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Bottom-up stimulus-driven visual salience is largely automatic,
effortless, and independent of a person’s “top-down” perceptual
goals; it depends only on features of a visual stimulus. Algorithms
have been carefully trained to predict stimulus-driven salience val-
ues for each pixel in any image. The economic question we address
is whether these salience values help explain economic decisions.
Our first experimental analysis shows that when people pick be-
tween sets of fruits that have artificially induced value, predicted
salience (which is uncorrelated with value by design) leads to mis-
takes. Our second analysis uses evidence from games in which
choices are locations in images. When players are trying to co-
operatively match locations, predicted salience is highly correlated
with the success of matching (r=.57). In competitive hider-seeker
location games, players choose salient locations more often than
predicted by the unique Nash equilibrium. This tendency creates a
disequilibrium “seeker’s advantage” (seekers win more often than
predicted in equilibrium). The result can be explained by level-
k models in which predicted stimulus-driven salience influences
level-0 choices and thereby influences overall perceptions, beliefs,
and choices of higher-level players. The third analysis shows that
there is an effect of visual salience in matrix games, but it is small
and statistically weak. Applications to behavioral IO, price and
tax salience, nudges and design, and visually-influenced beliefs are
suggested.
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I. Introduction

Features of a stimulus that grab attention are called “salient”. Of the dif-

ferent types of externally triggered sensory salience, visual salience is the best

understood and is clearly important given the amount of information that people

process through the visual system. This investigation is about whether one type

of visual salience can be predicted and can help explain choices in experimental

economic decisions and games.

Many economists have studied attention and salience recently, as part of growth

in the foundations of behavioral economics. Notable contributions include Salience

Theory (Bordalo et al. (2012b, 2013a,b)), a related model of focusing (Kőszegi

and Szeidl (2013), and theories of rational (Sims (2003, 2006); Caplin and Dean

(2015); Caplin et al. (2019); Kőszegi and Matějka (2020); Caplin et al. (2020);

Mackowiak et al. (2020)) and dynamic inattention (Schwartzstein (2014); Gagnon-

Bartsch et al. (2018)) The SAM algorithm salience is different from these economic

models in content and purpose. We defer the comparison of those models to the

penultimate Section VII.

To begin with, there is an important distinction between “bottom-up” and

“top-down” salience (e.g., Chun et al. 2011; Baluch and Itti 2011).1

Bottom-up salience is what the human visual system notices most quickly and

automatically. Bottom-up salience is also called “stimulus-driven”– the term we

will use from now on– because it depends only on the properties of a stimulus.

Stimulus-driven properties can be further divided into low- and high-level fea-

toolbox including tutorials at https://github.com/lixiaomin328/imageToolboxForEconomists.git
1There is an ongoing debate in attention science about how sharp the bottom-up vs. top-down

distinction is. Awh et al. (2012) gives the example of the history of selective attention to a feature, which
seems to influence future attention. That influence is not purely stimulus-driven (because it depends on
previous attentive behavior, not just the stimulus itself) nor is it accomplishing a goal. Another example
is faces. Faces are considered to be bottom-up salient for humans but they also help achieve a variety of
goals that are generally evolutionarily important (such as emotional communication, friend-foe detection,
mate choice, and social learning). These goals might also be even more important in a particular domain,
like decoding facial emotion while watching a dramatic movie. So a person watching a movie sees faces
that have both automatic bottom-up salience, and additional top-down salience to achieve the goal of
understanding the movie. In general, the two processes together can be thought of as a “family of filters”
that have been adaptively shaped by forces ranging almost continuously from evolutionarily-conserved
universal principles to others locally tuned by personal experience and valuation.



3

tures (Judd et al., 2009). “Low-level features” are independent of object identity,

meaning, and categorization; they include intensity, orientation, color, and mo-

tion. “Higher-level features” combine low-level features to identify and categorize

objects, and direct attention to objects that are familiar, semantically meaning-

ful, and generally valued. Faces, people, and text are generally salient high-level

features.

Many algorithms have been trained to predict stimulus-driven salience using

large image sets and eyetracking data from people who are “freely gazing” at the

images for 3-5 seconds. These algorithms produce “salience maps” which closely

match the actual gaze patterns.

In contrast to stimulus-driven attention, top-down attention is directed to

achieve specific goals. We will therefore refer to top-down attention as “goal-

directed” attention.2 Goal-directed attention includes “extra-retinal3 information

such as intrinsic expectations, knowledge and goals” (Baluch and Itti 2011).

To illustrate the distinction between stimulus-driven and goal-directed atten-

tion, consider the classic study by Yarbus (2013), done in 1967. He showed

subjects a painting of people in a room. One group was told to freely gaze. An-

other group was told to “estimate the material circumstance” of the people in the

painting. The third group was told to “estimate the ages of the people” in the

painting. Eyetracking showed that each of the three groups looked at somewhat

different parts of the images.4 Their gaze differences were due to differences in

goal-directed attention. However, there was also a substantial overlap in mea-

sured attention. For example, people in both the free gaze and the “estimate the

ages” goal conditions looked at faces in a similar way. This overlap indicates that

2Stimulus-driven and goal-directed attention are also sometimes called “exogeneous” and “endoge-
neous” in attention psychology. While we will not use this terminology, it is useful to emphasize the
difference between stimulus-driven and rational (endogeneous) attention models, discussed later in Sec-
tion VII.

3“Extra-retinal” means that the information attended to because of goal-directed guidance is not
input to the retina, but is instead represented in the visual cortex and other regions such as the superior
colliculus (see Veale et al. 2017); that information is in the proverbial “mind’s eye” rather than coming
from the retina.

4Reversing the order of inference in Yarbus’s early study, Haji-Abolhassani and Clark (2014) showed
that perceptual goals could be inferred reliably from eye-gaze patterns.
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the measured attention to faces was both stimulus-driven and goal-directed when

the goal was age estimation.

The hypothesis tested in this paper is whether stimulus-driven salience influ-

ences incentivized choices in three experiments involving decisions and strategic

games. This type of salience lies outside of popular rational inattention model-

ing, which is a specific mathematical derivation of optimal goal-directed attention

(discussed further in Section VII). The results, therefore, provide evidence that

goal-directed models (including rational inattention) are leaving out an important

type of attention– stimulus-driven salience– which is important behaviorally.

A preview of the first experiment illustrates the conflict between stimulus-driven

salience and goal-directed perception. Subjects saw two sets of fruits, on the left

and right halves of their computer screen. The two fruit sets were constructed

to have different stimulus-driven salience, and different induced monetary value.

The subjects’ goal was to choose the set with the highest induced value, which

requires goal-directed perception. Under time pressure, stimulus-driven salience

sometimes shifted choices toward the high-salience options, even if those were

low-value choices (see also Milosavljevic et al. 2012; Towal et al. 2013).

The other two experiments test whether stimulus-driven salience influences

strategic choices that are intended to accomplish goals of (1) either coordinated

matching, or hiding and seeking, in location games and (2) maximizing payoffs in

normal-form matrix games. Predicted salience helps explain choices in the first

set of location games and is weakly associated with low-level thinker choices (as

classified by eyetracking) in the second set of normal-form games.

The empirical analysis uses an algorithm called the Salience Attentive Model

(SAM).5 SAM takes any 2-D color image as an input and predicts stimulus-driven

attention– what most people will look at– in the first few seconds. The SAM algo-

rithm is general, so it can be applied to any economic or social decisions influenced

5SAM is the first of several acronyms we use repeatedly. They are summarized in Appendix Table
I1.
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by images. Potential applications include: advertisements; visual design features

of “nudges”; televised political debates; e-commerce websites; virtual house tours;

retail tags showing prices, promotions, or taxes; point-of-purchase displays; social

media; face-to-face interviewing; and graphical display of information.

Here is the structure of the paper: The next section II presents the SAM algo-

rithm. Section III describes the choice experiment pitting stimulus-driven salience

against goal-directed attention. The results from location game experiments are

described in Section IV and explained with cognitive hierarchy and level-k model-

ing in Section V. Section VI is about matrix games. Section VII describes several

recent economic models of salience and attention and contrasts them with our

approach. Section VIII concludes by speculating about other economic applica-

tions.

II. The Salience Attentive Model (SAM) algorithm

Algorithms that take images as inputs, and output predictions about where

people will look, have been an active area of research in visual neuroscience since

the 1990s. A brief history will help clarify what the algorithms do (see Appendix

A for more details).

The earliest algorithms included only low-level features (Itti et al., 1998). Using

these features as a starting point was motivated by decades of research on the

cognitive neuroscience of perception, including animal and human neuroanatomy,

and detailed understanding of functions and interaction of different parts of hu-

man visual cortex.6 We note these facts as an indication for readers of how much

is known about basic aspects of the neural circuitry underlying attention and its

connection to behavior, including the ability to causally change attention and

6Veale et al. (2017) is an excellent review. An elegant recent example found that stimulus-driven
salient features are associated with measured neural activity in a specific area of the visual cortex called
V1 (Chen et al., 2016). (V1 got that label because it is activated by retinal input earlier in time than other
regions and detects only the simplest low-level features, such as orientation and direction.Krasovskaya
and MacInnes (2019) review other examples of how well algorithmic salience is associated with measured
neural activity in the visual cortex.) Other studies show that microstimulating and lesioning specific
regions of the brain (in non-human animals) can causally change goal-directed attention and behavior
(Baluch and Itti 2011).



6

subsequent behavior.

The early low-level algorithms were steadily improved by adding features that

are higher-level, and generally salient, such as faces (Cerf et al., 2008). In the

hunt for better predictive accuracy, in 2014 state-of-the-art algorithms switched

to a neural network structure in which there is less a priori specification of what

salient features are (Vig et al., 2014). These neural networks consist of multiple

“layers” of connected discrete nodes. Each node in one layer receives weighted

inputs from nodes in an earlier layer, and contributes weighted output as an in-

put to nodes in a later layer. The initial input layer is based on a stimulus,

and the final output layer encodes or “sees” an approximation of the stimulus.

The network is “trained” by inputting stimuli– such as images– and propagating

weighted inputs and outputs to eventually create a stimulus-specific output layer.

That predicted output layer is then compared to the objective stimulus, and the

connecting weights linking the different layer nodes are adjusted to improve ac-

curacy. The SAM algorithm uses several modern variants of these methods to

improve accuracy and training speed.7 The network structure is usually “pre-

trained” using a borrowed “backbone” network that encodes low-level features.

The network is then trained further to learn encoding of semantically meaning-

ful objects which are commonly present in the image sets and are looked at by

the training subjects (such as apples, prices, people, and text; see Cornia et al.

(2018)). The images in the SAM training sets were highly varied, and most

subjects were students or others recruited at American campuses (see Appendix

Table A1 for details).

7In technical jargon, SAM is a convolutional neural network with a salience encoder using a long
short-term memory structure. Convolution is a method that combines encoding at different spatial
scales. Crudely speaking, if features are encoded at fine-grained spatial scales and also at supersets
of those fine-grained scales the object is “big”. The ”long short-term memory” LSTM property is a
kludge to retain memory so that backpropagation algorithms that adjust hidden-layer weights based on
prediction errors do not overreact and create “vanishing gradients”– which are bad. SAM uses ResNet
as its “backbone” (there is also a version with a VGG backbone). The backbone is the earliest part
of the network (i.e, the layers closest to stimulus input, encoding low-level features). That part of the
network typically has many layers and is therefore the most computationally demanding. It is used for
low-level feature extraction from the input image. People nowadays mostly use established backbones
such as ResNet or VGG, much like using a standard set of code then adding further code by hand.
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These algorithms have progressed quickly because researchers can try out new

ideas on four popular open-access salience datasets (SALICON, MIT1003, MIT300,

CAT2000). These are sets of images along with “ground truth” data on what

people actually looked at in the first five seconds of free gaze, recorded using

eye-tracking and other high-quality methods for measuring visual attention.

SAM and similar algorithms are now highly accurate. The reported perfor-

mance of SAM on the website MIT-salience is 0.88 using the AUC-Judd area-

under-the-curve measure (Riche et al., 2013). An AUC of .50 is random and 1.0

is perfectly accurate. The SAM accuracy of .88 is a little better than earlier al-

gorithms and approaches the accuracy of the best human-to-human benchmark,

which is .92.8

Figure 1 shows an example image and its associated SAM saliency maps. The

salience map assigns a salience value from zero to one to each pixel of the image.

The salience map is typically shown as a “heatmap” in grayscale or in color,

with warmer (redder) colors indicating higher salience.9 We adopted the default

parameters from the original approach and applied them to our image dataset.

There are no additional free parameters.10

To illustrate salience and choice, Figure IIa shows the map drawn by Schelling

(1960) in a famous discussion of focality and “psychological prominence”. The

map shows small square houses, a pond in the lower left, two places marked x

and y, and a river running horizontally through the lower third of the map. A

bridge spans the river. Schelling wrote:

Two people parachute unexpectedly into the area shown, each with

a map and knowing the other has one, but neither knowing where

8The best human benchmark indicates how strongly two different sets of human fixation maps cor-
relate for the same image. Each of the two sets contains many different individuals. Human-human
accuracy is less than 1.0 because of idiosyncratic individual differences in their fixations, which make
predictions from one group to another less than perfect (Judd et al., 2012).

9We use the standard color protocol “jet” in Matlab for all the heatmaps in this paper.
10Note that this CNN model, or any simpler variations of it, could be retrained on new data to

understand different kinds of salience. Two studies have coded abstract features of strategies in 2-person
matrix games (e.g., minimax, equal payoffs, level-1) and fit machine learning models using those features
to explain observed choices. Hartford et al. (2016) is a neural network and Fudenberg and Liang (2019)
is a random forest.
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the other has dropped nor able to communicate directly. They must

get together quickly to be rescued. Can they study their maps and

“coordinate” their behavior? (p. 56)

Schelling said seven of the eight people (87.5%) who saw the map chose to ren-

dezvous at the bridge.

In a larger incentivized experiment, N=61 UCLA students earned $1 if they

matched. They chose the bridge 59% of the time (see Figure IIb).11 The SAM

algorithm predicts that the bridge area, and the upper left road fork, are the most

salient features (Figure IIc).

Note that SAM does not predict that the “x spot” is salient, even though it was

chosen by 25% of the subjects. For stimulus-driven algorithms, “x” is a special

configuration of low-level features– two lines with diagonal orientation, that meet

symmetrically in the middle. The x is also a high-level feature because it is a

letter in many languages; that is, it is a recognized semantic object. However,

the algorithm, as it was trained on other images, was not originally capable of

learning that “x” is familiarly known (to many UCLA subjects) to sometimes

indicate locations of buried treasure on a map. So the x has minimal stimulus-

driven salience and SAM did not learn its goal-directed value for coordinating a

meeting place on a map.

To distinguish the effects of purely visual salience and goal-directed attention

further, we did an online experiment in which the 10 most prominent map lo-

cations were described in a verbal list. There was no accompanying visual map.

Just as in the map experiment, matching the list choices of others gave a reward.

The subjects’ list choices were not the same as the map-based choices. The most

popular choices were “x on the map” and “small house near the pond” (49%

and 14%). Only 5% chose “bridge” (see Appendix E). This discrepancy shows

that the popularity of the bridge choice depends on visual salience rather than

11These data were collected in conjunction with Milica Moormann and Alec Smith.



9

its semantic content.12

A. Explainable AI and the SAM black box

Before proceeding, we note that the SAM algorithm is neither a model nor

a mechanism, in the sense that economists typically use those terms. Neural

network models (including SAM) are often called “black boxes” because the basis

of their predictions is in “hidden layers” that are difficult to interpret. One cannot

readily do the comparative statics analysis that is useful in economics: e.g., there

is no simple mathematical way to easily compute how a change in an input image

leads to a change in the ouputted salience map.

However, an active area called “explainable AI” is concerned precisely with how

to make opaque AI output more understandable (Belle and Papantonis, 2020;

Hinton et al., 2015; Ras et al., 2018; Arrieta et al., 2020; Fan et al., 2020; Lipton,

2018).13 Some progress has already been made in explainability for deep neural

networks predicting visual salience. For example He et al. (2019) used an image

set in which a neural network predicts visual salience in a set of images. The

categorical features in each image were also laboriously annotated ‘by hand’. That

is, people looked at the images and coded the locations of vehicles, plants, animals,

etc. Then salience, as encoded at the middle-layer output of the neural network,

was extracted (like examining a partially-finished manufactured product). They

found that the hand-coded categorized features were often correlated with the

middle-layer salience predictions at these features’ locations. That correlation

means that much of what the hidden middle layers were doing is learning the

semantic categories of image features. In order of importance, 12 categories of

features– a person’s head, “other”, an object, a person’s body part, etc14– were

12Rihn et al. (2019) finds a related effect, that visual attention to a logo rather than text description
of a type of plant changes valuation.

13Igami (2020) explains the connection between some high-profile neural net training methods and
structural estimation approaches invented in economics. This equivalence does not, however, guarantee
the explainability of the content of the resulting neural networks.

14The rest of the list is: food, plant, symbol, vehicle, drink, animal head, text.
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most commonly encoded by the middle network layers.

The method just described is one way to measure the “feature relevance” of

a predicted salience map. Feature relevance could be applied to all the images

in our investigation as well, to improve explainability. For a set of maps like

Schelling’s, each spatial location has one or more codeable features– the distance

from the center, roads, forks in roads, ponds, rivers, houses, bridges, etc (which

were elements of the list version of the experiment). If these features and their

locations are hand-coded, regressing the SAM salience values at each location

against that location’s features will measure how well the SAM salience values

are approximated by a function of the coded features. A good fit means the

black-box salience output is approximated by explainable features. The size and

statistical strength of the regression coefficients indicate which features are most

salient.

The Schelling map example sets up the empirical question in this paper: How

well does stimulus-driven salience– as predicted by SAM– predict actual choices

in decisions and games? Does stimulus-driven salience get partially or entirely

inhibited when there is also goal-directed attention?

We describe three experimental applications. They are:

1) Choices between visual images of two sets of fruits: The sets varied in

induced values and in predicted salience. These data measure how often

people picked lower-value sets because they were higher in stimulus-driven

salience.

2) Strategic choices of locations in visual images: In Schelling-style matching

games, both players were rewarded if they matched by choosing the same

location. In hider-seeker games, the hider wanted to mismatch and the

seeker wanted to match. These data measure whether cognitive hierarchy or

level-k structural models can fit data, and more ambitiously, make accurate

cross-game predictions from the hider-seeker game to the matching game.
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3) Two-player 2x2 matrix games: These data measure whether stimulus-driven

salience biases– which happen to predict looking at the top row and the

left column in the matrices– can potentially explain strategy choices. This

is a tough challenge for stimulus-driven theories because the experimental

participants had a clear goal, to choose payoff-maximizing rows or columns.

They may have ignored stimulus-driven salience entirely.

III. Decisions: Fruit displays

A. Study 1: Salience and Induced Value in Visual Fruit Displays

The first experiment measured the empirical importance of visual salience in

a simple setting that is lifelike. Subjects were shown two fruit sets presented on

the left and right parts of an image, as shown in Figure IIIa. Each fruit type

(e.g., apples or oranges) had a unique, pre-determined induced monetary value

(Smith, 1976) that subjects learned before making choices. The induced values

artificially created value, so that there is an objectively best choice, and we can

clearly judge if people are making mistakes.15

N = 97 participants did this study on Prolific (a European online data collection

platform), following a pre-registration process on the Open Science Foundation

website (OSF)16. All the participants were pre-screened to have a prior approval

rate of at least 70% based on their previous participation. Each subject was only

allowed to participate in one experimental session (including pilot studies). Par-

ticipation from mobile phones and tablets was not allowed in order to control for

possible display effects.17 There were five questions to check subjects’ comprehen-

sion after the instruction session. We exclude individuals who failed more than

one question. See a full description of the experiment block design in Appendix

15We also hope that the induced monetary values swamped minor differences in intrinsic subjective
value from personal or aesthetic preferences for fruits.

16https://osf.io/
17Even though computer screens also differ in size, phones and tablets have more variation in screen

sizes.
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F.F1 and Figure F1.

The total value of a fruit set is the simple sum of the values of all fruits in that

set. The everyday analogue to this task is a retail vendor who is buying fruits at

a wholesale market to resell, and has in mind a retail price for each fruit. The

retail price of the fruit induces value to the vendor. Subjects learned the induced

values of different fruits before the main session of 20 choices.18

While the vendor should optimally be computing resale value, the visually

salient properties of fruit (such as color, intensity, and orientation), are hypoth-

esized to influence stimulus-driven perception. The salience and value properties

are independently controlled in the design.19 In the choice sets, visual salience

and fruit value were either positively or negatively correlated. The empirical

question is whether subjects can ignore, or inhibit, visual salience, which is not

generally correlated with induced value and could therefore lead to mistakes.

The main experiment included 20 images like those in Figure III. Choices were

made with a 10s time limit. Trials were balanced across induced values, numbers

of fruits in the two sets, and whether the more salient set was on the left or right

(see Appendix F.F2). Subjects earned money based on the induced value of the

sets they chose in an incentive-compatible design (a 10% chance of earning the

value of what they chose on one randomly selected trial).

The average difference between the most salient peaks in the two fruit sets was

0.23 on the 0-1 scale of salience. More ambitious designs could obviously covary

the size of the salience difference and the size of value difference between the two

sets. In half of the trials, SAM-salience and induced value are “congruent” – one

set is higher in both salience and induced value. In the other half of the trials,

they are “incongruent” – the high-salience set has a lower induced value or vice

versa.

18They experienced an untimed, but incentivized session before the main session. More experimental
details are in Appendix F.F1.

19It is possible that stimulus-driven salience of fruits is correlated with their subjective value in the
natural ecology– e.g., brightness might be visually salient, and also correlate with ripeness and fruit taste
or nutrition. However, even if this is the case, by design stimulus-driven salience is uncorrelated with
induced value, which is the only type of value a payoff-maximizing agent should attend to.
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The dependent variable is 0-1 choice accuracy– did they choose the most highly-

valued set? With a 10-second time limit, choice accuracies were 85% and 79% in

the congruent and incongruent conditions. This drop in accuracy, when salience

conflicts with valuation, is highly significant (p-value = 0.002, two-sided t-test).

We test for the effect of salience, controlling for the value gain from choosing

correctly, using a logistic regression of the form:

(1) yij = β1(SHj −SLj )+β2abs(V
L
j −V R

j )+β3(SHj −SLj )abs(V L
j −V R

j )+β4Xi+εij

with robust standard errors clustered at the subject level. The variable yij is

accuracy (a 0-1 dummy variable, for person i at image j); V L
j and V R

j are the

monetary values of the left and right sets in image j, and abs(V L
j − V R

j ) is the

absolute induced value difference (abs(valueDiff) in Table 1). The congruency

variable defined earlier is SHj −SLj , the difference in salience of the high- and low-

valued sets. We are therefore regressing choice accuracy on congruency, absolute

value difference, their interaction, and covariates.20 The results are summarized

in Table I. The induced value difference and congruency variables are both sig-

nificantly associated with choice, with comparably large t-statistics (around 3-4).

There are two boundary conditions in which the effect of salience disappears.

When the value difference is large the accuracy is 94% for both congruent and

incongruent conditions (p=0.91 for the test for a difference). When the value

difference is small, the accuracy is lower and salience-value incongruence does

have an effect (78% vs. 69%, p = 0.01). (The Table I results pooled both types

of images).

The second boundary condition is endogenous time allocation: When there is

no time limit (N=22)21, participants in both conditions are near the ceiling of

perfect accuracy (congruent 94% and incongruent 96%).

20“Covariates”: is yes when the current model contains covariates of education, gender, income, and
self-reported fruit preference.

21An additional batch of subjects collected on Prolific did only the unlimited time experiment.
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At this point, readers may be curious why subjects don’t just ignore the stimulus-

driven salience of the fruits. The reason is that, in economics jargon, perceptions

are not freely disposable. The visual perceptual system is highly evolved to distill

a huge amount of visual input into a much smaller amount of useful informa-

tion, and to not waste the small amount that seems useful. The fastest parts of

that process occur implicitly (without conscious awareness) in less than a sec-

ond. Inhibiting any rapid highly-evolved implicit behavior is mentally difficult.

One type of evidence about inhibition difficulty is that exogeneous manipulation

of attention– adding more ‘involuntary’ attention to a choice object– increases

later choice of that object (albeit by a small amount; see Shimojo et al. (2003);

Armel et al. (2008); Pachur et al. (2018) and see Mormann and Russo (2021) for

a contradictory view).22

A mechanistic explanation for why irrelevant salience affects choices comes from

a popular class of psychological models for how attention and decision time influ-

ence choice. These “accumulators” (or diffusion drift) models assume that over

time perceptions and memory cumulate a running value of a latent numerical

“evidence” variable (Ratcliff, 1978; Ratcliff et al., 2016; Fudenberg et al., 2018).

A choice is made when the variable level crosses a mental threshold or barrier.

In these models, if stimulus-driven initial perceptions enter the accumulator vari-

able, there is not a known mechanism that will fully erase their effect. If the time

to decision can be endogenously chosen by the decision-maker, then a very high

threshold can be set which will dilute the early effect of stimulus-driven percep-

tions, but will not always fully inhibit that effect. (This is consistent with the

absence of a salience effect in untimed trials.)

A different way to model why stimulus-driven perception influences choice

comes from the signal-extraction model of Cunningham (2013). In that model, an

“upstream” sensory system sends information to a more “informed” downstream

22A related phenomenon is called the ”mere exposure” effect in psychology. Mere exposure means
that repeated presentation of one unfamiliar stimulus tends to slightly increase expressed likings for
that stimulus, compared to similar stimuli with less exposure (see Zajonc 1968 and Bornstein 1989 for
meta-analytic review).
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system and the two kinds of information are integrated. However, the down-

stream system only has partial information about input to the sensory system.

Intuitively, the brain may partially accumulate the stimulus-driven perception

into a decision variable as if it might have come from value-driven attention.23

IV. Study 2: Matching and Hider-Seeker Location Games

This section reports new experimental data from location games. Schelling’s

map game is an example of a location game. In our general location games, two

players saw a common visual image and simultaneously choose a location– a pixel.

A circle was created around the pixels (with a radius of 108 pixels). The circle

was about 1/5 of the screen width. The baseline circle size was chosen so that if

players were choosing pixels randomly, they would match 7.1% of the time. (One

experimental treatment below varied the circle size.)

In matching games, both players wanted to match by choosing locations that

had overlapping circles. In hider-seeker games, seekers wanted to match and

hiders wanted to mismatch. Interactions of the hider-seeker kind include predator-

prey relations in nature. Human examples include choosing passwords to outwit

hackers, other “coded” language and signals used in sports, gangs, and in other

rivalries to coordinate action with teammates and avoid detection by the other

side. Industries such as fashion can have follower-leader dynamics (e.g., fashion

leaders want to “hide” by choosing unique new designs, and outsiders want to

“seek” by matching those designs which induce hider-seeker structure). Visual

salience might conceivably play a role in some of these games.

The experiment had three blocks of games (Figure G1): matching, the hider-

seeker game in the role of seeker or hider, and the hider-seeker game in the

opposite role of the one in the second block. The matching block always came

first, followed by the hider and seeker blocks in a randomized order between

23This kind of upstream-downstream integration is likely to be common in the brain, leading to illusions
like the “atmosphere” illusion (people do not fully undo the effects of unusual foggy or clear days on
distance perception).
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subjects. During each block, there was a “feedback” sequence in which the choice

the other player made was revealed to a player right after both choices, by showing

the circle around the other player’s pixel choice and the player’s own circle. In a

“no feedback” sequence those results were not revealed.

The matching block had two sets of 20 images for each of the two feedback

treatments (40 images in total). The hider-seeker game used a different set of 19

images for each of the two feedback treatments (38 images in total). For each

image, subjects played once as a hider and once as a seeker. An additional short

session of hider-seeker games followed in the last block (16 images) with a bonus

payment 10x higher than in the baseline, to test for effects of higher incentives.

There was unlimited time to read instructions but only 6s to make a choice.

Subjects got no payoff if they didn’t respond before the known time limit (see

the instructions in Appendix G). The results shown to subjects in the feedback

condition were drawn from previous choices of actual subjects (using different

previous subjects for each image).

N=151 subjects participated, excluding a pilot dataset for power analysis. Of

these 151 subjects, N=29 subjects (13 males, 16 females) participated in the lab,

one at a time, in a small testing room where their eye movements were recorded.

N=15 of those subjects were from the Caltech community and N=14 from the

neighboring community (there were no differences in results between the two

groups). The bonus payments were $0.2, $0.1, and $0.4 in matching, hiding,

and seeking games respectively, for each “win” per trial (image). Participants

were paid the cumulative monetary amount at the end of the experiment. In the

lab experiments, all the visual images were displayed on a computer screen in

1920x1080 resolution. The other (N=122) subjects participated online through

Amazon Mechanical Turk (“MTurk”).24 Images were randomly selected from a

large image pool (273) with five categories (abstract art, city, faces, social scenes,

24Online experiments have the same instructions and block orders as the in-lab version, except that
now everything is shown in a web browser. This study was pre-registered on the Open Science Framework
(https://osf.io/yuqjg/) during data collection and before analysis. The sample size was pre-determined
before the data collection process, based on a pilot study (N= 29) carried out in March 2017.
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nature). The image set contained images with only one obvious salience center

and more complex images which have multiple salience centers (Judd et al., 2009).

There were some behavioral differences between choices in the feedback and no-

feedback conditions.25 The largest effect is that the matching rate is higher with

feedback than with no feedback (64% vs. 35%). However, the seeker win rate in

hider-seeker games is the same in both conditions (9%) and most other differences

are not substantial. We therefore report only data from the feedback condition

in this main text. The corresponding no-feedback results are in an Appendix C.

Figure IV shows examples of result screens that subjects saw during the exper-

iment.

A. Analysis and Results

Equilibrium game theory generates a statistical benchmark for what people

might do.26 In location games, strategies are pixels in x-y space (and their re-

sulting circles).

For the matching coordination game, choices by the two players of any two pixels

which create overlapping circles constitute a pure strategy Nash equilibrium. One

image contains about two million (=1920×1080) pixels. Since any pixel match is

a pure equilibrium, there are an enormous number of equilibria. There are also

many mixed equilibria. So standard equilibrium theories do not rule out any of

the location choices.27

25Both feedback and no-feedback blocks were included because each one answers a different question of
interest. To help ensure increased subject comprehension in learning-by-doing, and especially in testing
equilibrium concepts, the standard practice in experimental economics is to provide feedback. However,
whether salience is predictive even with no feedback is an interesting question too. That is why we did
both.

26A game-theoretic idea which might help explain how salience influences choices is “correlated equilib-
rium” (Aumann, 1974). When both players receive a common public signal and a strategy is conditioned
on the signal values, a correlated equilibrium occurs when nobody wants to deviate from recommended
strategies. Stop signs and green-yellow-red traffic lights, for example, act as correlating devices (also
enforced by law) to create a commonly-observed visual signal which coordinates traffic and reduces acci-
dents. In these terms, our study is about whether the stimulus-driven visual salience of image locations
works as a “correlating device” in matching games.

27Note that if players have a personal utility from picking a specific location or a type of image feature,
such preferences might conceivably reduce the set of equilibria, particularly if a selection principle such
as payoff-dominance is applied (see Bacharach (1993); Bacharach and Bernasconi (1997)). However, such
results would likely be sensitive to whether such preferences were commonly known.
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For the hider-seeker game, there is a unique Nash equilibrium in which all

locations are chosen equally often.28 The fact that equal randomization over

all strategies is the unique hider-seeker equilibrium is an example of how game

theory logic conflicts with the result of human biology. We are so good at quickly

noticing salient information, while amateurs at rapidly choosing what is unsalient

in order to hide.29 The last thing the brain is equipped to do is to ignore salient

differences among many objects and choose them equally often.30

B. Matching games

To analyze the behavioral data, we first test whether subjects are playing an

equal random mixture across all pixels and their associated salience levels. To

compare results from different images, all salience values in this section refer to

the normalized levels, which are the rank percentiles of raw measures from the

algorithm, ranked within each image. We calculated the normalized salience value

for each chosen pixel and then compared these salience values against the baseline

of equal randomization independent of salience. Kolmogorov-Smirnov tests reject

the hypothesis of equal randomization for all treatment conditions (p < 10−4).

Subjects’ choices are not independent of salience.

To see examples of how salience affects choices, the choices from all the subjects

28For those unfamiliar with game theory, intuition can be gained by a simplified example. Suppose
there are just two locations and the hider chooses them with probabilities p and 1 − p. If the seeker
matches those probabilities she has a p2+(1−p)2 chance of winning. This sum is always lower if the seeker
chooses the most likely spot (i.e., the location with p > 0.5) because if p > 0.5, then p > p2 + (1− p)2.
To defend against this, the hider should mix equally, so p = 0.5. Every new location that is added
should also have a 1

n
chance of being chosen (if there are n locations) by an iterated logic. A special

design that, if a circle touches any boundary, it wraps around from the opposite boundary, guarantees
the equilibrium.

29A similar conflict between logic and biology occurs in the games “rock, paper, scissors” (e.g., Craw-
ford et al., 2013). When players display the three choices with their hands, there is a slight tendency to
match an opponent’s choice (e.g., playing rock against rock) more often than predicted in equilibrium.
The explanation is that imitation of another person’s body movements is such a highly-adapted auto-
matic behavior, that the brain cannot inhibit the response, even though it reduces performance (e.g.,
you should play paper rather than imitating rock).

30The difficulty of inhibiting certain kinds of perception is illustrated by Steinbeck (2011). In “The
Pearl” the protagonist Kino has hidden a valuable pearl that everyone in the small town covets. An
unscrupulous doctor comes to treat Kino’s baby, hoping to find out about the pearl. “The doctor
shrugged, and his wet eyes never left Kino’s eyes. He knew the pearl would be buried in the house, and
he thought Kino might look toward the place where it was buried. “It would be a shame to have it stolen
before you could sell it”, the doctor said, and he saw Kino’s eyes flick involuntarily to the floor near the
side post of the brush house.”
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are plotted on two specific images in Figure V.

The salience heat map is in the middle column. The right column shows,

using red dots, the subjects’ actual location choices. The predicted salience in

the middle column and the observed choice maps in the right column are highly

overlapping, especially for the top panel image.

Statistically, the mean salience level of the pixel locations chosen in the coor-

dination game is 0.87. This is far above the chance level of 0.5 (p < 10−4).

C. How predictable is the matching rate across images?

Intuitively, the matching rate for an image should be affected by how dispersed

salience is. When salience is highly concentrated, then the rate of choosing the

same pixels, and matching, should increase. And if salience is not highly concen-

trated, the matching rate should be lower.

Dispersion of salience throughout an image can be measured by the number

of local salience centers.31 Figure VI shows that indeed, the matching rate32

is strongly negatively correlated with the number of salience centers (Pearson

r = −0.57, p < 10−4, df = 38).33

The matching rates span a range from a high rate of about 75%, for one salience

center, to just above random (20%) for seven salience centers. These results

suggest that for any image, the matching rate could be predicted ex-ante with

substantial accuracy from the salience map, before any data are collected. Put

the other way around, it is possible to find images with salience distributions

31The typical raw salience map has flat local maxima with many adjacent pixels with nearly equal
salience. To detect salience centers we first apply a Gaussian smoothing (with [300pixel,300pixel] window
size and standard deviation σ=75 pixels) to the entire image to smooth hyperlocal spikes in salience.
Then we simply take the number of local maxima for the salience distribution using the Matlab function
imregionalmax() with default settings. That function takes the local maximum inside each 3pixel*3pixel
patch. If the original image has two local maxima that are close enough together, the Gaussian filter
combines them.

32This result is based on all images from both the feedback session and the no-feedback session using
the in-lab dataset (image N = 40).

33At a reader’s suggestion, we also calculated whether the number of salience centers was correlated
with the seeking win rate in hider-seeker games (across the N=38 images). This is an interesting question
because if there are many strategically naive hiders, the correlation will be positive. However, there is
no correlation (Pearson r=-0.10, p=0.23).
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that will predictably yield either near-perfect matching or near-random matching.

This could be a useful tool for designers who are trying to either enhance shared

attention or undermine it.

D. Hider-seeker games

For the hider-seeker game, we start with an example image and data. Figure

VII shows that subjects’ choices are more spread out than in the matching game

examples (c shows hiding data and d shows seeking data.)

In Figure VIIc, there is no distinct peak of the hider choice distribution, and

few choices are in the most salient area.

The direction of effects suggested by these two examples holds more generally.

The mean salience levels of hider and seeker click points were 0.53 and 0.61, close

to the chance level of 0.50.34 The same in-lab group (N = 29) with payoffs ten

times higher had very similar results, averaging salience levels of 0.51 and 0.64

for hiders and seekers.35 A paired t-test showed this difference in choice salience

between hiders and seekers is highly significant (p < 10−4), reflecting what is

suggested by the Figure VII example. The no-feedback results had a similar

difference (see Appendix C).

Seeker’s advantage: Recall that the theoretical frequency with which two

randomly chosen location circles will match is 0.071. Table II presents the realized

matching probability in each specific game condition.36

To check robustness, the hider-seeker game experiments were replicated in

two other conditions: A high-payoff condition with payments 10 times as large

(N=29)37 and a between-subjects condition where subjects played only one of the

34p-value = 0.02, t-test CI: [0.51, 0.56]
35Hiding: p-value for test against null of .50 salience = 0.59, CI: [0.48,0.54], seeking: p-value < 10−4

36Tests to compare the matching rates with random baseline were carried out by bootstrapping a
person’s hiding data and a different person’s seeking data (or two data points from matching game) for
1000 batches (batch size is a total number of different pairs). We get the empirical distribution for the
matching rate and statistical significance against baseline 0.071 from that bootstrap. Specifically, each
sample is drawn by matching two random users (different ones). The batch-seeking win rate is calculated
accordingly. All values were calculated from the average of 500 iterations of randomly matching two data
points from the data set if two subjects were in the same sub-block, same image.

37They did this session at the end of the in-lab group experimental session. See the full batch descrip-
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two hider or seeker roles across all their trials (N=53)38. In both conditions the

seeker win rate was 9.0%, the same as in the baseline experiment. All differences

from the equilibrium prediction of 7.1% were highly significant.39

To test whether the seeker advantage is only present under time pressure, N=46

people from MTurk participated in the same hider and seeker experiment, but

without a time limit. The seeker’s win rate was again 9% (p-value = 0.002 for

comparison with Nash benchmark 7.1%). Subjects spent on average of 3.14s,

4.61s, and 6.44s in matching, hiding, and seeking conditions, respectively, when

there was no time limit.40

The seeker’s advantage could depend on the size of the circle that is drawn to

surround the chosen pixel. To explore this possibility, in another experiment the

circle size was enlarged to be 1.5x as large as in the original experiments. Then

the chance/equilibrium matching rate is about twice as high, 16%. The seeker

win rate was 18%, so there is still a small seeker’s advantage exactly equal in

absolute size (+2%) to the benchmark circle results (p = 0.003, N = 66).

The seeker’s advantage must be due to a correlation between the hiders’ choices

and the seekers’ choices, which should not happen in equilibrium (except for

sampling error).41 We have already shown that both hiders and seekers choose

slightly higher salience locations, but at different frequencies. But how exactly do

those biases lead to the seeker’s advantage? Figure VIII presents the seeking win

rates conditional on different salience levels for hiders and seekers. The seeker’s

advantage is mainly due to the concentration of wins when both players choose

tion in Table G1.
38This was an mTurk separate sample, see Appendix Table G2
39The 9% win-rate for seekers does not seem to be much larger than the equilibrium prediction of 7%.

However, under the null hypothesis of Nash equilibrium, this win rate should be identically distributed for
all images, and for all people. This null hypothesis supplies a lot of statistical power. A more conservative
approach averages all data within an image and tests whether the image-wise matching rates are above
7% (N=19, p= 0.0005). A different conservative approach averages win rates for individuals and tests
whether the average individual seeker win rate is different than the Nash 7% (N = 29, p= 0.002).

40The standard deviations were 7.10s, 15.54s, and 19.49s for matching, hiding, and seeking. These
large standard deviations are not unusual for an online experiment with unlimited time because some
subjects take much longer time than others.

41We know that people are capable of approximate equal randomization in these games because when
they play a random computer opponent their choices are approximately equally random (Heinrich and
Wolff, 2012).
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locations that are in the top 10% in salience.

V. A salience-influenced cognitive hierarchy model (SCH)

This section describes a parametric behavioral model meant to explain choices

and their salience-sensitivity, closely following Crawford and Iriberri (2007a). It

uses the level-k model of Stahl and Wilson (1994) and Nagel (1995), later extended

by Camerer et al. (2004).

The SCH model combines cognitive hierarchy levels, a quantal response function

(softmax) and a salience-influenced level 0 assumption.

A. General model description

The population consists of different levels of players starting from level zero.

The proportion of level k players is f(k), with f(k) assumed to be Poisson dis-

tributed with parameter τ .

For all levels of players, there is randomness which will be described using a con-

ventional logit softmax function eλxn∑
m eλxm

with parameter λ. Higher λ corresponds

to more sensitivity to xn.

In this SCH specification, the nonstrategic level zero players weakly prefer

salient choices. The probability of choosing strategy/pixel n depends on the

direct salience value 42 Sn of that pixel from SAM according to:

P0n =
eλ(1+µSn)∑
m e

λ(1+µSm)

If µ = 0, salience is ignored and level 0 types choose randomly among all points.

We assume that λ and the salience weight µ are common across subjects, although

heterogeneous versions could be used (e.g., Rogers et al. 2009).

All levels of players above zero behave in the same way as in a standard cognitive

42Just as before, the salience values refer to the normalized ranking with respect to each image. This
way, we can use data from different images and salience distributions in a common specification.
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hierarchy model. Level k players assume that all other players are only of lower

levels (0 to k − 1), using normalized Poisson frequencies f(k). A level k player

calculates the expected payoffs of choosing n, denoted as EUkn. The probability

of a level-k player i choosing option n is:

Pkn =
eλEUkn∑
m e

λEUkm

Note that salience only enters directly into the value calculations of level 0

players. This assumption tests whether a model in which salience only enters

k ≥ 1 level players through beliefs (and hence uses goal-directed attention) is a

good approximation.43

B. Model fitting results

Besides the SCH above, there are many other ways to specify models of limited

strategic thinking, which have been mixed and matched in previous research. We

therefore fit six model specifications to the hider-seeker data (see Appendix D).

Some specifications restrict the frequency of actual level 0 types to be zero,

f(0) = 0, as if level 0 players are only a figment of the imagination of higher-level

types (though see Wright and Leyton-Brown, 2019). Restricting f(0) = 0 in this

way clearly degrades fit (Table A2). We therefore focus only on f(0) > 0.

A close relative of SCH is the “Level-k” model, in which level k types believe all

others are level k-1 (rather than distributed from 0 to k-1 as in SCH) (Crawford

and Iriberri, 2007a,b). Level-k is usually estimated non-parametrically, allowing

all frequencies f(k) (up to some maximum k) to be estimated separately.

Both SCH and Level-k specifications with role-specific level frequencies fit the

overall data about equally well by the AIC criterion (although SCH is a little

better by BIC). These games are not an ideal testing ground for comparing such

43This is similar to Mehta et al., 1994a for matching games, in which “secondary salience” is derived
from primary salience.
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differences. The goal, instead, is to see if either SCH or level-k variants can

explain both matching and hider-seeker games, which have different goal-directed

attentional demands.

We first focus on the preferred specification of SCH. It has four free parameters–

µ, the salience weight parameter; λ, the softmax parameter; and two role-specific

parameters τs, and τh which are the Poisson distribution parameters of strategic

levels for hiders and seekers separately. (Allowing different λ and µ parameters for

hiders and seekers fits worse due to the large BIC penalty for extra parameters).

We used a standard training-testing separation to avoid over-fitting. Recall

that each subject did two sessions.44 We use the first session data as a training

set to estimate parameters. The parameter values are then fixed and used to

predict data from the second session test set (see Appendix). The best fitting

parameter values and measures of fit are shown in Table III.

Figure IX compares the actual choice density (frequency) function and best-fit

model predicted density functions for the hider-seeker game. Training data are

shown in the top Figures IXab and test data are shown on the bottom Figures

IXcd. In the choice data, there is a sharp density increase starting around 0.9

salience for both roles (although note that the y-axes are different, so the actual

increase is about half as big for hiders as for seekers). There is also a smaller trend

of slightly decreasing choice from the very lowest salience to medium salience levels

for hiders (but not for seekers). This small dip reflects the fact that some hiders

did manage to strategically choose the lowest-salience locations. SCH can roughly

fit these two major features of the data.

However, the best-fit values of τ , 0.4 and 0.1 for hiders and seekers, are much

lower than typical estimates around τ = 1.5 (e.g. Camerer, Ho and Chong, 2004;

see also Riche et al., 2013, although Fudenberg and Liang (2019) find minimal

prediction error in a large interval (0, 1.25) including low τ values).

44Two sessions contain different image sets. A first session of normal payment trials including feedback
and no-feedback trials and a second session of high payment trials.
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The low values of τ estimated for SCH result from the fact that the ability

to identify τ is limited in these visual choice games. A single-peaked SCH with

Poisson f(k) does not meet the calibration challenge well. Level-1 hiders should

anticipate high-salience choices by level-0 seekers and move sharply to anti-salient

locations. But there are not that many low-salience choices in the hider data (as

Figure IXd shows). The SCH distribution explains the infrequency of low-salience

hiding the only way it can, by simply estimating few level-1 types through a low

value of τ .

The Level-k model gives better insight here about plausible level frequencies.45

Compared to SCH, the best Level-k specification estimates lower frequencies of

level 0 (f̂s(0) = .17 and f̂h(0) = .29) for seekers and hiders, and a higher salience

weight µ̂ = .18 for level 0 types. Level-k also estimates larger frequencies of level

2 and 3 types (f̂s(3) = .66, f̂h(2) = .61). While the overall Level-k fit is just

a little less accurate than SCH, this type distribution is more consistent with

experimental results than the SCH estimates of low τ (see Appendix D). So

while it is clear that both specifications fit the salience-choice profiles adequately

(as seen in all the Figures including Appendix Figure D1), they suggest different

evidence of level frequencies. These games were chosen to investigate the effect

of predictable salience, but were not ideal to recover levels accurately. Better

methods can be developed.

C. Cross-game predictive validation

To further test generalizability of SCH, parameters estimated from fitting the

SCH model to hider-seeker data will now be used to predict choice behavior in the

matching game. There is no guarantee that this cross-game portability will work

at all (see Hargreaves Heap et al., 2014). Identification of the salience weight µ

in hider-seeker games comes purely from the level 0’s choices and from higher-

45A better way to identify τ is by creating games in which different level types choose distinct strategies
(such as in the matrix games pioneered by Stahl II and Wilson, 1994, and see Nagel, 1995; Ho et al.,
1998; Costa-Gomes and Crawford, 2006; Kneeland, 2015; Fragiadiakis et al., 2017).
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level player beliefs and choices. In the matching games, all higher-level types are

similarly guided by goal-directed attention since they are all trying to match the

lower-level types. The strength of salience-sensitivity that is estimated in the two

cases could easily be different. Furthermore, matching and hiding are completely

opposite in strategic motives.

Figure X compares predictions of the salience-frequency profile on the test set

of matching game data. The left graph shows predictions based on using hider-

seeker training– that is, the free parameters are trained on the hider-seeker data,

then fixed and used to predict (“test on”) the matching game results. The right

graph shows predictions of matching test-set data using matching data for training

(i.e., using the two-session train-test cross-validation described above). Of course,

training on the matching data and then predicting matching test data should be

more accurate than training on a different type of game, and it is (LL = -1943).

However, training on the hider-seeker data and testing on matching is only about

10% worse (LL=-2176). Comparing Figures Xab shows that the main difference

is that the hider-seeker trained parameters underestimate how sharply matching-

game test data respond to the highest salience.46

The hider-seeker structure is a good example of how stimulus-driven and goal-

directed salience can be combined. Level-0 players are only influenced by stimulus-

driven salience (from the SAM algorithm) because they do not have a strategic

goal. Higher-level types need to compute expected values of strategies, which

requires goal-directed attention. But they also form beliefs about level-0’s which

requires simulating the stimulus-driven attention of level-0’s. Therefore, both

types of attention need to be combined to make good choices. The fact that hiders

lose more often than expected in equilibrium is associated (via the structural

model) with the fact that they are choosing too many locations that have stimulus-

driven salience. Their goal of hiding, which should guide perception to low-

46We did not do the opposite analysis, predicting hider-seeker data based on parameters estimated
from matching game. The meaning of doing this opposite analysis is limited due to the identification
problem. Using matching game data only is not enough to identify the strategic level parameters because
all level players are using similar strategies of choosing salient locations.
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salience locations, does not appear to sufficiently inhibit stimulus-driven salience.

VI. Study 3: Matrix games

Location game experiments are unusual. Most game theory experiments, fol-

lowing visual conventions in textbook game theory, use normal-form games in a

matrix format (or occasionally game trees). To establish boundaries of where vi-

sual salience is predictive and where it is not, it is therefore useful to ask whether

SAM salience can help explain choices in the common matrix game format.

First, note that the SAM training set does not contain images that resemble

matrices of payoffs. Subjects in matrix game experiments also have a clear atten-

tional goal, which is to look at numbers in a matrix to make a high-payoff choice.

These goals are likely to create a complicated visual search to compute beliefs

and implement decision rules, which is different than the rapid stimulus-driven

attention that SAM is designed to predict.

In fact, many studies using Mouselab and eye-tracking stretching back three

decades have shown patterns of search consistent with goal-directed perception

for strategic thinking (Camerer et al., 1993; Costa-Gomes et al., 2001; Johnson

et al., 2002; Arieli et al., 2011; Brocas et al., 2014; Polonio et al., 2015; Devetag

et al., 2016). Furthermore, most of the behavioral studies about coordination

and hider-seeker games have aimed at establishing general principles of focality

or psychological prominence from strategic goals and set-theoretic properties of

strategies (see Appendix B for a review). So it is already known that goal-

directed allocation of attention is evident in choices from matrix payoff games.

An unanswered new question is whether stimulus-driven SAM salience has any

additional predictive power or not.

The possible influence of visual salience is tested here using data from Polonio

et al. (2015). In their experiment, N=56 people played 32 normal form games with

different strategic structures. Eye-tracking was used to record visual attention.

These data are especially useful because actual gaze maps can then be compared
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with both SAM predictions and with actual choices.47

Figure XIa shows one example of the type of matrix that subjects see on their

computers (it’s a prisoner’s dilemma in structure). Row player payoffs are in the

lower left of each matrix cell, and column player payoffs are in the upper right of

each matrix cell.

Figure XIb is the average prediction from the SAM algorithm about where

people look, averaged over all 32 games. There is a predicted bias toward looking

more at the top row and the left column, as well as a row-player payoff bias (even

for column players). Figure XIc is the average measured attention map calculated

from eye-tracked gaze data over different types of games (filtering out gazes that

are away from payoffs). The comparison between Figures XIb (algorithm) and c

(gaze data) suggest that the algorithm does predict the actual attention allocation

during game play rather well. This visual impression is supported by conventional

statistics used in visual science.48 Much to our surprise, the actual human gaze

data are also quite similar for row and column players (as is the SAM salience

map, because it does not use vary with player roles). This is surprising because

higher-level strategic thinkers need to direct attention to different payoffs.

The main question is whether there is a congruency effect (as in the fruits ex-

periment 1): That is, does salience affect how often people choose the equilibrium

strategy? We look at the 24 games which contain a unique equilibrium strategy

for both players. We also use Polonio et al. (2015)’s own classification of sub-

jects into three groups based on strategic levels of thinking from 0 to 2, using the

Cognitive Hierarchy model.49

Figure XId shows that level 0 and 1 types do choose the salient strategy more

47See Appendix H for more details.
48In the computer vision field, two validation scores, AUC and CC are commonly used metrics to

evaluate how closely salience algorithm predictions are correlated with actual human gazes. AUC: area
under the receiver operating characteristics curve and CC: Pearson Correlation (see Kummerer et al.
2018). The Appendix Table H1 shows these statistics.

49They type-classify players based on their gaze patterns on matrix games. The level-0s only focus on
the payoff property itself (intra-cell). Level-1 players compare their own payoffs (own focused). Level-2
players also look at others’ payoffs (distributed attention). This classification from gaze data was then
correlated with predictions about what choices the three types should make.



29

often when it is an equilibrium, and level 2’s go slightly in the opposite direction.

This is consistent with the idea that level 0’s are not using goal-directed attention,

and level 1’s and 2’s use more goal-directed attention.50

Table 4 tests whether the likelihood of choosing the equilibrium strategy de-

pends on salience Congruency. There is no general effect when all level types are

pooled together (Model 1). However, Model (2) shows that there is a substan-

tial effect of Congruency, but only for Level-0 players. (Note that Level-2 is the

omitted level category so that the Congruency main effect estimates the Level-2

effect, which is negative). However, the significance of the Level-0 effect is only

p=0.12 when Bonferroni-corrected for multiple comparisons.

Thus, the evidence for an influence of stimulus-driven salience is suggestive but

not statistically strong. It is also a surprise that the salience map and gaze data

are so similar. Future experiments could explicitly manipulate salience (guided

by SAM predictions) of particular payoffs to see if stronger effects can be created.

VII. Comparison with other salience and attention approaches

This section briefly reviews recent economic theories which have analyzed salience

and attention, and describes the relations of those theories to our approach.

A. Salience theory

Salience Theory is a theory of salience that has been widely applied for the

last 10 years in economics and finance, and in other areas (Bordalo et al., 2012b,

2013a,b). It was the first economic theory to specify exactly how salience is gener-

ally derived from attributes, and affects choice, in order to make clear predictions

testable from observable data. The goal of this section is to describe how salience

is computed in that theory and compare it to stimulus-driven SAM algorithmic

salience.

50Note that we did not pre-register this prediction, so our conclusions should rightly be taken as
exploratory and not a planned test of a hypothesis.
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In Salience Theory, attribute values of choice objects which are relatively far-

ther from a reference point (such as the average attribute value51) are judged to

be more salient. We’ll use the notation from analysis of multi-attribute choice

(Bordalo et al., 2013b), to see how Salience Theory works. A choice k has at-

tribute level ak along a particular attribute dimension. The average level across

the entire choice set is ā.

The salience function is defined by σ(ak, ā). This function is assumed to obey

two properties called ordering and diminishing sensitivity.

Ordering means that increasing the magnitude of the attribute level ak by

ε from ā, while decreasing the reference point in the opposite direction by ε′,

increases salience.52 Kőszegi and Szeidl (2013) proposed a similar “focusing”

model in which all values of an attribute are weighted more heavily when an

attribute has more wide-ranging utilities (see Bordalo et al. 2013b (p. 815-16)

for comparison). Diminishing sensitivity means that increasing the level of both

ak and ā by the same positive amount reduces the salience of ak. Although

ordering and diminishing sensitivity are enough for most of the applications to

work, a more strict version further assumes homogeneity of degree zero (i.e.,

σ(ak, ā) = σ(αak, αā) for α > 0). A simple salience function which satisfies all

these properties is |ak−ā|
|ak|+|ā| . We now make two remarks about Salience Theory.

First, attributes— such as product quality, or endowment states— do not have

to be numbers to be judged as salient. They could be perfume aromas or restau-

rant noise levels. However, attributes are assumed to have subjective estimated

values, so that salience can be computed and used to weight attributes in com-

puting decision values. A salient thinker will overweight the salient attributes

51In some applications, it is plausible that an external reference point which is not part of a choice set
influences salience. For example, the explanation of endowment effects works with goods that have two
attributes, and the consideration set includes having nothing (0,0) (Bordalo et al., 2012a). Including this
null state makes the best quality of the initially-endowed good salient, which creates a valuation that is
inflated (compared to a no-salience benchmark). For example, in Thaler (1985), when people are asked
about their willingness-to-pay for a beer on a hot day, most people will value hotel cans more than the
cans from a normal corner shop, even though they are identical goods.

52Formally, define a sign function by µ(ak − ā) = 1 iff ak − ā ≥ 0 and µ(ak − ā) = −1 iff ak − ā < 0.
Ordering is the property that σ(ak + µ(ak − ā)ε, ā− µ(ak − ā)ε′) > σ(ak, ā), for ε, ε′ ≥ 0 and ε+ ε′ > 0.
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and underweight the unsalient ones.

Second, like our work, Salience Theory was clearly motivated by ideas and

evidence in psychology and neuroscience. Ancestors of context-sensitivity and

the ordering property are common in both historical and modern psychology.

(For example, we have repeatedly noted the importance of low-level contextual

contrast in Itti et al. (1998) and later algorithms.) Diminishing sensitivity is also

a ubiquitous psychophysical (Weber-Fechner) principle of perception. William

James’s (1863) speculative list of things that engage “passive immediate sensorial

attention” included “strange things” which can be translated as context-deviating

attributes or objects. In modern neuroscience, salience is often defined as absolute

magnitude (deviation from zero) and is known to be encoded in the brain (Litt

et al., 2011; Armel et al., 2008; McCoy and Platt, 2005).

Recent perceptual judgment experiments (Kunar et al. (2017)) illustrate one

way that salience of extreme values impacts judgment. Participants saw sequences

of 12 two-digit numbers, presented rapidly (< 100msec) one at a time. Judgments

reflected more attention to the highest and lowest numbers in each stream (which

are those with the highest BGS salience; see also Tsetsos et al. 2012).53 Larger

differences are also more salient when people are looking for one target object

out of many (including “distractors”). The target is easier to find when it is

more different than distractors on features– such as searching for an X in a group

of O’s rather than in a group of Y’s. The target-distractor differences should be

expressible as numbers similar to normalized values of |ak−ā| (Wolfe and Horowitz

2017, p. 2), as in Salience Theory, but we do not know of direct equivalences of

this sort.54

53Kunar et al. (2017) also found that when people were instructed to report whether they saw a
specific target number, they missed that number more often when it was preceded by the highest or
lowest number in the sequence. This is consistent with the joint hypothesis that people were more
attentive to the extreme numbers, and exhibit a typical ‘’attentional blink” in which attention lapses a
bit after the high attention paid to extreme numbers.

54Wolfe and Horowitz (2017) compile a list of visual properties of features that robustly “guide”
attention. In vision science jargon, a variable X guides attention if a target having property X increases
the accuracy and speed of finding that target. Relative size and higher subjective value are two guiding
variables in Wolfe and Horowitz (2017).
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Because of this generality, Salience Theory has been used to explain or interpret

phenomena and empirical evidence in finance, lottery choices (including drug traf-

ficking), legal judgment, price-quality markets and cross-game attention (Bordalo

et al., 2013a; Cosemans and Frehen, 2020; Spitmaan et al., 2019; Dertwinkel-Kalt

and Köster, 2020; Magliocca et al., 2019; Bordalo et al., 2015; Dertwinkel-Kalt

et al., 2017; Avoyan and Schotter, 2020).

Salience Theory and stimulus-driven salience (as defined and applied above)

focus on different aspects of salience and their implications. In most applications

the two theories do not make competing predictions, without additional special-

ized assumptions. The experiment 1 fruit sets design is an example. SAM salience

predicts visual salience of images, then investigates whether that special type of

salience affects choices. In contrast, Salience Theory is about salience of valued

attributes, regardless of how they are displayed or described, so it does not have

a natural role for aspects of visual salience that are unrelated to attribute values.

Both theories are simplifications which have advantages and limits. Salience

Theory has the advantage of portability to many familiar microeconomic and

social science applications. It benefits from the simplicity which comes from ig-

noring details of visual perception. Algorithmic SAM-type salience has the advan-

tage of predicting rapid stimulus-driven visual attention for all possible images,

but applying the theory to familiar domains such as price-quality competition is

not straightforward (as noted in our discussion of explainable AI) and stimulus-

constrained.

B. Rational inattention

“Rational inattention” (RI) models assume that people optimally trade off the

benefits and costs of paying closer attention. In more technical terms, endogeneously-

allocated attention creates a subjective perception of objective factors. More ac-

curate subjective perception is more costly but also improves expected decision
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value.55 These models are goal-directed because there is a clear goal– better

perception is chosen to improve decision value.

RI models often start with a prior belief distribution µ over a set of states

{ω|ω ∈ Ω}. In our fruit experiment, each ω is a possible image. For each image,

there is an optimal action a ∈ {L,R} (left or right, depending on which has the

higher induced value). Denote the optimal actions by a∗(ω). There is also a pair

of numbers SL(ω), SR(ω) which are the predicted SAM saliencies in the L and R

halves of an image ω.56

In RI, attention creates a set of latent “signals” γ(ω) from a mapping π :

Ω → ∆(Γ) (Caplin and Dean, 2015; Caplin et al., 2019). In the fruit example,

γ(ω) could be the subjective belief probability of image ω after all the learning

processes. The “rationality” in RI comes from the assumption that the signal

structure is chosen to maximize a gross decision value minus a cost of attention.

The key term in the decision value is maxa∈A
∑

ω∈Ω γ(ω)u(a, ω). Since the salien-

cies SL(ω), SR(ω) do not enter the utility function u(a, ω) and do not provide

information about the optimal action a∗(ω), an RI agent should ignore them.57

However, the results from the fruit experiment show that stimulus-driven salience

can interfere with goal-directed RI and moves decisions away from RI optimality.

C. Dynamic channeled inattention and Bayesian surprise

Some economic models seek to understand the dynamic effects of limited at-

tention. This is different than our use of predicted salience to understand static

choices.

Schwartzstein (2014) studies a problem of forecasting a binary variable y which

depends on x and a subjectively encoded variable z. When z is expected to be

55For more detail see Sims (2003, 2006); Caplin and Dean (2015); Caplin et al. (2019); Kőszegi and
Matějka (2020); Caplin et al. (2020); Mackowiak et al. (2020).

56To be clear, the fruits experiment is not an ideal proper test of RI. To do so would require controlling
the set Ω more carefully, and assuming, measuring, or inducing a prior belief that salience and induced
value are uncorrelated, which was not done.

57It would be useful to figure out precisely how to integrate the effect of stimulus-driven salience into
RI, to explain examples like the fruits experiment. Li (2020) p. 81 provides a saliency-sensitive state
separation that can explain the saliency effect in simple choices.
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important enough in forecasting y, with an expected value above a “busyness”

threshold b, z is accurately encoded. Otherwise, z is ignored and if z is ignored,

no missing value is imputed.

Gagnon-Bartsch et al. (2018) proposed a similar idea of “channeled attention”

during learning, in which people do not always recognize the results of their

inattention. For example, a person who often forgets to take her medicines, but

does not have a strong prior belief that she might forget, does not notice or keep

track of her forgetting. She won’t pay for a reminder technology. They refer to

these missed data as “statistical gorillas” (from the famous attention-blindness

experiment of Simons and Chabris 1999). They derive dynamic conditions under

which statistical gorillas will be noticed or not.

In dynamic image sequences, such as movies, one property of images that is

known (from eyetracking) to grab attention strongly is called “Bayesian surprise”.

This concept begins with a prior belief over “models” in model spaceM. Itti and

Baldi (2009) used an example in which a person turns on her TV, not knowing

what channel was last watched and will pop up first. M is the set of possible

TV channels. P (D|M) are the likelihoods of perceptual data D conditional on

a model M (a TV channel). For example, if blonde women are more common

on M = {Fox News} than other channels, then P (blonde women|{Fox News}) >

P (blonde women|M).

“Surprise” for a given (D,M) combination is defined as S(D,M) ≡ log P (M)
P (M |D) .58

A person might be greatly surprised, for example, by seeing a blonde woman on

the sports channel ESPN if P (ESPN) � P (ESPN |blonde woman). The ra-

tio P (ESPN)
P (ESPN |blonde woman) and its logarithm will then be much greater than one,

measuring how surprising that data-model combination is. Experienced surprise

from data D, averaged over model posteriors, is a measure of overall experienced

58There is a loose relation between the ratio
P (M)
P (M|D)

and a concept of representativeness as relative

likelihood P (D|M1)/P (D|M2) (see Tenenbaum et al. 2001 and Bordalo et al. 2016 for stereotypes, where
D is a social type and models M are groups). The surprise ratio for a particular M is a measure of how
unrepresentative or anomalous D is, and the summation adds up the total degree of unrepresentativeness
of D for all models M .
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surprise from perceptual data D:

∑
M

P (M |D)S(D,M)

Note that Bayesian surprise does not fit into the stimulus-driven vs. goal-

directed dichotomy. It depends on a perceiver’s prior beliefs so it is not purely

stimulus-driven. But surprise-detection is also highly general and is therefore not

typically considered a perceptual goal like, say, searching for a familiar face in a

crowd or for a high resale value fruit.59

Bayesian surprise is not used in the types of experiments in this paper because

the presented images were not deliberately linked in a dynamic sequence (as in a

movie). However, in typical experiments prior perceptual beliefs are induced by

short exposures to each of a large number of images, so that what is surprising in a

subsequent image (relative to those priors) can be quantified. This could easily be

done in the fruits experiment. For example, if many images in a row included no

apples, then in a new image with an apple, the apple would be Bayesian-surprising

and is predicted to be salient and attract attention.

The Bayesian surprise model is well-supported experimentally (Itti and Baldi

(2009)) and has the advantage that some analytical results are available for the

class of conjugate priors (Baldi and Itti, 2010). Potential economic applications

include a sequential visual presentation of price changes in a time series, or testing

for salience from a new advertising campaign, product design, or logo change.60

59Prof. Pierre Baldi said in a personal communication that “...Bayesian surprise is agnostic with
respect to any bottom-up or top-down considerations.”

60Note that there is an apparent opposition between ignoring statistical gorillas in Gagnon-Bartsch
et al. (2018) and Bayesian surprise. A gorilla on a basketball court is typically very high in Bayesian
surprise and hence predicted to be quite salient; then why don’t people notice the gorilla? The answer is
that scarce attention is focused on one mentally taxing goal– counting basketball passes (the instructed
goal in the seminal study)– so that a Bayesian-surprising object is ignored. Magic tricks work the same
general way: Skillful “misdirection” draws attention away from the sneaky sleight of hand (Macknik
et al., 2008; Wiseman and Nakano, 2016). In economic settings, Bayesian surprise and other goal-
directed attention will be productive substitutes, an hypothesis which can be tested by phenomena like
timing and reaction to unusual corporate earnings announcements (e.g., DeHaan et al. (2015)).
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D. Relative attention m(x)

It is useful to have a simple measure of inattention, as revealed by choices, to

compare across domains. A good one is summarized by Gabaix (2019). Define

both rational and behavioral actions, as a function of a perceived normative vari-

able x (such as a price), by ar(x) = argmaxau(a, x) (rational) and ab(x) = ar(mx)

(behavioral). The behavioral model is assumed to maximize, but underperceives

or underweights the true variable value x, shrinking it toward zero to a degree

measured by a parameter m < 1. (A canonical example is paying too little atten-

tion to a hidden component of price, such as taxes, where m < 1 measures the

degree of tax underweighting.) Gabaix (2019) shows that m(x) can be recovered

from the ratio of marginal effects of the x variable on actions in different attention

treatments, abx
arx

. His Table 1 summarizes numerical estimates from several field

experiments and datasets.

A version of m(x) can also be computed from the fruit experiment data based

on an ad hoc assumption. Suppose choice under time pressure is designated as

the “behavioral” condition and choice with unlimited time is designated as the

“rational” condition. The intuition is that in the behavioral condition stimulus-

driven salience is not fully inhibited (even though it is irrelevant), which reduces

the influence of goal-directed attention (m < 1) to the induced value x variable.

From Table 1 the marginal effect of the normative variable (the induced value

difference) on choice accuracy is âbx = .795. The value of ârx can be computed from

the same regression as in Table 1, using data from the unlimited time treatment.

That value turns out to be ârx = 2.249. The ratio of the behavioral and rational

coefficient estimates is therefore âbx
ârx

= .795
2.249 , which is .35. This figure is close to

the mean m(x) = .44 reported in Gabaix (2019) Table 1. This numerical exercise

shows how the effect of stimulus-driven salience as a behavioral condition can be

compared numerically to other kinds of limited attention.
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VIII. Discussion and Conclusion

Our study leads to two new conclusions:

1) Stimulus-driven salience can be predicted by an underlying neuro-computational

theory (SAM) of which features of an image or information display most

people look at first. SAM-estimated salience has a small but significant ef-

fect in visualized binary set choices (fruit sets) and in matrix games. These

effects are not always strong because in both cases stimulus-driven atten-

tion competes with goal-directed attention in a way that SAM the algorithm

does not attempt to predict.

2) In the main set of experiments with location matching games, salience is a

good predictor of which location people choose, and how often their choices

match (r=-.57). In hider-seeker games, a salience-influenced cognitive hi-

erarchy model (and a similar level-k model) can account for the small, but

robust, seeker’s advantage in hider-seeker games. Parameters fit to hider-

seeker data can also “portably” predict the salience-choice relation in match-

ing games, even though the hider-seeker game is strictly competitive and

matching is cooperative.

A. Where else in economics could salience be useful?

Before proceeding to further visual salience speculation, note that vision is only

one of five senses; other sensory systems have salience structures too. Auditory

(sound) attention is also driven by both goal-directed and stimulus-driven pro-

cesses. One can attend to an important conversation to achieve a social goal while

tuning out background noises at a party. But the stimulus-driven system will hi-

jack attention if a champagne glass shatters with a loud crash.61 Research parallel

61A general example is the stimulus-driven salience of human screams (which have an unpleasant
power spectrum quality called “roughness”). Screams are rated more quickly as fear-inducing, are more
accurately localized, and activate the amygdala and primary auditory cortex more strongly (Arnal et al.,
2015). Kaya and Elhilali (2014) proposed a salience map based on five features (envelope, harmonicity,
spectrogram, bandwidth, and modulation) and tested it.
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to ours could explore auditory salience in domains like advertising, business com-

munication, security analyst earnings calls, open-outcry auctions, negotiations,

etc.

This last section speculates how an empirical understanding of stimulus-driven

salience might improve other economic studies.

• Behavioral IO: The fruits experiment is a paradigm that invites thinking and

future exploration about the supply-side response to consumer psychology,

a subfield called behavioral industrial organization (Heidhues and Kőszegi

2018, and others). A central concept in behavioral IO is whether product

attributes are “shrouded” (Gabaix and Laibson, 2006)– that is, deliberately

hidden by sellers. Measuring whether attributes are low in stimulus-driven

salience is one scientific measure of shrouding, which is perhaps useful for

consumer policy regulators.

By understanding stimulus-driven salience, a retailer could create a prod-

uct display with the goal of maximizing profit margin. High-margin items

would be displayed to maximize their stimulus-driven salience. An open

and interesting question is whether consumers can recognize and ignore

such supply-side salience manipulations.

• Tax and price salience in consumer markets: Price and value components

that are presented to sensory systems, such as explicit price tags that the eye

can see, seem to receive more decision weight than equivalent components

that need to be imagined and computed. This effect was first shown for

unit-cost price tags by (Russo, 1977) and has been shown carefully in many

recent studies (Ott and Andrus, 2000; Hossain and Morgan, 2006; Min Kim

and Kachersky, 2006; Finkelstein, 2009; Taubinsky and Rees-Jones, 2017).

In principle, SAM could be applied to visual images of store price tags or

e-commerce websites, as was done in the fruit-valuation Study 1, to guess

the visual salience of explicit and hidden prices. These measures could be
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compared to salience as measured from behavior in these papers, and as

summarized in the m(x) measure in Gabaix’s (2019) Table 1.

• Nudges and design: “Nudges” are changes in design and choice architecture,

which do not drastically change information content or incentives, but can

make information processing simpler and improve decisions.62 Many nudge

experiments have been done and are ongoing. But their effects are often

unpredictable (Milkman et al., 2021; DellaVigna and Linos, 2020).

Predictions about what nudges are visually salient might help us understand

what has worked and create better designs. If a financial regulator is trying

to design a form to nudge goal-directed attention toward particular infor-

mation, for example, their design will probably work better if the targeted

information also has stimulus-driven salience (e.g. Hilchey et al. 2021).

• Beliefs: Besides influencing choices, visual salience can influence what infor-

mation is processed and what beliefs result.63 Padilla et al. (2017) showed a

striking example of an effect of stimulus-driven salience on beliefs about hur-

ricanes. The National Hurricane Center currently shows potential geospa-

tial paths with a “cone of uncertainty”, a 2D confidence interval forecasting

a range of areas that a hurricane might conceivably reach. The cone be-

comes wider, spreading out geographically, for forecasts projecting more

days ahead (which are typically more uncertain). An alternative visualiza-

tion is an “ensemble plot” which shows many distinct possible individual

paths and does not draw a cone around them (cf. “spaghetti plots”). Padilla

et al. (2017) apply the Itti et al. (1998) algorithm (a precursor to SAM) to

these two different visualizations. The algorithm predicts that cone plots

will focus attention on the center and on the furthest boundaries of the cone,

where the cone is widest. This perception biases actual human judgments

of whether the hurricane will grow in storm size and intensity (e.g., wind

62See Goldin (2015); Thaler and Sunstein (2009); Luo et al. (2021).
63See Padilla et al. 2018; Itti et al. 1998; Mackowiak et al. 2020.
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speed) in the future. These subjective beliefs reflect a cognitive mistake:

People think the growing size of the cone predicts that the size of the storms

and their intensity will grow.

The ensemble plot has different predicted salience and a different effect on

beliefs. Predicted salience is highest at the location where different paths

are clustered before they diverge into different paths. Attention is widely

dispersed over the ending points of the different trajectories (rather than

concentrated at the cone plot boundary). As a result, judgments about

future storm size and intensity are not infected by a size bias (as they are

from cone plots). Thus, the cone plot leads to mistaken beliefs and the

ensemble plot does not. The salience algorithm accurately predicted the

direction of that effect.

An economic example of a similar kind is the visualization of regression

discontinuity effects. Korting et al. (2020) show that axis-scaling, x-axis bin

width, and spacing all influence the perceptions people have about causal

effects when shown different graphs based on the exact same data. SAM

or other salience algorithms could be applied to these data, to learn more

about how stimulus-driven processes affect what scientific consumers think

a graph is telling them.
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Kőszegi, B. and A. Szeidl (2013). A model of focusing in economic choice. The

Quarterly Journal of Economics 128 (1), 53–104.

Krasovskaya, S. and W. J. MacInnes (2019). Salience models: A computational

cognitive neuroscience review. Vision 3 (4), 56.

Kummerer, M., T. S. Wallis, and M. Bethge (2018). Saliency benchmarking made

easy: Separating models, maps and metrics. In Proceedings of the European

Conference on Computer Vision (ECCV), pp. 770–787.

Kunar, M. A., D. G. Watson, K. Tsetsos, and N. Chater (2017). The influence of

attention on value integration. Attention, Perception, & Psychophysics 79 (6),

1615–1627.

Lewis, D. (2008). Convention: A philosophical study. John Wiley & Sons.

Li, X. (2020). Attention, Strategy, and the Human Mind. Ph. D. thesis, Division

of Humanities and Social Science, Caltech.

Lipton, Z. C. (2018). The mythos of model interpretability. Queue 16 (3), 31–57.

Litt, A., H. Plassmann, B. Shiv, and A. Rangel (2011). Dissociating valuation

and saliency signals during decision-making. Cerebral cortex 21 (1), 95–102.

Luo, Y., D. Soman, and J. Zhao (2021). A meta-analytic cognitive framework of

nudge and sludge.

Macknik, S. L., M. King, J. Randi, A. Robbins, J. Thompson, S. Martinez-Conde,

et al. (2008). Attention and awareness in stage magic: turning tricks into

research. Nature Reviews Neuroscience 9 (11), 871–879.



49

Mackowiak, B., F. Matejka, M. Wiederholt, et al. (2020). Rational inattention:

A review. CEPR Discussion Papers (15408).

Magliocca, N. R., K. McSweeney, S. E. Sesnie, E. Tellman, J. A. Devine, E. A.

Nielsen, Z. Pearson, and D. J. Wrathall (2019). Modeling cocaine traffickers

and counterdrug interdiction forces as a complex adaptive system. Proceedings

of the National Academy of Sciences 116 (16), 7784–7792.

McCoy, A. N. and M. L. Platt (2005). Risk-sensitive neurons in macaque posterior

cingulate cortex. Nature neuroscience 8 (9), 1220–1227.

Mehta, J., C. Starmer, and R. Sugden (1994a). Focal points in pure coordination

games: An experimental investigation. Theory and Decision 36 (2), 163–185.

Mehta, J., C. Starmer, and R. Sugden (1994b). The nature of salience: An ex-

perimental investigation of pure coordination games. The American Economic

Review 84 (3), 658–673.

Milkman, K., D. Gromet, H. Ho, J. Kay, T. Lee, P. Pandiloski, Y. Park, Y. Rai,

M. Bazerman, J. Beshears, L. Bonacorsi, C. Camerer, E. Chang, E. Chap-

man, R. Cialdini, H. Dai, L. Eskreis-Winkler, A. Fishbach, J. Gross, A. Horn,

A. Hubbard, J. SJ, D. Karlan, T. Kautz, E. Kirgios, E. Klusowski, A. Kristal,

R. Ladhania, G. Loewenstein, J. Ludwig, B. Mellers, S. Mullainathan, S. Sac-

cardo, J. Spiess, G. Suri, J. Talloen, J. Taxer, Y. Trope, L. Ungar, K. Volpp,

A. Whillans, J. Zinman, and A. Duckworth (2021). A mega-study approach to

applied behavioral science. Nature, in press.

Milosavljevic, M., V. Navalpakkam, C. Koch, and A. Rangel (2012). Relative

visual saliency differences induce sizable bias in consumer choice. Journal of

Consumer Psychology 22 (1), 67–74.

Min Kim, H. and L. Kachersky (2006). Dimensions of price salience: a conceptual

framework for perceptions of multi–dimensional prices. Journal of Product &

Brand Management 15 (2), 139–147.



50

Mormann, M. and J. E. Russo (2021). Does attention increase the value of choice

alternatives? Trends in cognitive sciences.

Nagel, R. (1995). Unraveling in guessing games: An experimental study. The

American Economic Review 85 (5), 1313–1326.

Ott, R. L. and D. M. Andrus (2000). The effect of personal property taxes on

consumer vehicle-purchasing decisions: a partitioned price/mental accounting

theory analysis. Public Finance Review 28 (2), 134–152.

Pachur, T., M. Schulte-Mecklenbeck, R. O. Murphy, and R. Hertwig (2018).

Prospect theory reflects selective allocation of attention. Journal of Experi-

mental Psychology: General 147 (2), 147.

Padilla, L. M., S. H. Creem-Regehr, M. Hegarty, and J. K. Stefanucci (2018).

Decision making with visualizations: a cognitive framework across disciplines.

Cognitive research: principles and implications 3 (1), 29.

Padilla, L. M., I. T. Ruginski, and S. H. Creem-Regehr (2017). Effects of ensem-

ble and summary displays on interpretations of geospatial uncertainty data.

Cognitive research: principles and implications 2 (1), 1–16.

Polonio, L., S. Di Guida, and G. Coricelli (2015). Strategic sophistication and

attention in games: An eye-tracking study. Games and Economic Behavior 94,

80–96.

Ras, G., M. van Gerven, and P. Haselager (2018). Explanation methods in

deep learning: Users, values, concerns and challenges. In Explainable and

Interpretable Models in Computer Vision and Machine Learning, pp. 19–36.

Springer.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological review 85 (2), 59.

Ratcliff, R., P. L. Smith, S. D. Brown, and G. McKoon (2016). Diffusion decision



51

model: Current issues and history. Trends in Cognitive Sciences 20 (4), 260–

281.

Riche, N., M. Duvinage, M. Mancas, B. Gosselin, and T. Dutoit (2013). Saliency

and human fixations: state-of-the-art and study of comparison metrics. In

Computer Vision (ICCV), 2013 IEEE International Conference on, pp. 1153–

1160. IEEE.

Rihn, A., X. Wei, and H. Khachatryan (2019). Text vs. logo: Does eco-label

format influence consumers’ visual attention and willingness-to-pay for fruit

plants? an experimental auction approach. Journal of Behavioral and Experi-

mental Economics 82, 101–452.

Rogers, B. W., T. R. Palfrey, and C. F. Camerer (2009). Heterogeneous quan-

tal response equilibrium and cognitive hierarchies. Journal of Economic The-

ory 144 (4), 1440–1467.

Rubinstein, A., A. Tversky, and D. Heller (1997). Naive strategies in competitive

games. In Understanding Strategic Interaction, pp. 394–402. Springer.

Russo, J. E. (1977). The value of unit price information. Journal of Marketing

Research, 193–201.

Schelling, T. C. (1960). The Strategy of Conflict. Harvard university press.

Schwartzstein, J. (2014). Selective attention and learning. Journal of the European

Economic Association 12 (6), 1423–1452.

Shimojo, S., C. Simion, E. Shimojo, and C. Scheier (2003). Gaze bias both reflects

and influences preference. Nature neuroscience 6 (12), 1317–1322.

Simons, D. J. and C. F. Chabris (1999). Gorillas in our midst: Sustained inat-

tentional blindness for dynamic events. Perception 28 (9), 1059–1074.

Sims, C. A. (2003). Implications of rational inattention. Journal of monetary

Economics 50 (3), 665–690.



52

Sims, C. A. (2006). Rational inattention: Beyond the linear-quadratic case. Amer-

ican Economic Review 96 (2), 158–163.

Smith, V. L. (1976). Experimental economics: Induced value theory. The Amer-

ican Economic Review 66 (2), 274–279.

Spitmaan, M., E. Chu, and A. Soltani (2019). Salience-driven value construction

for adaptive choice under risk. Journal of Neuroscience 39 (26), 5195–5209.

Stahl II, D. O. and P. W. Wilson (1994). Experimental evidence on players’

models of other players. Journal of Economic Behavior & Organization 25 (3),

309–327.

Steinbeck, J. (2011). The pearl. Penguin UK.

Taubinsky, D. and A. Rees-Jones (2017). Attention variation and welfare: the-

ory and evidence from a tax salience experiment. The Review of Economic

Studies 85 (4), 2462–2496.

Tenenbaum, J. B., T. L. Griffiths, et al. (2001). The rational basis of representa-

tiveness. In Proceedings of the 23rd annual conference of the Cognitive Science

Society, pp. 1036–1041. Citeseer.

Thaler, R. (1985). Mental accounting and consumer choice. Marketing sci-

ence 4 (3), 199–214.

Thaler, R. H. and C. R. Sunstein (2009). Nudge: Improving decisions about health,

wealth, and happiness. Penguin.

Towal, R. B., M. Mormann, and C. Koch (2013). Simultaneous modeling of

visual saliency and value computation improves predictions of economic choice.

Proceedings of the National Academy of Sciences 110 (40), E3858–E3867.

Tsetsos, K., N. Chater, and M. Usher (2012). Salience driven value integration

explains decision biases and preference reversal. Proceedings of the National

Academy of Sciences 109 (24), 9659–9664.



53

Veale, R., Z. M. Hafed, and M. Yoshida (2017). How is visual salience computed in

the brain? insights from behaviour, neurobiology and modelling. Philosophical

Transactions of the Royal Society B: Biological Sciences 372 (1714), 20160113.

Vig, E., M. Dorr, and D. Cox (2014). Large-scale optimization of hierarchical

features for saliency prediction in natural images. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 2798–2805.

Wiseman, R. J. and T. Nakano (2016). Blink and you’ll miss it: the role of

blinking in the perception of magic tricks. PeerJ 4, e1873.

Wolfe, J. M. and T. S. Horowitz (2017). Five factors that guide attention in visual

search. Nature Human Behaviour 1 (3), 1–8.

Wright, J. R. and K. Leyton-Brown (2019). Level-0 models for predicting human

behavior in games. Journal of Artificial Intelligence Research 64, 357–383.

Yarbus, A. L. (2013). Eye movements and vision. Springer.

Zajonc, R. B. (1968). Attitudinal effects of mere exposure. Journal of personality

and social psychology 9 (2p2), 1.



54

Tables

Table I—Influence of salience-value congruency in a simple choice problem (fruit sets)

Dependent variable: Accuracy (0,1)

(1) (2) (3) (4) (5)

Congruency 0.83∗∗∗ 0.90∗∗∗ 0.89∗∗∗ 0.97∗∗∗ 1.26∗∗∗

(0.32) (0.29) (0.33) (0.31) (0.41)

abs(valueDiff) 0.80∗∗∗ 0.80∗∗∗ 0.77∗∗∗

(0.23) (0.23) (0.23)

Interaction: −0.55
Congruency*abs(valueDiff) (0.63)

Constant 1.54∗∗∗ 0.78∗∗∗ 1.99∗∗∗ 1.25∗∗ 1.26∗∗

(0.10) (0.17) (0.61) (0.57) (0.57)

Covariates No No Y es Y es Y es

Observations 1,382 1,382 1,307 1,307 1,307
Log Likelihood -644.7 -591.8 -607.5 -556.7 -556.3
Akaike Inf. Crit. 1,293 1,189 1,239 1,139 1,141

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: The congruency variable is the difference between the the maximum salience level of the more
valuable set and the maximum salience level of the less valuable set (between 0-1). This variable will be
positive if one option is both more salient and more valuable. abs(ValueDiff) is the absolute value of the
induced-value difference between left and right sets. Standard deviations are clustered on per subject
level. “Covariates” denotes whether the current model contains covariates: education, gender, income
and self-reported fruit preference (we ask them which fruit they prefer in everyday consumption: apples,
oranges or equal preference). The main effect estimates are not sensitive to these covariates, as is evident
comparing specifications (k-2) to (3-4).
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Table II—Realized matching rate

Matching rate N of observations
Nash mixed prediction 0.071

Matching game 0.64 (0.006) 559
Hider-seeker game 0.09 (0.002) 1060(531(H),529(S))
Hider-seeker game 0.09 (0.002) 1325(600(H),725(S))
(between-subjects)

Hider-seeker high payoff (10x) 0.09 (0.003) 892(446(H),446(S))
Note: Statistical tests against the null hypothesis that the seeker win rate is the baseline level and choices
are independently and identically distributed across subjects (which is the Nash benchmark prediction).
The number in the bracket is the standard error of the seeking win-rate in each condition.
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Table III—Estimation details, role-specific SCH

- λ µ τh τs
Best fit parameters 100 0.06 0.4 0.1
Number of observations 1096 for hiders and 1090 for seekers
95% CI [72.3,100] [0.05,0.08] [0.32,0.47] [0.08,0.13]

Note: The parameters µ and λ are constrained to be the same for both hiders and seekers. The confidence
interval in the table is calculated using the bootstrap method with data batch size 1096 for hider, 1090
for seeker and the number of iterations is 100.
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Table IV—The effect of of salience-equilibrium congruency in matrix games

Dependent variable:

Whether the choice is an equilibrium strategy

(1) (2)

Congruency 0.008 −0.208
(whether equilibrium strategy is salient) (0.082) (0.142)

Congruency*Level-0 0.465∗∗

(0.189)
Congruency*Level-1 0.073

(0.197)
Constant 0.240∗ 0.348∗∗

(0.140) (0.143)

Observations 1,323 1,323
Log Likelihood -910.061 -908.221
Akaike Inf. Crit. 1,834.122 1,834.443

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: The dependent variable is (0-1) whether the chosen strategy in a matrix game is the equilibrium
strategy. (All games in the dataset have a unique Nash strategy.) “Congruency” indicates whether
the equilibrium option in that particular game is also more salient (which is the top row/left column).
Covariates (coefficients not reported) are: game types (DSS, PD, DSO), Role (Row, Column), Levels
(Level-0,Level-1,Level-2). Standard errors are clustered at the individual level.
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Figures

Figure I. A salience algorithm example

Note: a: An original image. b: The SAM saliency map, in which the brightness indicates the saliency
level. c: The area of the original image which is 75% most salient. This area is generated from ranking
all saliency values of each pixel. d: The original image with the saliency heatmap overlaid onto it (the
colorbar on the right indicates the corresponding saliency values).
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Figure II. schelling’s map revisited

Note: (a) Original map; (b) Choice frequencies heatmap, where redness indicates choice frequency; and
(c) The SAM algorithm predicted salience heatmap.
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a. c.b.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure III. Fruit Experiment images

Note: a) Illustrates the rules of this task. Each fruit was worth a certain amount of dollars. The value
of a set was the sum of all fruit values in that set. b) Presents a sample image of an actual trial in this
task, as subjects saw it (the dollar values were not shown). c) Presents the SAM salience map for the
sample image in b). The left set was more salient than the right set in this example. All images used in
this task had a salience distribution similar to this example, in that the salience peak is only distributed
in one of the two sets. At the salience peak, the value of salience was 1 (the peak is located in the middle
orange of the left set). In test images, the difference between the left and right salience peaks had an
average difference of 0.23.
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Figure IV. examples of trial outcomes with feedback, showing circled pixel choices
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Figure V. Two Matching game images, salience heatmaps, and choices (red)

Note: (Left column) The original images. (Middle column) The original images overlaid by the SAM
salience maps. (Right column) The grayscale original image overlaid with the actual empirical choice
distributions (each red dot is one choice).



63

Figure VI. Correlation across images between matching rate and number of salience centers

Note: (a) is an image with seven salience centers; (c) is an image with one salience center. (b,d) are
corresponding maps (red dots) of actual choice data in each matching game. The choice map in (b) is
more dispersed because the salience centers in (a) are more numerous. (e) plots the correlation between
the number of salience centers and the matching rate using both the feedback session and the no-feedback
session to get a larger image pool (N = 40 images).
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Figure VII. A hider-seeker game image, salience map, and choices

Note: a: The original image. b: The original image overlaid by the salience map. c,d: The grayscale
original image overlaid with the actual empirical choice distributions (each red dot represents an actual
choice from one person). c is for hider choices and d is for seeker choices.
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Figure VIII. Seeking win rates as a function of different saliency levels

Note: This figure shows the average seeking win rate of hiders and seekers separately, at each saliency
level bin from 0 to 1 (with bin size 0.1). This conditional seeking win rate looks a little different between
hiders and seekers mainly because their choices are distributed differently across saliency levels.
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Figure IX. frequency of choice by salience level with model fitted distributions

Note: The graphs indicate what percentage of choices were made for locations with the salience of those
locations on the x-axis. a: Choice data and model prediction in the training dataset seeking condition.
b: Choice data and model prediction in the training dataset hiding condition. c: Choice data and model
prediction in the testing dataset seeking condition. d: Choice data and model prediction in the testing
dataset hiding condition.
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Figure X. The SCH model calibrated on hider-seeker game data can predict matching game

choices.

Note: The comparison between the matching data distribution and the two fitted matching game distri-
butions. (a) Parameter estimates from the hider-seeker game are used to predict matching game results.
log-likelihood: -2176 (b) Parameter estimates from the training matching game data are used to predict
test matching game data. log-likelihood: -1943
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Figure XI. Saliency and choices in matrix games

Note: a) One example (Prisoners’ Dilemma) of the games used in the experiment. b) The average SAM
prediction of all games. c) The ground truth gaze density map generated by gaze data. d) Percentage of
choices choosing the most SAM salient strategy grouped by levels (strategic thinking levels classified by
gaze and behavior data by Polonio et al). (N: level 0 =551, level 1 =402, level 2 =371) Source: Polonio
et al. (2015)



69

Appendix

A. History and details of saliency algorithms

The SAM algorithm takes one image as an input and outputs its predicted

saliency map. The saliency map is a saliency value from zero to one (least salient

to most salient) assigned to each pixel on an image. Figure I in the text is a

specific example of the SAM saliency map from one of the pictures we used in our

experiments. A little history of saliency mapping may be useful here to convey

Figure A1. Comparisons between three saliency models

Note: We show the result or different saliency model on the same image (a). Both the Itti-Koch model
and GBVS are fully interpretable (shown in b and d). Also in this example GBVS (Harel et al., 2007) and
SAM have very similar results. All three outputs are color-plot in the same standard colormap function
in matlab (type: “jet”).

how well-founded these algorithms are.

Inspired by a deep understanding of how the human visual system prioritizes

attention, a series of progressively improving algorithms were developed to use

visual images as inputs, and output predictions about where people will look in

the first 1-2 sec of processing (Itti et al., 1998; Harel et al., 2007; Judd et al.,

2009). Figure A1 compares two early algorithms and SAM in one example image.
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Figure A2 shows an early algorithm from Itti et al. (1998). These early algo-

rithms used a combination of handcrafted features to extract information about

contrast, color, and orientation. Dark-light contrast is special because it marks

boundaries between objects. Color and orientation are also thought to have adap-

tive value in parsing images in ways that are ecologically useful.

Figure A2. Itti-Koch model

Note: presents the model of Itti-Koch (1998).

Consider the stick figure “I”. The bottom-up perception is a black vertical line

of a certain length, with slightly extended top and bottom horizontal lines on top

of the vertical line, surrounded by contrast with a white background.

A more abstract high-level concept of bottom-up is that (depending on the

subject population) the I may be more familiar, valuable, or behaviorally useful.

An English speaker will perceive “I” as a marker of first-person communication;

a student just learning Roman numerals will perceive “I” as the number one;
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Figure A3. SAM model

Note: presents the deep neural network model structure of the state-of-art SAM model framework.

and an architecture aficionado may perceive it as an Iconic column, a part of

a building. All the latter forms of salience use semantic knowledge– which is

local and acculturated– about the world to inform the perception of what “I”

means and what to do with that information. Which features or objects are

personally relevant, valued, familiar, and novel will also be trained into a bottom-

up algorithm, but will depend on the image set and characteristics of the subject

population.64

The SAM algorithm (see Figure A3) we use was tuned using human free gaze

data on a large number of images, without any special goals or incentives. The

subject are just told to look. These algorithms were not designed to predict

active choices in games with specific goals, such as matching and hider-seeker

games. The matching goal, for instance, is to choose a location another person

is also likely to choose. This is a goal-directed influence on perception which is

likely to produce visual fixations that are different from free viewing. Thus, the

extent to which SAM can predict the influence of predicted salience is probably

a lower bound on how well better models, incorporating top-down goals, will do.

To help clarify, the origins of SAM and previous algorithms, Table A1 describes

64See studies on the effects on perception of recent choice history (Awh et al., 2012), familiarity and
novelty (Itti and Baldi, 2009), value for consumer goods (Towal et al., 2013), and self-reported “meaning”
(Henderson and Hayes, 2017).
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Table A1—Subjects and Source Image Information of SAM training

Dataset Subjects restriction Image Categories

Salicon Age: 19-28
91 categories including persons, vehicle,

outdoor, animal, and etc.

MIT1003 Age: 18-35, natural indoor and outdoor scenes

We guess from Boston/MIT area.65

MIT300 Age: 18-50 natural indoor and outdoor scenes

We guess from Boston/MIT area

CAT2000

age 18-27,

observers were undergraduates
at USC from different majors

and from mixed ethnicities.

Action, Affective, Art, Black & White,
Cartoon, Fractal, Indoor, Inverted, Jumbled,

Line Drawing, Low Resolution, Noisy,

Object, Outdoor Man-made, Outdoor Natural,
Pattern, Random, Satellite, Sketch, and Social.

the sets of images used and some characteristics of the subjects whose free gaze

data were used to train SAM. The original papers are not crystal clear on who

the subjects were, which is an indication that the authors think of the perceptual

processes they are studying as rather homogeneous across people.

B. Focality in previous game experiments

There is a substantial, interesting series of experimental studies about focality

in matching games. These studies are quite different from our approach but are

described here for completeness.

There was a long lag between Schelling’s early 1960 discussion and later bursts

of careful experimentation on focality.

Mehta et al. (1994b) proposed an important contrast between “secondary salience”

and “Schelling salience”. Following Lewis (1969, pp. 24-36), they suggested that

when players are not sure what to choose, they choose according to “primary

salience”, which is “some (possibly stochastic) process that brings one of the la-

bels to the player’s mind” (p. 660). Secondary salience is the belief about what

creates primary salience for others. This process can obviously be iterated further.

Their experiments supported this distinction. In “picking” conditions people

just picked an object from a choice set (e.g., a set of flowers). In “matching”
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conditions their choices were matched with randomly chosen others and rewarded

if they matched. The hypothesis is that picking measures primary salience and

matching measures secondary salience. Indeed, the most common modal choice

in the picking condition was usually chosen much more often when matching.

Note that this primary-secondary distinction is instantiated naturally in the

SCH model (although that model was developed to explain behavior in a much

wider range of games). In SCH, the process that brings one of the labels to

the player’s mind– its primary salience– is predicted ex ante from the bottom-

up SAM model. In the Mehta et al. (1994b) paradigms primary salience has to

be measured by having people choose objects in the picking condition. Using

SAM a primary salience prediction is delivered for all images; no new data or free

parameters are needed.

In contrast to primary and secondary salience, an object has “Schelling salience”

if it is unique or is chosen by a rule that leads to unambiguous results, which

improves matching. Schelling salience need not arise from primary or secondary

salience. For example, in a list of historical figures including Adolf Hitler, Hitler

could be Schelling-salient even though few people would pick Hitler (primary

salience) or think others would pick Hitler (secondary salience). Indeed, Mehta

et al. (1994b,a) find evidence for both secondary and Schelling salience in their

data.

More ambitiously, Bacharach (1993); Bacharach and Bernasconi (1997) pro-

posed general principles underlying focality in matching choices from sets of ob-

jects, essentially trying to unpack Schelling salience into component parts. Their

idea was that if people know their goal is coordination, they will try to naturally

categorize objects into subsets and chose from more distinctive– e.g., smaller–

subsets. However, subjects’ actual choices were not always consistent with the

most non-obvious of their principles. There experiments are elegant and careful.

They were held back by the fact that a key element of the theory– “noticing”

set-theoretic features– is measured only crudely (by self-report), whereas we now
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have eyetracking to measure noticing directly.

Focality is also likely to work differently in hider-seeker games (HS). Studies

by Mehta et al. (1994b) Bacharach (1993); Bacharach and Bernasconi (1997)

were focused on coordination; at that time in the research history, there was

no ambition to create theories of focality that would span games of different

competitive structures. Understanding matching was difficult enough.

In a separate strand of cumulated regularity, an early study by Rubinstein et al.

(1997) (RTH) used a four-choice hider-seeker game. Their canonical example is

a choice between four letters ordered from left-to-right, where one letter is a

singleton subset, like so:

A B A A

RTH hypothesized that the left and right A letters are avoided (because of

“extremity-aversion”; cf. Bar-Hillel 2015). They hypothesize that the single B

is clearly focal because it is both visually and semantically unique, and it will

therefore be avoided by hiders. That leaves the second “interior” A from the

right, which is least focal when compared to other choices (and therefore uniquely

non-focal, giving it an ironic strategic focality due to uniqueness).

In these early studies, extremity-aversion and B-focality are simply hypothe-

sized intuitions; they were not guided by data or visual perception principles. On

this basis, RTH predicted that the third A would be chosen most often. Indeed,

in their experiments, the third A is chosen most frequently both by hiders (40%)

and seekers (45%). As a result, there is a “seeker advantage” because the seekers

win more often than Nash equilibrium prediction of 25%. However, our replica-

tions in Caltech and UCLA subjects found much lower rates of the choice of the

third “inner” A, around 29%, closer to the Nash 25% prediction (unpublished

data).

Falk et al. (2009) used visual hider-seeker games similar to the four-letter choice.

One game required choosing 3 cells out of the 25 locations in a 5x5 matrix. They
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observe both an edge aversion and a seeker advantage.66 There is a lot of other

interesting data and psychology in their paper. In a recent study Brocas and

Carrillo (2021) targeting at development and social choices, seeker advantages in

hider-seeker games were discovered early in the life stages (second grade kids),

and were still present in the adolescents control group (with effect size increasing

with age).

In the main text we noted that our modeling builds upon Crawford and Iriberri

(2007a) (hereafter CI), they advanced a novel analysis of games like ABAA, based

on level-k modeling. They hypothesized that behavior could be consistent with

a level-k approach 67, in which level-0 behavior is influenced by salience. Rather

than using an algorithm to predict salience, salience is parameterized by the

frequencies of the outer A’s and the central A. CI also assumed that level-k types

only best respond to level k-1 types and that the population didn’t contain any

actual level zero types. Under this framework, they estimated both level zero

players’ preferences towards different options (saliency biases) and population

frequencies of level types. The general approach fits behavior well. Our paper

expands on this approach by predicting saliency independently of choice, using

no new data, in location games.

Hargreaves Heap et al. (2014) questioned the strength of the CI conclusions on

the grounds that the salience of the extreme A’s and the central A were estimated

parametrically and not constrained across game structures. They created choice

sets with a single “oddity” that is visually or semantically unique (e.g. a list

of words which are all diseases plus the word “fitness”.) They test whether the

oddity is equally salient for level 0 players in three types of games– coordination

(matching), discoordination (players win if they both choose something different),

and hider-seeker. They reject the hypothesis that level 0 salience is the same

across games. Crawford (2014) commented on their paper.

66Based on data reported in their paper, the seeking win rate in this experiment is 10.37% while the
chance level is only 6.25%, implying a seeker advantage of +4.12%. These numbers are rather close to
our own, which are about 7% and 9%, although the paradigms differ a lot.

67See Stahl II and Wilson 1994; Nagel 1995 and see Crawford et al. (2013) for a thorough review.
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We find better “portability” of salience across matching and hider-seeker games.

Specifically, we are able to predict the saliency-choice correspondence in matching

games from SCH hider-seeker estimation.

C. Results from no-feedback trials

The realized matching rates when there is no feedback are as follows. Note that

the hider-seeker matching rate (9%) is the same as in trials with feedback:

Table C1—realized matching rate

No feedback Number of observations
Nash mixed prediction 0.071
Matching game 0.35(0.004) 550
Hider-seeker game 0.09(0.002) 523(s)+527(h)

Note: Statistical tests are against the null hypothesis that the seeker win rate is the baseline level
and choices are independently and identically distributed across subjects (which is the Nash benchmark
prediction).

Figure C1 below is a quantile to quantile plot, plotting the percentage rank

of saliency for each location against the percentage rank of choice frequencies

for those locations in matching games. To get the Q-Q plot, we first mapped

all users’ choice data (not only click points, but all points which fell into the

circle) onto a one-dimensional saliency value, normalized from zero to one. (The

highest saliency point in each entire image is one, and the lowest is zero). Then

we ranked all these realized saliency values for all choices in the targeted sub-

block. We also transformed the rank of the choice frequencies across all subjects

into rank percentages. We plotted the normalized saliency value, which was also

the percentage of saliency, against the percentage of points chosen with the same

saliency ranking. The Q-Q plot below shows that all quantiles of choice data are

above the same quantiles of saliency level, and hence above the diagonal dashed

line that would result if people were choosing independently of saliency.

Figure C2 presents both Q-Q plots and density maps in the hider-seeker game.

Figures C2 a-b indicate that seekers’ choices are more biased towards salient



77

locations than hiders’ choices are, and both are much less saliency-biased than

in the matching games (recall Figure C1). Keep in mind, however, that the

hiders should be choosing locations as low in salience as they can perceive (i.e., a

best-response Q-Q curve would be underneath the 45-degree identity line).

The density maps in Figures C2 c-d take every location in every game, and

assign each one a saliency level (0-1 normalized within each image), and computes

the frequency with which “strategies” (=locations) were chosen across all games

and subjects. For hider-seeker games, these should be flat horizontal lines in

equilibrium(except for sampling error). However, there are a disproportionate

number of choices of high-saliency locations (that is, the densities turn up sharply

at the right end of the scale). Seekers choose the highest-saliency locations about

three times as often, and hiders choose them about two times as often. There is

a slightly disproportionate tendency to choose the lowest saliency locations (near

zero at the left end of the scale), especially for hiders.

Figure C1. matching game q-q plot of choice frequency(x-axis) and saliency ranks (y-axis)

Note: The red-diamond point (0.05,0.4) indicates that only 5 percent of choice points were made at the
locations at or below 40% salience. Equivalently, 95% of the points fall within the top 60% most salient
points. Choices generated by chance thus correspond to a diagonal line of this plot from (0, 0) to (1, 1).
The maximal accuracy is the blue line: y = 1 for all x > 0, which would occur only if all choices fall on
exactly the most salient point.
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Figure C2. Hider-seeker game q-q plot of choice frequency(x-axis) and saliency ranks (y-axis)

Note: a, b: Q-Q plots for hiding role (a) and seeking role (b). c, d: Kernel pdf density map of the choice
frequency as a function of location saliency ranks. The x- axis is the rank of the saliency values and
the y-axis is the probability density. Note: The kernel is Gaussian. The bandwidth is calculated using

the formula: σ × 4
3N

0.2
, in which σ is the standard deviation of the samples and N is the number of

observations.

D. SCH Model comparison with different specifications

In this subsection, we are going to compare four different sub-models. We

choose the Bayesian information criterion (BIC) to be the criterion for model

selecting, since it balances the goodness of fit and the possibility of overfitting.

In all cases we restricted the softmax sensitivity parameter λ from 0 to 100.

Larger values carry little extra information since λ = 100 is close to best response.

Constraining λ also makes it easier to create a bootstrapped confidence interval,

which is useful due to the non-smoothness of the target function (likelihood func-

tion).

Here are descriptions of models we are going to test (and see Table D1):

• Model 1: There are only two types of players: 1) naive players who play as

level zero players described in the main text. 2) equilibrium players who do

pure randomization. Both the proportion of naive players, ps and ph serve

as free parameters.
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• Model 2: There is no level zero player in the real population, but higher

level types believe there is. The hiders and the seekers have different τs but

the same µ and λ.

• Model 3: Same as model 2, except that level zero players exist both in the

belief structure and in the population.

• Model 4: This model fits hiding data and seeking data separately using two

sets of parameters. Each game has three parameters: µ, λ, and τ . The best

fit model of it dominates the best fit of model 3 since model 3 is a special

case of model 4. However, model 4 allows more free parameters, which the

BIC value will penalize.

• Model 5: This model fits hiding data and seeking data using a common µ,

λ, but uses the level-k belief framework 68 rather than CH, assuming the

population consists of players whose level ranging from one to four (no level

0’s).

• Model 6: This is the same as model 5, except it allows level 0 types.

Table D1 lists the best fit results of each model. Both BIC and AIC indicate

that model 3 is the best performing model. Model 2 performs worst for the reason

that without level zero types, the model structure will over predict the frequency

of pure anti-salient hiders, which is not seen in the data..

The Level-k Model 6 is almost as accurate by AIC and BIC, and we commented

on what can be learned from it in the text. Figure D1 plots predictions of that

model and the data, for comparison to Figure IX.

E. Word list version of map coordination task

One way to see how important visual saliency is for coordination is to test

how people behave when they face the coordination problem in a non-image en-

68See Nagel, 1995; Crawford and Iriberri, 2007a,b



80

Table D1—Model comparisons for hider-seeker game

Model Description Free parameters AIC BIC
(Estimated)

1 Level 0+equilibrium ps,ph 12716 12728
[1, .3]

2 Role-specific τx, f(0)=0 µ,λ,τs,τh 12780 12803
[.004, 99, .46, .002]

3 Role-specific τx, f(0) 6=0 µ,λ,τs,τh 12650 12673
[.06, 100, .40, .10]

4 Role-specific τx, µx, λx µs,λs,τs,µh,λh,τh 12646 12680
[.01, 90, .40, .07, 90, .50]

5 Level-k role-specific f(k), f(0)=0 µ,λ,fs(1),fs(2),fs(3) 12681 12738
,fh(1), fh(2),fh(3)

[1, 99, .22, 0, .78, .83, .05, .12]
6 Level-k role-specific f(k), f(0)6=0 µ,λ,fs(0),fs(1),fs(2),fs(3), 12652 12709

fh(0),fh(1), fh(2),fh(3)
[.18, 99, .29 .05, 0,
.66, .17, .22, .61, 0]

Note: Each model in the table is specified in the text list. BIC is defined as -2*logL +
numParam*log(numObs) and AIC is -2*logL + 2*numParam

vironment. The SAM algorithm does not apply to such a scenario. We tried

a non-visual version of Schelling’s location game, in which subjects were asked

to coordinate on ten locations described in Figure IIa but only in a word list.

The options were: house at the bottom of the map, bridge, small house near the

pond, house at the top of the map, pond, two houses together, creek, fork in

the road, X on the map, and Y on the map. The questions were presented in

a randomized order. N=37 people participated the survey on Prolific. Each of

them only answered the question once. Most of them choose the option “x on the

map” (49%) while none of them chooses “y on the map” (see table E1). Only 5%

people choose the bridge, which was the most popular option when the question

was presented in an image format.
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Figure D1. Level-k Model 6 training-testing comparison

Note: The x-axis is the saliency values of all click points. Each point on a graph indicated what
percentage of choices were made for locations within images based on the saliency of those locations.
(a): Choice data and model prediction in the training dataset seeking condition. (b): Choice data and
model prediction in the training dataset hiding condition. (c): Choice data and model prediction in the
testing dataset seeking condition. (d): Choice data and model prediction in the testing dataset hiding
condition. Can be compared to Figure IX in the text.

F. Fruit Experiment

F1. Fruit Experiment -Data

N = 75 participants took part in this study on Prolific, a European online

data collection platform, following a pre-registration process on the Open Science

Foundation website (OSF). All the participants were pre-screened to have a prior

approval rate of at least 70% based on their previous participation. Each subject

was only allowed to participate once for all types of batches (including pilot

studies). Participation from mobiles and tablets were not allowed in order to

control for attention effects.

The experiment design in timeline is shown in Figure F1. Subjects first read

instructions freely until they fully understood. They were then asked to answer

five comprehension questions as a check. Subjects who made more than one

mistake are excluded. Then they played a session with unlimited time to get
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Table E1—The choice percentage of all choices in Figure II

Percentage
X on the map 0.49
House at the bottom of the map 0.08
Bridge 0.05
Small house near the pond 0.14
House at the top of the map 0.08
Pond 0.03
Two houses together 0.05
Creek 0.05
Fork in the road 0.03
Y on the map 0.00

Note: This table represents the percentage of people (N=37) playing the map game based on a list of
verbal description rather than the visual map in text Figure II. Each participants played once.

familiarized with the rules (this part was incentivised also but was only for training

purposes, as is not counted in the reported dataset). After that, they entered the

main task session, where they would encounter 20 new images in a randomized

order.

F2. Stimuli Properties and Selection Mechanism

We took 72 photos of different combinations of real fruits displayed on a dining

table. In the text, Figure III showed examples of SAM predictions. Each image

contains two sets of fruits and each set contains three to five fruits. We flipped all

the images in the horizontal direction so that we got another 72 images with the

same content, but with the set locations flipped horizontally.69 These 144 images

are our image pool.

We selected 20 images from the image pool and all of the selected images satisfy

four conditions:

1) One-side salience centered All of the selected images are strictly one-

side salience centered, which means that the most salient locations only

appear in one fruit set. Figure IIIc represents an example of a one-side

69This procedure is to avoid any left-right biases when taking images. It is done using a matlab
function flipimg().
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Figure F1. Experiment flow.

Note: Subjects first experienced an introduction session explaining the basic tasks followed by a testing
session asking questions about the rules. They then experienced an unlimited time session with N=5
images which will count into payment but only for training purposes. Afterwards, they will do a session
with time limit. The experiment ends with demographic questions and payment realizations.

salient image, while Figure IIIa shows an image that is not one-side salience

centered. Formally, consider two sets of pixels constituting the left set and

the right set, Pl and Pr. Function s, the salience model, maps the union

of Pl and Pr to [0, 1]. The most salient location of an image consists of a

set of pixels Sh : {x|s(x) > 0.99}.70 An image is one-side salience centered,

if and only if exactly one of the two conditions hold true: Sh ∩ Pl = ∅ or

Sh ∩ Pr = ∅.

2) Balanced salience center locations: The selected image set has salience

centers equally located on the left side or right side. Half of the images have

salience centers on the left and the other half have them on the right.

70Since salience is a relative measure, there will always be at least one pixel with salience value one.
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3) Balanced valuation distribution: There are only two types of fruits:

oranges and apples. Each apple is worth 1.3 dollars and each orange is

worth 2.2 dollars.71 The total value differences between two sets range

from 0.4 dollars to 4 dollars. There are exact 50% of rounds with the

more rewarding option located on the left and 50% of rounds with the more

rewarding option on the right.

4) Balanced congruences: An image will be called “congruent” if the more

rewarding option is also the more salient option. Among all images, there

are 50% congruent images and 50% incongruent images. No image contains

two sets with the same amount of values.

5) Balanced number of fruits: Among the total 20 images, in 18 images

have the number of fruits only differ by one. The other two images differ by

two. 11 images have more fruits on the left and 9 images have more fruits

on the right.

G. Experimental procedures of location games

Screen1: You are now going to do a series of short games. In each one, you

will see a series of pictures and you must choose a location on the picture by

clicking with the mouse.

The rules of each game are slightly different, so read them carefully before you

start! (You cannot go back and reread them.)

Screen 2: You’ll start with a few practice items to help you get familiar with

the basic set-up.

Use the mouse to click a location anywhere on picture. Notice that your selec-

tion is the entire area within the circle.

You will have 6 seconds to make your selection before the picture disappears.

If you do not make a selection within 6 seconds, you will not get credit for that

71We did a pilot experiment with integer unit values. It turned out to be that integer values were too
easy for the subjects so we didn’t see any variation in choice accuracy.



85

Figure G1. Block Design of The Location GameExperiment

Note: This figure shows the block design of the main experiment (location game). Each participants
experienced matching game first, then hiding or seeking game in a randomized order. Under each game,
there are two sub-block, the first oen is always without feedback and the second one is with feedback.

picture.

Screen before each session depending on games: Matching: Now you are

playing a matching game with several other research participants like you.

For each image, you will play against a randomly selected opponent. If you

and your opponent choose the same location in the picture, you both win $x.72

If there is any intersection between your location and your opponent’s location,

it will count as a “match”.

You won’t find out how much you won in this phase until the end of the game.

As before, you will only have 6 seconds to make your choice for each image.

72The value of x changes with games, we pay $0.2, $0.1, $0.4 for a success in matching, hiding and
seeking.
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Table G1—Summary of datasets

Type of datasets Platform Whether N of Games Time Between vs

no-feedback73 subjects limit Within
Main Batch In lab Yes 29 M,H,S 6s Within

Main Batch Online mTurk Yes 38 M,H,S 6s Within

Big Circle mTurk No 67 M,H,S 6s Within
High Reward mTurk No 29 H,S 6s Within

No time-limit mTurk No 49 M,H,S Inf Within
Between-Subject mTurk No 53 H,S 6s Between

Time pressure mTurk Yes 31 M,H,S 2s Within
Note: This table summarized seven different datasets collected at different times. Only the high reward
group and the main batch group are the same group of participants. All other batches are completed by
a new group of people. Repeated participation is not allowed in all other batches.

Table G2—Location games: dataset usage summary

Analysis Names Dataset Used Observations
Seeking Win Rates The main results: in-lab dataset. M:559,H:529,S:531

(Seeker’s advantage) Also reported this percentage for other M:458,H:441,S:452

robustness checks. (Main Batch Online)
SCH model: training In-lab dataset with both feedback H:1096,S:1090

group and no feedback group.
SCH model: testing In-lab dataset, high reward group. H=446,S=446

Choice saliency level analysis In-lab dataset with both feedback and M:1139,H:1096,S:1090

no feedback group (in footnote and appendix).
Matching rate/Saliency center In-lab dataset both feedback group M:1139

and no-feedback group.
Note: This table summarizes the dataset we used for each part of the analysis. We mainly and consis-
tently use the dataset we collected in lab for all the analysis. For the seeker’s advantage part, we also
tested different conditions for robustness checks. The “observation” column denotes the total number of
observations under each game. M,S,H denotes for matching, seeking and hiding, separately. We omit all
the missing data which happens rarely in the in lab sessions and more commonly in online sessions.
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H. Matrix Game

N=56 people played 32 normal form games with different strategic structures:

Dominant Solvable Self (DSS), Dominant Solvable Other (DSO), Prisoner’s Dilemma

(PD), and Stag Hunt (SH).

In the 32 games, 24 games contain a unique equilibrium (SH has two). Each

player is either assigned as a row player or a column player. Both roles saw the

original games without any transpose.

Table H1—Evaluation of SAM on matrix game experiment

AUC CC
SAM vs fixations(games) 0.96 0.47

Chance level 0.5 0
Range (0,1) (0,1)

Note:
The table reports two common evaluation metrics for the matrix game experiment in Section VI. It
reports area under the receiver operating characteristics(AUC) and Pearson Correlation Coefficient
(CC)(Kummerer et al., 2018) . We show SAM’s performance on human eye-fixations for matrix games.
The results on both metrics show that SAM predicted human fixations far better than chance.

I. Additional analysis

Table I1—Summary of acronyms

SAM The saliency model we used, Saliency Attentive Model
CI Crawford and Iriberri (2007)
ABAA Hider- seeker game using these four letters
CH Cognitive hierarchy model
SCH Saliency Cognitive hierarchy model
BGS Bordalo, Gennaioli and Shleifer (BGS) saliency theory

Note: If readers have difficulty keeping track of all the acronyms, this table may help.


