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Abstract

We are interested in constructing confidence intervals for the autoregressive (AR)

coe�cient of a first-order AR model with i.i.d. positive errors via an extreme value

estimate (EVE). We assume that the error distribution has a density function f

"

(x)

behaving like b

1,0

x

↵0�1

as x ! 0, where b

1,0

and ↵

0

are unknown positive constants.

These specifications imply that the EVE has a limiting distribution depending on b

1,0

and ↵

0

from which only an infeasible interval estimate can be obtained. To alleviate

this di�culty, we introduce a novel procedure to estimate these two constants and

establish the desired consistency. This consistency result enables us not only to gain

a better understanding of the underlying error distribution, but also to construct

a feasible, asymptotically valid confidence interval of the AR coe�cient, without

resorting to a bootstrap procedure described in Datta and McCormick (1995). The

performance of the proposed interval estimate is further illustrated through simulation

studies and real data analysis.

Keywords: Confidence intervals; extreme-value estimates; positive autoregressive pro-
cesses; regular variation indices
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1 Introduction

Suppose that the data are generated from the first-order autoregressive (AR(1)) model:

y
t

= ⇢y
t�1

+ "
t

, t = 1, 2, . . . , n, (1)

where 0  ⇢ < 1 and "
t

are i.i.d. positive errors satisfying

lim
x!0

f
"

(x)

b
1,0

x↵0�1

= 1, for some ↵
0

> 0 and b
1,0

> 0, (2)

with f
"

(x) denoting the density function of "
1

, and

E("�0
1

) < 1, for some �
0

> ↵
0

. (3)

Model (1) with "
t

obeying (2) and (3) has found broad applications in hydrology, economics,
finance, epidemiology and quality control; see, among others, Gaver and Lewis (1980), Bell
and Smith (1986), Lawrance and Lewis (1985), Davis and McCormick (1989), Smith (1994),
Barndor↵-Nielsen and Shephard (2001), Nielsen and Shephard (2003), Sarlak (2008), and
Ing and Yang (2014). Note that assumption (2) is quite flexible for positive errors although
it is violated when the distribution of "

1

has a point mass at zero or has support whose
lower limit is greater than zero. Assumption (3) is, in general, di�cult to justify. However,
it is easily fulfilled when the distribution of "

1

has finite moments of all positive orders.

One of the most popular methods for estimating ⇢ is the least squares estimate (LSE),

⇢̃
n

=
n

X

i=2

(y
i�1

� ȳ
n�1

)(y
i

� ȳ)/
n

X

i=2

(y
i�1

� ȳ
n�1

)2, (4)

where ȳ
t

= t�1

P

t

i=1

y
i

. However, when (2) is assumed, LSE may not be e�cient and other
estimation procedures are needed. When the parametric form of the distribution of "

t

is
known, a natural alternative to ⇢̃

n

is the maximum likelihood estimator (MLE). Another
option that can be applied to more general situations is the extreme value estimate (EVE),

⇢̂
n

= min
1in�1

y
i+1

/y
i

, (5)

which is also the MLE when "
t

has an exponential distribution or is uniformly distributed
over [0, a] for some a > 0; see Bell and Smith (1986). It is shown in Corollary 2.4 of Davis
and McCormick (1989) that the limiting distribution of ⇢̂

n

satisfies

lim
n!1

P{(b
1,0

E(y
1

)↵0/↵
0

)1/↵0n1/↵0(⇢̂
n

� ⇢) > t} = exp{�t↵0}, (6)

provided (2) and (3) hold true. Since ⇢̃
n

is
p
n-consistent (see (19)), it is clear from (6) that

when ↵
0

< 2 (↵
0

> 2), the convergence rate of ⇢̂
n

(⇢̃
n

) is faster than that of ⇢̃
n

(⇢̂
n

); see
Section 2 of Ing and Yang (2014) for a more comprehensive comparison of ⇢̂

n

and ⇢̃
n

. Ing
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and Yang (2014) also explored the asymptotic behaviors of the mean squared prediction
error (MSPE) of the EV predictor, ŷ

n+1

= µ̂
n

+ ⇢̂
n

y
n

, of y
n+1

, under (1)–(3) with �
0

� 2,
where µ̂

n

= (n � 1)�1

P

n�1

t=1

(y
t+1

� ⇢̂
n

y
t

) is a natural estimate of µ = E("
1

) based on ⇢̂
n

.
Chan, Ing and Zhang (2017) recently generalized Ing and Yang’s MSPE result to a general
near-unit root model, which is model (1) with ⇢ = ⇢

n

= 1 � b/n�1 , 0 < �
1

 1, and
b > 0. This generalization allows one to understand to what degree such general models
can be used to establish a link between stationary and unstable models from a prediction
perspective.

Interval estimation of ⇢ based on ⇢̂
n

has also been considered by Datta and McCormick
(1995). A major di�culty of constructing a confidence interval for ⇢ via (6) is that ↵

0

and
b
1,0

appear in the normalizing constant and ↵
0

also appears in the limit. While the kernel
method of density estimation can be applied to the AR residuals to obtain estimates of b

1,0

and ↵
0

, such estimates may be seriously biased when 0 < ↵
0

 1 because the underlying
density function is nonzero or even has a pole at the origin; see Marron and Ruppert (1994).
In fact, some sophisticated kernel estimation algorithms have been proposed by Marron
and Ruppert (1994) to reduce the boundary bias. However, consistency of the resultant
estimates of b

1,0

and ↵
0

based on the AR residuals still seems di�cult to establish when
only (2) is assumed. To bypass this di�culty, Datta and McCormick (1995) suggested
an asymptotically pivotal quantity based on ⇢̂

n

and adopted a bootstrap procedure to
consistently estimate its limiting distribution, thereby leading to an asymptotically valid
confidence interval for ⇢.

In this paper, we propose novel consistent estimates of ↵
0

and b
1,0

, which can be used
in conjunction with (6) to construct an asymptotically valid confidence interval for ⇢.
Our approach o↵ers several advantages compared to the method proposed by Datta and
McCormick (1995). To start with, it is less computationally intensive than the bootstrap
procedure of Datta and McCormick (1995). Next, it delivers consistent estimates of ↵

0

and b
1,0

from which a better understanding of the error distribution can be gained. The
consistent estimates of ↵

0

and b
1,0

also help decide whether or not the EVE is better than
the LSE; see Section 3 for further details. Finally, the simulation study given in Section
4.1 reveals that our method has a better finite sample performance in terms of percentage
coverage, in particular, when ↵

0

is relatively small. The rest of the paper is organized
as follows. We introduce a procedure for estimating b

0,1

and ↵
0

in Section 2. Section
3 states the consistency property of the proposed procedure and provides an asymptotic
valid confidence interval for ⇢. A method to select the better estimate between ⇢̂

n

and ⇢̃
n

is presented at the end of Section 3. In Section 4.1, we compare our method with Datta
and McCormick’s (1995) method through several simulation examples. In particular, their
actual coverage rates for nominal 95% confidence intervals are compared. The performance
of these two methods is also illustrated via real data analysis in Section 4.2. We conclude
in Section 5. All proofs are deferred to the appendix.
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2 Estimation of ↵0 and b1,0

We take a somewhat nonstandard approach to estimate ↵
0

and b
1,0

. Note that (2) yields

lim
n!1

P (n1/↵0"
(1)

 x) = 1� exp(�(b
1,0

/↵
0

)x↵0), (7)

where "
(j)

is the jth order statistic of {"
1

, . . . , "
n

}. The right-hand side of (7) is a Weibull
distribution whose density function is given by

f
(1)

(x) = (↵
0

/⌘
0

)x↵0�1 exp(�x↵0/⌘
0

), (8)

where ↵
0

and ⌘
0

= ↵
0

/b
1,0

are shape and scale parameters, respectively.

Divide the AR residuals, "̂
i

= y
i

�⇢̂
n

y
i�1

, i = 2, . . . , n, intom subgroups, {"̂
j

, j 2 I
i

}, i =
1, . . . ,m, wherem ⇡ n1�✓, with 0 < ✓ < 1/2, and I

i

= {(i�1)(n�1)/m+2, . . . , i(n�1)/m+
1}. Here, a

n

⇡ b
n

means a
n

/b
n

! 1 as n ! 1, and m and n
1

= (n� 1)/m are assumed to
be positive integers for the sake of simplicity of exposition. Define "̂⇤

i

= min
j2Ii "̂j. Since

it is expected that n1/↵0
1

"̂⇤
i

, i = 1, . . . ,m, are asymptotically independent, we are motivated
by (7) and (8) to estimate ↵

0

through maximizing the average log-likelihood function,

l(↵, ⌘) = l(↵, ⌘|ŵ
1

, . . . , ŵ
m

) =
1

m

m

X

i=1

log f
(1)

(ŵ
i

)

= log
↵

⌘
+ (↵� 1)

1

m

m

X

i=1

log ŵ
i

� 1

m⌘

m

X

i=1

ŵ↵

i

,

(9)

over ↵ 2 H
1

= [↵, ↵̄] and ⌘ 2 H
2

= [⌘, ⌘̄], where ↵ (⌘) and ↵̄ (⌘̄) are known lower and

upper bounds for ↵
0

(⌘
0

), and ŵ
i

= n⇠

1

"̂�
i

, with �1 < ⇠ < 1, "̂�
i

= max{"̂⇤
i

, n�✓0}, and
✓
0

> ✓/↵.

It is worth mentioning that ŵ
i

is used in (9) instead of n1/↵0
1

"̂⇤
i

because (i) the latter
is practically inaccessible; and (ii) there are some extremely small "̂⇤

i

leading to very large
| log "̂⇤

i

|. Moreover, while n⇠

1

may not be a proper normalizing constant for "̂�
i

, one of the
key observations obtained in this work is that for any �1 < ⇠ < 1,

↵̂(ŵ
1

, . . . , ŵ
m

) = ↵̂(w⇤
1

, . . . , w⇤
m

), (10)

where w⇤
i

= n
1/↵0
1

"̂�
i

,

(↵̂(ŵ
1

, . . . , ŵ
m

), ⌘̂(ŵ
1

, . . . , ŵ
m

)) = (↵̂, ⌘̂) = argmax
v2H

l(↵, ⌘|ŵ
1

, . . . , ŵ
m

),

and

(↵̂(w⇤
1

, . . . , w⇤
m

), ⌘̂(w⇤
1

, . . . , w⇤
m

)) = (↵̂⇤, ⌘̂⇤) = argmax
v2H

l(↵, ⌘|w⇤
1

, . . . , w⇤
m

),
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with v = (↵, ⌘)0 and H = H
1

⇥H
2

. To see this, note that for a given ↵, l(↵, ⌘|ŵ
1

, . . . , ŵ
m

)
and l(↵, ⌘|w⇤

1

, . . . , w⇤
m

) are maximized by choosing

⌘ = ⌘
⇠

(↵) = m�1

m

X

i=1

ŵ↵

i

and ⌘ = ⌘⇤(↵) = m�1

m

X

i=1

w⇤↵
i

, (11)

respectively. Moreover, straightforward calculations yield

l(↵, ⌘
⇠

(↵)|ŵ
1

, . . . , ŵ
m

)� l(↵, ⌘⇤(↵)|w⇤
1

, . . . , w⇤
m

)

= log ⌘⇤(↵)� log ⌘
⇠

(↵) + (↵� 1)
1

m

m

X

i=1

(log ŵ
i

� log ŵ⇤
i

)

= log n↵/↵0
1

� log n⇠↵

1

+ (↵� 1)(log n⇠

1

� log n1/↵0
1

)

= (1/↵
0

� ⇠) log n
1

,

which is independent of ↵. Therefore, l(↵, ⌘
⇠

(↵)|ŵ
1

, . . . , ŵ
m

) and l(↵, ⌘⇤(↵)|w⇤
1

, . . . , w⇤
m

)
are maximized by the same value of ↵, and hence (10) follows.

On the other hand, (11) yields ⌘̂ = m�1

P

m

i=1

ŵ↵̂

i

and ⌘̂⇤ = m�1

P

m

i=1

w⇤↵̂
i

, which are
not identical unless ⇠ = 1/↵

0

. To remedy this di�culty, we suggest estimating ⌘
0

using

⌘̃ = m�1

m

X

i=1

(n1/↵̂

1

"̂�
i

)↵̂ =
n
1

m

m

X

i=1

("̂�
i

)↵̂. (12)

Finally, b
1,0

is estimated by

b̂
1,0

=
↵̂

⌘̃
. (13)

The proposed estimate (↵̂, ⌘̃, b̂
1,0

) has the advantage of being easy to implement. The
consistency property of (↵̂, ⌘̃, b̂

1,0

) is discussed in the next section.

3 Consistency of (↵̂, ⌘̃, b̂1,0) and Asymptotic Valid Con-
fidence Intervals for ⇢

In this section, we need an assumption slightly stronger than (2),

f
"

(x)

b
1,0

x↵0�1

= 1 + o(x⌫) for some ⌫ > 0 as x ! 0. (14)

In addition, we set ⇠ = 1/2 (although other choices of ⇠ will lead to the same ↵̂) and
assume n

1

= bn✓c, where bac denotes the largest integer  a. The next theorem asserts
that (↵̂, ⌘̃, b̂

1,0

) possesses consistency in estimating (↵
0

, ⌘
0

, b
1,0

).
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Theorem 3.1 Assume (1), (3) and (14). Then, there exists  > 0, depending on ✓, ↵,
↵
0

, �
0

, and ⌫, such that

↵̂ = ↵
0

+O
p

(n�), ⌘̃ = ⌘
0

+O
P

(n� log n), b̂
1,0

= b
0

+O
P

(n� log n). (15)

One of the most interesting applications of Theorem 3.1 is that it can be used in
conjunction with (6) to provide an asymptotically valid confidence interval for ⇢. More
specifically, denote by Z% the confidence level of interest, where 0 < Z < 100. Let
0 < Z

1

< Z
2

< 100 satisfy Z
2

� Z
1

= Z and define

t
R

= (� logZ
1

%)1/↵0 ,

t
L

= (� logZ
2

%)1/↵0 ,

A
n

=
⇣m

↵0

⌘
0

⌘

1/↵0

n1/↵0 ,

where m
↵0 = E(y↵0

1

). Then, (6) implies that

(⇢̂
n

� t
R

/A
n

, ⇢̂
n

� t
L

/A
n

) (16)

is a Z% asymptotic confidence interval of ⇢. Since (16) is infeasible, we replace t
R

, t
L

and
A

n

by their estimates

t̂
R

= (� logZ
1

%)1/↵̂,

t̂
L

= (� logZ
2

%)1/↵̂,

Â
n

=
⇣m̂

↵0

⌘̃

⌘

1/↵̂

n1/↵̂,

where m̂
↵0 = n�1

P

n

i=1

y↵̂
i

, and obtain the following feasible confidence interval of ⇢,

(⇢̂
n

� t̂
R

/Â
n

, ⇢̂
n

� t̂
L

/Â
n

). (17)

The next theorem states the asymptotic validity of (17).

Theorem 3.2 Assume (1), (3) and (14). Then,

lim
n!1

P (⇢ 2 (⇢̂
n

� t̂
R

/Â
n

, ⇢̂
n

� t̂
L

/Â
n

)) = Z%. (18)

Equation (18) follows immediately from (3), (6), (14), and (15). We skip the details.

Theorem 3.1 can also be applied to selecting the better estimate between EVE, ⇢̂
n

, and
the LSE, ⇢̃

n

, when (3) holds with �
0

> 2. It is shown in Section 2 of Ing and Yang (2014)
that

n1/2(⇢̃
n

� ⇢) ) W
L

, (19)
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where ) denotes convergence in distribution and W
L

is a normal distribution with mean
0 and variance 1� ⇢2. In view of (6) and (19), we conclude that ⇢̃

n

is better (worse) than
⇢̂
n

if ↵
0

> 2 (< 2). If ↵
0

= 2, we deduce from (6) that

n1/2(⇢̂
n

� ⇢) ) W
E

,

where W
E

is a Weibull distribution with shape parameter ↵
0

and scale parameter ⌘
0

/m
↵0 .

Denote by µ and �2 the mean and the variance of "
1

. Then

E(W2

E

) =
2

b
1,0

⇣

�

2

1�⇢

2 +
µ

2

(1�⇢)

2

⌘ ,

which is smaller than (larger than, identical to) E(W2

L

) = 1� ⇢2 when

b
1,0

> (<,=)T
⇢,µ,�

2 ⌘ 2(1� ⇢)

(1 + ⇢)µ2 + (1� ⇢)�2

.

The above discussion suggests the following “oracle” estimate

⇢̌ora
n

= ⇢̂
n

(I{↵0<2} + I{↵0=2,b1,0>T⇢,µ,�2}) + ⇢̃
n

(I{↵0>2} + I{↵0=2,b1,0<T⇢,µ,�2})

+ ⇢̂
n

I{↵0=2,b1,0=T⇢,µ,�2}.
(20)

To implement (20), we first estimate T
⇢,µ,�

2 via

T̂
⇢,µ,�

2 =
2(1� ⇢̂

n

)

(1 + ⇢̂
n

)µ̂2

n

+ (1� ⇢̂
n

)�̂2

n

,

where µ̂
n

is defined in Section 1 and �̂2

n

= (1� ⇢̂2
n

)n�1

P

n

i=1

(y
i

� ȳ
n

)2, and then mimic ⇢̌ora
n

using

⇢̂ora
n

= ⇢̂
n

(I{↵̂n<2�an} + I{|↵̂n�2|an,ˆb1,0> ˆ

T⇢,µ,�2�bn})

+ ⇢̃
n

(I{↵̂n>2+an} + I{|↵̂n�2|an,ˆb1,0 ˆ

T⇢,µ,�2�bn}),

where {a
n

} and {b
n

} are sequences of positive numbers satisfying a
n

! 0, b
n

! 0,
n�&/a

n

! 0, and n�&/b
n

! 0 for any & > 0. By making use of Theorem 3.1, (3) with �
0

> 2,
and (6), it can be shown that P (|↵̂

n

� ↵
0

| � a
n

) = o(1), P (|b̂
1,0

� b
1,0

| � b
n

/2) = o(1), and
P (|T̂

⇢,µ,�

2 � T
⇢,µ,�

2 | � b
n

/2) = o(1). Hence the desired property,

lim
n!1

P (⇢̂ora
n

= ⇢̌ora
n

) = 1, (21)

follows.
Before closing this section, we mention that Ing and Yang (2014) have proposed a

somewhat di↵erent approach to choose between ⇢̂
n

and ⇢̃
n

. They suggested selecting the
estimate having the smaller accumulated prediction error, and proved that their method
has a property similar to (21). A comparison of the finite sample performance of ⇢̂ora

n

and
their method would be interesting future work.
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4 Numerical Illustrations

In Section 4.1, we present some simulation results in support of Theorems 3.1 and 3.2. In
Section 4.2, the performance of the proposed estimates is illustrated through analyzing two
real datasets.

4.1 Simulation Studies

We generate n observations from the AR(1) process

y
t

= ⇢y
t�1

+ "
t

, (22)

where n = 200 or 400, 0 < ⇢ < 1, and "
t

are i.i.d exponential random variables whose
density function is given by

f(x) = � exp(��x)I{x�0},� > 0, (23)

which is a special case of (2) with ↵
0

= 1 and b
1,0

= �. In finite sample situations, the
performance of our estimate, (↵̂, ⌘̃, b̂

1,0

), of (↵
0

, ⌘
0

, b
1,0

) can vary drastically according to the
values of ✓ and ✓

0

, recalling that bn✓c is the number of observations in each subgroup and
n�✓0 is the threshold value used to replace "̂⇤

i

= min
j2Ii "̂j when "̂⇤

i

< n�✓0 . Therefore, we
suggest a procedure to choose (✓, ✓

0

) from the confidence interval perspective. Throughout
this section, the confidence level is set to Z% = 95%.

Consider all grid-point pairs (✓, ✓
0

) in A ⇥ B, where A = B = {0.2, 0.22, . . . , 0.8}.
Divide y

1

, . . . , y
n

into K = 20 equal subgroups chronologically. For a given (✓, ✓
0

), we
apply (↵̂, ⌘̃, b̂

1,0

) and (17), with Z
1

= 4.9 and Z
2

= 99.9, to each subgroup separately,
and denote the confidence interval obtained from the ith subgroup by Î(i, ✓, ✓

0

). We then
compute the ratio,

R(✓, ✓
0

) =
]{i : 1  i  K, ⇢̂

n

2 Î(i, ✓, ✓
0

)}
K

, (24)

and choose the pair (✓̂, ✓̂
0

) minimizing

|R(✓, ✓
0

)� Z%|, (25)

noting that ⇢̂
n

is the EVE derived from the entire sample y
1

, . . . , y
n

. With the chosen
(✓̂, ✓̂

0

), we compute (↵̂, ⌘̃, b̂
1,0

) and (17) again using the entire sample and the same Z,Z
1

and Z
2

. If there is more than one (✓̂, ✓̂
0

) that minimizes (25), the one leads to the shortest
confidence interval is picked. In the sequel, this procedure is referred to as EV method.

Let (⇢̂(l)
n

, ↵̂(l), ⌘̃(l), t̂
(l)

R

, t̂
(l)

L

, Â
(l)

n

) denote the estimate of (⇢,↵
0

, ⌘
0

, t
R

, t
L

, A
n

) obtained in

the lth, 1  l  100, simulation run using the EV method. Since (⇢̂(l)
n

� t̂
(l)

R

/Â
(l)

n

, ⇢̂
(l)

n

�

8



Table 1: The values of R
i

, i = 1, . . . , 4, MSE
i

, i = 1, 2, and CR
i

, i = 1, 2 under model (22)
with error satisfying (23) (n = 200)

⇢ � MSE
1

R
1

MSE
2

R
2

R
3

R
4

CR
1

CR
2

0.3 0.5 1.93⇥10�4 0.954 3.58⇥10�7 0.998 1.829 0.497 0.92 0.93
1 5.25⇥10�5 0.957 6.55⇥10�9 0.979 1.273 0.633 0.97 0.90
1.5 3.07⇥10�5 0.945 5.54⇥10�9 0.960 1.168 0.649 0.92 0.85

0.5 0.5 9.89⇥10�5 0.981 2.88⇥10�8 0.999 1.597 0.536 0.94 0.92
1 3.97⇥10�5 0.949 7.74⇥10�9 0.960 1.005 0.682 0.92 0.91
1.5 1.73⇥10�5 0.963 2.32⇥10�9 0.969 1.195 0.616 0.96 0.93

0.8 0.5 1.30⇥10�5 0.996 9.15⇥10�9 0.999 1.595 0.535 0.96 0.85
1 1.29⇥10�5 0.985 2.57⇥10�9 0.989 1.412 0.616 0.95 0.90
1.5 2.16⇥10�5 0.994 1.31⇥10�8 0.999 1.688 0.533 0.95 0.93

Table 2: The values of R
i

, i = 1, . . . , 4, MSE
i

, i = 1, 2, and CR
i

, i = 1, 2 under model (22)
with error satisfying (23) (n = 400)

⇢ � MSE
1

R
1

MSE
2

R
2

R
3

R
4

CR
1

CR
2

0.3 0.5 1.02⇥10�5 0.942 8.25⇥10�10 0.952 1.025 0.682 0.93 0.92
1 6.90⇥10�6 0.954 6.59⇥10�11 0.969 1.012 0.842 0.93 0.91
1.5 1.00⇥10�5 0.951 4.51⇥10�10 0.961 1.125 0.668 0.95 0.92

0.5 0.5 2.13⇥10�6 0.988 2.67⇥10�11 0.990 1.092 0.853 0.97 0.92
1 3.51⇥10�6 0.977 5.83⇥10�11 0.982 1.073 0.835 0.96 0.92
1.5 3.55⇥10�6 0.977 3.19⇥10�11 0.985 1.072 0.855 0.94 0.90

0.8 0.5 6.64⇥10�7 0.969 1.14⇥10�11 0.974 1.068 0.812 0.94 0.90
1 7.49⇥10�7 0.969 7.72⇥10�12 0.971 1.046 0.834 0.95 0.90
1.5 5.88⇥10�7 0.989 4.82⇥10�12 0.990 1.080 0.861 0.96 0.90

t̂
(l)

L

/Â
(l)

n

) is used to approximate the ideal (infeasible) confidence interval, (⇢̂(l)
n

�t
R

/A
n

, ⇢̂
(l)

n

�
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Table 3: The values of R
i

, i = 1, . . . , 4, MSE
i

, i = 1, 2, and CR
i

, i = 1, 2 under model (22)
with error satisfying (26) (n = 200)

⇢ ↵ MSE
1

R
1

MSE
2

R
2

R
3

R
4

CR
1

CR
2

0.3 0.8 4.69⇥10�5 0.948 6.02⇥10�9 0.940 1.533 0.428 0.93 0.90
1.4 4.26⇥10�5 1.001 3.07⇥10�8 0.996 0.986 1.062 0.91 0.88
1.8 2.63⇥10�4 1.040 1.89⇥10�7 0.995 0.781 1.413 0.77 0.91

0.5 0.8 3.65⇥10�5 0.959 2.60⇥10�9 0.970 1.528 0.435 0.92 0.85
1.4 1.26⇥10�4 0.979 5.72⇥10�7 0.999 1.411 0.757 0.96 0.93
1.8 4.83⇥10�5 1.001 1.78⇥10�7 0.999 0.983 1.081 0.86 0.90

0.8 0.8 6.60⇥10�6 0.947 7.45⇥10�10 0.950 1.490 0.396 0.89 0.84
1.4 5.40⇥10�6 1.000 6.69⇥10�9 0.999 1.024 1.002 0.91 0.89
1.8 9.11⇥10�6 1.000 7.53⇥10�8 0.999 0.987 1.073 0.87 0.84

Table 4: The values of R
i

, i = 1, . . . , 4, MSE
i

, i = 1, 2, and CR
i

, i = 1, 2 under model (22)
with error satisfying (26) (n = 400)

⇢ ↵ MSE
1

R
1

MSE
2

R
2

R
3

R
4

CR
1

CR
2

0.3 0.8 1.57⇥10�5 0.958 1.24⇥10�10 0.970 1.219 0.540 0.94 0.91
1.4 1.52⇥10�5 0.996 1.10⇥10�8 0.999 1.047 0.988 0.91 0.89
1.8 9.83⇥10�5 1.023 2.24⇥10�8 0.996 0.961 1.110 0.81 0.88

0.5 0.8 9.65⇥10�6 0.974 8.22⇥10�11 0.980 1.288 0.636 0.96 0.86
1.4 8.33⇥10�6 0.999 1.15⇥10�9 0.999 0.968 1.128 0.93 0.91
1.8 3.15⇥10�5 1.006 1.71⇥10�8 0.999 1.054 0.950 0.85 0.89

0.8 0.8 1.12⇥10�6 0.989 4.08⇥10�12 0.990 1.256 0.568 0.95 0.90
1.4 1.91⇥10�6 0.999 4.88⇥10�10 0.999 1.021 1.049 0.93 0.90
1.8 8.31⇥10�6 0.999 4.52⇥10�8 0.999 1.019 1.059 0.89 0.88

t
L

/A
n

), we consider the following performance measures:

R
1

=
100

X

l=1

⇢̂
(l)

n

� t̂
(l)

R

/Â
(l)

n

⇢̂
(l)

n

� t
R

/A
n

,

R
2

=
100

X

l=1

⇢̂
(l)

n

� t̂
(l)

L

/Â
(l)

n

⇢̂
(l)

n

� t
L

/A
n

,

R
3

=
100

X

l=1

↵̂(l)

↵
0

, R
4

=
100

X

l=1

⌘̃(l)

⌘
0

,

MSE
1

=
100

X

l=1

(t̂(l)
R

/Â(l)

n

� t
R

/A
n

)2,

MSE
2

=
100

X

l=1

(t̂(l)
L

/Â(l)

n

� t
L

/A
n

)2.
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We also compute the actual coverage rates,

CR
1

=
1

100

100

X

l=1

I{⇢2(⇢̂(l)n �ˆ

t

(l)
R /

ˆ

A

(l)
n , ⇢̂

(l)
n �ˆ

t

(l)
L /

ˆ

A

(l)
n )},

for the proposed nominal 95% confidence levels. For the purpose of comparison, the actual
coverage rates, CR

2

, of the bootstrap procedure introduced in Theorem 3.2 of Datta and
McCormick (1995) (hereafter D-M Method) are also obtained. The Z

2

and Z
1

for CR
2

are
set to 99.9 and 4.9, too. For both EV and D-M methods, the commonly used Z

2

= 97.5
and Z

1

= 2.5 often lead to relatively unsatisfactory performance in terms of accuracy of
actual coverage, and hence are not recommended.

The above performance measures are summarized in Table 1 (n = 200) and Table 2
(n = 400) for (⇢,�) 2 {0.3, 0.5, 0.8} ⇥ {0.5, 1.0, 1.5}. Tables 1 and 2 show that in each
(⇢,�) combination, R

1

and R
2

are close to 1 and MSE
1

and MSE
2

are close to 0. While
most values of R

3

in Table 1 are notably larger than 1, all R
3

’s approach 1 as n grows to
400; see Table 2. The values of R

4

in Table 1, falling between 0.49 and 0.69, are distinctly
less than 1. However, they increase to around 0.85 as n increases to 400, except for the
cases of (⇢,�) = (0.3, 0.5) and (0.3, 1.5), whose R4 values are slightly less than 0.7. In fact,
our unreported simulation results reveal that all R

4

values are very close to 1 as n grows
1000. The actual coverage rates, CR

1

, of the EV method are quite close to the nominal
95% confidence level in all cases. On the other hand, CR

2

seems slightly smaller than 95%.
We also evaluate the performance of the EV and D-M methods under (22) with gamma

error whose probability density function is given by

f(x) =
1

�(↵)
x↵�1 exp(�x)I{x�0},↵ > 0, (26)

where �(·) denotes the gamma function and ↵ 2 {0.8, 1.4, 1.8}. Under (22) and (26), we
report the values of R

i

, i = 1, . . . , 4, MSE
i

, i = 1, 2, and CR
i

, i = 1, 2 in Table 3 (n = 200)
and Table 4 (n = 400) based on 100 replications. Like Tables 1 and 2, Tables 3 and 4 also
show that R

1

and R
2

are close to 1 and MSE
1

and MSE
2

are close to 0 in all cases. The
values of R

3

(R
4

), ranging from 0.78 to 1.54 (0.40 to 1.42), appear to be unstable when
n = 200. However, R

3

(R
4

), falling between 0.96 and 1.29 (0.54 and 1.13), becomes much
more stable as n grows to 400. For all n and ⇢ considered in this example, CR

1

(CR
2

) is
generally closer to 95% than CR

2

(CR
1

) when ↵ = 0.8, 1.4 (↵ = 1.8).

4.2 Real Data Analysis

We analyze two positive-valued time series with sample sizes of n = 82 and 141 to demon-
strate the usefulness of the EV method. The first series is a laboratory series of blowfly
data taken from Nicholson (1950). A fixed number of adult blowflies with balanced sex
ratios were kept in a cage and given a fixed amount of food daily. The blowfly population
was then enumerated every other day for approximately two years, giving a total of 364
observations. In view of Example 6.3 of Wei (2006), we only use the latest 82 data points,
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Figure 1: The EV residual plot for the blowfly data.
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Figure 2: The EV residual plot for the viscosity data.
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Figure 3: The histogram of the EV residuals for the blowfly data.
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Figure 4: The histogram of the EV residuals for the viscosity data.
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which are expressed in thousands in our analysis. It is mentioned in Ing and Yang (2014)
that model (1) fits these data quite well; see Figure 1 for the corresponding EV residual
plot. The second series is the viscosity data considered in Datta and McCormick (1995).
Following Datta and McCormick (1995), we fit model (1) to the data subtracted by 1. The
resultant EV residuals are plotted in Figure 2.

For both datasets, we provide confidence intervals of ⇢ with level 95% using the EV
method, the D-M method, and the one developed from (19),

�

⇢̃
n

� 1.96

r

1� ⇢̃2
n

n
, ⇢̃

n

+ 1.96

r

1� ⇢̃2
n

n

�

,

which is referred to as LS method. Note that for the EV method, the K in (24) is set
to 10 instead of 20. This is because the sample sizes of these two datasets are relatively
small, and hence a large K will make the sample size in each subgroup too small to produce
reliable estimates.

Our analysis is summarized in Table 5. For the blowfly data, the upper half of Table
5 shows that ⇢̂

n

is notably smaller than ⇢̃
n

, but marginally included by the LS interval,
whose length is much larger than that of the EV and D-M intervals. The estimated regular
variation index 1.14 is only slightly larger than 1. This result appears to coincide with
the histogram of the EV residuals for the blowfly data (see Figure 3), which exhibits a
non-negligible frequency near the origin. The performance of the EV method is similar to
that of the D-M method.

For the viscosity data, the lower half of Table 5 shows that the confidence interval
provided by the D-M method is (0.81135, 0.86162). The EV interval is shifted to the right,
and is a bit narrower. The LS interval is still much wider than the EV and D-M intervals
in this dataset. It is worth mentioning that the ↵̂ obtained in this series is 2.77, suggesting
that LSE is more e�cient than the EVE. While this value of ↵̂ yields n1/↵̂ < n1/2, the
length of the EV interval

(3.0161/↵̂ � 0.0011/↵̂)( ⌘̃

m̂↵0
)1/↵̂

n1/↵̂

(27)

is still smaller than that of the LS interval

3.92(1� ⇢̃2)1/2

n1/2

(28)

because the numerator of (27) is much smaller than that of (28). Unlike the histogram
presented in Figure 3, the histogram of the EV residuals for the viscosity data has a very
low frequency near the origin; see Figure 4. These two figures together explain why the ↵̂
in the first series is much smaller than in the second one.

5 Concluding Remarks

We have considered interval estimation for the AR(1) model with positive error satisfying
(3) and (14). Instead of using the bootstrap scheme suggested by Datta and McCormick

14



Table 5: Point and Interval Estimation of ⇢ in the Blowfly and Viscosity Data
Point Estimates of ⇢ Interval Estimates of ⇢ ↵̂

The Blowfly data
EV Method 0.59951 (0.57486, 0.59948) 1.14
LS Method 0.73485 (0.58805, 0.88165)
D-M Method 0.59951 (0.57559, 0.59490)

The Viscosity data
EV Method 0.88235 (0.84262, 0.88016) 2.77
LS Method 0.88155 (0.80363, 0.95948)
D-M Method 0.88235 (0.81135, 0.86162)

(1995), we took the approach of directly estimating the regular variation index ↵
0

and the
associated scale parameter ⌘

0

= ↵
0

/b
1,0

. Our estimates are easy to compute and allow us
to gain a better understanding of the behavior of the error distribution near the origin,
thereby leading to a procedure for selecting the better estimate between the EVE and the
LSE.

Our point estimates of ↵
0

and b
1,0

and interval estimate of ⇢ can be extended to the
first-order moving-average (MA) model with positive error,

y
t

= "
t

+ ✓(0)"
t�1

,

when 0  ✓(0) < 1 is estimated by a method (denoted by ✓̂) introduced in Section 2 of
Feigin, Kratz and Resnick (1996). This is mainly because n1/↵0(✓̂ � ✓(0)) also has a limit
Weibull distribution. For positive-valued stationary AR(p) models with p > 1, Feigin and
Resnick (1994) provided a linear programming approach to estimate the AR coe�cients.
Since the rate of convergence of their estimate is still n1/↵0 , we believe that the corre-
sponding AR residuals can be used in conjunction with our approach to deliver consistent
estimates of ↵

0

and b
1,0

. However, the limit distribution of their estimate, depending on
the unknown distribution of p consecutive observations in a very complicated way, has no
closed-form expression. Therefore, our interval estimate is no longer directly applicable in
this case. To resolve this di�culty, one may construct interval estimates of the AR coe�-
cients based on the aforementioned estimates of ↵

0

and b
1,0

and the empirical distribution
of p consecutive observations. The asymptotic analysis of such an approach, however, is
su�ciently complicated to warrant a separate investigation, and is left as future work.

A Proof of Theorem 3.1

Throughout this section, we shall assume (1), (3) and (14) hold. We start by proving
several useful lemmas.
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Lemma A.1 Define "⇤
i

= min
j2Ii "j and A

i

= { (⇢̂n�⇢)maxj2Ii
yj�1

"

⇤
i

 �} for some 0 < � <

1/2. Then

max
1im

P (Ac

i

) = O(n�⌘1), (A.1)

and

max
1im

E

✓

(⇢̂
n

� ⇢)max
j2Ii yj�1

"⇤
i

◆

s

�

= O
⇣

n
�[

1
↵0

�✓(

1
↵0

+

1
�0

)]s

⌘

, (A.2)

where 0 < ⌘
1

< 1/↵0

1/↵0+1/�0
� ✓, 0 < ✓ < 1/2 is defined in Theorem 3.1, and 0 < s < ↵

0

/2.

proof. Theorem 1 of Ing and Yang (2014) ensures that for any q > 0,

E(n1/↵0(⇢̂
n

� ⇢))q = O(1). (A.3)

By (3), (14), and (A.3), one has for any 1  i  m,

P (Ac

i

)  P (n
1
↵0
1

"⇤
i

 n
� ⌘1

✓↵0
1

) + P (max
j2Ii

y
j�1

> n
1
�0

+

⌘1
✓�0

1

) + P (n(⌘1+✓)(

1
↵0

+

1
�0

)(⇢̂
n

� ⇢) > �)

= O(n�⌘1) +O(n�[

1
↵0

�(⌘1+✓)(

1
↵0

+

1
�0

)]q) = O(n�⌘1),

where the last equality follows by taking q large enough. This completes the proof of (A.1).

To prove (A.2), we first choose ⌘
2

> 0 such that (2 + ⌘
2

)s < ↵
0

. By (3) and (14), it is
not di�cult to show that

max
1im

E(n�1/�0
1

max
j2Ii

y
j

)�
⇤
= O(1) and max

1im

E(n1/↵0
1

"⇤
i

)�↵

⇤
= O(1), (A.4)

where 0 < �⇤ < �
0

and 0 < ↵⇤ < ↵
0

. It follows from (A.3), (A.4), and Hölder’s inequality
that

max
1im

E

✓

(⇢̂
n

� ⇢)max
j2Ii yj�1

"⇤
i

◆

s
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1
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"⇤
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⇢

E
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n
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↵0

+

1
�0

)]

n
1
↵0 (⇢̂
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,

which yields the desired conclusion (A.2).
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Lemma A.2 There exists some 
1

> 0 such that

sup
v2H

�

�

�

l(↵, ⌘|w⇤
i

, i = 1, · · · ,m)� l(↵, ⌘|n
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�

�

= O
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(n�1), (A.5)

recalling that w⇤
i

= n
1
↵0
1

"̂�
i

.

proof. Straightforward calculations imply that the left-hand side of (A.5) is bounded
above by
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(A.6)

where C here and hereafter stands for a generic positive constant independent of the sample

size n. Define B
i

= {"⇤
i

 n
� 1

↵0
� s1

↵0✓

1

}, where 0 < s
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< ↵
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✓
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By observing
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and making use of (A.2), it can be shown that for any 0 < s⇤
1

< s
1

and 0 < ⌫ < ↵⇤
0

< ↵
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and for any 0 < s
2

< min{↵
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/2, 1},
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(A.10)

In view of (A.7), (A.9) and (A.10),

(I) = O
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⇤
1), (A.11)
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and some algebraic manipulations, it can be shown that E(c) = O(n�⌘
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Let 0 < ⌘⇤
1

< ⌘
1

and q = (1� ⌘⇤
1

/⌘
1

)�1. Then, by (A.14), (A.12), and (A.1),
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Consequently,
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By Taylor’s theorem, one has for any ↵ 2 H
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which, together with (A.2) and (A.12), yields for any 0 < s
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where �
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Lemma A.3 Let {w
t

} be a sequence of i.i.d. random variables defined on the probability
space the same as that of {y

t

}. Suppose the density function of w
1

satisfies (8). Then,
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proof. A straightforward algebraic manipulation yields
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(A.19)

We first show that

(A) = O(n�✓min{⌫/↵0,1}). (A.20)

Let 0 < ⇠ < (↵/↵
0

)min{1/2, ⌫/(↵̄ + ⌫)}, where ⌫ is defined in (14). Then,
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(A.21)

Since (14) implies that for any small " > 0, there exists � > 0 such that for all 0 < x < �,

b
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"
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yielding
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As a result,
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A simple calculation gives
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Consequently, (A.20) follows from (A.21) and (A.23)–(A.25). Moreover, by (A.22) and an
argument similar to that used to prove (A.20), it can be shown that

(B) = O(n�✓min{⌫/↵0,1}). (A.26)

By an argument given in Chan and Ing (2011) (which uses an integral norm to dominate
the supremum norm), one obtains

E
n

sup
↵2H1

⇣ 1

m

m

X

i=1

�

n
1
↵0
1

"⇤
i

�

↵ � E
�

n
1
↵0
1

"⇤
i

�

↵

⌘

2

o

 C

(

sup
↵2H1

E
⇣ 1

m

m

X

i=1

�

n
1
↵0
1

"⇤
i

�

↵

log n
1
↵0
1

"⇤
i

� E
⇥�

n
1
↵0
1

"⇤
i

�

↵

log n
1
↵0
1

"⇤
i

⇤

⌘

2

+ sup
↵2H1

E
n⇣ 1

m

m

X

i=1

�

n
1
↵0
1

"⇤
i

�

↵ � E
�

n
1
↵0
1

"⇤
i

�

↵

⌘

2

o

)

.

(A.27)
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Since "⇤
i

are i.i.d. and

sup
↵2H1

E



�

n
1
↵0
1

"⇤
1

�

↵

log n
1
↵0
1

"⇤
1

�

2

< 1 and sup
↵2H1

E
�

n
1
↵0
1

"⇤
1

�

2↵

< 1,

(A.27) leads to

(C) = O
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(m�1/2) = O
p

(n�(1�✓)/2). (A.28)

Similarly, it can be shown that
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(n�(1�✓)/2). (A.29)

Moreover, it is easy to see that
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which, together with (A.19), (A.20), (A.26), (A.28), and (A.29), implies (A.18) holds with
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Lemma A.4 Let �
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proof. We first show that for any � > 0,
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Since the event on the left-hand side of (A.33) implies
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as n ! 1, where c
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is some positive constant depending on �.
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(A.35)

Some elementary but tedious analysis shows that (i) (↵
0

, ⌘
0

) is the only point satisfying
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) is the unique maximizer of g(↵, ⌘), and
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where c
◆

is some positive constant depending on ◆. Since g(↵, ⌘) is di↵erentiable on H,
properties (i) and (ii) above ensure that for any � > 0, there is c̄
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By an argument similar to that used to prove (A.29), one obtains
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(n� 1�✓
2 ). (A.38)

Combining (A.38), (A.37), (A.35), and (A.30) yields that (A.34) holds with c
�

= c̄
�

/2.
Thus, (A.33) is proved.

Recall the definition of ◆ in property (iii). With the help of (A.33), (A.31) is guaranteed
by

P
⇣

sup
v2B◆(v0)�B�n (v0)

l(↵, ⌘|w⇤
i

, i = 1, . . . ,m) � l(↵
0

, ⌘
0

|w⇤
i

, i = 1, . . . ,m)
⌘

= o(1),

which is, in turn, implied by (A.38), (A.36), (A.35), (A.30), and Lemmas A.2 and A.3.
This completes the proof of the lemma.

We are now ready to prove Theorem 3.1.
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proof of theorem 3.1. It is mentioned in Section 2 that ↵̂ = ↵̂⇤. By (A.32),

↵̂� ↵
0

= O
p

(n�3). (A.39)

In addition, since ⌘̂⇤ � ⌘̃ = ⌘̂⇤(1� n
1�↵̂/↵0
1

), it follows from (A.32) that

⌘̃ � ⌘
0

= O
p

(n�3 log n),

which, together with (A.39), leads to

b̂
1,0

� b
1,0

= O
p

(n�3 log n).

Consequently, (15) holds with  = 
3

.
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