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Abstract

This paper proposes a mixed-frequency small open economy structural model, in which

the structure comes from a New Keynesian dynamic stochastic general equilibrium (DSGE)

model. An aggregation rule is proposed to link the latent aggregator to the observed quar-

terly output growth via aggregation. The resulting state-space model is estimated by the

Kalman filter and the estimated current aggregator is used to nowcast the quarterly GDP

growth. Taiwanese data from January 1998 to December 2015 are used to illustrate how

to implement the technique. The DSGE-based mixed-frequency model outperforms the

reduced-form mixed-frequency model and the MIDAS model on nowcasting Taiwan’s quar-

terly GDP growth.
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1 Introduction

Central banks or institutional analysts are often eager to gain access to a country’s economic

status for timely policy decisions. Real GDP is considered to be one of the most important

measures of the aggregate state of an economy. It is, however, only available on a quar-

terly basis. As an alternative, popular coincident indices of business cycles are estimated.

Examples include the composite index of coincident indicators released by the U.S. Confer-

ence Board, the coincident indicators developed by Stock and Watson (1989, 1991), and the

business condition indicator computed by Aruoba et al. (2009). The main criticism of such

coincident indices is that they lack direct economic interpretation.

To overcome such a criticism, a number of economists estimate monthly GDP directly. In

terms of modeling methodology, some authors construct monthly GDP based on univariate

models for real GDP [e.g. Bernanke et al. (1997) and Liu and Hall (2001)] and others apply a

multivariate approach [e.g., Mariano and Murasawa (2003, 2010)]. These studies are in line

with the ‘common factor’ approach proposed by Stock and Watson (1989, 1991). Their basic

statistical method is to build state-space models with mixed-frequency series. Being abstract

from structural modeling, the common factor approach in the previous studies is essentially

a reduced-form method. The coefficients estimated in such a model are not subject to any

structural restrictions.

Another popular reduced-form approach to handle data sampled at different frequencies

is the mixed-data sampling (MIDAS) regression introduced by Ghysels et al. (2004). It is

based on a univariate regression that adopts highly parsimonious lag polynomials to exploit

the content in the higher frequency explanatory variables in predicting the lower frequency

variable of interest. There is now a substantial literature on MIDAS regressions and their

applications; see, for example, Clements and Galvao (2008) on macroeconomic applications,

Ghysels et al. (2006) on financial applications, and Foroni et al. (2015) for more flexible spec-

ifications. Unlike the Kalman filter state space approach that involves a system of equations,
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MIDAS regressions involve a single equation. As a consequence, MIDAS regressions might

be less efficient, but they are less prone to specification errors.

Differing from the aforementioned studies that build upon reduced-form time series frame-

works, some recent studies have considered merging a structural macroeconomic model with

the mixed-frequency strategy. Two important contributions are Giannone et al. (2009) and

Foroni and Marcellino (2014b). Giannone et al. (2009) develop a framework to incorporate

monthly information in quarterly dynamic stochastic general equilibrium (DSGE) models.

They take the parameter estimates from the quarterly DSGE as given and obtain increas-

ingly accurate early forecasts of the quarterly variables. Foroni and Marcellino (2014b)

demonstrate that temporal aggregation bias, as pointed out in Christiano and Eichenbaum

(1987), may arise when economists estimate a quarterly DSGE, while the agents’ true de-

cision interval is on a monthly basis. They propose a mixed-frequency strategy to estimate

the DSGE model and find that the temporal aggregation bias can be alleviated.1 However,

there is no general rule on to what extent such a complicated framework helps in forecasting

or nowcasting real GDP, since it depends on the structure of the DSGE model and on the

content of the higher frequency variables.

In this paper we develop a mixed-frequency structural model for a small open economy.

The main purpose is to assess the advantage of nowcasting current real GDP using a mixed-

frequency model with a structural context. We assume that economic agents make decisions

on a monthly basis. Because GDP is a quarterly series, the mixed-frequency technique is

adopted to provide early estimates of the real GDP growth. By building on a monthly small

open DSGE model, we derive the mixed-frequency state-space representation. The Kalman

filter estimation technique of Durbin and Koopman (2001) is used in our mixed-frequency

econometric framework to take account of missing monthly values of quarterly variables.

A few other studies are related to this paper. Boivin and Giannoni (2006) incorporate

1Some other recent studies with the mixed-frequency strategy include the fixed-frequency VAR model in
Schorfheide and Song (2015) and Rondeau (2012). The latter combines quarterly series with annual series
in an effort to estimate a DSGE model for emerging economies.
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a large data set that contains additional variables (i.e. non-core variables) that are not

considered in a DSGE model. Their approach is conceptually appealing, because it exploits

information contained in the other indicators when making inferences about the latent state

of the economy. The DSGE model parameters as well as the factor loadings for the non-

core variables are jointly estimated using Bayesian methods. Nevertheless, their study solely

employs data at the quarterly frequency level. In reality, higher frequency information may

arrive and central banks or institutional forecasters like to include the additional information

in their forecasting framework. Rubaszek and Skrzypczynski (2008) and Edge et al. (2008)

have surveyed the literature on evaluating the forecasting properties of the DSGE model in

a real-time environment. Schorfheide et al. (2010) examine whether a DSGE model could be

used to forecast non-core variables that are not included in a structural model. Instead of

jointly estimating all the parameters in the system, they suggest using a two-step Bayesian

method to reduce the computational burden.

For a demonstration, we apply our model to the Taiwanese data over the sample period

from January 1998 - December 2015 and evaluate the model’s performance on nowcasting

real GDP growth rates. For purposes of comparison, we also estimate a reduced form of the

mixed-frequency model and a basic MIDAS model. We find that the DSGE-based mixed-

frequency model produces better results on nowcasting GDP growth than the two alternative

models.

The next section lays out the model. Section 3 presents the empirical findings using

Taiwanese data and the final section concludes.

2 The Model

2.1 A Small Open Economy DSGE Model

The goal of this paper is to evaluate the advantage of nowcasting real GDP growth with a

structural model that allows us to include more frequently arriving monthly observations.
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We assume that the agents in the economy make decisions on a monthly basis. By using a

small open economy DSGE model, we derive its mixed-frequency state-space representation

and estimate the model using the maximum likelihood method.

The basis of the structural model is similar to the one in Gali and Monacelli (2005), in

which they derive a New Keynesian DSGE model that consists of households, firms and a

central bank. The decision rules of agents form a system of nonlinear difference equations

with rational expectations. Then a log-linearization approximation to this system around

its steady state is derived and can be characterized by the equations summarized below.

The first equation is an open-economy IS curve derived from combining the consumption

Euler equation and the goods market clearing conditions, where the representative household

consumes both domestic goods and imported goods and chooses optimal consumption and

labor hours:

yt = Etyt+1 −
1

σ
(Rt − Etπt+1)− αω

σ
Et∆st+1, (1)

where yt is real output, Rt is the gross return on a risk-free one-period discount bond paying

one unit of domestic currency, πt is the domestic CPI inflation rate, and st is the terms-

of-trade, which is defined as the relative price of import in terms of export (in logarithm).2

The coefficients in (1) are functions of the deep parameters of the DSGE model: 1/σ is the

intertemporal elasticity of substitution, α is the index of openness, with α = 0 corresponding

to a closed economy and α = 1 to a fully open economy, and ω = σ + (1− α)(σ − 1).3 This

equation describes how aggregate output (yt) is related to its future expected value (Etyt+1),

the expected real interest rate (Rt−Etπt+1), and the expected change in the terms-of-trade

(Et∆st+1). For a small open economy, as its terms-of-trade is expected to improve (i.e.,

negative Et∆st+1), the global demand for domestic goods is expected to increase, which in

2The constant term in (1) is ignored because we demean all the variables in the empirical work.
3The coefficient ω is obtained under the assumption that the elasticities of substitution between domestic

and foreign goods and between goods produced in different foreign countries are both equal to one, i.e., the
functions have a Cobb-Douglas form.
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turn has a positive effect on the domestic real output.4

The second equation is an open economy New Keynesian Phillips curve derived from the

optimal price setting behavior of domestic firms:

πt = βEtπt+1 − αβEt∆st+1 + α∆st +
(1− βφ)(1− φ)

φ
(σα + ϕ)(yt − ȳt), (2)

where ȳt is the potential output, β is the discount rate, φ is the percentage of firms with

sticky prices within a period, 1/ϕ is the Frisch elasticity of labor supply, and σα = σ/(1 −

α+αω).5 The potential output is the real output in the absence of nominal rigidities and it

is determined by ȳt = −α[σα(ω−1)
σα+ϕ

]y∗t , where y∗t is exogenous foreign real output. As the level

of price rigidity increases (i.e., the higher the value of φ), the coefficient of the output gap

in (2) becomes smaller and the New Keynesian Phillips curve becomes flatter. The labor

supply elasticity is another structural parameter that affects the slope of the Phillips curve.

When real wages rise by 1%, the household is willing to increase working hours by 1/ϕ units.

As labor supply becomes more elastic (i.e., the lower the value of ϕ), the New Keynesian

Phillips curve becomes flatter.

Assuming the Law of One Price, the dynamics of the nominal exchange rate is:

∆et = πt − π∗
t + (1− α)∆st + εe,t, (3)

where πt and π∗
t are the CPI inflation rates of the home country and foreign country, re-

spectively; and et is the nominal exchange rate with a positive value of ∆et indicating a

depreciation in the domestic currency. This equation states that, other than the exchange

rate shock, εe,t, the nominal exchange rate is explained by the purchasing power parity ad-

justed by a fraction of changes in the terms-of-trade when the economy is not completely

4In the model, technology is not separately specified and is therefore imbedded in the real output.
5In this DSGE model, the firms’ staggered price-setting scheme is adopted from Calvo (1983). That is,

each intermediate firm faces a constant probability (1−φ) to re-optimize its price within a period. The index
of openness, 0 ≤ α ≤ 1, is the ratio of domestic consumption allocated to imported goods. In equilibrium,
the domestic CPI is a CES function of the price level of domestic goods and the price level of imported
goods.
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open to the world economy. As the terms-of-trade condition deteriorates (i.e., when ∆st

becomes positive as import prices increase faster than export prices), the domestic currency

depreciates.

Under the assumption that the international financial markets are complete, the Eu-

ler equation in each country holds. The goods market clearing condition then implies an

equilibrium condition that determines the dynamics of the terms-of-trade as:

∆st = σα(∆yt −∆y∗t ).

When foreign output growth (∆y∗t ) is higher than domestic output growth (∆yt), the demand

for the domestically produced goods rises so that the terms-of-trade condition improves

(∆st becomes negative). However, this structural equation creates a very strong restriction

between the dynamics of real output growth and the terms-of-trade to be matched in the

estimation. This restriction is found to create a conflict with other endogenous variables’

dynamics and results in highly implausible estimates.6 Following Lubik and Schorfheide’s

(2007) suggestion, we assume that changes in the terms-of-trade follow an AR(1) process:

∆st = ρs∆st−1 + εs,t, (4)

where ρs is the autoregressive coefficient and εs,t is a terms-of-trade shock. In addition, we

assume that the central bank’s monetary policy reaction function is forward-looking and the

interest rate is adjusted in a gradual fashion (interest-rate inertia) [see Clarida et al. (2000)]:

Rt = ρRRt−1 + (1− ρR)[ ψπEtπt+1 + ψyEt( yt+1 − ȳt+1)] + εR,t, (5)

where ρR is the parameter of interest rate smoothing, the ψi’s are the policy reaction coeffi-

cients, and εR,t is the exogenous shock to monetary policy. Finally, the structural model is

completed by adding exogenous AR(1) processes with autoregressive coefficients ρj’s on the

foreign inflation rate (π∗
t ) and the foreign output growth (∆y∗t ):

π∗
t = ρπ∗π

∗
t−1 + επ∗,t , (6)

6A similar problem was previously diagnosed in Lubik and Schorfheide (2007) when they estimated Gali
and Monacelli’s (2005) model based on data for Australia, Canada, New Zealand and the U.K.
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∆y∗t = ρy∗∆y
∗
t−1 + εy∗,t , (7)

where επ∗,t and εy∗,t are structural shocks to π∗
t and ∆y∗t , respectively. Together with the

shock to monetary policy, there are five structural shocks in the model. These shocks are

assumed to be mutually independent and distributed as εj,t ∼ iidN(0, σ2
j ) for j = R, e, s, π∗,

and y∗.

2.2 State-Space Representation of the DSGE Model

The log-linearized rational expectations model can be solved with a numerical method and

the solution is a state transition equation that describes the law of motion of the endogenous

variables and driving forces in the model.7 Next, we show how to transform the state tran-

sition equation into a state-space representation, in which a measurement equation relates

the DSGE model’s variables to the observable data.

Let Xt = [πt, yt − ȳt, Rt,∆et,∆st, π
∗
t ,∆y

∗
t ]
′

denote the vector that contains endogenous

state variables and exogenous driving force variables, and let εt = [εR,t, εe,t, εs,t, επ∗,t, εy∗,t]
′

denote the vector of exogenous structural shocks. The rational expectations model (1)-(7)

can be expressed as8

B(θ)Xt = C(θ)Xt−1 +D(θ)EtXt+1 + F (θ)εt, (8)

where θ ≡ {σ, α, ϕ, β, φ, ρs, ρR, ρπ∗ , ρy∗ , ψπ, ψy} is the vector of the model parameters, and

B(θ), C(θ) and D(θ) are conformable matrices of coefficients from the model described in

the previous section. The unique stable solution for this model is given by

A0(θ)Xt = A1(θ)Xt−1 + F (θ)εt, (9)

7The most popular solution methods are Blanchard and Kahn (1980), Klein (2000), Sims (2002), and
Uhlig (1999).

8In the state-space representation, (1) is rewritten as: yt − ȳt = Et(yt+1 − ȳt+1) − 1
σ [Rt − Etπt+1] −[

ασα(ω−1)
σα+ϕ

]
Et∆y

∗
t+1.
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where A1(θ) = C(θ) and A0(θ) satisfies: A0(θ) = B(θ)−D(θ)A0(θ)−1A1(θ). The solution to

the log-linearized rational expectations model then has the following form of transition for

the state variables:

Xt = Φ1(θ)Xt−1 + Φ2(θ)εt, (10)

where Φ1(θ) = A0(θ)−1A1(θ) and Φ2(θ) = A−1
0 (θ)F (θ).

To estimate the DSGE model, a measurement equation based on a set of observables, Yt,

is specified as

Yt = ΛXt + ut, (11)

where Λ defines the relationship between the observed variables and the unobservable state

variables, and ut is the measurement error. Jointly, equations (10) and (11) form a state-

space representation.

In a conventional DSGE model estimation, (10) is usually timed at the quarterly fre-

quency. This assumption is imposed mainly because a real output measure such as GDP

does not have monthly observations. However, as argued in Aadland and Huang (2004),

Kim (2010), and Foroni and Marcellino (2014b), if the true decision period is a month,

then a quarterly frequency model may lead to misspecification error or temporal aggregation

bias. In the following subsection, we describe how to estimate the monthly DSGE model of

(10)-(11) within a mixed-frequency framework.

2.3 The Structural Mixed-Frequency (DSGE-MF) Model

In this subsection, we build a mixed-frequency model that is based on the DSGE framework

introduced in the previous subsection, and is denoted as the DSGE-MF model. We assume

that the economic agents make decisions on a monthly basis, that is, the subscript t in (1)-

(11) denotes a month. The observable variables in the measurement equation (11), however,

include both quarterly and monthly data. Specifically, GDP data for both the domestic
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and foreign countries are quarterly observations, while inflation rates, interest rates, terms-

of-trade, and exchange rates are all monthly observations. To incorporate the quarterly

observations in this monthly model, we use the following aggregation rule. For the domestic

real output growth, we define the aggregator Qt as:

Qt = ∆yt + ∆yt−1 + ∆yt−2 + ξt Qt−1, (12)

where

ξt =

{
0 if t = January, April, July, October,
1 otherwise.

The resulting QMarch, QJune, QSeptember, and QDecember are quarter-on-quarter growth rates

of output.

Denote GDPGRt as the observed quarter-on-quarter real GDP growth rate in the months

of March, June, September, or December, and as missing values in the other months. We

approximate the logarithm of real GDP in a specific quarter by summing over three months

the logarithm of real GDP in that quarter to obtain

GDPGRt ≈ Qt + measurement error,

for t = March, June, September, or December. In other words, aside from measurement

errors, Qt is the (quarter-on-quarter, qoq) growth rate of output from the previous quarter.

We can use the estimate of Qt to make inferences about the qoq real GDP growth. Similarly,

the aggregation rule for the foreign real output growth rate is

Q∗
t = ∆y∗t + ∆y∗t−1 + ∆y∗t−2 + ξt Q

∗
t−1. (13)

Apparently the aggregators Qt and Q∗
t are latent because their components are all latent

variables.

We add these aggregators into the latent vectorXt and link the real GDP growth rate data

in Yt to the aggregators. Define X̃t as the new vector of state variables, which includes the two
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aggregators and necessary lagged variables: X̃t = [Xt, yt−1− ȳt−1, yt−2− ȳt−2,∆y
∗
t−1, Qt, Q

∗
t ]
′
.

The state space model (10)-(11) becomes

X̃t = Φ̃1(θ; ξt)X̃t−1 + Φ̃2(θ; ξt)εt, (10’)

Yt = Λ̃X̃t + ut, (11’)

where Φ̃1(θ; ξt), Φ̃2(θ; ξt), and Λ̃ are conformable matrices of coefficients when the state

vector is extended from Xt to X̃t. The structural shocks εt’s and the measurement errors

ut’s are assumed to be iid normally distributed and are mutually independent of each other.

Note that in this monthly frequency model, the quarterly output variables in the vector Yt

contain missing values. The state transition equation (10’) and the measurement equation

(11’) can be jointly estimated using the contemporaneous Kalman filter to yield maximum

likelihood estimates; see Durbin and Koopman (2001) for further details on the Kalman

filter’s smoother and treatment for missing observations. Since we are interested in the

state variables themselves, the Kalman smoother is used to derive the estimates of the state

variables.

2.4 The Reduced-Form Mixed-Frequency (RE-MF) Model

For comparison purposes, a reduced-form mixed-frequency empirical model, denoted as RE-

MF, is estimated. The model does not impose any cross-equation restrictions. The RE-MF

model includes the aggregation rules (12)-(13) and the following transition equations:

πt = [πt−1, yt−1, Rt−1,∆et−1,∆st−1, π
∗
t−1,∆y

∗
t−1]

′
bπ + ηπ,t, (14)

yt = [πt−1, yt−1, Rt−1,∆et−1,∆st−1, π
∗
t−1,∆y

∗
t−1]

′
by + ηy,t, (15)

Rt = bR Rt−1 + ηR,t, (16)

∆et = be ∆et−1 + ηe,t, (17)

∆st = bs ∆st−1 + ηs,t, (18)

π∗
t = bπ∗ π

∗
t−1 + ηπ∗,t, (19)
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∆y∗t = by∗ ∆y∗t−1 + ηy∗,t, (20)

where the bj’s are coefficient vectors or scalars and the ηj,t’s are mutually uncorrelated

exogenous errors, for j = π, y, R, e, s, π∗, and y∗. Equations (14) and (15) specify that the

domestic inflation rate and real output growth are dependent on all of the lagged variables.

Due to high persistence in the remaining five variables, they are specified as AR(1) processes.

Define S̃t = [πt, yt, Rt,∆et,∆st, π
∗
t ,∆y

∗
t , yt−1, yt−2,∆y

∗
t−1, Qt, Q

∗
t ]
′

as the vector of state

variables in the RE-MF model. The corresponding state space model can be written com-

pactly as

S̃t = Ψ1S̃t−1 + Ψ2ηt, (21)

Yt = Ψ3S̃t + vt. (22)

The matrix Ψ3 defines the relationship between the observables in Yt and state variables in

S̃t. The entries in the matrices Ψ1 and Ψ2 are free parameters that remain to be estimated.

The reduced-form shocks in ηt and the measurement errors in vt are assumed to be iid

normally distributed and are mutually independent of each other.

3 Application to Taiwanese Data

3.1 Data

Taiwanese data from January 1998 to December 2015 are used to estimate the structural

model. The sample starts in 1998 because it is believed that Taiwan’s monetary policy is bet-

ter described by an interest rate rule after 1998. The U.S. data are used for foreign variables.

The observable vector includes the monthly CPI inflation rate (INFt), quarterly real GDP

growth rate (GDPGRt), monthly rate of the overnight interbank call rate (RATEt), monthly

nominal exchange rate of the Taiwan dollar against the U.S. dollar (∆EXGt), the monthly

percentage change in the ratio of the import price index to the export price index (∆TOTt),

the monthly U.S. CPI inflation rate (INF ∗
t ), and the quarterly U.S. real GDP growth rate
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(GDPGR∗
t ), i.e., Yt = [INFt, GDPGRt, RATEt,∆EXGt, ∆TOTt, INF

∗
t , GDPGR

∗
t ]
′
. The

quarterly observations for domestic and foreign real GDP growth are quarter-on-quarter

growth rates. All other observables are monthly observations of year-on-year percentage

changes.9 Figure 1 shows the time plot of the observables.

[Figure 1 here]

3.2 Estimation Results of the DSGE-MF and RE-MF Models

The state transition equation and measurement equation (10’)-(11’) are jointly estimated us-

ing the Kalman filter to yield maximum likelihood (ML) estimates. In order for the Kalman

filter estimation to reach reasonable and robust estimates, we calibrate four structural pa-

rameters based on the results reported in the previous literature and estimate the remaining

parameters using the ML method. In column (A) of Table 1, the calibrated values are listed

in the upper panel and the ML estimates and their associated standard errors (S.E.’s) are

reported in the lower panel.

[Table 1 here]

Among the calibrated parameters, the discount rate (β) for the monthly frequency model

is set at 0.998 to match a sample average of 1.91% for the annualized interbank call rate

in Taiwan. Following Teo (2009), a DSGE study for the Taiwanese economy, we set the

inverse of the Frisch labor supply elasticity (ϕ) at 5. The value of the degree of openness

(α) is set at 0.53, which is calibrated from the historical average of Taiwan’s import share

of GDP. For the price stickiness parameter, φ is calibrated at 0.875, which implies that on

average each intermediate firm waits 8 months before resetting its prices. This calibrated

9The monthly observations in this paper are year-on-year percentage changes. As an alternative, we have
estimated models with these observables constructed as month-on-month percentage changes. However,
these series contain high degrees of noise and cause the maximum likelihood estimates to be poor. In the
paper, the real GDP growth is constructed as the quarter-on-quarter growth rate to avoid further enlarging
the dimension of the state-space model. If instead year-on-year real output growth is used, we need to
include additional lagged variables in the state vector.
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value is consistent with the estimated stickiness duration of 2.7 quarters in Teo (2009) for

the Taiwanese economy.10

As for the inverse of the intertemporal elasticity of substitution (IES), the ML estimate

σ̂ = 1.169 is statistically significant at the 5% level. The estimates of the first-order autore-

gressive coefficients in the exogenous AR(1) processes are all highly significant. The degree

of policy inertia is high and statistically significant (ρ̂R = 0.980), but the policy reaction

parameters (ψ̂π and ψ̂y) are not significant at the conventional significance levels. The in-

significant policy response to the expectations of inflation or the output gap might have

resulted from the fact that the central bank of Taiwan rarely acted hawkishly during the

sample period because inflation was tame. Figure 1(g) confirms the tendency for the nominal

interest rate to decline, which is in line with more rate cuts than rate hikes, as shown in

Figure 1(h).

Figure 2 plots the estimated state variables of the DSGE-MF model and the linked vari-

ables in the data. In the cases of interest rates and exchange rates, the estimated states

and observables are almost identical, as is evident from Table 1(A), which shows that the

standard deviations of the measurement errors of Rt and ∆et are essentially zero. In the

case of the domestic CPI inflation rate, Figure 2(a) shows a good in-sample fit, which can be

explained by the small standard deviation in the measurement error (σ̂π = 0.564). On the

other hand, the changes in the terms-of-trade are more volatile than the model estimates,

which results in a large standard deviation in the measurement error (σ̂u,s = 5.037). More-

over, a large standard deviation in the structural exchange rate shocks (σ̂e = 6.629) indicates

that the dynamics of the exchange rates often deviates from the law of one price.

[Figure 2 here]

Figure 2(e) plots the estimated and the actual quarterly GDP growth (i.e., Qt versus

GDPGRt) at the quarterly frequency. These two series comove with a correlation coefficient

10Estimates in Teo (2009) are obtained using the Bayesian method for the sample period of 1992Q1 -
2004Q4.
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of 0.25. The large standard deviation in the measurement error (σ̂u,y = 1.77) results in the

imperfect performance of the model in capturing the volatility of the actual GDP growth. In

approximation, var(GDPGRt) = var(Qt)+var(uy,t). The standard deviation of the actual

GDP growth is 1.83; however, the standard deviation of Qt in this model is merely 0.42. A

more satisfactory model would generate an estimate of σu,y low enough for the estimated

GDP growth to mimic the fluctuations in the actual data.

In a sensitivity analysis, we experiment with three alternative sets of parameters that are

chosen to be fixed by calibration. Table 1(B) sets one additional parameter (the intertempo-

ral elasticity of substitution, IES) as fixed, i.e. σ = 1. Calibrating the IES parameter at the

log-utility specification is a common setup in DSGE modeling and has been adopted in Teo

(2009). The remaining ML estimates in Table 1(B) are similar to those in Table 1(A). The

policy reaction parameters continue to be statistically insignificant. The second alternative

set is to have the price stickiness parameter estimated using the ML method (see Table

1(C)). Other than the high estimate of stickiness (φ̂ = 0.945) and that the policy reaction

parameters become statistically significant, the remaining ML estimates show evidence of

robustness.11 In the third alternative set, the openness parameter is freely estimated to yield

α̂ = 1.000, inferring that the Taiwanese economy is completely open. Even with such an

extreme value for α, the other ML estimates are close to those reported in columns (A),

(B), and (C). In general, the ML estimation results are proved to be quite robust. For the

nowcasting performance evaluation in the next subsection, we report the results based on

the DSGE specification that was used to produce Table 1(A).

[Table 2 here]

In Table 2, we report the ML estimates of the reduced-form mixed-frequency model. The

coefficients in these AR(1) state transition equations all exhibit high persistence. For the

11With φ̂ = 0.945, the estimated pricing adjustment behavior is highly sluggish for it implies that on
average each firm waits 18 months before resetting prices. As discussed in Kim (2010), the estimates of price
stickiness could be very sensitive to the estimation strategies and model specifications. The range in the
estimates of the price stickiness duration in some U.S. studies is wide too, being as short as 8 months and
as long as 24 months.
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reduced-form equation of yt, the coefficients that are statistically significant correspond to

lagged output growth (yt−1) and lagged terms-of-trade changes (∆st−1). In the measurement

equation, the most volatile measurement error series is associated with the actual GDP

(σ̂u,y = 1.376). Given that this estimate is smaller when compared to the DSGE-MF models

in Table 1, the RE-MF model has a satisfactory overall in-sample fit.

3.3 Nowcasting Real GDP Growth

In this subsection, we evaluate the structural model’s ability to nowcast the real GDP growth

rates against the reduced-form models. We estimate these models recursively over the period

from 2012M1 - 2015M12. The nowcast evaluation is exercised based on a pseudo real-time

dataset, which is a final vintage dataset that takes the ragged-edge data structure.12 For

instance, when we have data available up to 2015M12 and are interested in nowcasting GDP

growth for the fourth quarter of 2015, the data used in the estimation include all the monthly

series up to 2015M12 and all the quarterly series up to 2015M9. This is due to the publication

lag of the GDP figures. The 2015Q4 GDP data will not be published until late January or

early February of the following year. See Table 3 for an illustration of the data structure in

nowcasting the GDP growth for 2015Q4.

[Table 3 here]

The state-space approaches of the DSGE-MF and RE-MF models are system approaches

that jointly describe the dynamics of all the variables considered in the models. Their

computational burden may greatly increase as the models include more variables and the

dimension of the parameter set rises. As an alternative approach that allows one to deal with

data sampled at different frequencies, the MIDAS regression is a popular reduced-form model

that can be found in many empirical applications. We consider a basic MIDAS regression for

12In Taiwan, no real-time data on quarterly national accounts are available. Given that policy evaluation
is not the main purpose of the current paper, our second-best choice is to use the pseudo real-time data. A
number of empirical studies have conducted model comparisons based on the pseudo real-time data; see, for
example, Schumacher and Breitung (2008), Giannone et al. (2008), and Foroni and Marcellino (2014a).
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the purpose of nowcasting comparisons. Let τ index the quarter, Y Q
τ denote the quarterly

GDP growth we are interested in nowcasting, and XM
k,τ denote the monthly explanatory

variable that is dated as the k-th month of quarter τ , with k = 1, 2, and 3. A basic MIDAS

model for a single monthly explanatory variable is given by:

Y Q
τ = µ+ γ

2∑
j=0

w3−j(θ1, θ2) XM
3−j,τ + ετ , (23)

where

wk(θ1, θ2) =
exp(θ1k + θ2k

2)∑3
j=1 exp(θ1j + θ2j2)

,

and µ, γ, θ1, and θ2 are regression parameters. The design of the normalized exponential

Almon lag polynomial helps to prevent the proliferation of the parameters set. We estimate

an extended version of (23) that includes all five monthly variables in our structural model

as the skip-sampled explanatory variables in our MIDAS regression.13 According to the unit

root test, only the interest rate series appears to be nonstationary.14 Therefore, the monthly

variables included in the MIDAS regression are the first-difference of the interest rate, the

percentage change in the exchange rate, the percentage change in the terms-of-trade, the

domestic inflation rate, and the U.S. inflation rate. The MIDAS regression parameters are

estimated by using the Nonlinear Least Squares method.

[Table 4 here]

The nowcasting comparison results based on the DSGE-MF, the RE-MF and the MIDAS

models are presented in Table 4, with bold figures indicating the model that produces the

13The mixed-frequency model is a flexible model that can incorporate any timely information that proves
to be useful for nowcasting, such as survey data from experts or a monthly industrial production index.
Because the current paper focuses on a structural model, it only includes variables that are considered in
the DSGE framework. For comparison purposes, it is only fair if we use the same set of observables as in
other models.

14The Augmented Dickey Fuller (ADF) test is applied to the dependent variable (GDP growth rate) and
the null of a unit root is rejected at the conventional significance level. For the explanatory variables, the
ADF tests reject the null of a unit root for the domestic and foreign inflation rates, the changes in the
terms-of-trade, and the changes in the exchange rate. The test shows that the skip-sampled monthly interest
rate series contains a unit root. The ADF test results are available from the authors upon request.
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smallest squared nowcast error for a particular quarter. In the 16 quarters under evaluation,

the DSGE-MF model has the smallest squared error in 9 cases, the RE-MF model has that

in 4 cases, and the MIDAS regression has that in 3 cases. A comparison based on the

RMSE (root-mean-squared-error) also favors the DSGE-MF model (0.944 from the DSGE-

MF versus 1.266 from the RE-MF and 1.462 from the MIDAS). When scrutinizing the

outcome more closely, we find that the MIDAS model tends to underestimate the true GDP

growth in most quarters. Consequently, the three cases with the lowest squared errors from

the MIDAS model merely emerge by chance. When we limit our attention to compare

the two mixed-frequency state-space models, the DSGE-MF beats the RE-MF model in

11 quarters and loses to it in 5 quarters. This leads us to conclude that the DSGE-based

mixed-frequency model outperforms both the reduced-form mixed-frequency model and the

MIDAS regression.

It is noted, however, that the DSGE-MF model performs disappointingly with larger

nowcast errors for quarters with sudden output contraction (i.e., 2012Q2, 2013Q1, 2015Q3

and 2015Q4). Several possibilities could have contributed to these underperforming mo-

ments. First, the structural model selected for the small open economy in Section 2 needs to

be revised in order to closely mimic the true economic structure of Taiwan. The structural

model we adapt is abstracted from specifying capital goods, money, and wages, and from

distinguishing between tradable and non-tradable goods. A more realistic DSGE model that

incorporates investment and the financial sector may benefit our nowcasting task. Secondly,

the insignificant monetary policy reaction function may suggest that the Taylor rule has

not been adopted in Taiwan during the sample period. If this is true, instant changes in

the interest rate will fail to give the model a correct inference on the expected inflation or

expected future output growth.

With the above-mentioned model limitations in mind, working with a structural model

will certainly pay off in terms of seeking a way to improve it. In our application, the

estimation results lead us to look for a different policy rule that better suits the Taiwanese
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economy. In brief, the mixed-frequency structural modeling approach proposed in this paper

generates nowcasting gains because of the model’s superiority in two respects. The mixed-

frequency approach allows us to use timely available information and the structure helps in

shedding light on possible ways to improve the empirical model.

4 Conclusion

The major contribution of this paper is that it builds a mixed-frequency small open economy

structural model. Based on a monthly small open dynamic stochastic general equilibrium

(DSGE) model, we demonstrate how to develop a state-space representation that incorpo-

rates both monthly and quarterly observations. The key innovation in our method is that

it introduces an aggregation rule in that the latent aggregator is linked to the observed

quarterly output growth via aggregation. The mixed-frequency structural model is jointly

estimated by the Kalman filter. Finally, we use the Kalman smoother to estimate the current

latent aggregator and use it to nowcast real GDP growth.

Taiwanese data from January 1998 to December 2015 are used to assess whether the

mixed-frequency structural model has an advantage over the reduced-form mixed-frequency

model and the MIDAS model in nowcasting real GDP growth. We find that the DSGE-based

mixed-frequency model produces better results than the other two reduced-form alternatives.

This suggests a promising information superiority based on the structural model and the

mixed-frequency estimation strategy.

The proposed DSGE-MF method, however, is subject to a few limitations. First, a

structural model is more prone to specification errors. The small open DSGE model we

consider is rather simple relative to reality. For example, the model is abstracted away from

capital goods and monetary aggregates. Wage stickiness is not taken into account, either.

The insignificant Taylor reaction function may indicate that the interest rate rule is not

adopted in Taiwan. A continuous search for structural models that can better characterize a
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specific small open economy is required before we can make the DSGE-based mixed-frequency

framework more valuable in practice.

Second, the computational cost of a mixed-frequency structural model may increase

rapidly as the structure becomes more realistic and complex. The maximum likelihood

estimates of the parameters could become very sensitive to model specifications as the state-

space model involves more variables and the dimension of the parameter set increases. A

possible solution for this difficulty is to impose a common factor structure in the state-space

representation, which can effectively reduce the number of parameters to be estimated.

Another extension to our current framework that may prove to be fruitful is to develop

a more efficient and informative measurement equation. This may be achieved by including

relevant monthly indicators that contain important messages about real output. For example,

a monthly business sentiment measure such as the Purchasing Managers’ Index (PMI) may

provide valuable information for nowcasting real GDP growth. We leave this task to future

research.
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Table 2: Full sample estimation results of the RE-MF model

Regressors State Transition Equations

eq (14) eq (15) eq (16) eq (17) eq (18) eq (19) eq (20)

πt yt Rt ∆et ∆st π∗
t ∆y∗t

πt−1 0.688∗∗ -0.117
(0.071) (0.120)

yt−1 -0.481 -0.674∗∗

(0.337) (0.102)

Rt−1 0.367 1.735 0.979∗∗

(0.920) (1.969) (0.005)

∆et−1 -0.008 -0.047 0.922∗∗

(0.020) (0.038) (0.028)

∆st−1 0.068∗ 0.134∗ 0.964∗∗

(0.038) (0.073) (0.019)

π∗
t−1 0.049 -0.043 0.938∗∗

(0.181) (0.338) (0.031)

∆y∗t−1 3.740 11.030 0.903∗∗

(5.941) (14.273) (0.056)

Std. dev. of state equation shocks:
0.870∗∗ 0.166 0.033∗∗ 2.469∗∗ 1.558∗∗ 0.456∗∗ 0.023∗∗

(0.059) (0.303) (0.015) (0.482) (0.124) (0.044) (0.008)

Std. dev. of measurement errors:
0.000 1.376∗∗ 0.000 0.000 0.000 0.000 0.472∗∗

(0.094) (0.390) (0.000) (0.022) (0.061) (0.012) (0.075)

ML value: -1085.02

Notes: Figures in parentheses are standard errors. * indicates significance at the 10% level; **
indicates significance at the 5% level; 0.000 indicates an estimate that is smaller than 0.001.
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Table 3: Mixed-frequency data structure

YR/MO CPI Interest Rate Exchange Rate TOT Foreign CPI GDP Growth Foreign GDP Growth
Inflation Change Change Inflation

(%) (%) (%) (%) (%) (%) (%)
INFt RATEt ∆EXGt ∆TOTt INF ∗t GDPGRt GDPGR∗

...
...

...
...

...
...

...
...

2014 M07 1.764 0.387 -0.137 0.000 2.202
2014 M08 2.074 0.386 0.025 −1.404 1.955
2014 M09 0.711 0.387 1.249 −2.496 1.821 1.259 1.218
2014 M10 1.050 0.387 3.188 −3.695 1.702
2014 M11 0.854 0.387 4.069 −6.489 1.430
2014 M12 0.602 0.387 5.494 −9.243 1.261 0.227 0.573

2015 M01 -0.939 0.387 4.696 −11.528 0.782
2015 M02 -0.204 0.388 3.914 −10.280 1.017
2015 M03 -0.621 0.387 3.547 −10.444 1.035 0.472 0.508
2015 M04 -0.819 0.387 2.848 −10.135 0.696
2015 M05 -0.731 0.387 1.788 −9.701 0.633
2015 M06 -0.565 0.387 3.561 −9.921 0.678 −1.145 0.647
2015 M07 -0.632 0.387 4.476 −9.979 0.786
2015 M08 -0.439 0.367 7.826 −11.022 0.906
2015 M09 0.296 0.320 9.067 −9.993 0.604 −0.302 0.493
2015 M10 0.315 0.301 7.543 −8.565 0.609
2015 M11 0.529 0.301 6.524 −6.613 0.806
2015 M12 0.135 0.275 4.946 −5.250 0.906
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Table 4: Results of nowcasting real GDP growth (qoq)

YR/MO Real GDP Growth DSGE-MF Model RE-MF Model MIDAS Model

Nowcast value Sq. error Nowcast value Sq. error Nowcast value Sq. error
(A) (B) (C) (D) (E) (F) (G)

2012 M03 2.536 1.010 2.331 -0.032 6.594 -0.038 6.630
2012 M06 -0.157 1.065 1.493 -0.026 0.017 -0.944 0.620
2012 M09 1.692 1.538 0.024 0.390 1.695 -0.618 5.337
2012 M12 0.233 0.555 0.104 2.213 3.921 -1.535 3.125

2013 M03 -0.300 0.858 1.342 0.400 0.491 -1.445 1.310
2013 M06 0.993 0.505 0.239 1.231 0.057 -0.432 2.031
2013 M09 0.786 0.563 0.050 1.527 0.548 -0.201 0.973
2013 M12 1.487 1.420 0.005 0.641 0.716 -0.190 2.813

2014 M03 0.200 1.104 0.818 1.513 1.724 0.194 0.000
2014 M06 1.641 1.576 0.004 1.061 0.336 -0.080 2.962
2014 M09 1.259 1.023 0.056 1.086 0.030 -0.772 4.128
2014 M12 0.227 0.529 0.091 -0.189 0.173 -1.172 1.957

2015 M03 0.472 0.395 0.006 -0.523 0.991 -0.665 1.294
2015 M06 -1.145 1.018 4.677 1.540 7.210 -0.554 0.349
2015 M09 -0.302 1.306 2.588 0.529 0.692 -0.475 0.030
2015 M12 0.790 1.436 0.418 1.450 0.436 0.001 0.623

RMSE 0.944 1.266 1.462

Note: Entries in bold are associated with the model that produces the smallest squared nowcast error for
a particular quarter.
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Figure 1: Observables
(a) Taiwan real GDP growth (b) U.S. real GDP growth

(c) Taiwan CPI inflation (d) U.S. CPI inflation

(e) Changes in terms-of-trade (f) Changes in exchange rate

(g) Interest rate (annual rate) (h) Changes in interest rate
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Figure 2: Estimated state variables (from the DSGE-MF model) vs. observed data
(a) State variable πt vs. CPI inflation rate

(b) State variable Rt vs. interbank call rate (monthly rate)
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(c) State variable ∆et vs. percentage changes in nominal exchange rate

(d) State variable ∆st vs. percentage changes in terms-of-trade
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(e) State variable Qt vs. actual GDP growth rate
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