Heterogeneous Firm, Financial Market Integration and International Risk Sharing

Ming-Jen Chang, Shikuan Chen and Yen-Chen Wu

National DongHwa University

Thursday 22nd November 2018

Department of Economics, National Taiwan University, Taipei

Overview

- International risk sharing productivity increases in country H, and then the benefits transmit to country F. Both countries may share risk each other while facing a shock.
- International risk sharing can be measured by the relative consumptions, C/C^* , and relative outputs Y/Y^* , or co-movement between consumption C and real exchange rate ($Q = S \times P^*/P$)
- Puzzle empirical studies usually don't support this fundamental theory proposed by the international macroeconomist
- Why?

Overview (cont.)

- What were the possible causes? **Non-tradable** goods sectors by Tesar (1993), **financial markets** not complete Hamano (2015), price adjustments, Corsetti *et al.* (2008), ...
- We find that the **wealth effects** in heterogeneous firms with financial market integration can play a key role to explain the international risk sharing

Overview (cont.)

- In general, we build a two-country, two-sector DSGE model to explore international risk sharing
- Tradable sector: Heterogeneous productivity shocks (Ghironi & Melitz, 2005)
- A firm draws an idiosyncratic productivity shock from a given distribution
- Non-tradable sector: Firms face homogeneous shocks with identical goods production

Overview (cont.)

- Financial market integration (Hamano, 2015)
- Some alternative cases (Hamano, 2015) : Financial autarky, partly financial integration, and fully financial integration
- In the work, two alternatives models: 1) Financial autarky assets cannot trade across border; 2) fully financial integration - both bonds & shares may trade abroad

Two Theoretical Models

- A benchmark model:
- Tradable sector only, and financial autarky
- The full model:
- Tradable and non-tradable sectors: Fully financial integration with different asset adjustment costs

A Benchmark Model

- We build simple framework of two-country dynamic stochastic general equilibrium (DSGE) model.
- One tradable sector with heterogeneous firms
- Goods are allowed to trade across border
- Financial market autarky (neither bonds nor stocks can trade abroad)

- Household expected intertemporal utility
- $E_t \sum_{s=t}^{\infty} \beta^{s-t} U(C_s)$, consumption C_t as: $U_t = \frac{C_t^{1-\gamma}}{1-\gamma}$,
- Consumption basket is home produced $(C_{H,t})$ and foreign produced $(C_{F,t})$ goods:

$$C_{t} = \left[(\alpha_{H})^{\frac{1}{\varphi}} (C_{H,t})^{1-\frac{1}{\varphi}} + (1-\alpha_{H})^{\frac{1}{\varphi}} (C_{F,t})^{1-\frac{1}{\varphi}} \right]^{\frac{1}{1-\frac{1}{\varphi}}}$$

where φ the elasticity of substitution between H & F produced goods

- A Specific Firm the home firm *z* (Ghironi and Melitz, 2005):
- To served the domestic market

 $y_{D,t}(z) = Z_{T,t} z l_{D,t}(z)$

• To export to the **foreign market**

$$y_{X,t}(z) = \frac{1}{\tau_t} Z_{T,t} z l_{X,t}(z)$$

where $Z_{T,t}$ the aggregate factor productivity; z specific productivity level; l(z) labor demand; $\tau_t (\geq 1)$ melting-iceberg trade cost

- Firm Average -
- A mass $N_{D,t}$ of firms producing domestically has a distribution of productivity levels by G(z)
- G(z) is a **Pareto** distribution with minimum productivity level z_{min} $G(z) = 1 - \left(\frac{z_{min}}{z}\right)^{\kappa}$
- Domestically producing firms as $\tilde{z}_D = \left(\frac{\kappa}{\kappa \theta + 1}\right)^{\frac{1}{\theta 1}} z_{min}$

• Firm Average (cont.) -

• Exporters
$$\tilde{z}_{X,t} = \left(\frac{\kappa}{\kappa - \theta + 1}\right)^{\frac{1}{\theta - 1}} z_{X,t}$$

• Average real profits among all firms are given by

$$\tilde{d}_t = \tilde{d}_{D,t} + \tilde{d}_{X,t}$$

• Average export profits must satisfy:

$$\tilde{d}_{X,t} = \frac{\theta - 1}{\kappa - \theta + 1} \frac{w_t}{Z_t} f_{X,t}$$

- Firms' Entry and Exit -
- Prospective entrants compute the expected profits $\{\tilde{d}_s\}_{s=t+1}^{\infty}$
- Expected post-entry value:

$$\tilde{v}_t = E_t \left[\sum_{s=t+1}^{\infty} [\beta(1-\delta)]^{s-t} \left(\frac{C_s}{C_t} \right)^{-\gamma} \tilde{d}_s \right]$$

• The free-entry condition:

$$\tilde{v}_t = \frac{w_t}{Z_{T,t}} f_E$$

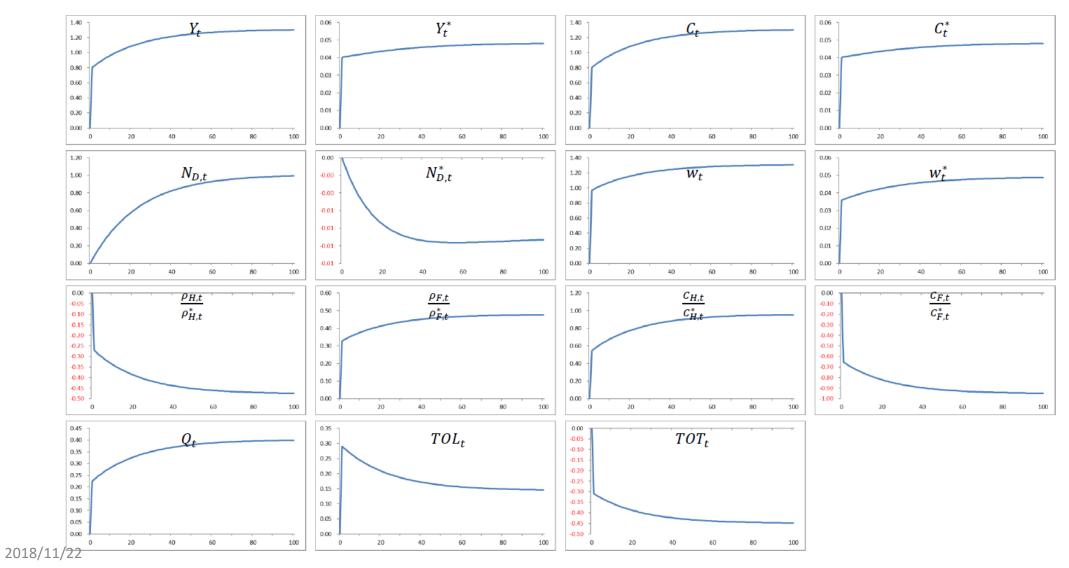
where f_E an entry cost (units of effective labor)

- Changes in the Consumption
- Log-linearizing consumption around the symmetric S-S yields

$$\widehat{C}_t = (1 - \varphi) s_D \left(\widehat{\rho_{H,t}} - \widehat{\rho_{F,t}} \right) + \left(\widehat{N_{X,t}} + \widehat{\tilde{d}_{X,t}} \right)$$

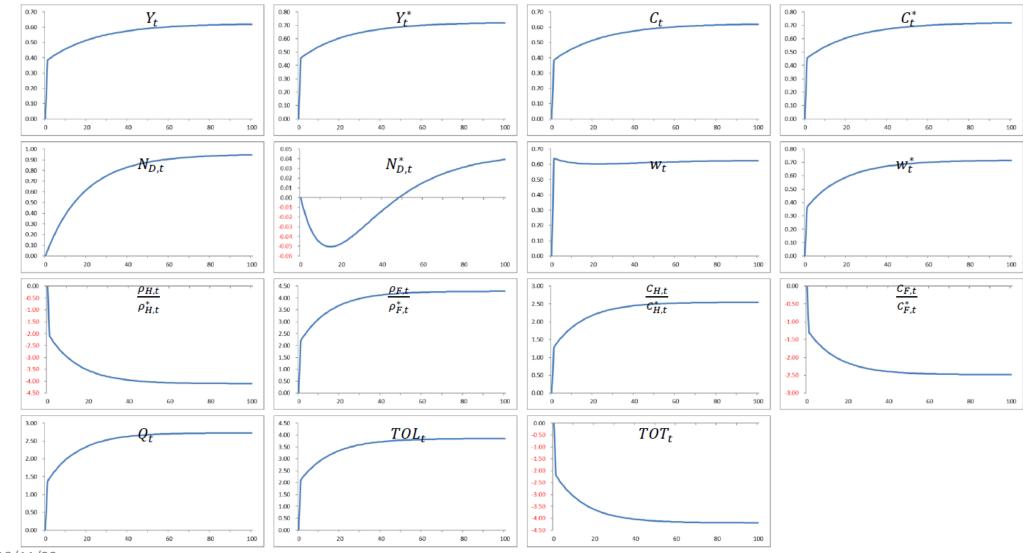
• Similar expressions for country F given as follows:

$$\widehat{C_t^*} = (1 - \varphi) s_{D,t} \left(\widehat{\rho_{F,t}^*} - \widehat{\rho_{H,t}^*} \right) + \left(\widehat{N_{X,t}^*} + \widehat{d_{X,t}^*} \right)$$


- Numerical Solutions of the Benchmark Model
- The numerically solved with given parameters shown Table 1.
- Figures 1 & 2 show the responses (percent deviations from steadystate) to a permanent 1% increase in the home productivity.

Parameter values

Parameter			
α_T			
$lpha_H$	Share of domestically produced goods	0.85	
β	Discount factor	0.99	
γ	Constant risk aversion	2	
δ	Death shock	0.025	
heta	Elasticity of substitution among varieties	3.8	
κ	Shape parameter	3.4	
λ	Frisch elasticity of labor supply	2	
φ	Elasticity of substitution between H & F produced goods	2	
ψ	Elasticity of substitution between tradable and non-tradable goods	0.74	


- First of all we are analyze the effects of technology progress in country A under $\varphi>1$ in first Figure
- Second figure, the case under $\varphi < 1$, consumption in the home country increase but consumption in the foreign country decrease

Response to Permanent Z_T Shock ($\varphi > 1$)

17

Response to Permanent Z_T Shock (arphi < 1)

2018/11/22

The Full Model

• The Firms

- Tradable sector is all the same
- Non-tradable goods firm: $y_{N,t} = Z_{N,t} l_{N,t}$
- where $Z_{N,t}$ the **common productivity level** to all non-tradable firms that produce in country H

• The Financial Market

- Agents can trade not only **bonds** but also **shares** domestically and internationally
- However, agents must pay costs to local financial intermediaries when adjusting their asset holdings

- The **adjustment cost** is higher when domestic assets are traded in the foreign market, and setup in **budget constraint**
- Adjustment cost for trading **shares**:

$$\frac{\eta_F}{2} (x_{F,t+1})^2 N_{H,t}^* \tilde{v}_t^*$$

• Adjustment cost for trading **bonds**:

$$\frac{\eta_F}{2} \left(B_{F,t+1} \right)^2$$

- Households -
- C_t tradable ($C_{T,t}$) and non-tradable ($C_{N,t}$) goods:

$$C_{t} = \left[(\alpha_{T})^{\frac{1}{\psi}} (C_{T,t})^{1-\frac{1}{\psi}} + (1-\alpha_{T})^{\frac{1}{\psi}} (C_{N,t})^{1-\frac{1}{\psi}} \right]^{\frac{1}{1-\frac{1}{\psi}}}$$

• Traded goods $C_{T,t}$ is of home produced $(C_{H,t})$ and foreign produced $(C_{F,t})$ goods:

$$C_{T,t} = \left[(\alpha_H)^{\frac{1}{\varphi}} (C_{H,t})^{1-\frac{1}{\varphi}} + (1-\alpha_H)^{\frac{1}{\varphi}} (C_{F,t})^{1-\frac{1}{\varphi}} \right]^{\frac{1}{1-\frac{1}{\varphi}}}$$

- General Equilibrium and Net Foreign Asset -
- Labor demand includes the fixed costs of tradable firm creation and for the production of tradable and non-tradable goods

$$L_{t} = N_{E,t} \frac{f_{E,t}}{Z_{T,t}} + N_{D,t} (\tilde{l}_{D,t} + \tilde{l}_{X,t}) + L_{N,t}$$

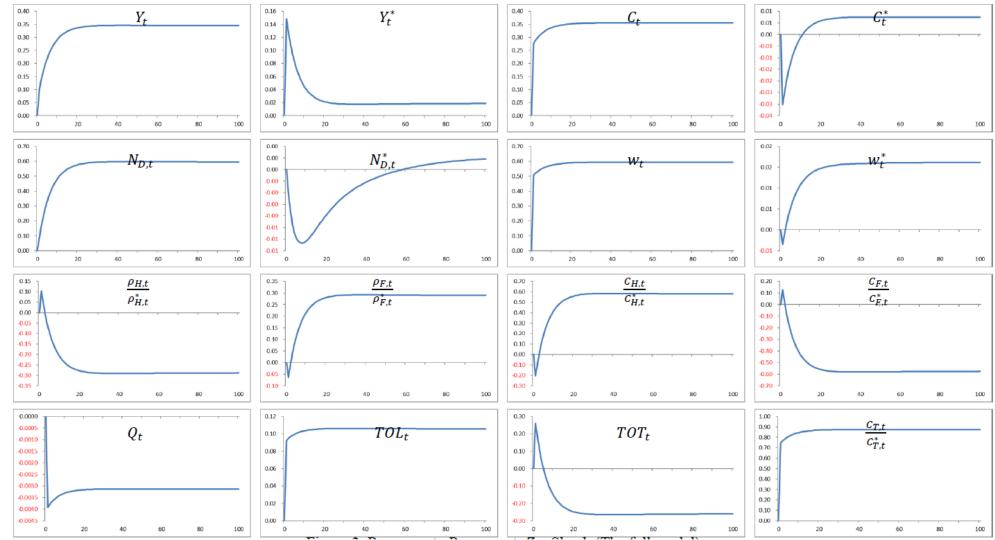
• Aggregate **output** of all firms is given by $Y_t = N_{D,t} (\tilde{\rho}_{D,t} \tilde{y}_{D,t} + Q_t \tilde{\rho}_{X,t} \tilde{y}_{X,t}) + \rho_{N,t} Y_{N,t}$

- Calibration
- Parameter values similar to Ghironi and Melitz (2005)
- Frisch elasticity of the labor supply (λ) is from **Hamano** (2015)
- Weights of traded goods, α_T , are chosen by **Stockman and Tesar** (1995)
- Weights of domestically produced goods in the tradable basket, α_H , are set following **Corsetti et al. (2008**)

• Risk-sharing and Financial Integration

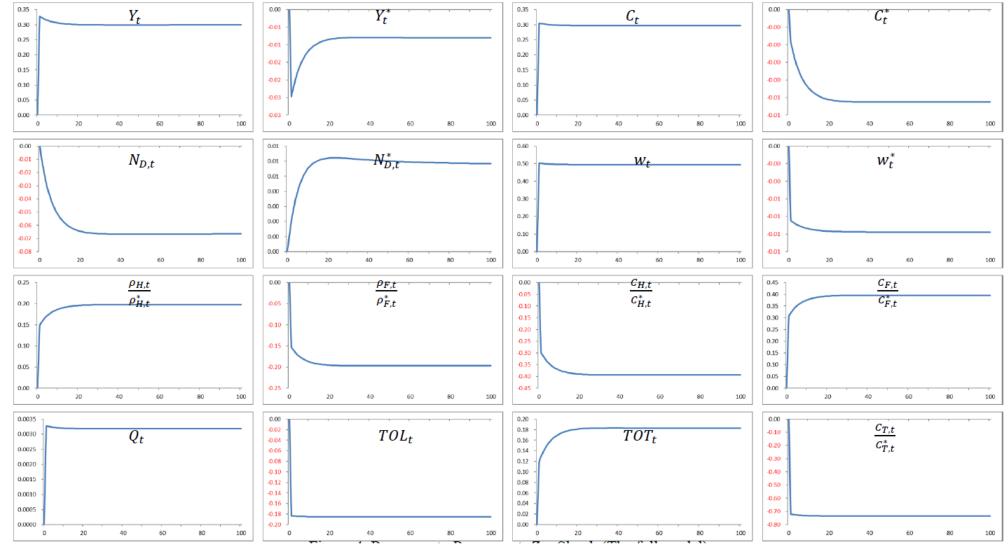
• Following Corsetti *et al.* (2008), we assume that disturbances to technology follow a trend-stationary AR(1) process:

$$Z' = \xi Z + \mu,$$


$$Z \equiv \{Z_T, Z_T^*, Z_N, Z_N^*\}', \mu \equiv \{\mu_T, \mu_T^*, \mu_N, \mu_N^*\}' \text{ has}$$

• Variance-covariance matrix $V(\mu)$ and ξ is a 4 × 4 matrix of coefficients describing the autocorrelation properties of the shocks

•
$$\xi = \begin{bmatrix} 0.82 & -0.06 & 0.10 & 0.24 \\ -0.06 & 0.82 & 0.24 & 0.10 \\ -0.02 & 0.02 & 0.96 & 0.01 \\ 0.02 & -0.02 & 0.01 & 0.96 \end{bmatrix}$$


•
$$V(\mu) = \begin{bmatrix} 0.047 & 0.022 & 0.009 & 0.004 \\ 0.022 & 0.047 & 0.004 & 0.009 \\ 0.009 & 0.004 & 0.009 & -0.011 \\ 0.004 & 0.009 & -0.001 & 0.009 \end{bmatrix}$$

Response to Permanent Z_T Shock

2018/11/22

Response to Permanent Z_N Shock

2018/11/22

Sensitivity Analysis: Correlations between H & F consumption

	shape parameter (κ)						
		3.06	3.23	3.40	3.57	3.74	
Adjust- ing costs	0.0025	0.71	0.68	0.66	0.65	0.64	
	0.0075	0.68	0.65	0.63	0.62	0.61	
of asset holdings	0.0125	0.67	0.64	0.62	0.60	0.60	
(η)	0.0175	0.66	0.63	0.61	0.59	0.58	
	0.0225	0.65	0.62	0.60	0.58	0.57	

Conclusion

- The study builds a **two-country**, **two-sector DSGE model** to explore international risk sharing
- The *unique* of the work is to incorporate the **heterogeneous firms**, and **financial market integration** in the theoretical model
- We find that the elasticity of substitution between H & F produced goods play a role to interpret the risk sharing

Conclusion (cont.)

- Of importance, the technology shocks on heterogeneous firms can change the risk sharing while financial markets between H & F are integrated
- The causes of the **risk sharing increasing** is that profits increasing from heterogeneous firm's positive tech shock
- The **wealth effect** can spill over from country H to F via **stock trading** abroad so as to increase the degree of international sharing risk

Thank you