c

, (C.5)

where w(·) is the primary branch of the Lambert-w function.

Proof. Define z ≡ c · exp {b− ac}. Plugging in proposed solution (C.5) into (C.4), we have

0 = a+

(
−w (c · exp {b− ac})

c
− a

)
+ exp {b− w (c · exp {b− ac})− ac}

= −w (c · exp {b− ac})
c

+ exp {b− ac} exp {−w (c · exp {b− ac})}

= −w (c · exp {b− ac}) + c · exp {b− ac} exp {−w (c · exp {b− ac})}
= −w (z) + z exp (−w (z))

where we multiplied through by c ̸= 0 in the second-to-last line. The last line equals zero by
definition of the Lambert-w function w (z) ew(z) = z ⇐⇒ w (z) = z · e−w(z).

Next, we rewrite (C.3) as

0 =
−ρr

π

(
µ− ρr

2
σ2 +

π

ρr

)
− ρr2

π
C + e−ρ(µ−λC)−π

r
ρr2

π
C . (C.6)

Define a ≡ −ρr
π

(
µ− ρr

2
σ2 + π

ρr

)
, b ≡ −ρ(µ − λC), c ≡ π

r
, and x ≡ −ρr2

π
C. We now apply
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the above lemma to solve (C.6) for x and to thus obtain (24), that is,

C = CS =
w
(

π
r
exp

{
ρr
[
λ
r
C + π

ρr2
− ρ

2
σ2
]})

− π
r

ρr
− Y A, (C.7)

where w(·) is the Lambert function (i.e., w(z) is the principal-branch solution to wew = z).
Note that when π = 0, then CS = −Y A, where Y A is the autarky value defined in (9).

Finally, we show that −C ≤ P (C) − C and as such α(C) ≥ 0 as well as α(C) =
min{αC(C), αU(C)} ≥ 0 for all C. For this sake, note that P (C)−C must weakly exceed Y A

(see, for instance, (10)). When π = 0, then −C = Y A and the claim follows. Next, consider

π > 0. Suppose to the contrary −C > P (C) − C, i.e., α(C) < 0. Then, π
(

1−e−ρrα(C)

ρr

)
< 0

and, by (C.3), we obtain −C < Y A ≤ P (C)− C, a contradiction.

C.3 Part III

We determine when liquidation or survival (i.e., τ = ∞) scenario applies. We distinguish
between i) CS < −L and ii) CS > −L. The knife-edge case CS = −L follows analogously.

Suppose that CS < −L ≤ 0. We conjecture and verify that the survival scenario prevails
(so that τ = ∞). Suppose that P (C) solves (16) subject to P ′(C)−1 = P ′′(C) = P (CS) = 0.
Previous results imply that P ′(C) > 1 on (CS, C). Note that Y (C) = max{0,−C} implies
Y (C) ≤ −CS. Due to P ′(C) > 1 for C < C and P (CS) = 0, it follows that P (C) > C−CS.
If in state C ≥ CS the firm is liquidated and all cash holdings M(C) are paid out (to
shareholders and intermediary), total firm value “just before” liquidation is the sum of cash
balanceM(C) and liquidation value L, which is split between intermediary and shareholders.
Thus, shareholders would obtain upon liquidation in state C > CS, M(C)+L−Y (C), while
the intermediary receives Y (C) (dollars). Note that

M(C) + L = C + Y (C) + L ≤ C − CS + Y (C) < P (C) + Y (C),

where the first inequality used that L ≤ −CS, and the second that P (C) > C − CS. As
a result, P (C) > M(C) + L − Y (C), and liquidation in state C > CS is not optimal for
shareholders. As, in addition, liquidation in state C = CS would violate Yτ = −CS ≤ L,
the survival scenario prevails in optimum, i.e., τ = ∞.

Suppose that CS > −L. It follows that Y (C) = max{0,−C} = 0 for C ≥ CS, and
M(C) = max{C, 0}. Conditional on survival, i.e., no liquidation at the lower boundary
C = CS and τ = ∞, the boundary condition P (CS) = 0 applies for the hypotehtical
value function. However, survival cannot be optimal for shareholders. Liquidating the firm
at C = CS and paying out M(CS) = max{0, CS} ≥ 0 dollars as dividends yields value
L+max{0, CS} > 0 for shareholders. As such, the liquidation scenario prevails.

It remains to show that liquidation occurs the first time C falls to−L so that C = −L ≤ 0.
To start with, note that liquidation at C < −L ≤ 0 with M(C) = 0 is not possible because
at the time of liquidation, Y (C) ≤ L must hold to ensure promise-keeping, and C < −L
would imply Y (C) = −C > L. Thus, liquidation can only occur in states C ≥ −L.
Next, suppose the firm is liquidated at C = −L, so the intermediary receives a payout of
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Y (C) = −C = L and P (−L) = 0 at liquidation. With P (C) the value function solving (16)
subject to P (−L) = P ′(C) − 1 = P ′′(C) = 0, we have that P ′(C) > 1. This implies for
C < C that P (C) > C +L for C > −L. Consider C > −L ⇐⇒ −C < L. If the firm were
liquidated in state C > −L, then shareholders and intermediary would jointly receive

M(C) + L = C + Y (C) + L < P (C) + Y (C),

where the inequality uses P (C) > C + L. Thus, liquidation at C > −L is not optimal. As
liquidation must occur for C ≥ −L, it follows that optimal liquidation occurs at C = C =
−L, i.e., τ = inf{t ≥ 0 : Ct = −L}. Taken together, C = min

{
CS,−L

}
and P (C) = 0.

D Dividend Payouts and Promise-Keeping

Lemma 5. In a full-commitment contract C, dividends must satisfy dDivt ≤ Ct − C.

Proof. Due to P (C) ≥ 0, Y (C) ≤ M(C) + µ
r
and C ≥ −µ

r
. Suppose to the contrary that

at time t, the firm pays dDivt > Ct − C and so causes Ct to drop to value C ′ < C =
min{−L,CS} ≤ 0. After the dividend payout, we have Y = Y ′ > L. By definition of
CS and Lemma 3, we have for any C < CS that µC(C) < 0 or σC(C) ̸= 0 in case the
firm does not liquidate. Liquidation in any state C < −L violates promise-keeping (as we
have Y > L). Suppose the firm liquidates in state C ′′ < C. Then, with strictly positive
probability, there exists time T > t such that CT reaches C ′′, leading to liquidation and a
violation of promise-keeping. Next, consider that the firm does not liquidate in any state
C < −L. As a result, with strictly positive probability, there exists time T > t such that
CT < −µ

r
, a contradiction. Thus, Yt must exhibit a discrete downward jump upon the payout

dDivt = Ct − C ensuring C ′ ≥ C, which is inconsistent with the dynamics (6) and violates
promise-keeping. Thus, dividend payouts satisfy dDivt ≤ Ct − C.

E Proof of Proposition 2

Part I derives a sufficient condition for the stationary distribution to exist. In particular,
under this condition, the lower boundary C = CS, while conditionally absorbing, is not
attainable. Parts II and III show that this condition is satisfied.

E.1 Part I

In the interior of the state space for C ∈ (C,C) when σC(C) is twice differentiable, the
stationary density g(C) — provided its existence — satisfies the Kolmogorov forward (Fokker
Planck) equation: π · g(C) = − ∂

∂C

[
µC(C)g(C)] + 1

2
∂2

∂C2

[
σC(C)2g(C)]. We can integrate over

C to obtain

πG(C) = G(C)− µC(C)g(C) +
1

2

∂

∂C

[
σC(C)2g(C)]. (E.1)

with stationary distribution function G(C) =
∫ x

C
g(x)dx. When C is not accessible, (E.1)

is solved subject to G(C) = 1 and G(C) = 0. Define the scaled stationary density ĝ(C) =
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σC(C)2g(C), so that ĝ′(C) = 2πG(C) + µC(C)g(C) = 2πG(C) + 2ĝ(C)
(

µC(C)
σC(C)2

)
. Equiv-

alently, the log scaled density has derivative d ln ĝ(C)
dC

= ĝ′(C)
ĝ(C)

= 2πG(C)
ĝ(C)

+ 2
(

µC(C)
σC(C)2

)
. The

boundary C is absorbing conditionally on no jumps. A non-degenerate stationary density,
with the absorbing boundary at C, exists if the boundary condition ĝ(C) = 0 can be sat-
isfied together with ĝ(Ĉ) > 0 for Ĉ > C; in this case, the boundary C is never reached or
inaccessible. For this to happen, we need that

ln ĝ(C) = ln ĝ(Ĉ)− 2

∫ Ĉ

C

2πG(c)

ĝ(c)
dc− 2

∫ Ĉ

C

µC(c)

σC(c)2
dc

tends to −∞, as C → C; see Brunnermeier and Sannikov (2014) for an analogous argument
in a similar context. A sufficient condition is Feller’s test for explosions, i.e.,

lim
C→C

∫ Ĉ

C

µC(c)

σC(c)2
dc = +∞. (E.2)

In the following two parts, we show that (E.2) is met, which then implies that C is never
reached and a stationary distribution of states exists.

E.2 Part II

Define Γ(C) = −P ′′(C)/P ′(C) and rewrite

β(C) = 1− ρr

Γ(C) + ρr
⇐⇒ σC(C) = σ(1− β(C)) =

σρr

Γ(C) + ρr
. (E.3)

Next, we focus on states C < 0 and in which P ′′(C) is differentiable. For C < 0, the drift of
C becomes

µC(C) = µ+ rC − σ2ρr

2

[
1− 2σC(C)

σ
+

(
σC(C)

σ

)2
]
+ π [α(C)− kΠ(α(C))] (E.4)

= r(C − C) + π
[
α(C)− kΠ(α(C))− α(C) + kΠ(α(C))

]
+

ρrσC(C)

2

(
2

σ
− σC(C)

)
,

where in the second line we subtracted µC(C) = µ + rC − σ2ρr
2

+ π [α(C)− kΠ(α(C))] = 0.
For C sufficiently close to C all of these three terms are positive, since σC(C) tends to zero
as C approaches C. Therefore, a sufficient condition for (E.2) is

lim
C→C

∫ Ĉ

C

(c− C)

σC(c)2
dc = +∞. (E.5)

Using (E.3), a sufficient condition for (E.5), and thus for (E.2), is

lim
C→C

∫ Ĉ

C

(c− C)Γ(c)2dc = lim
C→C

∫ Ĉ

C

(c− C)

1/(Γ(c))2
dc = +∞.
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In Part III, we will show that there exists constant K > 0 such that 1/Γ(C) < K(C−C) in a
neighbourhood (C,C + ε) with ε > 0 of C. Then, we can pick Ĉ ∈ (C,C + ε) and calculate

lim
C→C

∫ Ĉ

C

(c− C)

1/(Γ(c))2
dc ≥ lim

C→C

∫ Ĉ

C

(c− C)

K2(c− C)2
dc =

1

K2
lim
C→C

∫ Ĉ

C

1

c− C
dc

=
1

K2
lim
C→C

[
ln(Ĉ − C)− ln(C − C)

]
= +∞.

E.3 Part III

To show 1/Γ(C) < K(C −C) in a neighbourhood of C, we assume sufficient differentiability
and conduct a Taylor expansion around C (noting that 1/Γ(C) = 0):

1

Γ(C)
= −Γ′(C)

Γ(C)2
(C − C) + o((C − C)2). (E.6)

Calculate Γ′(C) = −P ′′′(C)P ′(C)+P ′′(C)2

P ′(C)2
= −P ′′′(C)

P ′(C)
+Γ(C)2. It boils down to show that Γ′(C)

Γ(C)2
is

bounded in a neighbourhood of C.

Next, recall (B.5), which implies for C < 0:

P ′′′(C) =
2

σC(C)2
(
−P ′′(C)µC(C)− π

[
e−ρrα(C)P ′(C)α′(C) + J ′(C)

])
=

2
[
Γ(C) + ρr]2

(σρr)2
(
−P ′′(C)µC(C)− π

[
e−ρrα(C)P ′(C)α′(C) + J ′(C)

])
For C close to C, the constraint (15) binds, so that π

[
e−ρrα(C)P ′(C)α′(C) + J ′(C)

]
=

πP ′(C)
(
e−ρrα(C) − 1

)
. Thus,

P ′′′(C)

P ′(C)
=

2
[
Γ(C) + ρr]2

(σρr)2
[
Γ(C)µC(C)− π

(
e−ρrα(C) − 1

)]
and

P ′′′(C)

P ′(C)Γ(C)2
=

2

(σρr)2
[
Γ(C)µC(C)− π

(
e−ρrα(C) − 1

)]
+ o

(
1

Γ(C)

)
The term π

(
e−ρrα(C) − 1

)
is clearly bounded, and so are the remainder terms of order 1/Γ(C),

since limC→C Γ(C) = +∞.

Suppose now that Γ(C)µC(C) is bounded in a neighbourhood of C. Then, P ′′′(C)
P ′(C)Γ(C)2

and

therefore also − Γ′(C)
Γ(C)2

= P ′′′(C)P ′(C)
P ′′(C)2

− 1 are bounded in a neighbourhood of C. Thus, there

exists K > 0 such that 1/Γ(C) < K(C − C) in a neighbourhood of C, as desired.

Next, consider that Γ(C)µC(C) is not bounded in a neighbourhood of C. In particular,
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limC→C Γ(C)µC(C) = +∞. Using (E.4), we obtain for C < 0 close to C:

Γ(C)µC(C) = rΓ(C)(C − C) + πΓ(C)
[
α(C)− kΠ(α(C))− α(C) + kΠ(α(C))

]
+

(ρr)2σΓ(C)

2(Γ(C) + ρr)

(
2

σ
− σC(C)

)
≤ rΓ(C)(C − C) + πΓ(C)

[
α(C)− kΠ(α(C))− α(C) + kΠ(α(C))

]
+ ρ2r2.

Next, note that because of (15) — which binds close to C — the derivative with respect to C
of the term π

[
α(C)−kΠ(α(C))−α(C)+kΠ(α(C))

]
is bounded, whenever it exists. As such,

there exists constant K1 ∈ (0,∞) such that π
[
α(C)−kΠ(α(C))−α(C)+kΠ(α(C))

]
< K1(C−

C) in a neighbourhood of C. Accordingly, in a neighbourhood of C, we have Γ(C)µC(C) ≤
K2Γ(C)(C−C) for an appropriate constant K2 ∈ (0,∞). Due to limC→C Γ(C)µC(C) = +∞,
we have limC→C Γ(C)(C − C) = +∞. In particular, there exists constant K > 0 such that
Γ(C)(C − C) > 1

K , i.e.,
1

Γ(C)
< K(C − C), in a neighbourhood of C, concluding the proof.

F Proof of Proposition 3

The claims of Proposition 3 follow from the previous results presented in the main text and
proven in the Appendix. The optimal control variables — that is, Y = Y (C), M = M(C),
α = α(C), β = β(C), and C∗ = C∗(C) — are derived in the main text in Section 2.2 by
going through the optimization in the HJB equation (16).

Online Appendix I establishes existence of a (twice differentiable) non-negative solution
P (C) to the system (16) subject to P ′(C)−1 = P ′′(C) = P (C) = 0 with C from (25). Given
this existence result, it follows β(C) < 1 for C ∈ (C,C). To see this, recall that the optimal
choice of β(C) is determined according to the optimization in (16) and therefore satisfies (23),
with β(C) ∈ [0, 1] due to concavity on (C,C). It follows that β(C) → 1 only if P ′′(C) → −∞,
as P ′(C) ≥ 1. However, because the value function P (C) is twice continuously differentiable
on (C,C), there cannot exist C ′ ∈ (C,C) such that limC→C′ P ′′(C) = −∞. As such, there
cannot exist C ′ ∈ (C,C) such that limC→C′ β(C) = 1. Thus, β(C) < 1 for C > C.

That is, while it is always possible to set β(C ′) = 1 for C ′ > CS to ensure µC(C
′) > 0

and σC(C
′) = 1 and Ct ≥ C ′ at all times t (with certainty), this is not optimal.33 So, all

states C within (C,C) are reached with positive probability.

G Proof of Proposition 4

G.1 Part I

We are looking for functions r̂(C) such that Tt can be represented as a Markovian function
T (Ct). Doing so, we show that there exists (unique) r̂(C) such that Tt is Markovian and

33Note that the stipulation of the boundary condition(s) P (CS) = 0 and β(CS) = 1 to solve the HJB
equation (16) is not an optimality result but a consequence of the requirement C must be bounded from below
under incentive compatible contracts and survival; the stipulation of the boundary condition P (CS) = 0 does
not per-se preclude β(C ′) = 1 for C ′ > CS .
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depends on Ct only, in that we can write Tt = T (Ct). We also solve for T (Ct), thereby
showing its uniqueness. First, we differentiate Tt for t > τΠ(t) in (28) w.r.t. t to get

dTt = r̂(Ct)Ttdt− dIt − Tt−dΠt = r̂(Ct)Ttdt− µI(Ct)dt+ σI(Ct)dZt + αI(Ct)dΠt − Tt−dΠt,
(G.1)

where dIt follows (20) and µI(Ct), σI(Ct), αI(Ct) are implicitly defined in (20). When
dΠt = 1, then Tt is reset to zero, where Tt− := lims↑t Ts denotes the left-limit of Tt.

Applying Ito’s Lemma to T (Ct) for Ct ∈ (C,C) we get:

dT (Ct) =

(
T ′(Ct)µC(Ct) +

T ′′(Ct)σC(Ct)
2

2

)
dt+ T ′(Ct)

[
σC(Ct)dZt − dDivt

]
(G.2)

+
[
T (C)− T (Ct)

]
dΠt.

By conjecture Tt = T (Ct), so dTt = dT (Ct) for Ct ∈ (C,C). We now match the terms in (G.1)
and (G.2). First, matching the exposure to Poisson shocks dΠt in (G.1) and (G.2), we obtain
T (C) = 0. Second, matching the exposure to Brownian shocks, we obtain T ′(C)σC(C) =
−σI(C). Plugging in σI(C) from (20) — that is, σI(C) = σ for C < 0 and σI(C) = β(C)σ
for C ≥ 0 — and σC(C) = σ(1− β(C)), we have the first-order ODE for C ∈ (C,C)

T ′(C) = −

([
1{C<0} + 1{C≥0}β(C)

]
[1− β(C)]

)
(G.3)

with boundary condition T (C) = 0. As β(C) < 1 for C ∈ (C,C), the right-hand-side
of (G.3) is well-defined on C ∈ (C,C), with potentially degenerate boundary behavior as
C → C. Plugging in the optimal β(C) from (23) into (G.3) and imposing the boundary

condition, we can solve (G.3) for T (C) = lnP ′(C)
ρr

+max{−C, 0}, i.e., (29).
Finally, we denote the drift term of dT (Ct) by µT (Ct) = T ′(Ct)µC(Ct)+

T ′′(Ct)σC(Ct)2

2
. By

matching drift terms, we obtain r̂(C) = µT (C) + µT (I).

G.2 Part II

The next part of the proof shows that for (C,C):

µT (C) + µI(C) =
λ

ρr
1{C≥0} + rY (C) . (G.4)

We assume that that α(C) and β(C) are differentiable in state C. We establish (G.4) for
points C at which α(C) and β(C) are differentiable. Because the set of points at which α(C)
or β(C) are not differentiable is countable, (G.4) then holds for all C in (C,C)

Part II.A — Auxiliary Result: Simplified HJB under optimal β(C)

Assume that α(C) and β(C) are differentiable. Note that 1 − β(C) = 1 − P ′′(C)
P ′′(C)−ρrP ′(C)

=
−ρrP ′(C)

P ′′(C)−ρrP ′(C)
. Thus, P ′′(C)

−ρrP ′(C)
= β(C)

1−β(C)
and 1−β(C) = −ρrP ′(C)

P ′′(C)
β(C) and β(C) = P ′′(C)

−ρrP ′(C)
(1−
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β(C)). As a result, we can calculate

−ρr

2
β(C)2P ′(C) +

P ′′(C)

2
((1− β(C))2 = −ρr

2
β(C)2P ′(C) +

(ρrP ′(C))2

2P ′′(C)
(β(C))2 (G.5)

= −ρr

2
β(C)2P ′(C)

(
1− ρrP ′(C)

P ′′(C)

)
= −ρr

2
β(C)P ′(C),

where the last equality uses that 1
β(C)

= P ′′(C)−ρrP ′(C)
P ′′(C)

= 1 − ρrP ′(C)
P ′′(C)

. We can insert relation

(G.5) as well as C∗ = C into (16) to obtain

rP (C) = P ′ (C)

[
µ+

(
r − λ1{C≥0}

)
C − ρr

2
β (C)σ2 + π

(
1− e−ρrα(C)

ρr

)]
+ π

[
P
(
C
)
− P (C)−

(
C − C + α(C)

)]
. (G.6)

Part II.B — Auxiliary Result: Slope of optimal risk-sharing β′(C)

Consider C ̸= 0 and that α(C) and β(C) are differentiable. We differentiate both sides of
the ODE (G.6) with respect to C:

rP ′ (C) =P ′′ (C)

[
µ+

(
r − λ1{C≥0}

)
C − ρr

2
β (C)σ2 + π

(
1− e−ρrα(C)

ρr

)]
+ P ′ (C)

[(
r − λ1{C≥0}

)
− ρr

2
β′ (C)σ2 + πα′ (C) e−ρrα(C)

]
+ π [1− α′ (C)− P ′ (C)] .

Rearranging, we have[
π
(
1− α′ (C) e−ρrα(C)

)
+ λ1{C≥0} +

ρr

2
β′ (C)σ2

]
P ′ (C) (G.7)

= P ′′ (C)

[
µ+

(
r − λ1{C≥0}

)
C − ρr

2
β (C)σ2 + π

(
1− e−ρrα(C)

ρr

)]
+ π [1− α′ (C)] .

Dividing through by ρrP ′ (C) and solving for σ2

2
β′ (C), we have

σ2

2
β′ (C) =

P ′′ (C)

ρrP ′ (C)

[
µ+

(
r − λ1{C≥0}

)
C − ρr

2
β (C)σ2 + π

(
1− e−ρrα(C)

ρr

)]
+

π

ρr

[1− α′ (C)]

P ′ (C)
− π

ρr

[
1− α′ (C) e−ρrα(C)

]
−

λ1{C≥0}

ρr

=− β (C)

1− β (C)

[
µ+

(
r − λ1{C≥0}

)
C − ρr

2
β (C)σ2 + π

(
1− e−ρrα(C)

ρr

)]
+

π

ρr

[1− α′ (C)]

P ′ (C)
− π

ρr

[
1− α′ (C) e−ρrα(C)

]
−

λ1{C≥0}

ρr
,
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where the second equality uses 1
ρr

P ′′(C)
P ′(C)

= − β(C)
1−β(C)

. Using the expression for the drift of

excess liquidity µC(C) in (B.1), we get

σ2

2
β′ (C) =− β (C)

1− β (C)
µC (C) +

ρr

2
β2 (C)σ2 +

π

ρr
α′ (C)

[
e−ρrα(C) − 1

P ′ (C)

]
− π

ρr

(
1− 1

P ′ (C)

)
−

λ1{C≥0}

ρr
(G.8)

Part II.C Derivation of (G.4)

Consider C ̸= 0 and that α(C) and β(C) are differentiable. We can calculate

µT (C) =T ′ (C)µC (C) + T ′′ (C)
σ2
C (C)

2
= T ′ (C)µC (C)− β′ (C)

[1− β (C)]2
σ2 [1− β (C)]2

2

=T ′ (C)µC (C)− σ2

2
β′ (C)

=−
[
ρr

2
β2 (C)σ2 +

π

ρr
α′ (C)

[
e−ρrα(C) − 1

P ′ (C)

]
− π

ρr

(
1− 1

P ′ (C)

)
−

λ1{C≥0}

ρr

]
=µC1{C≥0} (C)−

[
µ+

(
r − λ1{C≥0}

)
C −

λ1{C≥0}

ρr

]
− π

ρr

{
α′ (C)

[
e−ρrα(C) − 1

P ′ (C)

]
−
(
1− 1

P ′ (C)

)
+
(
1− e−ρrα(C)

)}
,

where the second equality uses T ′′ (C) = − β′(C)

[1−β(C)]2
, and the fourth equality uses (G.8) to

substitute in for σ2

2
β′ (C). We can simplify to obtain

µT (C) =

[
λ

ρr
+ µC (C)

]
1{C≥0}−

[
µ+

(
r − λ1{C≥0}

)
C
]
− π

ρr

[
1

P ′ (C)
− e−ρrα(C)

]
[1− α′ (C)] .

Utilizing µI(C) = µ+ [(r − λ)C − µC ]1{C≥0}, we have

µT (C) + µI (C) =
λ

ρr
1{C≥0} + rY (C)− π

ρr

[
1

P ′ (C)
− e−ρrα(C)

]
[1− α′ (C)] . (G.9)

When α(C) = αU(C) = lnP ′(C)
ρr

, we have e−ρrα(C) = 1/P ′(C) and
[

1
P ′(C)

− e−ρrα(C)
]
= 0.

When α(C) = αC(C) = P (C) − C + C, then α′(C) = 1. Either way, under the optimal

contract, π
ρr

[
1

P ′(C)
− e−ρrα(C)

]
[1− α′ (C)] = 0 and (G.9) simplifies to (G.4).

H Proof of Proposition 5

By construction, balances of the credit lines add up to T (C), i.e., T (C) = D(C)+Y (C). The
sum of interest payments on the secured credit line, rY (C), plus maintenance λ

ρr
1{C≥0} equals

Online Appendix - 16



r̂(C)T (C). We verify dID(C) + dIY (C) = dI(C). When C > 0, then dIY (C) and it can be
readily seen from (20) and the expression in Proposition 5 that dID(C) = dI(C), as desired.
When C ≤ 0, we can calculate dID(C)+ dIY (C) = µdt+σdZ +(Y (C)+α(C))dΠ = dI(C).

I Existence of Solution

We consider ε > 0 and impose the constraint βt ∈ [0, 1 − ε] to deal with the problem of
vanishing volatility σC(C). We also impose the constraint α ≥ 0 which never binds in
optimum in the interior of the state space. We establish that for any ε, a solution to the
system considered exists. Lastly, we take the limit ε → 0 to show that there exists a solution
(P (C), C, C) to the system (16) with (25) and P ′(C)− 1 = P ′′(C) = P (C) = 0.

The proof proceeds in five parts. Part I establishes existence and uniqueness to an
auxiliary ODE system, with exogenous boundaries C1 ≥ 0 and boundary C1. Part II shows
that this solution is concave, and strictly concave for C1 > 0. Using these results, Part III
and VI show that there exists a solution to the system (16) subject to P (C)− 1 = P ′′(C) =
P (C) = 0 and with (25). Part V concludes, and argues that a unique solution to the dynamic
contracting problem (5) exists.

I.1 Part I

For any exogenous C1 ≥ 0 > C1, consider the auxiliary function Pε,C1
(C) solving the HJB

rPε,C1
(C) = (I.1)

max
β∈[0,1−ε],Y≥max{0,−C}

{
P ′
ε,C1

(C)
[
µ+ (r − λ)C − λY − σ2kZ(β)

]
+ P ′′

ε,C1
(C)

σ2

2
(1− β)2

}
+ πmax

α

{
P ′
ε,C1

(C) [α− kΠ(α)] +
[
Pε,C1

(
C1

)
− Pε,C1

(C)−
(
C1 − C + α

)]}
,

with α satisfying 0 ≤ α ≤ Pε,C1
(C1) − C1 + C and subject to the boundary conditions

P ′
ε,C1

(C1) − 1 = P ′′
ε,C1

(C1) = 0. In other words, we are solving a second-order ODE which

is pinned down by two boundary conditions at C1. Note that above HJB equation becomes
akin to (16) upon setting ε = 0. We can then calculate

Y (C) = max{−C, 0}, α(C) = min

{
max

{
0,

lnP ′
ε,C1

(C)

ρr

}
, Pε,C1

(C1)− C1 + C

}
. (I.2)

We now prove uniqueness and existence of a solution to (I.1) adopting the argument in
Sannikov (2008). Inserting optimal Y = Y (C) and α = α(C), we can rewrite (I.1):

P ′′
ε,C1

(C) = min
β∈[0,1−ε]

2

σ2(1− β)2

[
rPε,C1

(C)− P ′
ε,C1

(C)
[
µ+ (r − λ)C − λY (C)− σ2kZ(β)

]
− π

{
P ′
ε,C1

(C) [α(C)− kΠ(α(C))] +
[
Pε,C1

(
C1

)
− Pε,C1

(C)−
(
C1 − C + α(C)

)]} ]
, (I.3)
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where due to the constraint β ∈ [0, 1 − ε]: 2
σ2 ≥ 2

σ2(1−β)2
≥ 2

σ2ε2
> 0. Next, we can rewrite

(I.3) as P ′′
ε,C1

(C) = minβ∈[0,1−ε] Hβ(C,Pε,C1
(C), P ′

ε,C1
(C)), where Hβ(C,Pε,C1

(C), P ′
ε,C1

(C))

is implicitly defined via (I.3). Note that for all β ∈ [0, 1− ε], functions Hβ(·) are Lipschitz-
continuous in the arguments. It follows the solution to (I.3) with P ′

ε,C1
(C1)−1 = P ′′

ε,C1
(C) = 0

exists on (C1, C1) and is unique and continuous in boundary conditions and ε, C1.

I.2 Part II — Concavity of Pε,C1
(C)

We restrict now attention to C1 > 0 and C1 ≥ −µ
r
+ λC1

r
. We show that, in this case,

Pε,C1
(C) is strictly concave on (C1, C1), satisfying P ′

ε,C1
(C) > 1. We already conjecture

(and then verify) that P ′
ε,C1

(C) > 1. By continuity, it then follows that the solution is at

least weakly concave for any C1 ≥ 0. To begin with note that at Pε,C1
(C1)−C1 =

µ
r
+ λC1

r
.

Thus, for C > C1, we have α(C) > 0 by (I.2).

Define the jump in the value function upon refinancing as

J(C) ≡ Pε,C1

(
C1

)
− Pε,C1

(C)−
(
C1 − C + α(C)

)
. (I.4)

When P ′′
ε,C1

(C) and α(C) are differentiable, we can use the envelope theorem and differentiate

the HJB equation (B.4) under the optimal β = β(C) ∈ [0, 1 − ε] with respect to C and
rearrange to obtain

P ′′′
ε,C1

(C) =
2

(1− β(C))2σ2

(
P ′
ε,C1

(C)λ1{C≥0}

− P ′′
ε,C1

(C)µC(C)− π
(
e−ρrα(C)P ′

ε,C1
(C)α′(C) + J ′(C)

))
, (I.5)

where 1{·} denotes the indicator function which is equal to one if {·} is true and is equal to
zero otherwise. The set of points at which either P ′′

ε,C1
(C) or α(C) is not differentiable is

countable; therefore, for any C, the limits limx↑C P ′′′
ε,C1

(C), limx↓C P ′′′
ε,C1

(C), and limx↑C α′(C),

limx↓C α′(C) exist and are well-defined.

Suppose that α(C) is differentiable, and recall (I.2). If α(C) = Pε,C1
(C1)− C1 + C > 0,

then α′(C) = 1 and J ′(C) = −P ′
ε,C1

(C) < 0. As such,

π
(
e−ρrα(C)P ′

ε,C1
(C)α′(C) + J ′(C)

)
= πP ′

ε,C1
(C)

(
e−ρrα(C) − 1

)
≤ 0.

When α(C) =
lnP ′

ε,C1
(C)

ρr
, then

π
(
e−ρrα(C)P ′

ε,C1
(C)α′(C) + J ′(C)

)
= π

(
e−ρrα(C)P ′

ε,C1
(C)α′(C) + 1− P ′

ε,C1
(C)− α′(C)

)
= π

(
α′(C) + 1− P ′

ε,C1
(C)− α′(C)

)
= 1− P ′

ε,C1
(C) ≤ 0.
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where it was used that J ′(C) = 1 − P ′
ε,C1

(C) − α′(C) and e−ρrα(C) = 1/P ′
ε,C1

(C) and

P ′
ε,C1

(C) ≥ 1. Thus, π
(
e−ρrα(C)P ′

ε,C1
(C)α′(C) + J ′(C)

)
≤ 0, if α(C) is differentiable.

At the payout boundary, it therefore holds that P ′
ε,C1

(C1) = 1, and P ′′
ε,C1

(C1) = 0 and

lim
C↑C1

(
e−ρrα(C)P ′

ε,C1
(C)α′(C) + J ′(C)

)
= lim

C↑C
(1− P ′

ε,C1
(C)) = 0. (I.6)

Recall C1 > 0. Then, P ′′
ε,C1

(C1) = 0, P ′
ε,C1

(C1) = 1, we get limC↑C1
P ′′′
ε,C1

(C) > 0.

Because limC↑C1
P ′′′
ε,C1

(C) > 0 for C1 > 0, continuity implies P ′′′(C) > 0, P ′(C) > 1, and

P ′′(C) < 0 in a left-neighbourhood of C1.

Suppose to the contrary that there exists C ′ ∈ (C1, C1) with P ′′
ε,C1

(C) ≥ 0. Define

Ĉ = sup{C ∈ (C1, C1) : P ′′
ε,C1

(C) ≥ 0} and suppose to the contrary that Ĉ < C. As

P ′′
ε,C1

(C) < 0 in a neighbourhood of C1, it follows that Ĉ < C1 and, by continuity of

P ′′
ε,C1

(C), that P ′′
ε,C1

(Ĉ) = 0. Since P ′′
ε,C1

(C) < 0 for C ∈ (Ĉ, C1), it follows that P
′
ε,C1

(Ĉ) > 1.

Note that the term limC↓Ĉ π
(
e−ρrα(C)P ′

ε,C1
(C)α′(C) + J ′(C)

)
is weakly negative. As such,

limC↓Ĉ P ′′′
ε,C1

(C) ≥ 0, where the inequality is strict if Ĉ > 0.

Consider now Ĉ ≥ 0. Due to limC↓Ĉ P ′′′
ε,C1

(C) > 0, there exists C ′ > Ĉ so that P ′′
ε,C1

(C ′) >

0, which contradicts the definition of Ĉ. Next, suppose that Ĉ < 0. If limC↓Ĉ P ′′′
ε,C1

(C) >

0, we achieve a contradiction similar to above. Consider limC↓Ĉ P ′′′
ε,C1

(C) = 0. Due to

P ′′
ε,C1

(Ĉ) = 0, there exists then δ > 0 such that the (unique) solution to (I.3) on (Ĉ, Ĉ + δ)

satisfies P ′′′
ε,C1

(C) ≥ 0. Thus, there exists C ′ > Ĉ with P ′′
ε,C1

(C ′) = 0, a contradiction.

Either way, it follows that P ′′
ε,C1

(C) < 0 for all C ∈ (C1, C1), which concludes the proof.

I.3 Part III — Pε,C1
(C) has a Root

It follows that Pε,C1
(C) is strictly concave, so that P ′

ε,C1
(C) ≥ 1. Take C1 ≥ 0 and C1 =

−µ
r
+ λC1. Then, Pε,C1

(C) is strictly concave on (C1, C1) with P ′
ε,C1

(C) ≥ 1.

Using the boundary conditions at C1, i.e., P ′
ε,C1

(C) − 1 = P ′′
ε,C1

(C) = 0, and strict

concavity on (C1, C1), we bound the function Pε,C1
(C) via a linear function P (C;C1):

Pε,C1
(C) ≤ P (C;C1) ≡

µ+ (r − λ)C1

r
+ C − C1 =

µ− λC1

r
+ C.

By construction, P (C1;C1) = Pε,C1

(
C1

)
and P (C;C1) = 0 for C = Ĉ(C1) = −µ

r
+ λC1

r
.

Thus, there exists a unique Ĉε(C1) ≥ Ĉ(C1) = −µ
r
+ λC1

r
at which Pε,C1

(Ĉε(C1)) = 0. The

function Ĉε(C1) is continuous in C1 and ε. For C1 sufficiently large, Ĉε(C1) ≥ Ĉ(C1) ≥ 0.

Next, consider C1 = 0. Thus, by (I.5), we obtain after using (I.6) and P ′′
ε,C1

(0) = 0 that

limC↑0 P
′′′
ε,C1

(C) = 0. Therefore, the solution to (I.1) satisfies Pε,C1
= µ

r
+ C on (−µ

r
, 0), so
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that Ĉε(0) =
−µ
r
. Take

Cε(C1) = min

w
(

π
r
exp

{
ρr
[
λ
r
C1 +

π
ρr2

− ρ
2
σ2
]})

− π
r

ρr
− Y A,−L

 .

Observe that by Lemma 2, we have Cε(C1) ∈ [−[Pε,C1
(C1)−C1],−L], with Pε,C1

(C1)−C1 =

µ
r
−

λC1I{C1>0}
r

. Further, Cε(C1) increases with C1 and is continuous in C1 ≥ 0.

The image of the continuous function Ĉε : [0,∞) → R contains [−µ
r
, 0], i.e., [−µ

r
, 0] ⊆

Ĉε([0,∞]). Since, in addition, for C1 sufficiently large, Ĉ(C1) ≥ 0, it must be that there
exists Cε ≥ 0 such that Cε = Cε(Cε) = Ĉ(Cε). If there exist multiple values C ′ with
Cε(C

′) = Ĉ(C ′), we define Cε as the lowest intersection point.

Thus, the function Pε,Cϵ
(C) solves (I.1) in (Cε, Cε) subject to Pε,Cε

(Cε) = P ′
ε,Cε

(
Cε

)
−

1 = P ′′
ε,Cε

(
Cε

)
= 0. As Cε ≥ µ

r
− λCε

r
, it follows from Part II that Pε,Cε

is concave on

(Cε, Cε), and strictly so if Cε > 0.

I.4 Part IV

Take Cε and Cε = C(Cε) with C(·) from (25) as well as the function Pε,Cε
(C) solving (I.1)

on (Cε, Cε) subject to Pε,Cε
(Cε) = P ′

ε,Cε

(
Cε

)
− 1 = P ′′

ε,Cε

(
Cε

)
= 0. The functions Pε,Cε

are

strictly concave and increasing on (Cε, Cε).

We can take the limit ε → 0 to obtain C := limε→0Cε and C := limε→0Cε. As Cε ∈
[−µ

r
,−L], C is well-defined with C ∈ [−µ

r
,−L]. Define P (C) := limε→0 Pε,Cε

(C) on (C,C)
as well as P ′(C) := limε→0 P

′
ε,Cε

(C) and P ′′(C) := limε→0 P
′′
ε,Cε

(C). We show now that for

all C ∈ (C,C), these limits are finite (and exist).

For a given value C ∈ (C,C), there exist δ > 0 and ε̄ > 0 such that for all 0 < ε < ε̄,
we have C > Cε + δ and, due to P ′

ε,Cε
(·) ≥ 1, consequently Pε,Cε

(C) > δ. Therefore

P (C) = limε→0 Pε,Cε
(C) > 0. As Pε,Cε

(C) is concave and increasing, it follows that, if P (C)
is not finite, then P (C) = −∞. However, due to P (C) > 0, P (C) must be finite.

If P ′(C) is not finite, then P ′(C) = +∞. Suppose P ′(C) = +∞. Pick C ′ ∈ (C,C). Then,
there is ε1 such that for all ε < ε1 we have C ′, C ∈ (Cε, Cε) and P ′

ε,Cε
(C ′′) ≥ P ′

ε,Cε
(C) for

C ′′ ∈ [C ′, C], due to concavity. As a consequence, Pε,Cε
(C ′) ≤ Pε,Cε

(C)− (C − C ′)P ′
ε,Cε

(C).

Owing to P ′(C) = +∞, for any R > 0, there exists 0 < ε̄ ≤ ε1 such that P ′
ε,Cε

(C) > R for

all ε < ε̄. That is, Pε,Cε
(C ′) < Pε,Cε

(C)− (C −C ′)R for all ε < ε̄. Pick R > P (C)/(C −C ′)
and let ε → 0 to obtain P (C ′) < 0, a contradiction. Thus, P ′(C) must be finite.

If P ′′(C) is not finite, then P ′′(C) = −∞. Suppose to the contrary P ′′(C) = −∞. We
pick C as the largest value on (C,C) with P ′′(C) = −∞; thus, P ′′(c) > −∞ for c ∈ (C,C).
Then, it follows that P ′′′(C) = +∞. Pick C ′ ∈ (C,C) such that P ′′′(·) > 0 on (C ′, C). Note
that, as we have shown, P ′(C ′) ≥ 1 is finite. Then, there is ε1 such that for all ε < ε1 we
have C ′, C ∈ (Cε, Cε), and P ′′′

ε,Cε
(·) ≥ 0 on (C ′, C). As such, we have P ′′

ε,Cε
(C ′′) ≤ P ′′

ε,Cε
(C)

for C ′′ ∈ [C ′, C]. Because P ′′(C) = −∞, for any R > 0 there exists 0 < ε̄ < ε1 such
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that P ′′
ε,Cε

(C) < −R for ε < ε̄. Thus, P ′
ε,Cε

(C) ≤ P ′
ε,Cε

(C ′) + (C − C ′)P ′′
ε,Cε

(C). Take

R > P ′(C ′)/(C − C), and take the limit ε → 0 to obtain P ′(C) = limε→0 P
′
ε,Cε

(C) ≤ 0, a

contradiction. Thus, P ′′(C) is finite.

Having established that the limit expressions P (C), P ′(C), P ′′(C) are finite for any C ∈
(C,C), we take the limit ε in (I.1) on (C,C) = limε→0(Cε, Cε).We obtain that P (C) =
limε→0 Pε,Cε

(C) solves on (C,C) the HJB equation:

rP (C) = lim
ε→0

rPε,Cε
(C) =

lim
ε→0

max
β∈[0,1−ε],Y≥max{0,−C}

{
P ′
ε,Cε

(C)
[
µ+ (r − λ)C − λY − σ2kZ(β)

]
+ P ′′

ε,Cε
(C)

σ2

2
(1− β)2

}
+ lim

ε→0
π max

α∈S(C,C)

{
P ′
ε,Cε

(C) [α− kΠ(α)] +
[
Pε,Cε

(
Cε

)
− Pε,Cε

(C)−
(
Cε − C + α

)]}
= max

β,Y≥max{0,−C}

{
P ′ (C)

[
µ+ (r − λ)C − λY − σ2kZ(β)

]
+ P ′′ (C)

σ2

2
(1− β)2

}
+ πmax

α

{
P ′ (C) [α− kΠ(α)] +

[
P
(
C
)
− P (C)−

(
C − C + α

)]}
.

Thus, (P (C), C, C) is a solution to the system (16) subject to P (C)−1 = P ′′(C) = P (C) = 0
and with (25). Given C, there exists — by construction — no other function that solves
(16) subject to P (C)− 1 = P ′′(C) = P (C) = 0 with C = C(C) from (25).

I.5 Part V — Uniqueness of Solution to (5)

We were able to establish existence of a solution to the ODE system subject to endogenous
boundary conditions. Moreover, by construction, the function P (C) that solves (16) subject
to P ′(C) − 1 = P ′′(C) = P (C) = 0 is unique, but there could exist multiple boundary
values consistent with such a solution; nevertheless, there exists a unique solution to the
optimization problem (5). If there exist multiple solutions Si := (Pi(C), Ci, Ci) to the
system (16) subject to P (Ci) − 1 = P ′′

i (Ci) = P (Ci) = 0 and with Ci = C(Ci) from (25),
we can index these solutions by i ∈ I and denote their set by Ω = {(Pi(C), Ci, Ci) : i ∈ I}.

Notice that at time t = 0, shareholders payoff under solution i is P (Ci)− Ci =
µ
r
− λCi

r
,

because Ci > 0, so that ex-ante payoff decreases with Ci. As a result, the optimal contract
is obtained by picking the solution with the lowest upper and lower boundary. Formally,
take i∗ = argmini∈I Ci, and set C := Ci∗ and C = Ci∗ as well as P (C) = Pi∗(C). Then,
under the optimal contract, shareholders’ value function P (C) is the unique solution to (16)
subject to P (C) − 1 = P ′′(C) = P (C) = 0 and with (25). Consequently, a unique solution
to shareholders’ optimization — that is, the optimal contracting problem in (5) — exists.

J Proof of Proposition 6

Proof. As the HJB (16) and boundary conditions remain unchanged besides the new con-
straint (37), Footnote 12 applies, P (C)−C = µ

r
− λ

r
C. Notice that ν affects the value function

only via the constraint (37), so P (C) − C must increase with ν, as a larger ν relaxes the
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constraint (37). Thus, ∂[P (C)−C]
∂ν

≥ 0 ⇐⇒ ∂C
∂ν

≤ 0, with strict inequality if the constraint is

binding on a set with non-zero measure of the state space (C,C). Under survival, C = CS,

the constraint is binding in a neighbourhood of C regardless of ν, by (24), ∂CS

∂ν
< 0.

K Active Intermediaries and Monitoring

We now solve the model variant with endogenous intermediary effort at. For simplicity,
we do not distinguish between actual effort levels and effort levels anticipated by outside
investors, and simply write at for the optimal effort.

K.1 State Variables

In this model variant, the intermediary’s continuation value reads

Yt = Et

[∫ ∞

t

e−r(s−t)

(
dIs − ksds−

κa2s
2

ds

)]
. (K.1)

By the martingale representation theorem, there exists processes α and β such that

dYt =

[
rYt + kt −

κa2t
2

]
dt+ βt(dXt − µ− at)dt+ αt(dΠt − πdt). (K.2)

The intermediary chooses at each time t its effort at ≥ 0 to solve maxat

(
βtat − κa2t

2

)
, leading

to βt = atκ. As in the baseline, we set kt according to (7). Next, note that the firm’s
cash balance Mt evolves according to (2) Excess liquidity has then the law of motion dCt =
dMt − dYt with

dCt =

[
µ+ at + (r − λ)Ct − λYt − σ2kZ(β)−

κa2t
2

+ π (αt − kΠ(αt))

]
dt

+ σ (1− βt) dZt + (C∗
t − Ct) dΠt − dDivt, (K.3)

where we define the post-refinancing level of excess liquidity as C∗
t ≡ ∆Mt + Ct − αt.

Finally, note that in autarky βt = 1, so at = 1/κ. As such, Y A = µ
r
− ρσ2

2
+ 1

2κr
.

K.2 HJB Equation and Optimization

As in the baseline, Ct is the only state variable, and dividend payouts dDivt cause Ct to
reflect at the endogenous upper boundary C satisfying smooth pasting and super contact
conditions P ′(C)− 1 = P ′′(C) = 0. In the interior of the state space (i.e., for C ∈ (C,C) the
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value function P (C) solves the following HJB equation:

rP (C) = max
β,Y

{
P ′ (C)

[
µ+

2β − β2

2κ
+ (r − λ)C − λY − ρ2β2

2

]
+ P ′′ (C)

σ2

2
(1− β)2

}
+ π max

C∗,α∈S(C∗,C)

{
P ′ (C)

(
1− e−ρrα

ρr

)
+ [P (C∗)− P (C)− (C∗ − C + α)]

}
, (K.4)

where we already inserted the incentive condition at = βt/κ. One can show that the value
function P (C) is strictly concave on (C,C) (omitted here), with P ′(C) > 1.

The controls Y,C∗, and α are determined analogously to the baseline. That is, we have
Y (C) = max {−C, 0} and M (C) = max {C, 0} which is (18). The firm chooses refinancing
target C∗ = C. The optimal choice of α = α(C) is characterized in (22), so α(C) =
max{αU(C), αC(C)}.

Next, the first order condition in (K.4) with respect to β reads 1−β
κ

− ρrσ2P ′(C)β −
P ′′(C)σ2(1− β) = 0, which can be solved for

β = β(C) =
1− κσ2P ′′(C)

1 + ρrκσ2P ′(C)− κσ2P ′′(C)
. (K.5)

Notice that the expression for β(C) in (K.5) becomes (23) in the limit κ → ∞.

Finally, notice that at the payout boundary C, we have P ′′(C) and P ′(C) = 1 so that
βB := β(C) = 1

1+ρrκσ2 and aB := a(C) = 1
κ+ρrκ2σ2 , so a(C) is smaller than the autarky effort

1/κ. As a result, the value function at the payout boundary satisfies

P (C)− C =
1

r

(
µ− λC + aB − κ(aB)2 − ρrσ2(βB)2

2

)
. (K.6)

K.3 Lower Boundary C

We determine the lower boundary in the state space C using arguments analogous to the
ones from the main text. To begin with, suppose that C = CS < −L in which case the firm
is never liquidated. The following conditions are satisfied. First, it must be that β(C) = 1
so that a(C) = 1

κ
. Second, the drift of C in (K.3), denoted µC(C), must be zero, i.e.,

µC(C) = 0. Third, P (C) = 0. Furthermore, these requirements can be met jointly only
if α(C) = P

(
C
)
− C − P (C) = P

(
C
)
− C. Inserting this expression for α(C), β(C) = 1,

Y (C) = −C as well as a(C) = 1/κ into (K.3), we obtain

µC(C) = µ+
1

2κ
− ρrσ2

2
+ rC + π

(
1− e−ρr[P(C)−C]

ρr

)
.

Notice that P (C)− C is characterized above in (K.6), so that

µC(C) = µ+
1

2κ
− ρrσ2

2
+ rC + π

(
1− e−ρ[µ−λC+aB−0.5κ(aB)2−0.5ρrσ2(βB)2]

ρr

)
.
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Using Lemma 4, we can solve µC(C) = 0 (after some algebra) for

CS = C =
w
(

π
r
exp

{
ρr
[
λ
r
C + χ

r
+ π

ρr2
− ρ

2
σ2
]})

− π
r

ρr
− Y A, (K.7)

where w(·) is the primary branch of the Lambert-w function and χ = 1
2κ
−
(
aB − κ(aB)2

2
− ρrσ2(βB)2

2

)
.

Above expression (K.7) simplifies to CS from the baseline, when κ → ∞.

It follows that C = min
{
CS,−L

}
. When C = −L, the firm is liquidated at C = C and

τ < ∞ almost surely. When C < −L, the firm is never liquidated and τ = ∞.

Finally, it is intuitive that cash flow-based financing capacity −CS decreases with κ, as
higher monitoring cost implies that the intermediary can add less value to the firm and
reduces the intermediary’s valuation of the firm.

L Micro-foundation with CARA Preferences

We now present a micro-foundation of the intermediary’s payoff in (3) as well as the cost
function (7). The intermediary is risk-averse with CARA preferences over consumption c
with risk-aversion of ρ > 0, u(c) = −1

ρ
exp(−ρc). The intermediary can maintain savings on

its own account, denoted by St. Savings accrue interest at rate r and are subject to changes
induced by transfers to (dIt < 0) and from (dIt > 0) the firm and consumption ct, so that

dSt = rStdt+ dIt − ctdt, (L.1)

where the payout process dIt is stipulated by the contract C.34 As such, the intermediary has
essentially deep pockets, but capital provision by the intermediary is costly in a sense that
the intermediary is risk-averse. We normalize the balance of savings at t = 0− to zero, i.e.,
S0− = 0, where time t = 0− denotes the time before the contract is written and any transfers
are made. Savings must satisfy the standard transversality condition limt→∞ E [e−rtSt] = 0,
ruling out Ponzi schemes. Let U0 be the intermediary’s utility for a given contract C, that
is,

U0 = max
ct

E
[∫ ∞

0

e−rtu (ct) dt

]
s.t. (L.1) and lim

t→∞
E
[
e−rtSt

]
= 0. (L.2)

Given C, the intermediary chooses consumption ct to maximize its lifetime utility, with
optimal consumption denoted by c∗t .

Intermediary Consumption Problem. Given C, the intermediary’s continuation utility
defined as Ut ≡ Et

[∫∞
t

e−r(s−t)u(c∗s)ds
]
. Further, Ut can be expressed as Wt in certainty

equivalent monetary terms, with Wt ≡ − ln(−ρrUt)
ρr

, and we work with Wt instead of Ut. Note
that Wt is the intermediary’s total continuation payoff in monetary terms with law of motion

34Endowing the intermediary with the possibility to accumulate savings ensures that it can smooth con-
sumption and consume at a rate ct even if payouts dIt are not smooth. Consumption ct and savings balance
St can both take positive and negative values.
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derived below in Online Appendix L.2

dWt =

[
ρr

2
(βtσ)

2 + π

(
αt −

1− e−ρrαt

ρr

)]
dt+ βtσdZt + αt(dΠt − πdt), (L.3)

where αt and σβt are the loadings of dWt on the martingales (dΠt − πdt) and dZt respectively.
The first term in the drift of (L.3) captures the intermediary’s required compensation for
being exposed to Brownian cash flow risk, while the second term captures the intermediary’s
required compensation for being exposed to shocks dΠt. Both terms are unambiguously
positive, so that Wt increases in expectation, E[dWt] ≥ 0. Summarizing, we have:

Proposition 7. The intermediary’s optimal consumption satisfies c∗t = rWt. The interme-
diary’s certainty equivalent payoff Wt, defined abovem, follows the dynamics (L.3).

Section L.1 and Section L.2 provide the proof of Proposition 7 in two parts: Part I
analyzes the intermediary’s optimal consumption and Part II derives the law of motion
(L.3). The intermediary’s certainty equivalent payoff Wt consists of two sources. First, the
intermediary has savings St it has accumulated up to time t. Second, it expects to receive
payouts from the firm after t, which it values at Yt ≡ Wt −St. If the intermediary leaves the
firm at t, dollar continuation payoff is St. If it stays with the firm and follows the contract,
its expected continuation payoff is Wt = Yt + St. The intermediary is better off leaving the
firm if and only if Yt < 0, so the optimal contract must respect Yt ≥ 0.

Combining (L.1) and (L.3) and using optimal consumption ct = c∗t = rWt, we obtain

dYt = dWt − dSt =

[
rYt +

ρr

2
(βtσ)

2 − π

(
1− e−ρrαt

ρr

)]
dt+ βtσdZt + αtdΠt − dIt. (L.4)

Integrating (L.4) against time and taking expectations, we obtain

Yt = Et

[∫ ∞

t

e−r(s−t)

{
dIs −

[
ρr

2
(βsσ)

2 + π

(
αs −

1− e−ρrαs

ρr

)]
ds

}]
. (L.5)

As desired, the integral representation for Yt in (L.5) coincides with the integral represen-
tation for Yt in (3) upon choosing ks according to (7). Likewise, when kt is determined
according to (7), then the law of motion of Yt in (6) coincides with (L.4).

L.1 Proof of Proposition 7 Part I — Optimal Consumption

We first state an auxiliary Lemma:

Lemma 6. Take a process Î and s1, s2 ∈ R. Consider the problem

Ut := Ut(c) = max
{cs}s≥t

Et

[∫ ∞

t

e−r(s−t)u(cs)ds

]
(L.6)

subject to dSs(c) = rSs(c)ds+ dÎs − csds, St(c) = s1, and lim
s→∞

Ee−r(s−t)Ss(c) = 0,
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where we explicitly denote the dependence of savings S on the consumption path c. Next,
consider the problem

Ũt := Ũt(c̃) = max
{c̃s}s≥t

Et

[∫ ∞

t

e−r(s−t)u(c̃s)ds

]
(L.7)

subject to dS̃s(c̃) = rS̃s(c̃)ds+ dÎs − c̃sds, S̃t(c̃) = s2, and lim
s→∞

Ee−r(s−t)S̃s(c̃) = 0.

Then, for ∆S := s2− s1, the optimal consumption processes c and c̃, solving (L.6) and (L.7)
respectively, satisfy c̃t = ct + r∆S so that Ũt = e−ρr∆S

Ut.

Proof. To start with, note that with c̃s = cs + r∆S,

Ũt(c̃) = Et

[∫ ∞

t

e−r(s−t)u(cs + r∆S)ds

]
= e−ρr∆SEt

[∫ ∞

t

e−r(s−t)u(cs)ds

]
= e−ρr∆S

Ut(c),

(L.8)
where the first equality uses c̃s = cs + r∆S and the second equality uses

u(cs + r∆S) = −e−ρ(cs+r∆S)

ρ
= e−ρr∆S

(
−e−ρcs

ρ

)
= e−ρr∆S

u(cs). (L.9)

Next, suppose there exists a different consumption process c′ ̸= c̃, solving (L.7), with

Ũt(c
′) > Ũt(c̃) = e−ρr∆S

Ut(c), (L.10)

and the transversality condition lims→∞ Ee−r(s−t)S̃s(c
′) = 0 holds under the consumption

process c′. Define the consumption process c′′ via c′′t = c′t − r∆S. As c′ is different from c̃,
it follows that c′′ is different from c. As under the consumption path c′ the transversality
condition lims→∞ Ee−r(s−t)S̃s(c

′) = 0 holds, it follows that under the consumption path c′′

the transversality condition lims→∞ Ee−r(s−t)Ss(c
′′) = 0 holds too. In addition, note that the

payoff under the consumption path c′′ equals

Ut(c
′′) := Et

[∫ ∞

t

e−r(s−t)u(c′′s)ds

]
= eρr∆

S

Ũt(c
′) > eρr∆

S

e−ρr∆S

Ut(c) = Ut(c), (L.11)

where the second equality applies (L.9), which yields u(c′s) = e−ρr∆S
u(c′′s) and u(c′′s) =

eρr∆
S
u(c′s), and the inequality uses (L.10). However, Ut(c

′′) > Ut(c) contradicts the fact that
c solves problem (L.6). The assertion follows.

Using Lemma 6, we can now complete the argument by showing that optimal consumption
satisfies u(ct) = rUt and ct = rWt. According to Lemma 6, the marginal value of an

additional unit of savings St at time t for the intermediary is given by
[

∂
∂∆S e

−ρr∆S
Ut

]
|∆S=0 =

−ρrUt. Optimal consumption smoothing implies that along the optimal path the first order

u′(ct) =
[

∂
∂∆S e

−ρr∆S
Ut

]
|∆S=0. has to hold at all times t ≥ 0. That is, in optimum, the

intermediary’s marginal utility u′(ct) has to be equal to the marginal value of an additional

unit of savings,
[

∂
∂∆S e

−ρr∆S
Ut

]
|∆S=0. Next, observe that u

′(ct) = −ρu(ct) and use the above

Online Appendix - 26



relations to obtain u(ct) = rUt. Inverting u(ct) = rUt yields ct = rWt.

L.2 Proof of Proposition 7 Part II — Martingale Representation

Take the intermediary’s continuation value Ut = Et

[∫∞
t

e−r(s−t)u(cs)ds
]
under any consump-

tion process ct (possibly, ct = c∗t ). Define

At = Et

[∫ ∞

0

e−rsu(cs)ds

]
=

∫ t

0

e−rsu(cs)ds+ e−rtUt. (L.12)

By construction, A = {At} is a martingale. By the martingale representation theorem, there
exist stochastic processes α̂ = {α̂t} and β = {βt} such that

ertdAt = (−ρrUt)βt

(
dXt − µdt

)
+ (−ρrUt)α̂t(dΠt − πdt), (L.13)

where dZt = dXt−µdt
σ

is the increment of a standard Brownian Motion and (dΠt − πdt) is
the increment of a compensated Poisson process. We differentiate (L.12) w.r.t. time t to
obtain an expression for dAt, then plug this expression into (L.13) and solve (L.13) to get
dUt = rUtdt − u(ct)dt + (−ρrUt)βt

(
dXt − µdt

)
+ (−ρrUt)α̂t(dΠt − πdt). With the optimal

consumption policy ct = c∗t , satisfying u(ct) = rUt, this simplifies to

dUt = (−ρrUt)βt

(
dXt − µdt

)
+ (−ρrUt)α̂t(dΠt − πdt), (L.14)

which is a martingale in that E[dUt] = 0. Next, to derive the law of motion ofWt = W (Ut) :=
− ln(−ρrUt)

ρr
, note that W ′(U) = 1

−ρrU
, W ′′(U) = 1

ρrU2 , and W (U−ρrUα̂)−W (U) = − ln(1−ρrα̂)
ρr

.

We now use Itô’s Lemma in its version for jump processes and calculate via (L.14)

dW (Ut) = W ′(Ut)ρrUtπα̂tdt+W ′(Ut)(−ρrUt)βtσdZt +W ′′(Ut)

(
(ρrUt)

2(βtσ)
2

2

)
dt

+
[
W (Ut − ρrUtα̂t)−W (Ut)

]
dΠt = −πα̂tdt+ βtσdZt +

ρr

2
(βtσ)

2dt− ln(1− ρrα̂t)

ρr
dΠt.

Setting αt := − ln(1−ρrα̂t)
ρr

⇐⇒ α̂t =
1−e−ρrαt

ρr
and rewriting, (L.3) follows.

M Refinancing Costs

Similar to Décamps et al. (2011) or Bolton et al. (2011), we can incorporate fixed costs
ϕ ∈ (0,∞) of equity issuance in addition to infrequent capital market access. The jump in
existing shareholders value upon refinancing is now J(C) = P (C)−P (C)−(C−C)−ϕ−α(C).
We require, as in the baseline, J(C) ≥ −P (C), due to shareholders’ limited liability. With
fixed equity financing costs, the firm raises equity in state C upon refinancing if and only if
the total gains from refinancing in the HJB equation (16) are positive, i.e.,

max
C∗,α∈S(C∗,C)

{P ′ (C) [α− kΠ(α)] + [P (C∗)− P (C)− (C∗ − C + α)]} ≥ 0 (M.1)
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It follows that C∗ = C. In this case, α(C) must satisfy α(C) ≤ P (C) − (C − C) − ϕ. If
(M.1) does not hold, the firm does not refinance upon capital market access and the choice
of α(C) becomes irrelevant. Overall, we can write α(C) = min{P (C)− (C−C)−ϕ, αU(C)}.
This results in no refinancing upon dΠ = 1 on some interval

[
C̃, C

]
for some C̃ ∈

[
C,C

]
.

We now derive the lower boundary CS under survival. Notice that, as in the baseline
with ϕ = 0, we have P (CS) = 0, µC(C

S) = 0, and β(CS) = 1. In addition, when the firm
finds it optimal to raise equity upon capital market access dΠ = 1, i.e., when (M.1) holds at
C = CS, then J(CS) = 0 which pins down α(CS) = P (C)− C + CS. We can then solve for
the lower boundary boundary conditional on survival:35

CS = min

w
(

π
r
exp

{
ρr
[
λ
r
C + ϕ+ π

ρr2
− ρ

2
σ2
]})

− π
r

ρr
, 0

− Y A.

The lower boundary is then C = min{CS,−L}. When C = CS, the firm is never liquidated
and raises new equity financing in state C upon market access. When C = −L, the firm
liquidates once C reaches −L. In the limit π → ∞ (continuous access to equity financing
at fixed cost ϕ), we get C = −max{[P (C) − C] − ϕ, L}, but C > 0 as both intermediary
financing and refinancing are costly. If ϕ and L are sufficiently small, the firm refinances at
a lower boundary C < −L. If C = CS, the firm raises refinances once C reaches C. The
firm finances cash flow shortfalls against future promises Y for C < 0. Y may exceed the
liquidation value of assets L, leading to cash flow-based financing. Our qualitative results go
through as long as refinancing is costly (e.g., ϕ > 0) or not frequently available (π < ∞).36

N Linear Cost and Stochastic Discount Factor

Consider kZ(β) = ρβ with β ≥ 0 and kΠ(α) = 0, so kt = σ2kZ(βt). This can be micro-
founded by assuming that the intermediary applies a stochastic discount factor St with price

of risk ρ ≥ 0, i.e., dSt = St(−rdt− ρσdZt), so that Yt = Et

[∫ τ

t
Ss

St
dIs

]
. We obtain

Yt = Et

[∫ τ

t

Ss

St

dIs

]
= EQ

t

[∫ τ

t

e−r(s−t)dIs

]
= Et

[∫ τ

t

e−r(s−t)
(
dIs − σ2ρβsds

)]
.

The expectation EQ
t is taken under the risk-neutral measure with dZ̃t = dZt − ρσdt as the

increment of a standard Brownian motion; Et is taken under the physical measure with dZt

as increment of a Brownian motion. The remainder of the analysis remains similar as in the
baseline. For instance, the HJB equation (16) applies for any kZ(β) and kΠ(α), including
the specification of this section.

35When {·} = 0, then CS = −Y A and the firm does not raise equity financing at CS upon dΠ = 1.
36For completeness, one could also add — next to the fixed cost of refinancing ϕ — a variable “flotation”

cost of refinancing ϕ̂, as in Bolton et al. (2011). Under these circumstances, the firm would choose a
refinancing target C∗ < C, but the remainder of the findings would likely remain similar.
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