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Abstract

Among most existing models of technical efficiency measurement, the
main concern usually focuses on the temporal behavior of inefficiency, not
on its dynamics. Although the extension of the model from a static to
dynamic one is necessary, inference in such models is relatively complicated.
In this paper, we propose a panel stochastic frontier model that allows the
dynamic adjustment of the technical inefficiency as well as firms’
heterogeneity and suggest using the pairwise composite-likelihood (PCL) to
estimate the model. Some Monte Carlo experiments are used to compare
the finite sample performance of the full maximum likelihood (FML) and PCL
estimators.
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1. Introduction

Among most existing models of technical efficiency measurement, the main
concern focuses on the temporal behavior of technical inefficiency, not on the
dynamics of inefficiency. In almost all panel stochastic frontier (SF) models, the
inefficiency term is usually assumed to be independent across time and thus fails to
capture the dynamics of its adjustment process. Although consideration of such
dynamic models is necessary, inference in such models is relatively complicated,
particularly for the likelihood-based approach. This paper intends to contribute in this
direction in the SF studies. We consider a panel SF model with dynamic technical
inefficiency that follows a first-order autoregressive (AR(1)) process and propose to

estimate the model by a likelihood-based approach.

The earlier SF models with time varying components (Pitt and Lee, 1981; Schmidt
and Sickles, 1984; Kumbhakar, 1987; among others) treated technical inefficiency as
time invariant. Although subsequent researchers allowed the inefficiency to vary over
time, but they assumed the inefficiency to be a systematic function of time (Cornwell
et al. 1990; Kumbhakar, 1990; Battese and Coelli, 1992; Lee and Schmidt, 1993;
Kumbhakar and Wang, 2005). Another feature of the dynamic SF model is that it
permits separating technical efficiency from technology change. For instance, in the
studies of Kumar and Russell (2002) and Kumbhakar and Wang (2005) they treated
the economic growth convergence as countries’ movements toward the world
production frontier. The former uses a nonparametric approach, while the latter
assume that both the technology and technology inefficiency are systematic functions
of time. However, none of the aforementioned studies are formulated in a dynamic
framework with the specification that inefficiency is a stochastic time-series process
due to the difficulty in formulating the likelihood function of the dynamic stochastic

frontier (DSF) model.

The DSF model proposed by Ahn et al. (2000) is the first one to try to incorporate
the dynamic structure in the technical inefficiency, where the inefficiency evolves
over time and follows a first order auto-regressive process. Intuitively, firms that are
relatively inefficient in one time period will probably also be inefficient in other time

periods, see also Amsler et al. (2014). Therefore, one may expect the inefficiencies to
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be positively correlated over time. The nature of the dynamic inefficiency is captured
by an AR(1) process, which allows the efficiency in the current period to be influenced
by its past levels of efficiency. Due to the complexity of the likelihood function, Ahn et
al. (2000) suggest using the generalized method of moments (GMM) approach to

estimate their DSF model.

Later on, Tsionas (2006) and Emvalomatis (2012) also consider the DSF models
with different settings in the dynamics of the inefficiency. The former assumes the
logarithm of inefficiency, In(u;¢), follows an AR(1) process and the later assumes the
logarithm of the ratio of the technical efficiency (TE) index to the inefficiency index,
i.e, In(TE/(1-TE)), follows an AR(1) process. The main common characteristic of these
two models is that they both apply certain kinds of transformations to the inefficiency
u;; so that the transformed inefficiency term follows an AR(1) process with a normal
stochastic error while keeping the inefficiency u;; to be positive in the meantime.
The joint distribution of the transformed inefficiencies is simply a multivariate normal
distribution, which seems to be easier to deal with in the likelihood-based approach.
However, the joint distribution of the cross-period composite errors in the DSF model
is almost intractable after the transformation. Therefore, both of Tsionas (2006) and
Emvalomatis (2012) apply the Bayesian approach to estimate the model. In the
transformed AR(1) process, the persistent and transient inefficiency or the

evolvement of the inefficiency does not have a straightforward interpretation.

The DSF model under investigation in this paper is more closely related to the
model proposed by Ahn et al. (2000). Here, we make the similar AR(1) assumption as
that in Ahn et al. (2000) on the inefficiency u;; in order to incorporate the dynamics
of the technical inefficiency. The main difference is that we include the heterogeneity
in the inefficiencies, which follows a heteroscedastic half normal distribution. On the
contrary, Ahn et al. (2000) assume the heterogeneity comes from the speed of the
adjustment, i.e. the AR(1) coefficient. They propose using the generalized method of
moments approach to estimate the model and here we will propose using the
likelihood-based approach. With the dynamic panel setting, we are able to investigate
how the production technology and technical inefficiency evolved over time, as well

as to estimate the firm-specific long-run inefficiency.



The remaining sections are organized as following. Section 2 introduces the
dynamic stochastic frontier model, and section 3 discusses the estimation procedure
and the estimator for the technical efficiency index. We present some Monte Carlo
simulation results in section 4, provide an empirical application of our model in

section 5, and conclude in section 6.
2. The dynamic stochastic frontier model

Let y;; be the log of output and x;; be the k X 1 log of input vector, where
i=1,..,N denotes the ith firm; and t =1,...,T denotes the time period. We

consider the following dynamic SF model:

Vit = x;l;ﬁ +9c + Vie — Uy, (1)
where g, is the time-varying component of technology, v;; ~i.i.d.N(0,52) isthe
symmetric stochastic error, and u;; =0 represents the one-sided stochastic
technical inefficiency. The time-varying component of technology g; can be
described by a deterministic function of time and is common to all firms. For

simplicity, we assume that the technical innovation is linear in time. Thus,
ge = T t 14t (2)
in our following discussion.

The technical inefficiency u;; is assumed to be dynamic and follows an

autoregressive (AR) process of order one,
Uip = PUjr—q + Ujp, t=1,..,T, (3)

where p is the AR coefficient and u;; is a nonnegative random noise. We restrict
the coefficient p to be bounded between 0 and 1 so that u;; = 0 for all i,t. The
restriction, 0 < p < 1, implies the inefficiency term must be positively correlated
with the previous inefficiency term if the correlation exists. The standard SF model
corresponds to the special case when p = 0. If p =1, then (3) suggests that the
inefficiency level is equal to the sum of all past inefficiency shocks uj,. It implies that
u;; would explode over time; therefore, a firm with p = 1 cannot continue survival

in a competitive industry.



The inefficiency u;; in equation (3) can be decomposed into two components.
One is the persistency of the inefficiency, which comes from the previous period’s
inefficiency u;;_q, and the other is the transient inefficiency u;;. To incorporate the
heterogeneity of the inefficiency, we assume the transient inefficiency follows a half

normal distribution with firm-specific variance

uj,~N7*(0, aﬁi), fort=1,..,T, (4a)
and

ui~N*(0, af,/(1 - p*) ). (4b)

Moreover, u;; and u;; are independent to each other for a given i. In order to

identify the source of heterogeneity, we reparameterize
oL, = exp(§Twy), (5)

where w; is the h X 1 vector of the determinants for the firm-specific inefficiency.
With the dynamic specification in (3) and (4), we are able to estimate the persistent

and transient inefficiencies as well as the long-run average inefficiency level

E(u;)/(1 = p).

3. Model estimation

3.1 The transformed model

The complete setting of the panel SF model includes equations (1)-(5). Since the
inefficiency term wu;; follows an AR(1) process, the cross-period correlation between
the composite errors comes from wu;'s but not v;'s. To eliminate the
autocorrelation in u;;, we apply the quasi-difference transformation to (1),

subtracting y;; by py;_1, and obtain the transformed model

Vie = PYie—1+(%ie — pXie—1) "B + mo(1 — p) + [t — p(t — )] + &, (6)

where the composite error is &; =v;; —u;; and v = vy —pvy_q, for t=
1,..,T;. Define e; = y;; — x;¢ ' § — my — myt. Then the composite error can also be

represented as



€it = €it — PCjt—1, (7)

which has the representation of a moving averaging (MA) process of order 1. In order
to implement the maximum likelihood approach to estimate the model, it is

necessary to derive the joint distribution of ¢&;4, ..., &, for each i.

In the transformed model (6), the autocorrelation between &5 only comes
from vj.s, not from u;s. The marginal distribution of the composite error &;; is

simply a combination of two normal and one half-normal random variables. Let
v, = (vi0, ...,viTi)T and uf = (uj,, ...,u;"Tl_)T be (T;+1)x1 and T; x 1 vectors.
Then the vector of the composite errors ¢, = (sil, s siTl.)T can be written as

& =Qu, —u; =v —u;, (8)

where v/ = Qu; isa T; X 1 vector and

—-p 1 0 0 - 0

/0 -p 1 0 - 0\
Q=| : Lo )

: .~ 0

0 -« - 0 —p 1

isa T; X (T; + 1) matrix. We call the matrix Q the quasi-difference transformation

matrix.

3.2 The full likelihood function

Below we discuss the derivation of the likelihood function of the transformed
model. Let ¢+(;n,Z) and ®+(:;n,E) denote the probability density function (pdf)
and cumulative distribution function (cdf) of a T-dimensional normal distribution with
mean 77 and variance matrix Z. Let I; denote a T X T identity matrix and Or be
T X 1 vector of zeros. With the distribution assumptions on v; and u;, we are able

to derive the joint distribution of ¢;.

Theorem 1: Under the model specification of (1)-(5), if v ~i.i.d.N(0,c2),

uj~N*(0,05,), and & = (v — pv;_1) — Ui, the vector of the composite errors &;



of the transformed model in (5) has the closed skew normal distribution (CSN)*
CSNry1, (01 B —0335%, 07, 02 (I, — 02257)),
where X, =0;QQ" + oIy, is a T; X T; matrix, Q is defined in (9) and o}, =
exp(8Tw;). The corresponding joint pdf of &; is
f(ei;0) = 2Tipr,(&;; 07, Zo) Pr (=042 ey 5 O,y o (I, — 0325Y),  (10)

where 8 = (BT, my, 11, 62,p,87)T denotes the vector of parameters.

Please see the appendix for the proof and details about the CSN random vector.
With the joint pdf of &; in (10), we are able to write down the full log-likelihood

function of the transformed model

InL(6) = T, Inf (& 6). (11)
The full maximum likelihood estimator is defined as

0y, = argmaxgeg InL(8), (12)
where © denotes the parameter space. Under the regularity conditions?,

VN(Byy, — 6)~N4(0q,—H(6)™),

9%Inf (&;,;0)

where d is the dimension of 6 and H(0) = E[ 26007

] is the Hessian matrix.

Empirically, one may estimate the variance of Var(@ML) by

— A 92Inf(2;0mL)] -
Var(eML) = _[ IiV=1 nae(ZGTML) ’ (13)

where £; isthe predicted residual vector of the transformed model.

It is worth mentioning that evaluation of equation (10) involves a numerical
integration of dimension T;, which has no closed form and usually relies on Gaussian
guadrature or a simulation approach to evaluate its function value. If the number of
periods T; is large, which is often the case when we are dealing with cross-country
data, the numerical integration would be difficult and the approximation error is

almost intractable. Below we discuss an alternative approach based on the likelihood

! Please see the Appendix for the definition of the closed skew-normal distribution.
2 See section 4.5 of Bierens (1994) for the details.



function of the paired composite errors of (8).

3.3 The composite likelihood function

Following the suggestions of Arnold and Strauss (1991) and Renard et al. (2004),
we use the composite likelihood (CL), which is also referred to as the pseudo ikelihood
in the literatures, to simplify our computations. A composite likelihood consists of a
combination of valid likelihood objects and is usually related to small subsets of data.
The merit of composite likelihood is that it reduces the computational complexity so
that it is possible to deal with high dimensional and complex models. We illustrate the

main idea of the CL approach below.

Let f (Y; @) be a density function, then the usual ML estimator is obtained by
maximizing the full likelihood f (Y; @) over @. If Y can be partitioned into three pieces,
say Y, Yp, and Y, where Y, or Y. may be an empty set, then the conditional density
f(Ya|Yp; @) or the marginal density if Y,is an empty set, continues to depend on at
least part of the true parameter w. Given a collection of such partitions, the
conditional densities can be multiplied together to yield a composite likelihood, whose
maximum over w can be referred to as the composite ML estimator. See also Cox and
Reid (2004) and Mardia et. al (2009). The CL approach suggests that one may replace
the joint likelihood function by any suitable product of conditional or marginal
densities. More discussions on the consistency and asymptotic normality of the CL

estimator can be found in Arnold and Strauss (1991) and Renard et al. (2004).

For the transformed model in (6), the composite likelihood function is much
easier to evaluate than its full likelihood function. However, the convenience may
come at a cost of losing efficiency since the cross-period sample information is not
fully incorporated. Since how much efficiency we lose due to using the pairwise
composite likelihood (PCL) approach is not clear, we will investigate this issue by
comparing the finite sample performance of PCL and FML estimators using Monte

Carlo simulations later in section 4.

Below we illustrate how to apply the CL approach to estimate the transformed

model and focus our discussion on the pairwise composite likelihood approach. Recall
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that ¢&; = (Wit — pvir—1) —Uj; , so the composite errors have an MA(1)
representation due to the quasi-difference transformation. The correlation matrix of

the vector ¢; has the structure

1 p* 0 - 0
/ pr 1 p’ 0\
Corr(g)=| 0 p* - F, (14)
: “ p*/
0 0 - p* 1
2
where the correlation coefficient p* = —W is due to the correlation
Oy P Uui

between the v},'s which are normal random variables. It is worth mentioning that
the pair (&;;, ;) is independent if [t —s| > 1 and thus their joint pdf is the product
of their marginal pdfs. The joint pdf of an arbitrary pair (&, €;5) has the following
two forms

f1(&ie €55 0), if [t —s| > 1;

(e 0),  ifle—s] = 1; (15)

f (e, &i5;0) = {

where f;(&;,&i5;60) is the product of the marginal pdfs of &; and &g when
[t —s| > 1,and f,(&;, €ir41; 6) is the joint pdf of two consecutive €;;’s. Both of the
marginal pdf and joint pdf can be treated as the special cases of Theorem 1 when
T; =1 and T; = 2, respectively. We summarize the main results in Corollaries 1

and 2 below.

Corollary 1: Suppose v;;~N(0,0.) and uj;~N*(0,03), where o = oZ(1+ p?)
and v;, and u;j, are independent to each other. Define ; = v;; — u;;. Then &;

has the following closed skew-normal distribution

2

&it~CSN; 1 (0 0% + g2, ok T ) (16)
t , . ;
t 'Y ui’ aﬁ;ﬁaﬁi P 05*+05i ’

which has the corresponding pdf

Ou;

it |, [ -2 ) (17)

2
f(ew; 0) = > $1 > o 5
,%*"’Uﬁi ,Jv*+oﬁi v ,Jv*+oﬁi

Equation (17) gives the marginal pdf of &;;. It follows from (14) and (17) that

when the lag difference |t — s| > 1, the joint pdf of ¢; and g is



f1(eitr €53 0) = f(ei; 0)f (&i55 6), (18)
where f(g;; 0) isgivenin (17).

For t =2,..,T; — 1, define &; = (&, €ir4+1)T a 2 X 1 vector of the composite

errors from consecutive periods. In a manner similar to (8), &;; can be represented as

& = Quir — Wi = Vi — Uy, (19)
where vlt - (vlt 1 Vit lt+1) ’ _1t - (vlt’ vlt+1) _lt - (ult’ult+1) and
_(—r 1 0)
Q= ( 0 —p 1) (20)

Note that since Var(git) = 02l; and gz‘t~N+(02,aﬁilz,), each element in v;; and

u;, isindependent across time. The joint pdf of &;; is given in Corollary 2.

Corollary 2: Under the same assumption of Theorem 1, the 2 X 1 vector &;; defined

in (19) has the following closed skew-normal distribution

CSNy2 (023 —0355%, 05,08 (I, — 0225 1)), (21)
where ¥, = a,,QQT+Gu I is a T; XT; matrix and Q is defined in (20). The
corresponding joint pdf of &;; is

f(§it; 9) = 4¢2(§it; 0, Zg)q)z(_o-l%i s Eits 0, O-u (12 - O-ul _1)) (22)

By Corollary 2, we have f;,(&i, €i5;6) = f(gl-t; 9). Therefore, it follows from (18) and
(22) that the pairwise composite log-likelihood function for all combinations of

possible pairs for the firm i is
Ti—
InLECL(0) = YTE ' STE  Inf ey, £i5; 0),

= Y1 Inf (i €100 0) + X1, T0L o Info (i, £15:0),  (23)

where the summation contains T;(T; — 1)/2 factors. It follows that the pairwise

composite log-likelihood for the whole sample is
InLPCL(9) = ¥V . InLPC (). (24)
The maximum PCL estimator is defined as

OpcL = arg maxgee InLPCL(0).
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According to Varin and Vidoni (2005), under the usually regularity conditions the PCL

estimator is consistent and asymptotically normally distributed, i.e.,

VN(Bpcr = 0)~N (O, Hpcr,(8) ™ peL () Hper ()7,

a%InLf <L () aInLF L () aInLFCL(0) .
where Hp. (0) = E[W] and Jp-.(0) = E 3 5T ] Empirically,

Hpc(6) and Jpc () can be estimated by their sample counterparts

N azlnL L(QPCL)
i{PCL(HPCL) - E: ___7§;5?F___

and

j (9 ) N anLYt(@pcy) AInLYCL(Bpcy)
PCL PCL l 1 90 20T

Therefore, it follows that the variance of 8pc can be estimated by

a2InLfL(BpcL)] anLt(@pcy) OInLPCL(Bpcr)
N PCL N PCL PCL
Var(bpc.) = [Z 26007 Z 260 20T

N 621nLPCL(9pCL)

[Z 26067 ' (25)

3.4 Prediction of the technical efficiency and inefficiency

Once the ML or PCL estimator for the parameters is obtained, we may proceed
to predict the technical efficiency (TE) index and inefficiency. In order to predict the
TE, it is necessary to find the conditional expectation of TE;; = E(e™%i¢|Q;). Under

the specification of (3), the index of technical efficiency is defined as
TE; = E(e™"¢|Qy), (25)

where (); denotes the information set available at time t. Since the inefficiency

term wu;; follows an AR(1) process, the iterative substitution suggests
Ujp = PUjr—q + U
= Zg;%)psu;t—s + ptuior (26)

which has a moving average representation. Under the independence assumption of

u;; and uj forall t # s, (26) suggests that

11



E(e™"]Q,) = E[exp(— Zg;(lJpsu?t—s) : exp(—ptuio)mt]
= [1526 E[exp(—p uji_s) |Qir—s] - E[exp(—ptuyp)]
= [1520 E[exp(—p uj_s)|€ie—s] - Elexp(—ptuyo)], (27)

where the second equality is due to the prediction of E[exp(—u;,)|Q:], which

requires only the information of ¢&;; at the current period. In other words,

Elexp(—uj;_s) [Q¢] = E[exp(—uj;_5)|Q¢—s], foranys > 0.

Theorem 2: Let the composite error &; = v, —u;,, where v, = Vy — pVjr_q,
vi~i..d.N(0,62) , u;~N*(0,02) and wup~N* (o,agi/(1+p2)) . Define

2 _ (1+p*)ofod, d _ 2 1 2V 24 12 h h

Ol = iphezror. N tie = =&,/ (1 + p?)oy+0y,) , then the moment
13

generating function of u;, given &g is

mye (V) = E(eViley) = exp {7v207 + yie} @ (B2 +ya;) /0 (H2) (28)

g

Oi
and
: #(5)
my- |£(0) = E(ui|&ir) = wie + 0 @- (29)
Moreover, the moment generating function of ugis
2.2

with the first moment
' 20},
my, (v) = E(u) = /ﬁ (31)

Using equations (26), (27), (28) and (29), we are able to derive the estimators of

the technical efficiency and inefficiency. We summarize them in Corollary 3.

Corollary 3: Let y = —p?, for s = 0,1, ..., t. Under the same assumption of Theorem
2, the technical efficiency index E(e %it|Q;) is

Ztalzt

P ; _1/(1
TE;; = 2exp {2(1_p2) + X550 (5/)2501-2 - psuu_s)}

12



B CD(“i;i—s_pSO-i) ptgui
X (ng(l) Tﬁ) o (— ﬁ) (32)

Similarly, it follows from (25) and (28) that the inefficiency E(u;.|Q;) is

2

Hit—s
20u; - (U—L)
E(uiQe) = pt wan b Yizop® (Hit—s + 0; @) (33)

Equations (32) and (33) provide the estimators for TE;; and the inefficiency
level. Empirically, one may replace the parameters by their FML or PCL estimates.

Moreover, under the AR(1) setting u;s = p;u;r—1 + Uj;, the long-run inefficiency is

Euj;
1-p°

lim;_ Eu;y = (34)

Now u;~N*(0,05) implies that Euft=\/%0ui. Therefore, the long-run

inefficiency can be simplified as

lim,_,o, Eu; = \F T (35)

m1-p

4. The Monte Carlo Experiment

In this section, we conduct some Monte Carlo experiments to examine the finite
sample performance of the PCL estimator and also investigate how much of the
estimation efficiency we lose due to adopting the composite likelihood instead of the

full likelihood. Below, we consider two experiments.

In Experiment |, we estimate a simple dynamic SF model with homoscedastic
g2 using both the PCL and FML estimation. The data-generating process (DGP) is

specified as
Yit = lel,it + ﬂzxz,it + Ty + Tyt + Vg — Uy,

where u;; = pu;_1 + u;j; follows an AR(1) process. The exogenous variables are
drawn from normal distributions, x;;,~N(5,1.5%) and x;;~N(3,1). The two
random components are v;~i.i.d.N(0,02) and uj,~N*(0,02). The parameters in
the data generating process are: f; =0.3,8, =02, 1y =1, m; = 0.5, 62 =0.1

and o5 =0.25. We set the AR(1l) coefficient p = 0.2 and consider various

13



combinationsof T, N
N = {25,50,100} and T = {5,10,15}.

We report the biases and mean squared error (MSE) when p = 0.2 in Tables 1 and 2.
The relative biases (RBias) and relative mean squared errors (RMSE) are used to
compare the performance of the PCL and FML estimators. The RBias and RMSE are

defined as

Bias(ngL)

Bias(@FML)

MSE(fpcL)

RBias(0) = MSE(Bgmr)’

and RMSE(®) =

where Opc; and Bgyp denote the PCL and FML estimators for the parameter 6,
respectively. Therefore, RBias(é) > 1 suggests that the bias of the PCL estimator
Opcy is larger than that of the FML estimator Ogyy.. The relative efficiency of PCL and
FML estimators is evaluated by the RMSE. RMSE(@) > 1 suggests that the FML

estimator is more efficient than the PCL estimator.

The program is written in Stata 14.0. For the FML estimation, the numerical
integration of the multivariate normal cdf is evaluated using Stata’s
Geweke-Hajivassiliou-Keane (GHK) simulator (Geweke (1989), Hajivassiliou and
McFadden (1998), and Keane (1994)), which is applicable if the dimension of the cdf is
20 or less. In our experiment the maximum dimension of the normal cdf’'s we

evaluated is 14 since the maximum T = 15 in the untransformed model.

As shown in Tables 1 and 2, all biases of the PCL and FML estimators are in small
magnitudes. Some RBiases are greater than 1 but some are less than 1, which means
the bias of the FML estimator is not necessarily smaller than the bias of the PCL
estimator. Table 2 gives the MSEs of the FML and PCL estimators. All MSEs of the FML
and PCL estimators are also in small magnitudes and consistently decrease with the
sample sizes, either increasing T or N. The values of the RMSEs are above or below
1 but do not have a uniform pattern, which suggests that the FML estimation using
the GHK simulator is not necessarily more efficient than the PCL estimation. From our
experiment, the issue of loss estimation efficiency using the PCL estimation instead of

the FML estimation does not seem to be a serious problem.

; . * N+ 2 —
In our second experiment, we specified u;;~N7(0,dy,), where gy, = exp(§, +

14



8;w;). The exogenous variable w; is drawn from N(0,3?%) and we set §, = —0.25
and §; = 1. The remaining parameters and the combinations of T and N are set

the same as those in the first experiment.

Tables 3-4 summarize the results of our Monte Carlo experiments for the DSF
model with heteroscedastic aﬁi when the AR(1) coefficient p = 0.35 and 0.7. The
magnitudes of biases are small and have a decreasing tendency as the sample sizes
increase. Moreover, all MSEs decrease fast as N and T increase. The pattern shows
the consistency of the PCL estimator. Overall, the finite sample performance of the

PCL estimator is quite good in our Monte Carlo experiments.

5. An empirical application

In this section, we demonstrate our approach using a cross-country panel data
taken from the World Development Indicator database 2008. Our sample includes 40
countries® consisting of advanced industrialized, newly industrialized, transition and
emerging economies during the period 1980-2006. Among these countries, 35
countries have a time span of 27 years, 3 countries have 17 years, one has 18 years
and the last one has 23 years. Since the longest period is 27, we estimate the dynamic
panel SF model using only the pairwise composite likelihood approach.

The output variable is gross domestic product (Y) measured in million US dollar.
The input variables include capital (K), labor (L)and energy (E). Capital is the gross
capital formation in million US dollars. Labor is the total labor force in million. Energy
is measured in kilograms of oil equivalent per capita. Y and K are the only variables
measured in nominal US dollar value and both of their measurement units are
converted to the real US dollar value with the based year 2000. In addition to the
input variables, we also include the time trend variable to capture technical change,

we define time = 1,...,27, for years 1980,...,2006. Moreover, the time mean R&D as

® These countries include 31 OECD member countries: Australia, Austria, Belgium, Canada, Czech
Republic, Denmark, Finland, France, Germany, Greece, Hungary, Island, Ireland, Italy, Japan, Korea,
Luxemburg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Spain,
Sweden, Switzerland, Turkey, Great Britain and Unites State of America; four accession candidate
countries: Eastland, Israel, Russia and Slovenia; and five enhanced engagement countries: Brazil, China,
India, Indonesia and South Africa.
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proportion of GDP is included as the determinant of the inefficiency. The summary
statistics of the variables are given in Table 5.

The upper panel of Table 6 reports the estimates of the parameters for the
model given in (1)-(5). The standard errors are computed using the formula in (25)
and most of the parameters are statistically significant. The input coefficients are all
positive, meaning positive input elasticities. The returns to scale, measured by the
sum of the input coefficients, is about 0.9, which suggests that the countries are
operating below their efficient scale. The coefficient of time trend is 0.033, which
implies the technical progress is at the rate of 3.3% annually. Moreover, the negative
coefficient of R&D in the inefficiency suggests that increasing the share of R&D in GDP
is helpful in reducing inefficiency. Our estimate of the AR coefficient* p is 0.984 with
a fairly small standard error 0.004, which implies technical inefficiency is highly
persistent in the cross-country data. A similar pattern of high persistent is also found
in the panel of large US banks investigated by Tsionas (2006), where the estimate of p
is 0.998. Our finding here also indicates the importance to incorporate the dynamics
of inefficiency into the model when conducting empirical analysis using panel data.

The lower panel of Table 6 provides a summary statistics of the predictions of
the efficiency score, inefficiency and long-run inefficiency. The mean efficiency score
is about 0.763 with a minimum 0.464 and maximum 0.984. The transient inefficiency
and long-run inefficiency are found to be 0.287 and 1.28 on average. The relative
large gap between the transient and long-run inefficiency is consistent with our

previous finding of the high persistency of the inefficiency.

6. Conclusion

In this paper, we have proposed a panel SF model with a dynamic adjustment of
the heteroscedastic inefficiency. Although we have shown that the full likelihood
function of the model follows a closed skew normal distribution, empirical evaluation

of the full likelihood function involving a high dimension integration when time span

* The AR coefficient is parameterized as p = exp(f,) /[1 + exp(B,). The estimate of S, is 4.132
with the standard error 0.013. Using the delta method, we compute the standard error of p to be
0.004.
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is large is difficult. We, therefore, propose using the pairwise composite likelihood
function. By focusing on the lower dimension of the joint distribution, we formulate
the pairwise composite likelihood by considering all possible pairs of the subsample.
From our Monte Carlo simulations, we compare the finite sample performance of the
PCL and FML estimators and find that our PCL estimator performs quite well in our
finite sample experiments. The issue of loss estimation efficiency when using the PCL
estimation instead of the FML estimation does not seem to be a serious problem.
Instead, the PCL estimation provides an easy to implement approach to estimate the

dynamic SF model.
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Appendix:

Definition: Consider p > 1, q =1, m € R?, k € R4, T an arbitrary q X p matrix,
Y and A positive matrices of dimensions p Xp and q X q , respectively. A
p-dimensional closed skew-normal random vector y with parameters m, %, T, Kk, A,

denoted as y~CS Np,q (m, L, T, K, A), has the probability density function

fy(Y) = Bd)p(y' T, E)q)q(r(y —m); K, A), (a1)

and the cumulative distribution function

_ Y\ . (T z —xrT
Gpq(¥) = CPpoq [(0) (i) (—rz A+ rer)] (@2)
where y € RP, B~ 1= qu (0;x, A+ FZFT) . Moreover, the moment generating
function (mgf) of y is

@4(TZr;k,A+TEIT) . To +2rTer
@4(0;k,A+TETT)

M, (r) = , Where r € RP. (a3)

More details about the closed skew-normal distribution may be referred to

Gonzalez-Farias, Dominguez-Molina and Gupta (hereafter GDG, 2004).

Proof of Theorem 1:
let %, = QQTo}, %, = olly, and X, = X, + X,. The mgf of v; and u; are

« 17
my(r) = E(e7 %) = 2 %"

1 .
My-(r) = E(e™") = e2” ™" - ®r; Euri 07y 2u)
u @7, (07;; O7;,%0)
Therefore, the mgf of ¢; is

Tv; —rTu} LT T,+2 Op. (-Zy1r; O1,,2y)
M., (T‘) = E(er VL-) ; E(e r ul,) = 2" Cp+Zr | PT; ).
) CDTi(OTi;OTirZu)

By the definition of CSN, the parameters in equation (a3) are © = Or,Z = ¥, + ¥, =
X, and k = O, Moreover, I'Y = —X, implies I' = — 2,27t and A+TIIT =3,

implies A= %, — 2,2;1%,,. Therefore, we have

£.~CSNr.1,(07,,Z¢ , 2,25, Or,, Ty — £,271%,)
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and a further simplification gives

CSNTi,Ti (OTi’ ZE' _0-52;1, OTi’ 0-5 (ITi - 0-‘52;1)) QED

Proof of Theorem 2:

Let o7 = (1+p*)o}oZ,/[(1 + p?)af + 0F], e = —0Fen/[(1+ p)od+a7], then

the condition distribution’ of Uir|€ie 1S

1

(uit— ﬂit)z Uit
210 €Xp {_ Zaiz }/(1 —-¢ (_ Ti)>'

where ¢€; = v;; — u;, is defined in (6). The conditional moment generating function

fuiler) =

of uj|ei is

e () = E(eee) = f evie - F(ulle) dul,
0

o0 £ )2 200" .
~Jo = €xp {_ (i l;lt) = yult} du /P (%),
4

T, 207 207

= exp{Byia? 4y i) 7 exp - LoD gy (1),

= exp {31207 + ¥ e} [1 = ®(0; iy, + Yo, 07)]/ (%)

exp (Ly20? + 7 i} [1 - @ (= 22— yo;)] o (1),
G’

ol +vy .uit} N (!;_l: + VUi) /P (l;_l:)

@

Xp
Let y = —p°, where s =0,1..., then
E(e_PSu;t|git) = exp {%pZSO'iZ — ps Mit} P (l;_llt - psai) /CD (l;_llt)
, * #(5)
my+(0) = E(uileir) = wie + 0; @'

gi

Moreover, the moment generating function of wugis

_ . y20? . You
my, (y) = E(e¥*) = 2-exp (2(1—p2)) ® <\/1—p2>

and its first moment is

>See page 77 of Kumbhakar and Lovell (2003).
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202
n(1-p?)’

ml, () = E(up) =

Using (25), we obtain the results.

Q.E.D.
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Table 1: Biases of the FML and PCL estimator under homoscedastic 62

when p = 0.2

r N B1 B Ty Ty o2 o2

p

Bias of FML estimator

5 25 0.0001 0.0001 -0.0136 0.0008 -0.0011 -0.0006 -0.0275
50 0.0001 -0.0001 -0.0100 0.0002 -0.0006 -0.0002 -0.0281
100 0.0002 -0.0002 -0.0071 -0.0001 -0.0003 -0.0002 -0.0244

10 25 0.0000 0.0001 -0.0068 0.0000 -0.0006 0.0003 -0.0242
50 -0.0001 -0.0001 -0.0044 0.0001 -0.0004 0.0008 -0.0196
100 -0.0001 -0.0002 -0.0014 -0.0001 -0.0002 0.0006 -0.0150

15 25 0.0001 0.0000 -0.0041 0.0001 -0.0005 0.0006 -0.0153
50 0.0000 0.0000 -0.0023 0.0001 -0.0004 0.0010 -0.0145
100  0.0001 0.0000 -0.0036 0.0000 -0.0002 0.0006 -0.0144

Bias of PCL estimator

5 25 0.0003 0.0001 -0.0250 0.0008 -0.0008 -0.0013 -0.0560
50 0.0002 -0.0001 -0.0175 0.0000 -0.0006 -0.0002 -0.0558
100 0.0002 -0.0002 -0.0154 -0.0003 -0.0002 -0.0005 -0.0524

10 25 0.0001 0.0001 -0.0198 -0.0001 -0.0003 -0.0005 -0.0637
50 -0.0002 0.0002 -0.0170 0.0001 -0.0003 0.0002 -0.0609
100 -0.0002 -0.0003 -0.0154 0.0000 0.0000 -0.0001 -0.0585

15 25 0.0001 0.0000 -0.0188 0.0001 -0.0002 -0.0002 -0.0616
50 -0.0002 0.0001 -0.0163 0.0001 -0.0002 0.0003 -0.0593
100 0.0000 0.0000 -0.0175 0.0000 0.0000 0.0002 -0.0608

Relative Bias = Bias(PCL)/Bias(FML)

5 25 2.1313 1.5485 1.8405 1.0756  0.7111 2.2949 2.0384
50 1.2788 1.1135 1.7477  0.0726  0.9153 1.1143 1.9862
100 0.8234  0.9472 2.1586  1.7931 0.6048  2.1695 2.1450

10 25 2.9529 2.5573 29198 -3.3122 04712 -1.8279 2.6311
50 2.3913  -2.5055 3.9032 0.5856 0.5659 0.2346 3.1044
100 1.0402 1.3701 11.0678 0.1763  0.0340 -0.0901 3.9016

15 25 0.6744 0.3894 45658 0.4623  0.4215 -0.3275 4.0215
50 14.9448 -2.9192 7.0713 1.0102 0.4511  0.2956 4.0799
100 0.8234 0.9472 2.1586 1.7931 0.6048  2.1695 2.1450

Note: Total number of replications is 1000.
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Table 2: MSEs of the FML and PCL estimator under homoscedastic g2 when p = 0.2

r N B1 B T my o2 o2 p

MSE of FML estimator
5 25 0.0098 0.0180 0.1165 0.0193 0.0050 0.0208 0.1160
50 0.0080 0.0124 0.0793 0.0133 0.0036 0.0149 0.0832
100 0.0052 0.0083 0.0544 0.0091 0.0025 0.0102 0.0%591

10 25 0.0073 0.0111 0.0688 0.0052 0.0033 0.0141 0.0823
50 0.0049 0.0078 0.0461 0.0035 0.0022 0.0093 0.0604
100 0.0036 0.0058 0.0331 0.0024 0.0016 0.0066  0.0409

15 25 0.0060 0.0089 0.0525 0.0026 0.0026 0.0109 0.0676
50 0.0041 0.0061 0.0368 0.0018 0.0018 0.0076  0.0467
100 0.0029 0.0044 0.0259 0.0012 0.0013 0.0053 0.0323

MSE of PCL estimator
5 25 0.0099 0.0179 0.1127 0.0185 0.0054 0.0215 0.0965
50 0.0079 0.0124 0.0767 0.0127 0.0036 0.0148 0.0692
100 0.0052 0.0082 0.0529 0.0088 0.0026 0.0104  0.0498

10 25 0.0074 0.0110 0.0686 0.0051 0.0036 0.0145 0.0621
50 0.0050 0.0077 0.0456 0.0035 0.0023 0.0094 0.0464
100 0.0036 0.0055 0.0325 0.0024 0.0017 0.0069 0.0312

15 25 0.0060 0.0090 0.0522 0.0026 0.0027 0.0111 0.0508
50 0.0041 0.0062 0.0360 0.0018 0.0018 0.0077 0.0348
100 0.0029 0.0044 0.0250 0.0012 0.0013 0.0055 0.0244

Relative MSE = MSE(PCL)/MSE(FML)
5 25 1.0034 09971 09675 0.9573 1.0721 1.0332 0.8323
50 0.9988 0.9995 0.9678 0.9617 1.0058 0.9977 0.8324
100 1.0030 0.9980 0.9728 0.9619 1.0357 1.0191 0.8421

10 25 10030 0.9939 0.9981 09795 1.0721 1.0319 0.7545
50 1.0058 0.9950 0.9879 1.0021 1.0394 1.0128 0.7684
100 1.0000 1.0239 0.9813 0.9822 1.0395 1.0487 0.7639

15 25 10062 1.0153 0.9949 09749 1.0432 10195 0.7508
50 09942 10160 09771 09609 1.0079 1.0088 0.7465
100 1.0058 0.9833 0.9660 1.0059 1.0440 1.0300 0.7555

Note: Total number of replications is 1000.
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Table 3: The PCL estimator of the DSF model with heterogeneous o;;, when p = 0.35

r N B B2 To T P oy o 1
Bias

5 25 -0.0003 0.0004 -0.0551 -0.0002 -0.0162 0.0027 -0.1243 0.0152

50 0.0005 0.0001 -0.0364 0.0021 -0.0133 -0.0007 -0.0334 0.0017

100 0.0000 0.0004 -0.0176 -0.0001 -0.0106 -0.0007 -0.0114 -0.0010

10 25 -0.0002 0.0000 -0.0288 0.0003 -0.0161 -0.0006 -0.0291 0.0013

50 -0.0005 0.0000 -0.0192 0.0002 -0.0142 -0.0008 -0.0078 0.0005

100 -0.0005 0.0000 -0.0140 -0.0001 -0.0119 -0.0003 -0.0052 0.0030

15 25 0.0003 0.0002 -0.0207 0.0001 -0.0150 -0.0012 -0.0072 0.0021

50 -0.0003 0.0001 -0.0166 0.0001 -0.0129 -0.0006 -0.0021 0.0010

100 0.0000 -0.0002 -0.0198 0.0001 -0.0140 -0.0003 -0.0016 0.0012

MSE

5 25 0.0190 0.0357 0.2723 0.0488 0.0736 0.0103 0.2061 0.1132

50 0.0152 0.0222 0.1794 0.0324 0.0465 0.0058 0.1318 0.0538

100 0.0095 0.0159 0.1215 0.0223 0.0326 0.0043 0.0927 0.0363

10 25 0.0141 0.0198 0.1495 0.0128 0.0459 0.0057 0.1300 0.0705

50 0.0091 0.0152 0.1032 0.0088 0.0310 0.0038 0.0862 0.0362

100 0.0065 0.0101 0.0692 0.0059 0.0207 0.0026 0.0605 0.0248

15 25 0.0113 0.0165 0.1135 0.0063 0.0357 0.0042 0.1017 0.0548

50 0.0074 0.0116 0.0737 0.0042 0.0240 0.0029 0.0674 0.0278

100 0.0054 0.0080 0.0544 0.0030 0.0162 0.0020 0.0474 0.0193

Note: a. Total number of replications is 1000. b. O'I%L. = exp(dy + 61w;).
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Table 4: The PCL estimator of the DSF model with heterogeneous aﬁi when = 0.7

I N B B2 To T P oy o 5,
Bias

5 25 0.0006 0.0014 -0.1777 0.0035 -0.0188 0.0017 -0.1250 0.0147
50 0.0005 -0.0006 -0.1036 0.0033 -0.0143 -0.0008 -0.0297 0.0035
100 0.0000 0.0004 -0.0755 -0.0004 -0.0121 -0.0005 -0.0132 0.0005

10 25 0.0002 0.0000 -0.1112 -0.0002 -0.0191 -0.0008 -0.0250 0.0035
50 -0.0004 -0.0004 -0.1010 0.0004 -0.0165 -0.0006 -0.0092 0.0027
100 -0.0005 -0.0001 -0.0827 -0.0002 -0.0137 -0.0003 -0.0053 0.0048

15 25 0.0001 0.0004 -0.1092 0.0000 -0.0189 -0.0008 -0.0100 0.0046
50 -0.0002 0.0002 -0.0933 0.0003 -0.0150 -0.0004 -0.0028 0.0029
100 -0.0002 -0.0001 -0.0981 0.0003 -0.0153 -0.0002 -0.0020 0.0031

MSE

5 25 0.0174 0.0334 0.7934 0.1134 0.0575 0.0105 0.3375 0.1367
50 0.0140 0.0199 0.5047 0.0721 0.0374 0.0053 0.1379 0.0549
100 0.0087 0.0151 0.3265 0.0491 0.0249 0.0038 0.0942 0.0368

10 25 0.0134 0.0183 0.3570 0.0281 0.0357 0.0054 0.1372 0.0714
50 0.0085 0.0142 0.2405 0.0195 0.0243 0.0036 0.0894 0.0366
100 0.0060 0.0096 0.1610 0.0129 0.0161 0.0025 0.0624 0.0252

15 25 0.0107 0.0156 0.2599 0.0141 0.0285 0.0039 0.1042 0.0556
50 0.0068 0.0107 0.1668 0.0093 0.0191 0.0026 0.0699 0.0282
100 0.0050 0.0075 0.1201 0.0067 0.0130 0.0019 0.0489 0.0196

Note: a. Total number of replications is 1000.
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Table 5: The sample statistics

Variable Mean S.D. Min Max
InY 12.102 1.571 8.320 16.242
InK 10.595 1.556  6.865 14.582
InL 2.188 1.809 -2.099 6.660
InE 7991 0741 5717 9.411
time 14368 7.714 1.000 27.000
R&D 1.601 0977 0.057 4.208
Note: The total number of observations is 1037.
Table 6: The estimated result
InY Coef. S.E.
Frontier
InK 0.136  ° 0.008
InL 0.726 " 0.028
InE 0.036 " 0.026
time 0.033 """ 0.004
Cones. 8.636 0.078
o2 B," -8.888 """ 0.015
o2 R&D -1.357 0.744
Cones. -5.546 0.795
p B,° 41327 0.013
Mean S.D. Min Max
Prediction TE 0.763 0.122  0.464  0.984
Eu;, 0.287 0.173  0.016  0.775
}Lrg Eu;;  1.280 0.686  0.182  3.036

Note: a.***, ** and * denote the levels of significance at 1%, 5% and 10%.

b. 02 is parameterized as 02 = exp(f,).c. p is parameterized as

p = exp(B,) /[1 + exp(B,)]-
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