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1 Introduction

The Great Recession has brought financial shocks to the forefront in the study of business

cycles. In particular, aggregate dynamics over the recession were in many ways at odds with

the predictions of a standard model with shocks to total factor productivity (TFP).1 Further-

more, small firms suffered relatively more from the disruption in financial markets.2 These ob-

servations illustrate the distinctive nature of financial shocks which affect firms unevenly, their

incidence varying with an individual firm’s financing constraint and need for investment. It fol-

lows that the aggregate impact of a financial shock critically depends on how many firms are

financially constrained, and by how much. This insight suggests that a quantitative assessment

of the real effects of financial shocks requires a business cycle model that incorporates realistic

firm heterogeneity. In this paper, I focus on firm size heterogeneity and study its importance in

propagating aggregate shocks.

Following Jermann and Quadrini (2012), a growing body of work quantitatively investigates

the aggregate effects of financial shocks. One common approach is to introduce financial fric-

tions into a model with production heterogeneity, as in Khan and Thomas (2013) and Buera and

Moll (2015). Existing business cycle models, however, abstract from evidence on the firm size

distribution. This raises a natural question of how aggregate outcomes change with the under-

lying firm size distribution in an economy. Moreover, firm size is widely regarded as a robust

indicator of financing constraints that are not directly observable in the data.3 Thus, reproducing

the empirical firm size distribution provides a useful way of nesting unobserved financial hetero-

geneity into a model. This point is rarely addressed in the literature, partly due to a perception
1Khan and Thomas (2013) document that the US economy experienced a large and persistent recession from

2007Q4, whereas the fall in measured TFP was relatively small.
2Bloom et al. (2018) report increases in the cross-sectional dispersion of firm growth during theGreat Recession.

Duygan-Bump, Levkov, and Montoriol-Garriga (2015) find that employment fell relatively more among small firms
with financing constraints, while Chodorow-Reich (2014) relates a bank credit channel to the fall in employment
by small firms.

3Extensive studies adopt different indicators to measure financing constraints, including firm size, in a small
sample of listed firms. See Rajan and Zingales (1995) and Whited and Wu (2006), among others.

1



that firm heterogeneity has a marginal impact on aggregates. I argue that a model’s consistency

with firm-level data, micro-level consistency, is crucial in quantifying the macroeconomic effects

of a financial shock. Consequently, this paper serves as a production-side counterpart to recent

studies on the interaction between inequality and aggregate dynamics in Krueger, Mitman, and

Perri (2016) and Ahn et al. (2017). By focusing on firm heterogeneity, in addition, I extend

the approach of Pugsley, Sedlacek, and Sterk (2021) to an economy with financial frictions and

aggregate uncertainty.

To explore the role of firm heterogeneity over business cycles, I build an equilibrium model

with production heterogeneity and financial frictions. Firms are heterogeneous in their pro-

ductivity, capital, and leverage, and are commonly affected by both aggregate productivity and

financial shocks. Two distinctive features differentiate my model from a standard framework.

First, I employ a Pareto-distributed stochastic process for firms’ idiosyncratic productivity and

estimate it by using firm-level data.4 This generates substantial differences across firms, and the

skewness and the dispersion in the empirical firm size distribution are captured by the model.

Second, financial frictions are represented by a forward-looking collateral constraint. Specifi-

cally, firms’ access to loans is constrained by their capital which serves as collateral, and a credit

shock implies an economy-wide change in borrowing capacity. This approach is in keeping with

the original model of Kiyotaki and Moore (1997), and it further helps characterize firm-level

decision rules in a tractable manner.

The model is consistent with the firm size and leverage distribution in the data. It is well

known that US firm distribution is highly skewed and dispersed across different employment

size groups in the Business Dynamics Statistics (BDS).5 In Figure 1, for instance, about 90 per-

cent of firms are small, hiring fewer than 20 employees, while the largest 0.2 percent of firms
4This can be regarded as a simplified version of the time-varying asymmetric shocks in Bloom, Guvenen, and

Salgado (2020). I consider different specifications of the assumed process, to establish the robustness of the main
results in this paper.

5Based on US Census, the BDS covers about 97 percent of private employment, starting from 1977. Firms
and establishments are categorized by size and age, and firm size is measured by the number of employees. See
Haltiwanger, Jarmin, and Miranda (2009) for details.
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Figure 1 : Average firm size distribution in the BDS, 1977 to 2006

Note: I calculate the average firm size distribution from the annual tables in the BDS database from 1977 to 2006. The BDS tables are reported
in 12 employment size bins that are fixed over time.

account for 43 percent of total employment. The model closely reproduces this observed firm

size heterogeneity, in addition to matching aggregate moments of the US data. Since firm size is

an important determinant of leverage, the model further captures the underlying heterogeneity

in financial frictions. As a result, themodel is tightly alignedwith the empirical leverage distribu-

tion in the US, and predicts a positive relationship between firm size and leverage.6 In contrast,

when firms are not sufficiently different in size, and the model is inconsistent with the firm size

data, as in existing studies, the size-leverage relationship becomes counterfactual. This validates

the importance of micro-level consistency with the empirical size distribution, particularly in a

model of heterogeneous firms with financial frictions.

The consistency with the micro-level evidence on firm size distribution and investment dy-

namics in my model significantly alters the impact of a credit shock with non-trivial and per-
6I confirm the empirical size-leverage relationship using a panel of firms in developed economies in Section 3.2.

The estimated regression coefficient from model simulated data is close to its empirical counterparts (Table 8).
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sistent production heterogeneity. Specifically, I show that a recession triggered by a negative

credit shock is more severe when the firm size distribution in the model closely resembles that

in the data. To this end, I compare aggregate dynamics across models with different firm distri-

butions. The baseline model features Pareto-distributed firm productivity, and has realistic firm

heterogeneity in size and leverage. In contrast, the alternative model abstracts from the empir-

ical size distribution. In this alternative model, I instead use a conventional log-AR(1) process

for firm-level productivity, ignoring the observed skewness in productivity shocks at the firm

level.7,8 Following a tightening of credit, the baseline economy experiences a deep and persistent

recession that is comparable to the Great Recession. Measured TFP gradually falls to 1.5 per-

cent below its steady-state level, while aggregate output drops more than 6 percent at its trough.

These responses remain robust when I additionally require the model to incorporate permanent

heterogeneity in firm productivity as emphasized by Pugsley, Sedlacek, and Sterk (2021). On the

other hand, the alternative model generates qualitatively similar aggregate dynamics as in the

baseline, but of a substantially smaller magnitude. In particular, the TFP loss due to tightened

credit is less than 1 percent and the largest decline in output is about 4 percent, implying a com-

paratively weaker propagation of the financial shock. Thus, it is obvious that firm heterogeneity

does interact with aggregates when financial shocks occur.

Conversely, I find that firm heterogeneity does not have large macroeconomic implications

following an aggregate TFP shock. The model shows that changes in aggregate series, follow-

ing a persistent productivity shock, are largely independent of the underlying firm distribution.

In particular, their response is similar to that generated in a conventional business cycle model

without financial frictions, which is incapable of explaining the Great Recession. Since the shock

does not distort borrowing conditions across firms in my model, the corresponding effects on a

firm’s decisions are independent of its size and the entire firm distribution shifts proportionately.
7Given the same aggregate moments across models, this process only matches the empirical standard deviation

of firm individual productivity in the data, not its skewness.
8This is in the spirit of influential existing studies of production heterogeneity by Khan and Thomas (2008),

Bloom (2009), and Bloom et al. (2018).
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That is, a productivity shock evenly affects firms of different sizes, without generating distribu-

tional effects in the model.

As suggested by the above discussion, a credit shock operates through changes in the distri-

bution of firms. Firms in the model respond to credit tightening by adjusting their investment

and employment. These adjustments are not identical across firms, due to differences in their

capital held as collateral. In particular, small firms with binding borrowing constraints suffer rel-

atively more than others, because limited credit further stifles their ability to finance investment.

This reduces the allocative efficiency of productive factors across firms in the economy, and ag-

gregate productivity falls endogenously. Further, the extent of resource misallocation rises over

time, as more firms become financially constrained, in subsequent periods following the credit

shock. Khan and Thomas (2013) and Buera and Moll (2015) highlight the importance of such a

misallocation channel, but their models are not able to generate a large recession as seen in the

US data.9 This paper demonstrates that incorporating realistic differences in firm size substan-

tially amplifies the effects of a credit shock. By doing so, it suggests the importance ofmicro-level

consistency for studying aggregate dynamics under resource misallocation.

Intuitively, when highly productive firms are prevented fromgrowing as a result of borrowing

constraints, the impact of a negative credit shock is large. This is because the shock not only

tightens firms’ borrowing limits but also reshapes the distribution of firms. To understand these

distributional effects, I decompose the resource misallocation channel into two margins: (i) the

average degree of investment distortions among firms with binding borrowing constraints (the

intensive margin) and (ii) the number of such firms in the distribution (the extensive margin).

The above decomposition then allows me to measure the relative importance of each margin

through the lens of the model. First, at the steady state of the baseline model, about 9 percent of

firms are financially constrained, the extensive margin. Due to binding borrowing constraints,

their constrained capital choice averages 32 percent of the optimal level, which represents the
9In Khan and Thomas (2013), the largest fall in measured TFP following a credit shock is about 1 percent. In the

benchmark model of Buera and Moll (2015), the falls in TFP and output are almost one-to-one.
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intensive margin. Consequently, the resource misallocation in this economy is driven by a small

number of highly productive but constrained firms that would otherwise become very large,

and not by a large number of small firms due to low productivity. This is in stark contrast with

the alternative model in which 23 percent of firms are financially constrained but to a lesser

degree. These constrained firms are not as highly productive as those in the baseline economy,

so the intensive margin distortions are relatively less severe. Accordingly, the aspects of resource

misallocation differ with a model’s consistency with firm-level data.

The propagation of a credit shock critically depends on the associated changes in the two

margins of resource misallocation. Following a credit tightening, the baseline model shows that

both margins substantially increase at impact and then gradually revert to their steady-state lev-

els. In particular, the intensive margin adjusts by more than 20 percent, implying that small-

constrained firms are relatively more vulnerable to tightened credit. This is consistent with the

disproportionate responses among small and young businesses during the Great Recession doc-

umented by Siemer (2019). On the other hand, a credit shock in the alternative model leads to

relatively small changes in bothmargins of resource misallocation. This in turn characterizes the

weak propagation of the shock through the distribution of firms, when the model is inconsistent

with the empirical distributions of firms.

An independent contribution of this paper is to offer the joint estimation of aggregate pro-

ductivity and credit shocks in a model with heterogeneous firms. This allows me to measure the

relative contribution of each shock to the US business cycle. The estimation results indicate that

productivity shocks are the main driver of economic fluctuations, while credit shocks explain

about 10 percent of output volatility. This is because the estimated credit shocks are infrequent

and short-lived, so their contribution is relatively modest in the model. This result is in con-

trast to the prediction of Jermann and Quadrini (2012), who find the dominant role of financial

shocks in an estimated model of a representative firm.

The rest of the paper is organized as follows. Below, I provide a brief review of the most
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relevant literature. Section 2 presents the model environment, together with a description of

firm-level decision rules. I calibrate and estimate the model in Section 3, while motivating the

consistency with the empirical size distribution. Section 4 reports the aggregate dynamics in the

model, and Section 5 concludes.

Related Literature This paper builds on recent studies that quantitatively investigate the real

effects of financial shocks through the reallocation of production factors over time. In addition

to Khan and Thomas (2013) and Buera and Moll (2015) mentioned earlier, Buera, Fattal-Jaef,

and Shin (2015) and Gavazza, Mongey, and Violante (2018) focus on frictions in hiring markets

to explain unemployment dynamics during the Great Recession. These studies, however, do not

closely match the empirical size and leverage distributions.10 This paper shows that tight consis-

tency with such firm-level data leads to a large amplification of financial shocks. The model that

I consider, in addition, allows me to estimate aggregate shocks in a heterogeneous firm model,

which is relatively scarce in the literature.11

This paper is closely linked to recently growing research that asks whether micro-level het-

erogeneity matters for macroeconomic outcomes. Both Krueger, Mitman, and Perri (2016) and

Ahn et al. (2017) examine the role of household inequality in propagating real shocks, while

Beraja et al. (2019) look at changes in housing equity distribution in response to a stimulus pol-

icy. Krueger, Mitman, and Perri emphasize that realistic household heterogeneity is necessary

for explaining the changes in aggregate consumption during the Great Recession. The relevance

of heterogeneity in these studies, in fact, challenges the perception that aligning a model with

micro-level data unnecessarily adds complexity in business cycle studies.12 I provide further

evidence against this view in my analysis of the distributional effects of credit shocks in an econ-
10Buera, Fattal-Jaef, and Shin (2015) reproduce the employment share of entrepreneurs at the top 10 percent, and

Gavazza, Mongey, and Violante (2018) target the BDS distribution in 3 size bins.
11Winberry (2018) andMongey andWilliams (2017) estimate real aggregate shocks, while Ajello (2016) estimates

multiple shocks in a New Keynesian model of entrepreneurs. I use a simulation-based method to match moments,
in contrast to the Bayesian approach in these studies.

12This perception is partly due to the approximate aggregation results in Krusell and Smith (1998). However,
their extended model with preference shocks is a useful counterexample, as discussed in Ahn et al. (2017).
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omy with heterogeneous firms and collateral constraints. Furthermore, the propagation of such

financial shocks is mainly through highly productive but small firms in my model, differently

from the transmission of monetary shocks in Ottonello and Winberry (2020).

An extensive literature documents rich firm-level heterogeneity in size and leverage. Among

others, Beck, Demiruguc-Kunt, and Maksimovic (2005) examine how firm growth is affected by

financial frictions, whereas Whited and Wu (2006) look at the close relationship between firm

size and financial variables. Relatedly, the empirical analysis in this paper builds on the finding

that small firms are more likely to be financially constrained. To support the idea of using firm

size as a proxy of financing conditions, I construct a panel of firms from the Orbis database and

analyze the relationship of employment with leverage.13 Lian and Ma (2021) show that small

firms tend to rely on asset-based financing, consistentwith the collateral constraints inmymodel.

Finally, I study the implications of a model’s consistency with firm size and leverage data in

the presence of financial frictions. This is motivated by Cabral and Mata (2003), who study the

relationship between financing constraints and the firm size distribution.14 In addition, moti-

vated by Gabaix (2011) and Elsby andMichaels (2013), I assume that firm productivity is Pareto-

distributed in the model, which allows for capturing the observed skewness in the empirical dis-

tribution of idiosyncratic shocks.

2 Model

Time is discrete in infinite horizon. The economy has a large number of heterogeneous firms

that face persistent shocks to aggregate and idiosyncratic productivity. An individual firm’s ex-

ternal borrowing is subject to a collateral constraint in the presence of credit shocks. Households
13The Orbis covers private firms in addition to listed firms in Compustat. Dinlersoz et al. (2019) construct a

representative dataset that combines the Orbis with other sources, while Zetlin-Jones and Shourideh (2017) focus
on differences in financing patterns between private and public firms.

14See Poschke (2018) for cross-country differences in the observed size distribution. Luttmer (2007) highlights
the role of selection mechanism in shaping firm size distribution.
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are identical and infinitely lived, and markets are perfectly competitive.

2.1 Firms

Production and Financial Frictions A continuum of firms produce a homogeneous good.

Each firm owns its predetermined capital stock, k, and hires labor, n, in a competitive labor

market. The production technology is given by y = zϵF (k, n), where F (·) exhibits decreasing

returns to scale (DRS).The exogenous component of aggregate productivity, z, is common across

firms, and it follows a Markov chain with πz
fg ≡ Pr(z′ = zg|z = zf ) ≥ 0 and

∑Nz

g=1 π
z
fg = 1

for each f = 1, . . . , Nz . Next, firm-specific productivity, ϵ, also follows a Markov chain such

that ϵ ∈ E ≡ {ϵ1, . . . , ϵNϵ} with πϵ
ij ≡ Pr(ϵ′ = ϵj|ϵ = ϵi) ≥ 0 and

∑Nϵ

j=1 π
ϵ
ij = 1 for each

i = 1, . . . , Nϵ. Capital accumulation is standard, k′ = (1 − δ)k + ik with δ ∈ (0, 1), where ik

denotes investment.

Financial frictions are in the form of a collateral constraint. Specifically, firms face borrowing

constraints for one-period discount debt, given its price q. Due to the limited enforceability of

financial contracts, the amount of newly issued debt in the current period, b′, is limited by a firm’s

collateral. I assume that the firm’s future capital stock, k′, serves as collateral, and the borrowing

constraint is given by

b′ ≤ θk′,

where θ ∈ (0, q−1) captures the level of financial frictions in the economy.15 Further, θ is assumed

to be common across firms and to follow a Markov chain with θ ∈ Θ ≡ {θ1, . . . , θNθ
}. A

sudden decrease in θ, thus, corresponds to a (negative) credit shock. Lastly, firms are allowed to

accumulate financial wealth held as negative debt. This implies that the collateral constraint may

be binding for some, but not all, firms in a given period.
15When θ approaches the real interest rate, firms are always allowed to finance their desired investment. As in

Kiyotaki and Moore (1997), the above collateral constraint is forward-looking while abstracting from the feedback
channel of asset prices. This timing assumption further allows me to characterize firms’ decisions in a tractable
manner in Section 2.3, in contrast to a backward-looking constraint in Khan and Thomas (2013).
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Entry, Exit, and FirmDistribution Firms are subject to a fixed probability of exit, πd ∈ (0, 1),

in each period, and exiting firms are replaced by an equal measure of new firms. Entrants are

endowed with an initial capital that is a χ fraction of the average capital of the incumbents. This

initial endowment is financed by households in exchange for the ownership of firms. The arrival

of exit information is known at the beginning of a period, and exiting firms liquidate all of their

remaining earnings and assets after production.16

I describe the state variables of the model and the timing of exogenous shocks and decisions

within a given period. At the beginning of a period, a firm is identified by its individual state

(k, b, ϵ); the predetermined capital, k ∈ K ⊂ R+; the amount of existing debt to be repaid,

b ∈ B ⊂ R; and the current idiosyncratic productivity, ϵ ∈ E. The distribution of firms is

summarized by a probability measure, µ(k, b, ϵ), which is defined on a Borel algebra generated

by the open subsets of the product space, S ≡ K × B × E. For simplicity, I use s ≡ (z, θ)

to denote the exogenous aggregate state of the model, with its transition probability given by

πs
lm ≥ 0. Then the aggregate state is (s, µ), and the evolution of the firm distribution follows a

mapping, µ′ = Γ(s, µ).

Just after the exogenous shocks to s and ϵ are realized, a firm learns whether it will survive to

the next period or exit at the end of the current period. Given (k, b, ϵ; s, µ), the firm maximizes

the expected discounted sum of all dividends. After production is completed, the firm pays the

wage bill and clears the existing debt. Conditional on its survival into the next period, the firm

chooses its investment for future capital, k′, alongside new debt level, b′. At the same time, the

firm must determine the current dividends, D, to be paid to its shareholders. Firms take the

wage rate, w(s, µ), and the discounted debt price, q(s, µ), as given.

Firm’s Problem I reduce the dimension of a firm’s individual state (k, b, ϵ) by defining a new
16This timing ensures that all outstanding debt is repaid, consistent with the assumed collateral constraint. Fur-

ther, the setting of entry and exit is a simple way to prevent firms from surviving indefinitely as opposed to the
evidence on firm dynamics. Note that the model may deliver a stationary distribution of firms in the absence of
firm entry and exit, depending on the dispersion of productivity. I numerically check that entry and exit are neces-
sary elements for having financially constrained firms, as kindly suggested by an anonymous referee.
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variable called cash-on-hand, and then formulate the firm’s problem in a recursive way. This

approach allows me to derive the decisions of investment and borrowing as functions of the

newly defined variable, without altering the equilibrium allocation.17

Let n = Nw(k, ϵ; s, µ) be the static labor choice such that zϵD2F (k, n) = w(s, µ), and

definem(k, b, ϵ) as a firm’s cash-on-hand after production and debt repayment.

m(k, b, ϵ; s, µ) ≡ zϵF (k,Nw)− w(s, µ)Nw + (1− δ)k − b

It is clear that all information relevant to a firm’s decisions on investment and borrowing is con-

tained inm(k, b, ϵ), and these decisions made in the current period jointly determine the future

holding of cash-on-hand,m(k′, b′, ϵ′), alongside the realizations of (s′, ϵ′).

Next, I define value functions by whether the exit status of a firm is known. Let v0(m, ϵ; s, µ)

be the expected discounted value of the firm before the exit shock is realized, at the beginning

of a period. If the firm is allowed to move on to the next period, its within-the-period value is

given by v(m, ϵ; s, µ). The firm’s optimization problem is then recursively described by v0 and v.

v0(m, ϵi; sl, µ) = πd ·m+ (1− πd) · v(m, ϵi; sl, µ) (1)

v(m, ϵi; sl, µ) = max
k′,b′,D

[
D +

Ns∑
m=1

πs
lmdm(sl, µ)

Nϵ∑
j=1

πϵ
ijv0

(
m′

jm, ϵj; sm, µ
′)] (2)

subject to

0 ≤ D = m− k′ + qb′

b′ ≤ θk′

µ′ = Γ(sl, µ)

m′
jm ≡ m(k′, b′, ϵj; sm, µ

′)

17I include the original version of the firm’s problem in the online appendix, together with its transformation with
market clearing prices that are consistent with household decisions.
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Equation (1) implies that the firm takes a binary expectation over the values before its exit

or survival is known, given the current realizations of (sl, ϵi). The exit probability, πd, serves

as the weight on the value of exiting, and the exiting firm maximizes its liquidation value ofm.

Conditional on survival, the firm’s problem in Equation (2) involves the intertemporal decisions.

The firm optimally chooses its future capital, k′, and new debt level, b′, to maximize the sum

of the current dividends, D, and the future expected discounted value, v0(m′
jm, ϵj; sm, µ

′). The

dividends correspond to the residual from the firm’s budget constraint, and they are restricted to

be non-negative.18 The firm takes as given the stochastic discount factor, dm(sl, µ), which is to

be determined in equilibrium given the households’ marginal rate of substitution.

2.2 Households and Equilibrium

Representative Household There is a unit measure of identical households. Households earn

labor income by supplying some of their time endowment in each period, and the period utility is

given byU(C, 1−N)with the subjective discount factor β ∈ (0, 1). They hold a comprehensive

portfolio of assets: firm shares ofmeasureλ andnon-contingent discount bondsϕ. The represen-

tative household maximizes the lifetime expected discounted utility by choosing its consump-

tion, Ch, and labor supply, Nh, while adjusting the asset portfolio. Denote ρ1(k′, b′, ϵ′; sl, µ)

as the ex-dividend prices of firm shares, and ρ0(k, b, ϵ; sl, µ) as the dividend-inclusive value for
18This is a common approach in recent studies such as Ottonello and Winberry (2020), based on the finding that

firms pay substantial costs for occasionally issuing new equity. In my model, equity financing can be allowed by
assumingD ≤ D withD < 0 and the equity-issuance costs. When constrained firms in the model mostly rely on
debt financing, the results of this paper would remain robust.
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current share holding. Then the following describes the household’s problem.

V h(λ, ϕ; sl, µ) = max
Ch,Nh,λ′,ϕ′

[
U(Ch, 1−Nh) + β

Ns∑
m=1

πs
lmV

h(λ′, ϕ′; sm, µ
′)
]

(3)

subject to

Ch + q(sl, µ)ϕ
′ +

∫
S
ρ1(k

′, b′, ϵ′; sl, µ)λ
′(d[k′ × b′ × ϵ′])

≤ w(sl, µ)N
h + ϕ+

∫
S
ρ0(k, b, ϵ; sl, µ)λ(d[k × b× ϵ]) + Πd

µ′ = Γ(sl, µ)

LetΦh(λ, ϕ; s, µ)be the household’s decision onbondholding, anddenoteΛh(k′, b′, ϵ′, λ, ϕ; s, µ)

as the new choice of share holding with future state (k′, b′, ϵ′). The household also finances

the initial capital endowment for entrants while receiving the liquidated values of exiting firms.

These transfers are made in lumpsum, as captured by Πd in the budget constraint.

Equilibrium I define recursive competitive equilibrium (RCE) of the model. For the remain-

der of the paper, I simplify notations for price and policy functions whenever necessary. As

discussed in the online appendix, the equilibrium price functions are consistent with the repre-

sentative household’s optimal decisions.

An RCE is a set of functions: prices
(
w, q, (dm)Ns

m=1, ρ0, ρ1

)
, quantities

(
N,K,B,D,Ch, Nh,

Φh,Λh
)
, and values

(
v0, v, V

h
)

that solve the optimization problems and clear each market, and the

associated policy functions are consistent with the aggregate law of motion, as in the following condi-

tions.

1. v0 and v solve Equations (1) and (2), and (N,K,B,D) are the associated policy functions for

firms.

2. V h solves Equation (3), and (Ch, Nh,Φh,Λh) are the associated policy functions for households.

3. The labor market clears,Nh =
∫
SN(k, ϵ; s, µ) · µ(d[k × b× ϵ]).

13



4. The goods market clears,

Ch =
∫
S

[
zϵF (k,N)− (1− πd)

(
K(k, b, ϵ; s, µ)− (1− δ)k

)
+ πd(1− δ)k

]
· µ(d[k × b× ϵ]).

5. The law of motion for firm distribution is consistent with the policy functions, where Γ defines the

mapping from µ to µ′ given πd,K(k, b, ϵ; s, µ), andB(k, b, ϵ; s, µ).

2.3 Firm Types and Decisions

To derive the firm-level decision rules, I distinguish firm types in the distribution. First, I

define a subset of firms whose decisions are not affected by the collateral constraints in any pos-

sible future state. These unconstrained firms must have accumulated sufficient financial wealth

such that their borrowing constraints are never binding and hence become indifferent between

paying dividends and saving internally. This is because the shadow value of their retained earn-

ings equals p(s, µ) ≡ D1U(C
h, 1 − Nh), the marginal value of consumption in equilibrium.

The remaining firms in the distribution, on the other hand, are defined as constrained.19 A con-

strained firm may or may not experience a binding borrowing constraint in the current period,

while putting non-zero probability weight on having a binding constraint in the future. The firm

then optimally chooses not to pay the current dividends, D = 0, because its shadow value of

retained earnings is greater than the value of dividends.

Next, I derive the intertemporal decisions for unconstrained firms. Since the collateral con-

straint is not relevant for such firms by definition, their optimal level of future capital, k′ =

Kw(ϵ; s, µ), can be derived as follows. Let Πw(k, ϵ; s, µ) ≡ zϵF (k,Nw) − wNw be current

earnings net of the wage bill. In the absence of capital adjustment costs,Kw solves the problem

below.

max
k′

[
−k′ +

Ns∑
m=1

πs
lmdm(sl, µ

′)
Nϵ∑
j=1

πϵ
ij

(
Πw(k′, ϵj; sm, µ

′) + (1− δ)k′
)]

Given Nw and Kw, an unconstrained firm’s borrowing choice must ensure that it remains un-
19This division of firm types is solely to characterize the decision rules, so it does not directly map into the data.

Further, a firm may alter its type endogenously over time.
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constrained in all future realizations of (s, ϵ). This leads to the minimum savings policy, b′ =

Bw(ϵ; s, µ), that solves the following problem recursively.

Bw(ϵi; sl, µ) = min
(sm,ϵj)j,m

(
B̃
(
Kw(ϵi; sl, µ), ϵj; sm, µ

′)) (4)

B̃(k, ϵi; sl, µ) = zlϵiF (k,N
w(k, ϵi; sl, µ))− w(sl, µ)N

w(k, ϵi; sl, µ) + (1− δ)k (5)

−Kw(ϵi; sl, µ) + q(sl, µ)min
{
Bw(ϵi; sl, µ), θK

w(ϵi; sl, µ)
}

In Equation (4), B̃(Kw, ϵj; sm, µ
′) denotes the level of debt held by an unconstrained firm at the

beginning of the next period with an exogenous state (ϵj, sm). Having chosenKw in the current

period, Bw is the maximum level of debt (or the minimum level of saving) that the firm carries

into the next period while still remaining unconstrained in all possible realizations of (s, ϵ). The

threshold function, B̃(k, ϵ), can in turn be retrieved using Bw and Kw, as shown in Equation

(5), in which the minimum operator reflects the collateral constraint in the current period.

Given unconstrained decisions, I define the threshold level of cash-on-hand to isolate uncon-

strained firms in the distribution. From the budget constraint in Equation (2), an unconstrained

firm paysDw ≡ m−Kw+qBw as current dividends. Hence, this firm’s cash-on-hand is greater

than or equal to a certain threshold level, m̃(ϵ; s, µ) ≡ Kw(ϵ; s, µ) − qBw(ϵ; s, µ). Any firms

with m(k, b, ϵ) ≥ m̃(ϵ) on µ(k, b, ϵ) are then recognized as unconstrained, and they adopt the

associated policies,Kw and Bw.

On the other hand, firms with m(k, b, ϵ) < m̃(ϵ) are constrained and pay zero dividends.

In a given period, some constrained firms experience binding borrowing constraints while oth-

ers do not. I call the latter constrained firms Type-1 and the firms with currently binding con-

straints Type-2 to distinguish their respective decision rules. Type-1 firms can still adopt the

unconstrained capital choice,Kw, but not the minimum savings policy, Bw. Instead, their debt

policies are implied by the budget constraint with the zero-dividend policy. Type-2 firms invest

only up to the extent their borrowing limits allow, so they are financially constrained. The cash-
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Table 1 : Decisions by Firm Type

Firm type Condition Capital choice, k′ Debt choice, b′

unconstrained m ≥ m̃(ϵ) Kw(ϵ) Bw(ϵ)

constrained, Type-1 Kw(ϵ) ≤ K̄(m) Kw(ϵ) 1
q

(
Kw(ϵ)−m

)
constrained, Type-2 Kw(ϵ) > K̄(m) K̄(m) 1

q

(
K̄(m)−m

)

on-hand held by these firms then determines the constrained choice of future capital. That is,

givenm = k′ − qb′, the binding collateral constraint in Equation (2) leads to the upper bound

for capital choice, K̄(m) ≡ m
1−qθ

. Due to the DRS production technology, Type-2 firms then

always choose K̄ < Kw. Firms with more cash-on-hand, therefore, can relax this upper bound

to eventually chooseKw at a given level of θ. Table 1 summarizes the decision rules of k′ and b′

as functions of (m, ϵ).

3 Parameterization and Model Implications

I calibrate themodel and discuss its implications for resourcemisallocation. Next, I show that

the model with a skewed distribution of idiosyncratic shocks closely reproduces the observed

heterogeneity in firm size and leverage. Lastly, I estimate aggregate shocks by repeatedly solving

the stochastic equilibrium of the model. The numerical methods are summarized in the online

appendix.

3.1 Calibration and Model Specifications

The model is annual, and I choose the parameter values to match the conventional aggregate

moments in theUS data. In addition, I estimate production function using firm-level data, which

allows me to measure idiosyncratic productivity shocks, thereby quantitatively disciplining the

model.
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Table 2 : Parameter Values, Baseline Model

Fixed Parameters Fitted Parameters

Value Description Value Description

β 0.960 Discount factor α 0.277 Prod. function, k
δ 0.069 Depreciation rate ψ 2.140 Labor disutility
ν 0.600 Prod. function, n θss 0.750 Collateral constraint
πd 0.085 Exogenous exit rate ϵm 0.390 Minimum ϵ

χ 0.220 Rel. size of entrants ϵM 1.020 Maximum ϵ

πϵ 0.750 Prob. of retaining ϵ ξ 3.400 Pareto shape

Table 3 : Calibrated Moments, Baseline Model

Description Data Model

Average hours worked - 0.33
Investment-to-capital ratio, BEA 0.069 0.069
Capital-to-output ratio, BEA 2.30 2.24
Debt-to-asset ratio, Flow of Funds 0.22 0.22
Average firm exit rate, BDS 0.085 0.085
Employment share of entrants, BDS 0.023 0.022

Std. dev. of firm prod. shocks, Orbis 0.242 0.238
Skewness of firm prod. shocks, Orbis 1.432 1.471

The functional forms for preferences and production technology are standard in the litera-

ture. The period utility function features indivisible labor as in Rogerson (1988), U(C, 1−N) =

logC+ψ(1−N), and the production function is F (k, n) = kαnν with α, ν > 0 and α+ν < 1.

Table 2 reports parameter values, and Table 3 summarizes the corresponding model moments

and their targets.

Aggregate Moments The subjective discount factor, β, is set to imply an annual real interest

rate of 4 percent, and the labor coefficient in the production function, ν, is chosen to imply an

average share of labor income of 0.6, as in Cooley and Prescott (1995). The depreciation rate, δ,

is set to match the average investment-to-capital ratio during the postwar US period. Given the
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value of δ, the capital coefficient, α, is determined to yield the observed average capital-to-output

ratio. I use the time-series data of output, private fixed investment, and private capital stock

between 1954 and 2006 from the National Income and Product Accounts (NIPA) and the Fixed

Asset Tables of the Bureau of Economic Analysis (BEA). The steady-state level of the financial

parameter, θss, is set to closely match the aggregate debt-to-asset ratio of 0.22 for non-financial

corporate businesses in the Flow of Funds from 1954 to 2006.20 Thepreference parameter for the

disutility from labor, ψ, is set to imply that total hours worked equal to one-third. I then set the

exogenous exit probability, πd, to be consistent with the average firm exit rate in the BDS from

1993 to 2006. The parameter for the initial capital stock of new firms, χ, is set to 0.22, so that

entrants account for about 2 percent of aggregate employment as observed in the BDS data.

Firm Productivity Shocks In the baseline model, I assume that firm-specific productivity ϵ

is drawn from a bounded Pareto distribution G(ϵ; ϵm, ϵM , ξ) with 0 < ϵm < ϵM and ξ ≥ 1.21

Further, firms are assumed to retain their productivity with a fixed probability πϵ in each period.

This probability is set to 0.75 so that the implied persistence is close to the estimated persistence

of traditional TFP in Foster, Haltiwanger, and Syverson (2008). A new draw of ϵ from G(·)

corresponds to a skewed idiosyncratic shock, and its persistence and skewness imply that most

firms in the model have relatively low productivity over time.

I discretize the productivity process with a grid of 13 even-spaced points and determine the

values of its bounds (ϵm, ϵM) and the shape parameter ξ. Specifically, I estimate firm-level pro-

ductivity shocks in the data, and target their distribution moments, the standard deviation and

the skewness, in the calibration. The estimation involves 2 steps: (i) panel data construction and

production function estimation, and (ii) fixed-effects regression of measured firm productivity.
20To be consistent with the model only with short-term debt financing, I calculate the aggregate debt as the sum

of debt securities and loan liabilities in the Flow of Funds.
21Similar settings are used in Buera and Shin (2013) and Buera, Fattal-Jaef, and Shin (2015). The bounded Pareto

distributionhas a finite upper bound. Given an interval for its support, the cumulative density normalizes the density
of the corresponding standard Pareto. My approach is also in line with that in Bloom, Guvenen, and Salgado (2020)
who assume time-varying volatility and skewness of firm productivity with aggregate uncertainty.
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I briefly describe these steps below, and the details of sample selection and estimations are in the

online appendix.

First, I construct a panel of firms from the Orbis database and supplement it with the output

and capital deflators in the OECD Structural Analysis Database (STAN).The sample covers non-

financial and non-public administrative companies in the Group of Seven (G-7) countries from

2013 to 2018.22 The key variables of production function estimation are real operating revenue

(y), real tangible fixed assets (k), and employment (n). The resulting dataset contains 1,525,656

observations of 254,276 firms.

I estimate the empirical production function given in

log yi,j,t = βk · log ki,j,t + βn · logni,j,t + logxi,j,t + δj · country + δt · year + ei,j,t, (6)

wherexi,j,t denotes the firm i’s revenue-based productivity in country j at year t, after controlling

country-year-fixed effects. I employ the method suggested by Olley and Pakes (1996) to account

for the endogeneity issue in this estimation. The estimates of βk and βn are 0.20 and 0.73 re-

spectively, similar to those reported in existing studies such as Imrohoroglu and Tuzel (2014). I

retrieve the residuals from the above estimation as the measured firm-level productivity xi,j,t.

Let x̃i,j,t be the percentage deviation ofxi,j,t from themean productivity of firm i, and assume

that it follows

x̃i,j,t = β1 · x̃i,j,t−1 + η̃i,j,t + ẽi,j,t. (7)

Estimating the above with firm/industry-, country-, and year-fixed effects, the residuals η̃i,j,t are

identified as the idiosyncratic shocks to firm productivity. The resulting distribution of η̃i,j,t is

dispersed and positively skewed; the standard deviation is 0.24 and the skewness is 1.43. These
22Since the Orbis coverage of US firms is non-representative, I include observations from other developed

economies to extend the sample size and reduce potential bias. Rajan and Zingales (1995) also consider public
firms in the G-7 countries (US, Canada, United Kingdom, France, Germany, Italy, and Japan). Moreover, my esti-
mation results do not significantly change when the sample covers 11 more countries in Western Europe (Austria,
Belgium, Denmark, Finland, Greece, Ireland, Luxembourg, Netherlands, Portugal, Spain, Sweden).
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Table 4 : Comparison of Firm Size Distribution

Population Share (%)

Bin: employees BDS Data Baseline Alternative Base-ex

1: 1 to 4 55.06 51.30 32.27 49.13
2: 5 to 19 33.42 33.38 27.99 31.06
3: 20 to 99 9.64 9.80 16.34 12.78
4: 100 to 499 1.53 2.85 7.42 3.91
5: 500 to 2,499 0.26 1.29 4.33 1.63
6: 2,500+ 0.09 1.38 6.65 1.48

MSE - 0.000 0.012 0.001
Note: BDS Data is the average value calculated from 1977 to 2006. Baseline is the model with cali-
brated Pareto ϵ shocks,Alternative is themodel with a log-AR(1) process, and Base-ex is an extension
of the baseline model with permanent heterogeneity. Size bin is in terms of employment, and model
employment shares are exactly matched with those in the BDS. MSE is the mean-squared-error of
the model moments.

moments are tightly matched in the baseline model using a Pareto-distributed ϵ, as shown in the

bottom panel of Table 3.

Lastly, I consider an alternative specification of idiosyncratic shocks in the model. Following

the conventional approach in the literature, I assume that the logarithm of ϵ follows an AR(1)

process: log ϵ′ = ρϵ log ϵ+ η′ with η′ ∼ N(0, σ2
η). To pin down the value of ση in this alternative

model using the above dataset, I instead regress themeasured log-productivity on its lagged value

with fixed effects. The calibrated value of ση is 0.167 such that the standard deviation of log ϵ is

0.238, given its persistence of 0.75 as in the baseline model.

Firm Size Distribution As mentioned in the introduction, the empirical distribution of firm

employment size in the US is highly skewed and dispersed. The baseline model closely repro-

duces the empirical size distribution in the BDS, whereas the alternative model does not. This

stark contrast is summarized in Table 4.

In Table 4, I report the average distribution in the BDS from 1977 to 2006, across 6 employ-

ment size bins: 1 to 4, 5 to 19, 20 to 99, 100 to 499, 500 to 2,499, and 2500+. Given these size

bins, each model exactly matches the employment shares in the BDS, so the table only presents

20



the model-implied population shares.23

Clearly, the baseline model generates a realistic firm size distribution. That is, the model size

distribution is highly skewed, as it is in the data. This consistency is obtained by closelymatching

the population shares at the lower tail (rows 1 and 2). On the other hand, themodel is not equally

successful at the upper tail of firm size distribution. The table shows that there are relativelymore

firms in the largest group in the model when compared to the data. This is mainly because of

truncation of the productivity shocks, implying that the largest firms are smaller than those in

the BDS.24

When the observed skewness in firm productivity is ignored, however, the model does not

deliver realistic heterogeneity in firm size. In the alternative economy (column 3 of Table 4),

there are relatively fewer small firms and more large firms, broadly at odds with the observed

data; about 32 percent of firms are in the smallest size group, whereas the largest firms account

for more than 6 percent of the business population. This makes the model’s overall fit to the

BDSdata, measured bymean-squared-error (MSE), significantly poorer than the baselinemodel.

Moreover, the dispersion in firm size is not sufficiently large. The highest level of productivity in

the alternative economy is only about 63 percent of that in the baseline model, so that the largest

firm hires less than one-fourth of its counterpart in the latter.

I further check whether the model still delivers an empirically-consistent size distribution

when permanent heterogeneity across firms exists. Note that firms in the baseline model are

only driven by transitory shocks that are estimated with the controls for firm-fixed effects. As

emphasized by Pugsley, Sedlacek, and Sterk (2021), however, ex-ante heterogeneity plays an im-
23This method of measuring relative size in a model is from Jo and Senga (2019). By setup, all models exactly

match the BDS employment shares that remain stable over time, and only population shares need to be compared.
For this reason, actual size of employment is not directly comparable across different models. The details of the
numerical method are in the online appendix.

24The size distribution in the baseline model still exhibits a power law at its right tail. The p-value of power-law
test is 0.58 and the slope of the fitted line is -2.15 in the log-log plot of density and employment, consistent with the
example in Gabaix (2016). To generate a heavier-tail, the model may additionally include extremely large firms that
do not face financing constraints as assumed in Khan and Thomas (2013). I thank the editor and an anonymous
referee for their helpful comments about the truncation issue and the Pareto-tail.

21



portant role in explaining the observed size differences in the data. Thus, I consider an extension

of the baseline model by distinguishing the permanent and transitory components of idiosyn-

cratic productivity.25 Specifically, in the base-exmodel, I assume that there areNp
ϵ different types

of firms, and for each type, ϵ is drawn from a type-specific distribution which is bounded-Pareto

with N t
ϵ values. This simple extension introduces permanent heterogeneity in mean productiv-

ity into the model, reducing the role of productivity shocks in determining firm size dispersion.

Given Np
ϵ = 3 and N t

ϵ = 5, I calibrate the remaining parameters of ϵ to match the empirical

moments of idiosyncratic shocks.26

Table 4 shows that the base-ex model is largely consistent with the empirical evidence on

cross-sectional differences in firm size (column 4). The population shares at the two smallest size

groups are reasonably close to their empirical values, but the model’s performance at the upper

tail is less than satisfactory. In Section 4, I show that the aggregate dynamics of the base-exmodel

are isomorphic to those from the baseline economy, highlighting the importance of micro-level

consistency with firm size data, regardless of the source of differences in productivity, in the

propagation of a financial shock.

3.2 Financial Frictions and Resource Misallocation

I discuss the cross-sectional implications of financial frictions and examine the aspects of

resource misallocation across models with different idiosyncratic shocks. The baseline model

features a small set of highly productive but financially constrained firms. It also exhibits different

patterns of firm growth that substantially vary with initial productivity.

Firm-level Decisions Collateral constraints in the model imply that a firm’s investment and
25My approach is similar to that of Elsby and Michaels (2013). Studies with other approaches include Kaas and

Kircher (2015), andGavazza, Mongey, andViolante (2017). Cao et al. (2022), on the other hand, focus on the Pareto
tail of establishment distribution.

26Holding the persistence parameter πϵ fixed, I re-calibrate the model to closely match the empirical moments
reported in Table 3. I fix the population share of each type at 0.55, 0.30, and 0.15, and calibrate the bounds of ϵ and
the common shape parameter ξ to match the volatility and skewness in productivity shocks in the Orbis data.
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borrowing decisions are subject to its individual state, cash-on-hand and exogenous productivity.

It follows that substantial differences across firms in their cash-on-hand,m(k, b, ϵ), lead to cross-

sectional heterogeneity in both real and financial variables.

Figure 2 clearly illustrates this point by showing the decision rules for future capital, k′, debt,

b′, and dividends, D, at a given productivity level in the baseline model.27 As a firm’s cash-on-

hand becomes larger, investment and borrowing decisions change nonlinearly due to the pres-

ence of financial frictions. In the figure, the two vertical lines distinguish firm types, and the

associated decisions, discussed in Section 2. The vertical line on the left separates Type-1 and

Type-2 firms, with the latter being those with lowestm and to the left of the line. Due to binding

constraints, Type-2 firms adopt constrained capital choices (black solid line), which are smaller

than the efficient level implied by their productivity, and maintain positive debt (red dotted line).

Type-1 firms, on the other hand, are now able to finance their desired investment, and their debt

gradually falls as m increases. The vertical line on the right distinguishes unconstrained firms

withm ≥ m̃; these firms chooseKw and Bw while paying positive dividends.

Since cash-on-hand is a function of ϵ, it is clear that the distribution of idiosyncratic pro-

ductivity crucially affects the distribution of cash-on-hand and hence firm-level decisions in the

model. Thus, depending on the underlying individual productivity shocks, the model may pre-

dict significantly different implications of financial frictions. I examine this point by comparing

the aspects of resource misallocation between the baseline and alternative models below.

Resource Misallocation While firms with insufficient cash-on-hand tend to adopt the con-

strained capital choice, small firms are not necessarily financially constrained in my model. That

is, some firms become small just because they have relatively low productivity and remain at their

optimal production scale, whereas other small firms have had to choose a constrained level of

capital due to binding borrowing constraints. The latter firms are Type-2 in the model, account-
27The patterns of decision rules are similar across different productivity. In the figure, hence, I show the decisions

rules at ϵ12 for clear visibility.
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Figure 2 : Decisions as functions of cash-on-hand
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Note: For a clear illustration, I plot the decision rules in the baseline model at a given productivity level, ϵ12. The two vertical lines distinguish
firm types by m: Type-2, Type-1, and unconstrained firms from left to right.

ing for the misallocation of productive factors in the aggregate economy.

Given the Pareto-distributed productivity, many firms in the baseline model are small not

because of collateral constraints, but because of low productivity. The first column of Table 5

presents the share of each firm type, and it turns out that only 9.5 percent of firms are financially

constrained as their collateral constraints are binding. At the same time, the skewed size distribu-

tion implies that more than 85 percent of firms are small. Thus, most small firms in the baseline

model operate at their efficient production scale, as implied by their low exogenous productivity,

consistent with the observation in Hurst and Pugsley (2011). However, as discussed below, the

extent of resource misallocation can be non-trivial in my model when financial frictions sub-

stantially restrict the allocation of resources to a small number of highly productive firms. To

understand this, it is useful to distinguish the margins of misallocation by looking at how many

firms are financially constrained and by how much.

The key idea is that not only the number of financially constrained firms (the extensive mar-
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Table 5 : Comparison of Type Distribution and Misallocation

Baseline Alternative

Pop. share (%)
unconstrained 0.18 2.43
type-1 90.29 74.11
type-2 9.53 23.45

Avg. K̄/Kw (%) 32.38 50.01
∆TFP (%) 2.62 0.95

Note: Baseline is the model with calibrated Pareto ϵ shocks, and Alter-
native is the model with a log-AR(1) process. Avg. K̄/Kw is the average
ratio of constrained to unconstrained capital, and ∆TFP is the change
in measured TFP when eliminating collateral constraints in each model.

gin) determines the aggregate effect of financial frictions, but also does the degree of financial

frictions faced by such firms (the intensive margin). The bottom panel of Table 5 reports the av-

erage ratio of constrained-to-unconstrained capital choices among Type-2 firms. In the baseline

model, this ratio is about 32 percent. Consequently, while only 9.5 percent of firms are con-

strained, those that are experience substantial distortions in their investment. I also compute

the corresponding loss of aggregate productivity by comparing the measured TFP in the model

with or without collateral constraints. The last row of Table 5 reports a productivity loss of 2.6

percent in the baseline economy in the presence of financial frictions. Thus, simply having many

small firms in themodel does not necessarily magnify the extent of resourcemisallocation. Only

those firms with high exogenous productivity, and binding constraints, contribute to the lower-

ing of aggregate productivity. Given the skewed firm productivity distribution, the share of such

Type-2 firms is relatively small in the baseline model, while their corresponding distortions in

the intensive margin are substantial.

On the other hand, the two margins of resource misallocation are different in the alternative

model with log-normally distributed productivity. In Table 5, the population share of Type-2

firms is about 23 percent and the average level of constrained capital is at 50 percent of the op-

timal choice. That is, relatively more firms are financially constrained but their investment is

closer to the optimal level when compared to the baseline model. As a result, the contribution
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Figure 3 : Distribution of capital ratio, Type-2 firms

of the intensive margin is relatively smaller and the corresponding efficiency loss is less than 1

percent. Importantly, we see that it is possible to underestimate the extent of resource misallo-

cation arising from financial frictions when a model is inconsistent with the empirical firm size

distribution. As the propagation of financial shocks relies on this resource misallocation chan-

nel, moreover, a business cycle model with financial frictions should arguably be consistent with

the distribution of distortions.

I further highlight the differences in the intensive margin across the two models, by looking

at the distribution of K̄/Kw. Figure 3 shows that the distribution of idiosyncratic productivity

in my model leads to different composition of financially constrained firms. Specifically, about

63 percent of Type-2 firms have their capital ratio below 50 percent in the baseline economy (red

bars), whereas such firms are about 57 percent in the alternative model (blue dotted line). Thus,

constrained firms’ investment is relatively more distorted in an economy with skewed produc-

tivity shocks and a realistic size distribution.28

28I thank an anonymous referee for the suggestion of looking at the distribution of capital gap among constrained
firms, instead of the entire distribution of cash-on-hand.
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The above discussion suggests that financial frictions can have different implications on re-

sourcemisallocation and aggregate productivity conditional on the underlying idiosyncratic pro-

ductivity distribution in amodel. The twomodels considered—the baseline and the alternative—

not only differ in the extent of misallocation but also in its composition. This further implies that

themodel can predict different cross-sectional heterogeneity, as will be discussed in the next sub-

section. Lastly, in the online appendix, I compare the growth patterns of young firms conditional

on their initial productivity.

3.3 Model Predictions on Firm Heterogeneity

I examine the model’s consistency with the empirical moments that are not targeted in my

calibration. These include firm-level investment moments and size-leverage relationships in the

data. In this way, I can externally validate my approach of reproducing the BDS size distribution

for nesting the unobserved financial heterogeneity in the baseline model.

Investment Moments Business cycle studies of heterogeneous firms typically target micro-

level investment moments in the data. I summarize the empirical moments of investment rate

(i/k) and compare them with model-generated moments.

In Table 6, I report the investment moments calculated from the Orbis dataset, used in my

estimation in Section 3.1. Although the dataset is relatively short, the pooled empirical moments

are consistent with those in the literature. For instance, the mean investment rate is 0.117, close

to the value in Cooper and Haltiwanger (2006).29

First, while not a target in the calibration, both the baseline and base-ex models show rela-
29Cooper and Haltiwanger (2006) document the moments of investment rate in a balanced panel of large-

manufacturing plants in the Longitudinal Research Database (LRD).The standard deviation frommy sample is a bit
larger than their value (0.444 vs. 0.337), whereas the autocorrelation becomes significantly larger when I estimate
a size-weighted regression with fixed effects (0.337 vs. 0.058). The share of firms with positive lumpy investments
is also similar (0.170 vs. 0.156). Further, these moments do not change much when 11 other developed economies
are additionally considered.
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Table 6 : Comparison of Firm-level Investment Dynamics

Investment Moments

Orbis Data Baseline Alternative Base-ex Alt-lv

µ(i/k) 0.117 0.142 0.388 0.198 0.213
σ(i/k) 0.444 0.365 0.921 0.371 0.454
ρ(i/k) 0.337 0.293 -0.196 0.352 -0.173
lumpy inv. 0.170 0.103 0.447 0.215 0.537

MSE - 0.003 0.165 0.003 0.101
Note: Orbis Data is computed from the balanced panel of firms in the G-7 countries. µ(i/k) is the average investment rate
(i/k), σ(i/k) is the standard deviation, ρ(i/k) is the first order autocorrelation, and lumpy inv. is the share of firms with
i/k > 0.2. Baseline is the model with calibrated Pareto ϵ shocks, Alternative is the model with a log-AR(1) process, Base-ex is
an extension of the baseline model with permanent heterogeneity, and Alt-lv is the model with a log-AR(1) process with lower
volatility. MSE is the mean-squared-error of the model moments. All model moments are calculated from a large panel of
firms simulated at each steady state.

tively good fits to the empirical moments of the investment rate (columns 2 and 4). The aver-

age investment rate in the baseline model is about 20 percent larger than the empirical value,

whereas the investment volatility is somewhat smaller. Further, firms’ investment in these mod-

els exhibits substantial persistence and lumpiness as seen in the data. These results suggest that

the models with skewed idiosyncratic shocks generate plausible investment dynamics at the firm

level, without relying on real adjustment costs.30

Next, in the alternative model, firm-level investment dynamics are not similar to the empiri-

cal moments (column 3 of Table 6). Due to the extremely large volatility in productivity shocks,

the mean and standard deviation of investment rates are far away from those in the Orbis data.

In addition, as commonly seen in models without capital adjustment costs, the autocorrelation

of investment rates is negative. When I reduce the volatility of idiosyncratic shocks to 0.09, to

particularly match the empirical value of σ(i/k), the model-implied investment dynamics still

remain unsatisfactory (the alt-lv model in column 5).31

These discrepancies indicate that the model may predict counterfactual heterogeneity in the
30The moments of employment dynamics in the baseline and base-ex models are also relatively more closer to

those reported in Sedlacek and Sterk (2017) and Gavazza, Mongey, and Violante (2017). For instance, the standard
deviation of employment growth ranges between 0.47 and 0.53 in these models.

31The resulting volatility in ϵ in the alt-lv model is similar to that in the baseline model. However, the model also
significantly fails to explain the empirical firm size distribution.
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cross-section, depending on how idiosyncratic productivity shocks are calibrated. Further, it is

clear that the model’s consistency with firm size data is obtained at no cost to its implications on

investment moments at the firm level.

Size-Leverage Relationship In the model, firms make borrowing decisions subject to their

collateral constraints, and the corresponding distribution of financial frictions can be measured

by using the ratio of constrained-to-optimal capital, as shown earlier in Table 5 and Figure 3.

However, there exist practical challenges for empirically evaluating the model’s predictions on

financing constraints at the firm level. This is because such constraints are not directly observed

in the data and firms’ decisions are only captured by their leverage ratio. Hence, I examine the

model’s consistency with the observed firm leverage distribution and the reduced-form evidence

on firm size and leverage in the data.

I begin by comparing the leverage distribution across models with different productivity

shocks and firm size distributions. Table 7 summarizes the model-generated leverage distri-

butions, together with the empirical distribution reported by Crouzet and Mehrotra (2020).32

The baseline and base-ex models are largely consistent with the observed leverage values by asset

size quantile (rows 2 and 4). In particular, the mean leverage tends to remain relatively high as

firm size increases in the model (columns 1 to 3). This pattern, on the other hand, does not exist

in the alternative model (row 3). There, leverage is significantly larger among the firms at the

bottom 90 percent of asset distribution. The top 1 percent of firms save using financial assets in

this model, so their leverage becomes zero.

Next, I establish the empirical relationship between firm employment size and leverage, and

then verify whether the model predicts a similar result. In the following, I find that the baseline

model with realistic heterogeneity in firm size delivers a positive size-leverage relationship as
32They provide the descriptive statistics of US firms in the Quarterly Financial Report (QFR) of the US Census

Bureau. The asset size bins and the empirical moments in Table 7 are directly taken from their work.
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Table 7 : Mean Leverage by Asset Size

0-90th 90-99th 99-99.5th >99.5th MSE

QFR Data 0.20 0.19 0.23 0.22 -

Baseline 0.20 0.26 0.23 0.14 0.003
Alternative 0.26 0.13 0.00 0.00 0.027

Base-ex 0.18 0.22 0.21 0.16 0.001
Note: QFR Data reproduces the values of net leverage in Crouzet and Mehrotra (2020). Baseline is the model with
calibrated Pareto ϵ shocks, Alternative is the model with a log-AR(1) process, and Base-ex is an extension of the
baseline model with permanent heterogeneity. MSE is the mean-squared-error of the model moments. Assets in the
model are defined as the sum of capital and financial savings.

seen in the data.

For the empirical analysis, I separately construct a balanced panel of firms in the Orbis

database, covering the G-7 countries from 2010 to 2015. I focus on firms that are non-financial

and non-public administration companies distinguished by NAICS 2017 codes. The resulting

dataset is a panel of 184,565 firms with 1,060,143 observations, and the online appendix con-

tains the details of data construction, sample selection, and descriptive statistics.

I consider a standard leverage regression that accounts for industry-country-time fixed ef-

fects. In the regression, I use short-term debt leverage (stlev) as the main dependent variable

for each firm-year observation.33 The regression equation is given by

leveragei,t = β1 · empi,t−1 + β2 · collaterali,t−1 + β3 · profiti,t−1 + β4 · prodi,t−1 + α+ δt · year + ei,t,

where emp is the logarithm of employment, collateral is the ratio of tangible fixed assets to

total assets, profit is the earnings to asset ratio, prod is a measure of labor productivity, α is

industry/country fixed effects, and δt is a time fixed effect.34 The coefficient on employment

size, β1, then represents the empirical relationship between firm size and leverage. To check the
33This is to make direct comparisons with the model results, since I assumed one-period discount debt in the

model. Tables 20 and 21 in the online appendix contain the results for total and financial leverages (tlev, flev).
34This specification is almost identical to those in Dinlersoz et al. (2019) and Chatterjee and Eyigungor (2022).

These studies also report positive and significant relationships between firm size and leverage amongUS private and
public firms. To reduce the sample bias towards large firms, I use asset-size weights in the regression as thankfully
suggested by an anonymous referee.
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Table 8 : Fixed-effects Leverage Regression, Data and Model

Dep. variable stlevi,t

Sample G-7 US Baseline Alternative Base-ex
(1) (2) (3) (4) (5)

empi,t−1 0.012*** 0.018*** 0.013*** -0.042*** 0.091***
(17.60) (13.59) (16.77) (-140.47) (46.73)

collaterali,t−1 -0.189*** -0.094*** -0.011*** -0.063*** -0.314***
(-29.16) (-5.74) (-3.86) (-43.17) (-54.41)

profiti,t−1 -0.340*** -0.216*** 2.224*** 2.941*** 1.380***
(-16.86) (-7.30) (205.95) (433.90) (114.47)

prodi,t−1 0.024*** 0.003 0.785** -2.308*** 3.968***
(13.10) (0.64) (2.13) (-19.50) (2.66)

industry FE ✓ ✓
country FE ✓
year FE ✓ ✓ ✓ ✓ ✓
obs. 867,458 8,427 325,195 325,625 301,625
adj. R2 0.453 0.656 0.739 0.780 0.902

Note: t-statistics in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. stlev is short-term leverage, emp is employment size in logs,
collateral the ratio of tangible fixed assets to total assets (ratio of capital to assets in model), profit is net income over total assets
(revenue less wage bill over assets in model), and prod is a measure of labor productivity that divides turnover by employment (output
over employment in model). All variables are winsorized at the 1 percent level.

model’s consistency with the empirical estimate of β1, I simulate a large panel of firms in each

model and run the above regression without industry- and country-fixed effects.

Table 8 summarizes the results from the empirical and model-simulated data. First, the co-

efficient on employment is positive and statistically significant for firms in the G-7 countries and

in the US (columns 1 and 2). Specifically, the estimate is 0.012 for all firms in the sample, which

implies that a firm’s leverage ratio tends to increase by about 2.8 percentage point when its em-

ployment size becomes 10 times larger (0.0276 = log 10 · 0.012), after controlling for other firm

characteristics. This result is also analogous to the fact that leverage is relatively higher among

the largest firms in the top 10 percent, in Table 7. Moreover, the above employment coefficient

is in line with the estimates in the recent works by Dinlersoz et al. (2019) and Chatterjee and

Eyigungor (2022); they respectively find the coefficient of 0.007 for private firms and 0.035 for

listed firms in the US.
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Next, columns 3 and 5 of Table 8 indicate that leverage increases in lagged employment in

the models with a realistic firm size distribution and skewed productivity shocks. That is, the

employment coefficients in the baseline and base-ex models are positive and significant as seen

in the first two columns of the table. Further, their values are within a reasonable range of the

empirical estimates although untargeted. Especially, the value from the baseline model is close

to that in the pooled sample of firms across countries. Other regression coefficients are also

largely consistent with the empirical estimates, with the exception of firms’ profitability.35 As

productivity is persistent in the model, leverage tends to increase when either a firm’s collateral

ratio is low or its productivity is high in the preceding period.

The alternative model, in contrast, yields a counterfactual prediction. Column 4 of Table

8 shows that the size-leverage relationship is reversed, implying that large firms tend to be less

leveraged. As discussed earlier, the underlying productivity distribution in this model is not

sufficiently skewed and dispersed. The resulting size distribution has relatively fewer firms in

the smallest group, while 23 percent of firms have binding collateral constraints (Tables 5 and

4). Since the latter firms are close to their efficient production scale, when compared to those

in the baseline economy, a marginal increase in their employment would allow them to choose

the unconstrained capital and reduce their debt. This pattern appears to be dominant in the

alternative model, which explains the negative effect of lagged employment on leverage.

It is clear that the reduced-form evidence in Table 8 suffers from potential endogeneity prob-

lems. However, analyzing the effects of financial shocks requires a business cycle model that

is consistent with real and financial heterogeneity seen in data. In this paper, I achieve such

micro-level consistency in a parsimonious way by introducing skewed firm productivity shocks

in the model, which further leads to a realistic firm size distribution. This approach is based on

the insight of Krueger, Mitman, and Perri (2016), in particular. In their work, an empirically-
35Theonline appendix reports additional results from the leverage regression. Depending on type of firms (private

and listed) or leverage ratio (total, financial, and short-term leverage), the coefficients on other variables significantly
change. However, the sign of employment coefficient is robustly positive.
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consistentwealth distribution of households brings realistic heterogeneity in themarginal propen-

sity of consumption, which in turn amplifies the distributional effects of an aggregate shock.

Further, my approach is also closely related with Pugsley, Sedlacek, and Sterk (2021) by empha-

sizing the model’s consistency with the relevant empirical moments at the firm level. While they

focus on the autocovariance structure of firm employment dynamics, I confirm the importance

of accounting for the empirical size and leverage distributions in a heterogeneous-firm model in

the presence of financial frictions and aggregate uncertainty.

3.4 Estimation of Aggregate Shocks

I jointly estimate the parameters of the aggregate shock processes. For aggregate productivity

shocks, I assume that the exogenous aggregate TFP component follows a log-AR(1) process.

log z′ = ρz log z + η′z, ηz ∼ N(0, σ2
ηz)

Credit shocks, on the other hand, directly alter the value of the financial parameter, θ, in firms’

borrowing constraints. I assume that θ follows a two-state Markov switching process withNθ =

2, θ ∈ Θ =
{
θss, θl

}
and θl < θss. The ordinary period of having θss continues with probability

poo, and the transition from the period of reduced credit to an ordinary period is governed by

plo. Hence, a sudden decrease in θ with a probability of 1− poo corresponds to a credit shock.

Given the assumed stochastic processes, let γ ≡ (ρz, σηz , θl, poo, plo) be the set of parameters

to be estimated. I estimate γ by using a minimum-distance-estimator, holding other parame-

ter values fixed in the baseline model.36 I use the real and financial time-series data from NIPA

and the Flow of Funds between 1954 and 2018: HP-filtered real GDP (Y ), total hours worked

(N ), and total real debt (B).37 Empirical moments include the first-order autocorrelations and

36The objective function is, minγ

(
Mdata −Mmodel(γ)

)′
Wγ

(
Mdata −Mmodel(γ)

)
, whereWγ is a weighting

matrix,Mdata is a vector of empirical targets, andMmodel(γ) is a vector of model-simulated moments. Following
Gavazza, Mongey, and Violante (2018), I setWγ = diag(1/Mdata)

2.
37As documented in Jermann and Quadrini (2012), the cyclicality of US financial variables significantly changes
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Table 9 : Estimated Parameters

Estimated Aggregate Shocks

Estimate Data Moment Model Moment

ρz 0.9213 ρY 0.5512 0.5446
σηz

0.0152 σY 0.0206 0.0237
θl 0.6101 ρN 0.5569 0.5509
poo 0.9162 σN 0.0202 0.0154
plo 0.3004 σB 0.0497 0.0511

Note: All data series are annual from 1954 to 2018. Y is the real GDP,N is total hours worked,
and B is the total debt. Model moments are computed from a 5,000-period simulation of the
baseline model. I use HP-filter with a smoothing parameter of 100.

standard deviations of these target variables, (ρY , σY , ρN , σN , σB). Table 9 summarizes the es-

timation results, and I discuss their business-cycle implications in the online appendix.

4 Aggregate Dynamics and Firm Size Heterogeneity

I now turn to investigating the role of firm heterogeneity in propagating aggregate shocks.

To this end, I compare impulse responses across models with different idiosyncratic shocks and

hence with different heterogeneity in size and leverage, and examine how themargins of resource

misallocation change over time.

4.1 Impulse Responses: Credit Shock

Aggregate Effects I consider a credit shock that hits the baseline economy at the steady state,

holding exogenous TFP fixed. Specifically, the value of θ falls by 19 percent from θss, and grad-

ually recovers after 3 periods with the estimated persistence plo. This magnitude of the shock is

chosen to imply a 26 percent drop in aggregate borrowing at the steady state, consistent with the

in the 1980s, so I choose to include just one financial moment for aggregate debt in the estimation. For total hours
worked, I use the time-series data constructed by Cociuba, Prescott, and Ueberfeldt (2018). The estimates change
when I exclude observations after 2006, and I thank an anonymous referee for suggesting to include the post-Great
Recession data in the estimation.
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empirical observations during the Great Recession.38

Figure 4 plots the dynamics of aggregate variables following the calibrated shock. The credit

shock creates a persistent and prolonged recession (solid red line). From the impact date, mea-

sured TFP gradually falls, reaching its trough at 1.5 percent below its steady-state level. This

fall in TFP mainly stems from the slow reallocation of capital across firms during the recession.

That is, firms that were Type-2 at the steady state become more financially constrained as credit

tightens; the number of such firms also increases. This lowers the allocative efficiency of fac-

tors of production in the economy, and hence measured TFP falls endogenously. Importantly,

the quantitative magnitude of such increased misallocation critically depends on the underlying

distribution of firm productivity and financing constraints in an economy. I return to this point

later, decomposing the distributional effects of the credit shock.

In Figure 4, the response of output illustrates that a persistent recession triggered by a finan-

cial shock is intrinsically different from that following a real shock. Output initially drops by

1.2 percent, then sees its largest decline at date 3. On the other hand, consumption rises slightly

at impact, then gradually falls during the recession. Together, these responses characterize a

financial recession driven by the endogenous fall in aggregate productivity.

As discussed in Section 3, the aspects of resource misallocation arising from financial fric-

tions vary with the underlying firm productivity distribution in a model. This suggests that the

propagation of a financial shock can be significantly different across models with or without re-

alistic firm heterogeneity. To highlight this point, I conduct the same experiment in both the

alternative and base-ex models. For comparability with the results from the baseline model, I

control the size of the credit shock in each model. That is, the value of θss respectively falls by

21 percent in the alternative model and by 20 percent in the base-ex model, so that the resulting
38Various measures show a massive reduction in business lending during the recession. Among others, Ivashina

and Scharfstein (2010) report that the newly issued volume of syndicated loans fell more than 50 percent in 2008,
while Khan andThomas (2013) show that the fall in real lending from commercial banks is about 26 percent between
2008 and 2011. I follow the latter conservative value in my experiment.
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Figure 4 : Aggregate dynamics following a credit shock
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Note: The stochastic impulse responses to a sudden credit tightening. The size of the shock implies an endogenous decrease of aggregate bor-
rowing by 26 percent in all models, and θ start recovering in period 4 with persistence of plo. Baseline is the model with calibrated Pareto ϵ
shocks, Alternative is the model with a log-AR(1) process, and Base-ex is an extension of the baseline model with permanent heterogeneity.

decreases in aggregate lending remain the same at 26 percent.39

Figure 4 also compares the aggregate responses in different models. First, when the credit

shock hits the alternative economy, the subsequent aggregate dynamics (blue line with dash-dots)

are similar to those in the baseline economy. However, the recession is not as severe as in the

baseline economy. In particular, the greatest decline in measured TFP is 0.8 percent. Thus, the

increased misallocation following the credit shock is less pronounced in the model with coun-

terfactual distributions of firm size and leverage. Because of this small TFP loss, it is natural to

have a relatively quick recovery thereafter. That is, the half-life of the recession is about 5 years,

which is 1.5 years shorter than in the baseline model.

This finding does not changewhen themodel incorporates ex-ante heterogeneity in firmpro-
39I thank the editor and anonymous referees for their suggestion of clarifying the size of a credit shock in this

experiment.
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ductivity. The base-ex model shows aggregate responses to a credit shock are marginally smaller

than those in the baseline model (black dotted line). For instance, the drop in output is about 90

percent of that in the baseline model, suggesting that these models with realistic heterogeneity

lead to a relatively deep recession and its slow recovery following a credit shock. Thus, this result

is not driven by the presence of permanent heterogeneity across firms, but rather the model’s

consistency with the observed firm-level data. Such micro-level consistency, therefore, is crucial

for quantitatively evaluating the transmission of a credit shock through the distribution of firms.

Inspecting theMechanism From the discussion in Section 3.2, the extent of resourcemisallo-

cation in the model can be decomposed into two margins: the number of financially constrained

firms (the extensive margin) and the tightness of their borrowing limits (the intensive margin).

Depending on the distribution of productivity and financing constraints in the model, these

twomarginsmay potentially change in differentways following a credit shock. This is because the

shock widens the gap between constrained and efficient capital choices, and raises the number

of such firms at the same time. Moreover, some firms in the model may suffer relatively more,

while others are still able to optimally adjust their production factors in response to changes in

equilibrium prices. These differential responses across firms highlight the distinct nature of a

financial shock, and they collectively emerge as a change in measured TFP at the aggregate level.

Thus, incorporating a skewed distribution of idiosyncratic shocks in the model not only delivers

plausible cross-sectional results in steady state, but also amplifies the extent of misallocation

through time-varying changes in the distribution of firms. The resulting aggregate dynamics

are substantially larger in the baseline model, as already seen in Figure 4.

I first illustrate the above mechanism in Figure 5 by using a graphical analysis of the model

in partial equilibrium. In the left panel, I plot a skewed distribution of cash-on-hand m at the

steady state (red dashed line) . The straight line from the origin represents the upper bound of

capital choice as a function of m, so that firms with m < m(K̄) choose constrained capital

K̄ ≤ Kw. The right panel of Figure 5 shows the changes in decision rules following a credit
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Figure 5 : Comparative statics following a credit shock, in partial equilibrium

Note: The above graphically illustrates the changes in capital choices following a fall in θ, holding the distribution of cash-on-hand and factor
prices fixed.

shock. As θ falls, the upper bound schedule becomes flatter and the threshold level of cash-on-

hand rises, holding the distribution fixed. Firms hence respond differently to the shock, based

on whether or not they face binding borrowing constraints. Note that the flattened upper bound

in Figure 5 leads to the increased gap betweenKw and K̄ for financially constrained firms. This

represents a change in the intensivemargin. At the same time, the credit shock raises the number

of constrained firms due to the increased threshold of cash-on-handm(K̄). This indicates that

the firm-type distribution varies over time, corresponding to a change in the extensive margin.

While the graphical analysis provides a useful insight on the resource misallocation chan-

nel, it is unclear how each margin contributes to equilibrium changes in aggregate productivity.

For this reason, Figure 6 plots the dynamics of the intensive and the extensive margins in the

baseline model following a credit shock (red solid line). The top panel of the figure shows that a

credit tightening immediately raises the number of Type-2 firms in the distribution at impact,

from 9 to 17 percent, implying that the extensive margin sharply increases. At the same time, in

the bottom panel of Figure 6, the average ratio of constrained-to-unconstrained capital falls by

more than 20 percent and slowly returns to the steady-state level.40 Such changes in the inten-
40This makes the marginal product of capital more dispersed across firms, raising the potential benefits of capital

reallocation during the recession. This is in line with the finding in Eisfeldt and Rampini (2006).
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Figure 6 : Comparison of extensive and intensive margins across models
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Note: Baseline is the model with calibrated Pareto ϵ shocks, and Alternative is the model with a log-AR(1) process. The top panel presents the
share of firms with binding constraints, measuring the extensive margin of resource misallocation. The bottom panel shows the average ratio of
constrained to unconstrained capital choices among Type-2 firms, representing the intensive margin.

sive margin imply that the size of financially constrained firms significantly decreases, given the

same level of idiosyncratic productivity. Hence, the adjustment in the intensive margin induces

small, constrained firms to respond disproportionately more to tightened credit. Specifically,

the model-implied gap in employment between Type-2 and other firms is 7.5 percentage point,

similar to the estimate in Siemer (2019).41

In the alternative model, the population share of Type-2 firms changes from 23 to 37 per-

cent, while such firms’ capital choice shrinks by 18 percent at the impact of the shock. So, the

adjustment in the extensive margin is relatively larger and that in the intensive margin is smaller.

Although the number of Type-2 firms in the alternative model is still at a higher level, such firms

in the baseline model face tougher borrowing conditions during the recession. It follows that the
41Siemer (2019) look at the Census data and estimate the differential responses of small firms during the Great

Recession. He finds that small firms in financially-dependent sectors reduced their employment relatively more by
4.4 percentage point. I thank an anonymous referee for suggesting this comparison.

39



intensive margin adjustments amplify the effects of a credit shock in the baseline economy.

From the above discussion, it is clear that incorporating realistic heterogeneity in firm size

and leverage matters for aggregate dynamics in the presence of financial frictions. The base-

line model, employing Pareto-distributed productivity, is capable of generating an empirically-

consistent firm size distribution. Given the importance of firm size in determining the extent of

unobserved financing constraints, the real effects of a financial shock is amplified in amodel with

an idiosyncratic productivity distribution that reproduces the observed skewness and dispersion

in firm size data.

4.2 Impulse Responses: Productivity Shock

Figure 7 presents the aggregate dynamics following a persistent productivity shock in the

baseline model. The shock reduces z by 2 percent at impact and gradually disappears over time.

Its magnitude is chosen to match the observed decline in measured TFP in the US from 2007

to 2009. While this reproduces the fall in TFP following a credit shock, the aggregate quantities

now display different patterns. In Figure 7, output, consumption, and employment all drop im-

mediately and then gradually recover to their steady-state levels. Measured TFP closely follows

the changes in z over time, but other variables fall by significantly less when compared to the fi-

nancial recession in Figure 4. For instance, the real shock generates a 2.7 percent drop in output,

whereas it is more than 6 percent following a credit shock with modest falls in TFP. Thus, it is

clear that a TFP shock alone does not reproduce the observed changes in macro variables during

the Great Recession.

The results in Figure 7 also indicate that the productivity shock does not significantly interact

with the resource misallocation in the model. That is, productivity shocks have little distribu-

tional effects, unlike credit shocks.42 This is because all firms are evenly affected by a productivity
42In models with household heterogeneity and incomplete markets, on the other hand, a productivity shock can

have significant distributional effects. See Krueger, Mitman, and Perri (2017) among others.
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Figure 7 : Aggregate dynamics following a productivity shock
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Note: The stochastic impulse responses to a persistent productivity shock. The size of the shock is to lower z by 2 percent at the impact in all
models. Baseline is the model with calibrated Pareto ϵ shocks, Alternative is the model with a log-AR(1) process, and Base-ex is an extension of
the baseline model with permanent heterogeneity.

shock, and there are no changes in borrowing conditions that would have affected constrained

firms disproportionately. Hence, themargins of resourcemisallocation almost stay at the steady-

state levels in response to a real shock. It is then intuitive that the underlying firm heterogeneity

does not significantly alter the macroeconomic implications of the model when only produc-

tivity shocks are considered. This point is illustrated in Figure 7, in which I also compare the

aggregate responses across different models. Clearly, there is no pronounced difference in each

aggregate series following the same TFP shock. Since firm heterogeneity does notmatter for pro-

ductivity shocks, standard models without financial shocks are equally successful in explaining

the US business cycles.

It is notable that the extensive margin barely changes in response to a productivity shock. In

the baselinemodel, the share of Type-2 firms only varies by less than 0.4 percentage point. Hence,

about 90 percent of firms (unconstrained and Type-1) can flexibly adjust their investment and
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employment during the recession. Since the productivity shock evenly depresses unconstrained

capital choice at each level of individual productivity, these firms shrink at the same rate regard-

less of their size. That is, the responses of small and large firms are not substantially different

from each other. Given that my estimated aggregate productivity shocks are dominant in driv-

ing business cycles in relative to credit shocks, firms of different sizes, on average, exhibit broadly

similar dynamics over business cycles in themodel. This is consistent with the finding in Crouzet

and Mehrotra (2020).

4.3 The Great Recession

I show that the baseline model closely reproduces the observed aggregate dynamics during

the Great Recession, when both credit and productivity shocks are jointly considered. For this, I

conduct a peak-to-trough analysis of the model in comparison to the US data.

Table 10 reports the peak-to-trough changes of aggregates seen in Figures 4 and 7, with the

empirical values since 2006. As seen in the second row, the baseline model slightly over-predicts

the responses of aggregate output and employment to a credit shock, while the largest declines in

measured TFP and consumption are smaller. In the third row, I report the changes in the model

following a sudden decrease in z by 2 percent. While the model exactly matches the observed

decline in TFP by setup, the aggregate changes are at Together, these discrepancies indicate that

the US economy might have experienced multiple shocks at the onset of the Great Recession.

I now consider a combination of productivity and credit shocks that can better explain the

aggregate dynamics during the 2007 Recession. Specifically, I calibrate the magnitude of such

combined shocks to exactly reproduce the drop in real GDP by 5.3 percent. The last row of

Table 10 reports the corresponding results when I reduce the values of z and θ respectively by

1 and 17 percent. Though untargeted, the largest decline in measured TFP also closely matches

its empirical value, and the combined shock explains about 75 percent of the decreases both in
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Table 10 : Peak-to-trough Changes, Great Recession and Baseline Model

Y TFP C N

Data 5.34 2.01 4.13 6.40

θ shock 6.39 1.57 3.39 6.88
z shock 2.70 2.00 1.82 1.18
(θ + z) shock 5.33 1.95 3.09 4.79

Note: Data is for the relative changes of HP-filtered annual US data from their levels in 2006. θ shock
is for the responses of the baseline economy following a credit shock and z shock is for those following
a negative TFP shock. (θ + z) shock considers a combination of both shocks that reproduces the fall
in real GDP.

consumption and employment. In addition, I can measure the relative contribution of the credit

tightening by isolating the impact of the drop in z in themodel economy. That is, for the observed

GDP fall of 5.3 percent, the credit shock appears to account for 74 percent. This suggests that

the resource misallocation across firms, resulting from a credit shock, was a major factor of the

aggregate dynamics during the Great Recession.

5 Concluding Remarks

Evidence on the size and leverage distributions of firms is often ignored in the business cycle

literature. In this paper, I focus on their role in propagating aggregate shocks. I build an equilib-

rium business cycle model with heterogeneous firms and forward-looking collateral constraints.

I estimate idiosyncratic productivity shocks and discipline the model to be consistent with the

data on the distribution of firm size and leverage. Unlike productivity shocks, financial shocks

operate through the distribution of firms, and the differential firm-level responses characterize

the distributional impacts.

I find that the macroeconomic effects of financial shocks are significantly different condi-

tional on whether a model incorporates realistic firm heterogeneity. Previous studies that fail to

capture the data on firm size and leverage may under-predict the real effects of financial shocks.

Themodel in this paper shows that themisallocation channel following a financial shock is signif-
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icantly stronger with realistic heterogeneity. Therefore, consistency with firm-level heterogeneity

is crucial in studying business cycles with financial shocks.
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Online Appendix

A Firm Problem and Numerical Methods

I solve the model numerically to obtain the quantitative results in this paper. In the follow-

ing, I present the original firm’s problem in the absence of cash-on-hand in the model. I then

describe the numerical methods used to reproduce the empirical firm size distribution, solve the

equilibrium, and estimate the aggregate shocks.

A.1 Original Firm’s Problem and Equilibrium Prices

In themodel, cash-on-hand is defined after imposing the static labor demand condition to the

original firm’s problem described below. At the beginning of a period, a firm with (k, b, ϵi; sl, µ)

solves

vf0 (k, b, ϵi; sl, µ) = πd · max
n

[
zlϵiF (k, n)− w(sl, µ)n+ (1− δ)k − b

]
+ (1− πd) · vf (k, b, ϵi; sl, µ)

vf (k, b, ϵi; sl, µ) = max
n,k′,b′,D

[
D +

Ns∑
m=1

πs
lmdm(sl, µ)

Nϵ∑
j=1

πϵ
ijv

f
0 (k

′, b′, ϵj; sm, µ
′)
]

subject to

0 ≤ D = zlϵiF (k, n)− w(sl, µ)n+ (1− δ)k − b− k′ + q(sl, µ)b
′

b′ ≤ θk′

µ′ = Γ(sl, µ),

where vf0 and vf are analogous to Equations (1) and (2) respectively.

Next, as frequently used in the literature, it is convenient to modify the firm’s value functions

by using the equilibrium prices implied by the market clearing quantities. Let C and N be the

1



equilibrium quantities for aggregate consumption and labor. Then the prices in themodel can be

expressed using themarginal utility of consumption and leisure in equilibrium. The output value

in equilibrium can be expressed using the marginal utility of consumption,D1U(C, 1−N). The

real wage,w(s, µ), is equal to themarginal rate of substitution between leisure and consumption,

and the inverse of the discounted bond price, q−1, equals the expected gross real interest rate.

Lastly, the stochastic discount factor, dm(s, µ), is the household’s intertemporal marginal rate of

substitution across states. I summarize these equilibrium prices in terms of marginal utilities as

below.

w(s, µ) =
D2U(C, 1−N)

D1U(C, 1−N)

q(s, µ) =
β
∑Ns

m=1 π
s
lmD1U(C

′
m, 1−N ′

m)

D1U(C, 1−N)

dm(s, µ) =
βD1U(C

′
m, 1−N ′

m)

D1U(C, 1−N)

Given p(s, µ) ≡ D1U(C, 1−N), the firm’s problem can be rewritten in terms of this utility

price without carrying the stochastic discount factor. That is, by defining V f
0 ≡ p · vf0 and

V f ≡ p · vf , I can solve the equilibrium allocations solely from the firm’s problem, in a manner

consistent with the household’s optimal decisions.

A.2 Matching Firm Size Distribution

I employ the method of matching the empirical firm size distribution in a model which is

used in Jo and Senga (2019).43 I use the average employment shares in the tabulated size bins

in the BDS as proxies for distinguishing firm-size groups at the steady state of the model. Given

a stationary distribution of firms, µ(k, b, ϵ), I construct a cumulative employment distribution
43There are various ways to reproduce the size distribution of firms in the data. For instance, Restuccia and

Rogerson (2008) numerically find the time-invariant distribution of productivity in the absence of distortions. More
importantly, not many business cycle studies in the literature focus on reproducing the observed size dispersion in
the BDS data, which typically requires a skewed and dispersed distribution of idiosyncratic productivity.
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by using Nw at each (ϵ, k). Then, for each firm size bin, I bisect the threshold level of model

employment size, n̄, that exactly matches the cumulative employment share in the BDS. This

relative way of measuring firm size then aligns the model employment shares exactly with their

empirical counterparts. I calculate the measure of firms at each size bin distinguished by the

thresholds, which yields the distribution of population shares in the model.

A.3 Solving for Stationary Equilibrium

Given parameter values, I solve themodel and find a stationary equilibrium inwhich individ-

ual decisions are consistent with the market clearing prices. That is, I compute the equilibrium

price, p, such that the excess demand, ED(p), equals to zero, as in the definition of recursive

competitive equilibrium. In particular, the value function in Equation (2) doesn’t have to be

solved, since the firm-level decisions are already derived as functions of cash-on-hand, m. It is

then straightforward to find a stationary distribution of firms, µ(k, b, ϵ), by iteratively updating

the decisions at a given price. I use the bisection method to find the equilibrium price, and the

weighted grid method to update the distribution. The algorithm involves the following steps.

1. Initiate the algorithm by setting parameter values and grids on state space.

2. Given p ∈ [pl, pr], solve the policy functions, (Nw,Kw, Bw), using the implied wage rate, w(p),

from the marginal rate of substitution.

3. At each grid point of the distribution, (k, b, ϵ), calculate the corresponding cash-on-hand,m.

4. Givenm, update the distribution by using the intertemporal decision rules for k′ and b′, conditional

on survival.

5. Repeat steps 3 and 4 until the distribution converges, while replacing exiting firms with entrants in

each period.

6. Given a stationary distribution, check if the excess demand at p is zero and repeat steps 2 to 5.
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A.4 Solving for Stochastic Equilibrium

A standard approach to solving an equilibrium business cycle model with heterogeneous

agents is to approximate the endogenous aggregate state—the distribution of individuals. Since

the model distribution is a high-dimensional object, the method typically replaces it with a finite

set of moments. Under aggregate uncertainty with s ≡ (z, θ), I use the method of approximate

aggregate state in Krusell and Smith (1998), following its application to a heterogeneous-firm

model in Khan and Thomas (2008). That is, µ(k, b, ϵ) is approximated by the first moment of the

distribution of capital across firms, K ≡
∫
S kdµ. The aggregate law of motion for the distribu-

tion, Γ(s, µ), is in turn replaced by a simple forecasting rule, Γ̂(s,K). As in Khan and Thomas

(2013), I also introduce two dummy variables, ζ1 and ζ2, into the forecasting rule. ζ1 = 1 if the

economy was hit by a credit shock last period, and ζ2 = 1 if it happened 2 periods ago.

I discretize the stochastic process of z using the Rouwenhorst method with Nz = 5, and

expand the exogenous state space by including credit shocks and the dummies. I separate the

forecasting rule, respectively for aggregate future capital, Γ̂K , and equilibrium marginal utility,

Γ̂p, conditional on s realizations. GivenNs = Nz ·Nθ, the forecasting rule is then given by,

logx = βi
0 + βi

1 logKt + βi
2ζ1,t + βi

3ζ2,t, i = 1, . . . , Ns,

where x ∈ {K̃t+1, p̃t}. I simulate the model for T periods, and collect the simulated time series,

{pt, Kt}Tt=1, along with the realized shocks and dummy values, {st, ζ1,t, ζ2,t}Tt=1. Until conver-

gence, Γ̂K and Γ̂p are updated by estimating the above equations with the simulated data for

10,000 periods.

Table 11 reports the conditional forecasting rule in the baseline model. The forecasting rules

for future capital and current output valuation are reasonably accurate such that R2 values are

mostly higher than 0.99 in all specifications. I also find that the accuracy measure suggested by

Den Haan (2010), the maximum forecast error, is also lower than 1 percent in each regression

4



Table 11 : Forecasting Rule in Stochastic Equilibrium

Forecasting Rule for Future Capital, Γ̂K

s β0 β1 β2 β3 S.E. Adj.R2 max. error

(z1, θss) -0.14261 0.79872 -0.00535 -0.00058 0.00178 0.99744 0.00889
(z1, θl) -0.14943 0.80109 -0.00526 -0.00067 0.00216 0.99514 0.00591

(z2, θss) -0.12841 0.79650 -0.00549 -0.00069 0.00145 0.99812 0.00804
(z2, θl) -0.13585 0.79826 -0.00543 -0.00081 0.00231 0.99602 0.01001

(z3, θss) -0.11496 0.79265 -0.00553 -0.00078 0.00157 0.99766 0.00982
(z3, θl) -0.12127 0.79665 -0.00556 -0.00087 0.00241 0.99571 0.00791

(z4, θss) -0.09964 0.79160 -0.00560 -0.00079 0.00180 0.99711 0.00822
(z4, θl) -0.10693 0.79445 -0.00559 -0.00085 0.00246 0.99525 0.00826

(z5, θss) -0.08367 0.79124 -0.00576 -0.00081 0.00152 0.99754 0.00648
(z5, θl) -0.09145 0.79367 -0.00576 -0.00087 0.00253 0.99549 0.00637

Forecasting Rule for Marginal Utility, Γ̂p

s β0 β1 β2 β3 S.E. Adj.R2 max. error

(z1, θss) 1.34921 -0.40890 0.00213 -0.00014 0.00138 0.99415 0.00612
(z1, θl) 1.34241 -0.40771 0.00217 -0.00016 0.00178 0.98719 0.00509

(z2, θss) 1.32365 -0.40710 0.00210 -0.00019 0.00110 0.99586 0.00562
(z2, θl) 1.31670 -0.40573 0.00215 -0.00018 0.00182 0.99039 0.00783

(z3, θss) 1.29763 -0.40560 0.00212 -0.00016 0.00121 0.99479 0.00769
(z3, θl) 1.28924 -0.40640 0.00213 -0.00022 0.00193 0.98945 0.00638

(z4, θss) 1.27251 -0.40209 0.00214 -0.00014 0.00140 0.99332 0.00565
(z4, θl) 1.26395 -0.40305 0.00216 -0.00020 0.00194 0.98859 0.00686

(z5, θss) 1.24744 -0.39829 0.00212 -0.00015 0.00117 0.99428 0.00490
(z5, θl) 1.23931 -0.39798 0.00216 -0.00020 0.00202 0.98860 0.00480

Note: S.E. is the standard error in each regression, and max. error is the maximum forecast error in the simulation.

result. When compared to those in Khan and Thomas (2013), these measures are relatively less

accurate, implying that the highly skewed firm distribution in my model generates such differ-

ences. As Krueger, Mitman, and Perri (2016) discussed, the method of approximate aggregate

state still works in my model since the distribution of firms systematically moves along with

changes in aggregate state, (s,K).
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A.5 Estimating Aggregate Shocks

Given the assumed aggregate shock processes in Section 3.4, I estimate the set of parame-

ters, γ, by repeatedly solving the stochastic equilibrium of the model. To evaluate the objective

function of the minimum-distance-estimator at a specific γ, I use the model moments generated

from a separate simulation for 5,000 periods. I use the Nelder-Mead simplex method to find the

minimum within the parameter space, which does not rely on the differentiability of the objec-

tive. I set the initial value of θl to be 10 percent lower than θss, and other initial values are taken

from Khan and Thomas (2013).

B Business Cycles with Estimated Aggregate Shocks

I discuss the properties of the estimated aggregate shocks. Table 9 shows that the estimated

productivity shocks are consistentwith those in recent studies of productionheterogeneity. Given

the annual frequency in themodel, the productivity shocks are highly persistent (ρz = 0.92) and

the volatility parameter, σηz = 0.015, is close to the calibrated value in Khan andThomas (2013).

The estimated credit shocks, however, appear to rarely occur while being moderately per-

sistent. The conditional probability of experiencing a credit shock during an ordinary period,

1− poo, is 8.4 percent, and a credit tightening on average lasts for about 3 years. A long simula-

tion of the model further shows that the fraction of time with θ = θl is about 20 percent in the

economy. These results are comparable to the evidence of historical banking crises in the US, as

documented by Reinhart and Rogoff (2009).44 When limited to explaining the observed bank-

ing crises only, the estimated shocks are slightly more often and persistent. This is because the

assumed credit shocks in the model are stylized and intended to incorporate any disturbances

that affect firms’ collateralized borrowing in financial markets.

While rare, a credit shock has a large impact on firms’ borrowing limits once it is realized.
44Since 1800, the time share of 13 US banking crises is 13 percent, and the average duration is about 2.1 years.
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Following the shock, the value of θ falls about 19 percent from its steady-state value. The im-

plied standard deviation of θ is 5.7 percent, which is greater than that estimated by Jermann

and Quadrini (2012).45 These results indicate that credit shocks are essentially different from

productivity shocks in their implications for business cycle dynamics.

Given the estimated shocks, I simulate the baseline economy for 5,000 periods and report

the business cycle statistics in Table 12, together with the empirical moments. The unconditional

moments of aggregate variables imply that the model with both productivity and credit shocks

exhibits plausible business cycle dynamics. The standard deviation of output is about 2.2 percent,

while the relative volatility of consumption is roughly a half of the output volatility. Due to the

absence of explicit adjustment costs of capital, the investment volatility is somewhat larger than

is typical. The volatility of employment is relatively small in the model, whereas the total hours

worked are almost as volatile as the real GDP.46

The table also shows that the cross-correlation of consumption with output, ρ(C, Y ), and

that of employment with output, ρ(N, Y ), are closer to their empirical counterparts when com-

pared to a standard real business cycle model that is only driven by exogenous TFP shocks. This

is a natural result since I consider two types of aggregate shocks, and the correlations substan-

tially increase when credit shocks are eliminated in the model. Nonetheless, the overall business

cycle implications from the baseline model remain consistent with the standard models in the

literature.

More importantly, the estimated aggregate shocks yield a notable finding on their relative

contributions in shaping business cycles in the US. The inference on the importance of financial

shocks, in particular, can be obtained by comparing the standard deviation of output in the base-

line model with that in the absence of credit shocks. That is, about 10 percent of output volatility
45In their baseline model, the estimated standard deviation of the collateral parameter is 4 percent at quarterly

frequency, while financial shocks are highly persistent.
46The relative standard deviation of US non-institutional employment is 0.684, which is much smaller than that

of total hours worked in the data.
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Table 12 : Business Cycles, Data and Model

Y C I N K

US, 1954-2018
σx/σY (2.063) 0.602 3.880 0.979 0.799
ρ(x, Y ) - 0.887 0.819 0.863 -0.003

Baseline Model
σx/σY (2.239) 0.514 4.548 0.639 0.565
ρ(x, Y ) - 0.833 0.931 0.895 0.109

Baseline Model, no credit shock
σx/σY (2.028) 0.515 4.009 0.552 0.496
ρ(x, Y ) - 0.933 0.965 0.942 0.086

Alternative Model
σx/σY (2.096) 0.540 4.386 0.613 0.524
ρ(x, Y ) - 0.848 0.927 0.884 0.112

Note: This table reports the business cycle moments of output Y , consumption, C , investment, I , employment, N , and cap-
ital,K . σx/σY is the relative standard deviation of x to that of Y , and ρ(x, Y ) is the contemporaneous correlation of x with
Y . The moments are obtained from a 5,000-period simulation, and each series is log HP-filtered with a smoothing parameter
of 100. For US data, I use the HP-filtered series of real per-catita GDP, non-durable consumption, private investment, total
hours worked, and private capital for each variable.

is explained by credit shocks in the long-run, while productivity shocks account for the rest.

This is in contrast to the finding of Jermann and Quadrini (2012) that financial shocks explain

the largest shares of the variations in GDP, investment, and hours worked. Since the borrowing

constraint in their model is always binding for a representative firm, a financial shock naturally

implies a large aggregate effect. However, my estimates imply that credit shocks are relatively

scarce and less persistent, limiting their contribution to an average business cycle. This paper

hence finds a role for credit shocks that is substantially different from that in a representative

agent model by incorporating rich firm-level heterogeneity.47

Lastly, the bottom panel of Table 12 summarizes the simulated moments of aggregates in

the alternative economy. For comparability in the simulation, I set the value of θl at 0.536 as in

the impulse responses in Figure 4 while holding other estimated parameters of aggregate shocks

fixed. In overall, the model delivers similar patterns of business cycle dynamics as in the baseline
47Another possible approach is to estimate a representative- agent model with occasionally binding constraints,

as in Guerrieri and Iacoviello (2017). However, Zetlin-Jones and Shourideh (2017) emphasize the essential role of
heterogeneity by showing that an average firm in the Flow of Funds can finance its investment without relying on
external borrowing.
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model, but at a smaller magnitude. Since the aggregate responses to a TFP shock are almost

identical between the twomodels (Figure 7), the above differences in the business cyclemoments

are largely driven by the relatively modest propagation of credit shocks in the alternative model.

This further implies that the inferences on aggregate shocks would be inaccurate when I use a

model without realistic firm heterogeneity for the estimation.

C Additional Model Results

I report additional results from the model in the main text, with those from other specifi-

cations of idiosyncratic shocks. In particular, I show that the version of the model that directly

targets the empirical firm size distribution is analogous to the baseline model. In each model, I

re-calibrate parameter values to closely reproduce the aggregate moments in Table 3.

C.1 Other Model Specifications

First, I consider a variant of the baseline model with Pareto-distributed productivity shocks.

Instead of using the estimated idiosyncratic shocks from the Orbis data, I set the parameter val-

ues of ϵ in the base-sz model, (ϵm, ϵM , ξ), to closely reproduce the firm size distribution in the

BDS. I particularly focus onwhether thismodel yields similar predictions on non-targeted cross-

sectional heterogeneity and aggregate dynamics as in the baseline model.

Next, I adjust the persistence of idiosyncratic shocks. In the baseline model, the persistence

in productivity is determined by the fixed probability of retaining ϵ, πϵ = 0.75, to be consistent

with the evidence from US firms. On the other hand, in the base-hp model, I instead examine

the case with πϵ = 0.9. This allows me to check whether the impulse responses in Section 4 are

driven by imposing relatively frequent changes in firm-level productivity over time.

I also provide additional results from the alt-lv model in which idiosyncratic shocks follows a

log-AR(1) process with lower volatility (ση = 0.09). Asmentioned in themain text, the resulting
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moments of investment rate becomes closer to their empirical counterparts in the alt-lv model,

when compared to the alternative model (Table 6). However, this comes at the cost of generating

a counterfactual firm size distribution.

C.2 Firm Heterogeneity

Following the organization of Section 3 in the main text, I compare cross-sectional hetero-

geneity in firm size, investment moments, and size-leverage relationships across different mod-

els.

Table 13 reports the model-generated firm size distribution. As targeted, the base-sz model

delivers a realistic firm size distribution in which the population shares at the smallest and largest

size bins are closer to the empirical targets. This is because the calibrated idiosyncratic shocks

imply a larger support of ϵ with a fatter tail. In contrast, the model’s fit to the empirical data

becomes slightly worse when the persistence of ϵ rises. The base-hp model predicts relatively

more firms at both smallest and largest groups in the size distribution. Still, this model is able to

capture the observed skewness in firm size data when compared to the models with log-AR(1)

shocks. These results indicate that employing a non-Gaussian distribution for firm productivity

can be a parsimonious way of nesting realistic firm size heterogeneity in a model, as pointed by

Elsby and Michaels (2013).

Next, Table 14 reports the moments of firm-level investment dynamics. In overall, the newly

considered models in this appendix are broadly consistent with the corresponding empirical

moments in the Orbis dataset (columns 3 and 4). The base-sz model, in particular, is almost as

successful as the baseline model in explaining the observed patterns of investment at the firm

level. It follows that directly targeting the empirical size distribution does not significantly dam-

age the model’s consistency with the investment moments in the data. Due to highly persistent

firm productivity, on the other hand, the mean and standard deviation of investment rate are
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Table 13 : Comparison of Firm Size Distribution, Other Specifications

Population Share (%)

Bin: employees BDS Data Baseline Base-sz Base-hp

1: 1 to 4 55.06 51.30 53.81 58.22
2: 5 to 19 33.42 33.38 33.63 28.36
3: 20 to 99 9.64 9.80 8.52 8.26
4: 100 to 499 1.53 2.85 2.22 2.52
5: 500 to 2,499 0.26 1.29 0.91 1.18
6: 2,500+ 0.09 1.38 0.91 1.46

MSE - 0.000 0.000 0.007
Note: BDS Data is the average value calculated from 1977 to 2006. Baseline is the model with cali-
brated Pareto ϵ shocks, Base-sz is the model that targets the BDS size distribution, and Base-hp is the
model with high persistence of ϵ. Size bin is in terms of employment, and model employment shares
are exactly matched with those in the BDS. MSE is the mean-squared-error of the model moments.

Table 14 : Comparison of Firm-level Investment Dynamics, Other Specifications

Investment Moments

Orbis Data Baseline Base-sz Base-hp

µ(i/k) 0.117 0.142 0.149 0.102
σ(i/k) 0.444 0.365 0.377 0.170
ρ(i/k) 0.337 0.293 0.321 0.635
lumpy inv. 0.170 0.103 0.093 0.056

MSE - 0.003 0.003 0.093
Note: Orbis Data is computed from the balanced panel of firms in the G-7 countries. µ(i/k) is the
average investment rate (i/k), σ(i/k) is the standard deviation, ρ(i/k) is the first order autocorrelation,
and lumpy inv. is the share of firms with i/k > 0.2. Baseline is the model with calibrated Pareto ϵ shocks,
Base-sz is the model that targets the BDS size distribution, and Base-hp is the model with high persistence
of ϵ. MSE is the mean-squared-error of the model moments. All model moments are calculated from a
large panel of firms simulated at each steady state.

relatively low in the base-hp model. The model’s fit remains slightly better than the alt-lv model

that directly targets the empirical volatility of investment rate (column 5 of Table 6). Together,

thesemodels with skewed idiosyncratic shocks generate realistic investment dynamics at the firm

level.

I now report the quantile distribution of firm leverage in Table 15. When compared to the

baseline model, the base-sz model predicts slightly higher leverage ratio at the top 0.5 percent

and a lower value at the bottom 90 percent of asset distribution. In relative to the QFR data,
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Table 15 : Mean Leverage by Asset Size, Other Specifications

0-90th 90-99th 99-99.5th >99.5th MSE

QFR Data 0.20 0.19 0.23 0.22 -

Baseline 0.20 0.26 0.23 0.14 0.003
Base-sz 0.17 0.24 0.23 0.17 0.001
Base-hp 0.15 0.27 0.21 0.16 0.003
Alt-lv 0.28 0.24 0.46 0.00 0.028

Note: QFR Data reproduces the values of net leverage in Crouzet and Mehrotra (2020). Baseline is the model with
calibrated Pareto ϵ shocks, Base-sz is the model that targets the BDS size distribution, Base-hp is the model with high
persistence of ϵ, andAlt-lv is themodel with a log-AR(1) process with lower volatility. MSE is themean-squared-error
of the model moments. Assets in the model are defined as the sum of capital and financial savings.

however, the overall fit is better in this model, suggesting that directly matching the empirical

size distribution additionally achieves the consistency with the heterogeneity in firm leverage.

Moreover, this result does not vary with the assumed persistence of firm productivity, as the

base-hp also performs well. In contrast, the alt-lv model exhibits large discrepancies with the

observed financial data.

I also estimate the kernel density of firm leverage across models with different idiosyncratic

shocks. As Figure 8 shows, the estimated distribution exhibits higher density at low levels of

leverage in each model. Although the leverage distribution is slightly flatter in the alternative

model, there is no significant difference across the models. This implies that simply checking the

leverage distribution, without taking into account the size-leverage relationships, may lead to a

conclusion that these models are equally successful in generating realistic heterogeneity in firm

leverage. Thus, the evidence in Tables 7 and 15 serves as a useful benchmark for a macro model

with financial frictions.

Lastly, I check the employment coefficient in the leverage regression in Section 3.3. Con-

sistent with the previous results, the size-leverage relationship is positive and significant in the

models with Pareto-distributed productivity. The value of coefficient varies; 0.022 in the base-sz

model and 0.002 in the base-hp model. The alt-lv model predicts a negative relationship, on the
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Figure 8 : Distribution of Leverage by Model
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Note: The distributions are generated using kernel density estimation, and zoomed at the lower tail for comparability with Figure 6 in Dinlersoz
et al. (2019). Baseline is the model with calibrated Pareto ϵ shocks, Alternative is the model with a log-AR(1) process, and Base-ex is an extension
of the baseline model with permanent heterogeneity

other hand, as in the alternative model.

From the above results, it follows that a heterogeneous-firm model with financial frictions

may generate misleading predictions in the cross-section when the empirical distribution of id-

iosyncratic shocks is not carefully captured, especially its skewness. Moreover, the base-szmodel

is almost isomorphic to the model with estimated productivity shocks, implying its usefulness

for incorporating the unobserved financial heterogeneity across firms.

C.3 Firm Dynamics

Another important source of heterogeneity in the model arises through firm lifecycle dy-

namics in the presence of collateral constraints. To see this point, Figure 9 illustrates the average

patterns of firm growth and leverage upon entry in the baseline model. At age 0, firms are born

with a small initial capital, k0 ≡ χ
∫
S kdµ, that is much less than that of an average firm in the

economy. Conditional on survival, these young firms gradually accumulate capital by externally
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Table 16 : Fixed-effects Leverage Regression, Other Specifications

Dep. variable stlevi,t

Sample G-7 Baseline Base-sz Base-hp Alt-lv
(1) (2) (3) (4) (5)

empi,t−1 0.012*** 0.013*** 0.022*** 0.002*** -0.055***
(17.60) (16.77) (26.29) (2.69) (-149.08)

collaterali,t−1 -0.189*** -0.011*** -0.011*** -0.123*** -0.068***
(-29.16) (-3.86) (-3.48) (-37.56) (-46.13)

profiti,t−1 -0.340*** 2.224*** 2.046*** 3.320*** 3.109***
(-16.86) (205.95) (171.62) (208.15) (441.23)

prodi,t−1 0.024*** 0.785** 6.183*** -14.010*** 11.247***
(13.10) (2.13) (8.45) (-14.08) (21.71)

industry FE ✓
country FE ✓
year FE ✓ ✓ ✓ ✓ ✓
obs. 867,458 325,195 324,360 324,515 325,840
adj.R2 0.453 0.739 0.753 0.694 0.737

Note: t-statistics in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. stlev is short-term leverage, emp is employment size in logs,
collateral the ratio of tangible fixed assets to total assets (ratio of capital to assets in model), profit is net income over total assets
(revenue less wage bill over assets in model), and prod is a measure of labor productivity that divides turnover by employment (output
over employment in model). All variables are winsorized at the 1 percent level.

borrowing. As they approach the efficient production scale over time, the collateral constraint

becomes less relevant and they gradually start saving in financial assets. When the borrowing

condition becomes tighter, these lifecycle patterns are prolonged and hence raise the number of

financially constrained firms in the distribution.

Due to the persistence and dispersion of idiosyncratic productivity, firms in the baseline

economy exhibit different growth profiles when young. That is, the differences in initial (or ex-

ante) productivity at entry persistently affect the growth patterns of young firms, as emphasized

by Pugsley, Sedlacek, and Sterk (2021). To see this point, in the top panel of Figure 10, I distin-

guish firm employment dynamics by initial productivity, after normalizing the employment size

to 1 at age 9. First, at age 0, firms have the same level of capital k0, so employment is entirely

determined by their initial productivity ϵ0. Thereafter, only a small number of highly productive

entrants grow at a faster rate, far exceeding that of the average firm in the economy (red line with

circles). This is because they tend to remain relatively more productive in the subsequent periods
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Figure 9 : Firm dynamics in the baseline model
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Note: The average firm dynamics are constructed from a simulation of 100,000 firms for 160 periods at the steady state of the baselinemodel. The
top panel displays the cohort average capital and debt, and the bottom panel presents the employment growth-age and the leverage-age profiles.

given the persistence of ϵ. These high-growth firms easily achieve an efficient production scale,

remaining relatively larger at age 9. In contrast, other young firms with low initial productivity

grow slowly over time. These differences in growth profile would eventually disappear, because

there is no permanent component in firm productivity and ex-post shock realizations become

dominant in determining the cross-sectional heterogeneity.48

In the alternative model, on the other hand, young firms display similar growth patterns

across different initial productivity (bottom panel of Figure 10). In particular, the employment

size of firms with the highest ϵ is at most about 3 times larger than the average in earlier periods,

and such difference almost disappears around age 9. In this economy, it appears that the ex-ante

heterogeneity in productivity is not an important factor of determining size differences over firm

lifecycle. Thus, the role of financial frictions is relatively small, as earlier shown in Table 5.
48The collateral constraints thus work as a selection mechanism among incumbents in the model, affecting the

shape of size distribution jointly with the assumed productivity. This is in line with the idea of Luttmer (2007),
although I abstract from the endogenous margins of firm entry and exit.
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Figure 10 : Employment by firm age and initial productivity
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Note: The average firm dynamics are constructed from a simulation of 100,000 firms for 160 periods in the baseline (left) and the alternative
(right) models. ϵ13 is the largest firm productivity draw (blue line with circles). All values are normalized by the employment size at age 9.

C.4 Aggregate Responses to a Credit Shock

I compare the aggregate dynamics of the models discussed above, while controlling the size

of a credit shock in eachmodel economy. First, Figure 11 shows the impulse responses inmodels

with realistic firm size heterogeneity. In the base-sz model, the endogenous fall in measured TFP

is slightly more than 1.5 percent at its trough (dash-dotted line). Nonetheless, the corresponding

changes in other aggregate variables are very close to those in the baseline model. This confirms

the finding in the main text that a recession triggered by a sudden credit tightening is relatively

larger in an economy with an empirically-consistent size distribution.

In addition, the above finding remains robust when firms face highly persistent idiosyncratic

shocks in the model. As shown in Figure 11, the base-hp model also generates a deep and per-

sistent recession following a credit shock (black dotted line). The aggregate responses are compa-

rable to those in the baseline model, but the largest drop in TFP is slightly modest. This verifies
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Figure 11 : Aggregate dynamics following a credit shock, other specifications 1
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Note: The stochastic impulse responses to a sudden credit tightening. The size of the shock implies an endogenous decrease of aggregate bor-
rowing by 26 percent in all models, and θ start recovering in period 4 with persistence of plo. Baseline is the model with calibrated Pareto ϵ
shocks, Base-sz is the model that targets the BDS size distribution, and Base-hp is the model with high persistence of ϵ

that the amplification of the shock in the baseline model does not arise from imposing lower

persistence in productivity.

I conduct the same experiment in the alt-lv model. Figure 12 shows that the magnitude of

aggregate responses is substantially smaller in this economy when compared to those in the al-

ternative model. Specifically, with lower volatility of productivity shocks, a credit shock leads

to about 0.6 percent drop in measured TFP at its trough, while the dynamics of other variables

remain close to their counterparts in the alternative model. It follows that increasing idiosyn-

cratic volatility alone does not necessarily generate a deep financial recession as observed in the

US data, in addition to the inconsistency with the evidence on firm heterogeneity.
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Figure 12 : Aggregate dynamics following a credit shock, other specifications 2
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Note: The stochastic impulse responses to a sudden credit tightening. The size of the shock implies an endogenous decrease of aggregate bor-
rowing by 26 percent in all models, and θ start recovering in period 4 with persistence of plo. Baseline is the model with calibrated Pareto ϵ
shocks , Alternative is the model with a log-AR(1) process, and Alt-lv is the model with a log-AR(1) process with lower volatility.

D Empirical Appendix

I describe the data source and the sample construction that are related with the empirical

works in Section 3 of the main text, and then report additional results.

D.1 Productivity Shock Estimation

I use the Orbis database to construct the dataset in which firm-level information is collected

and provided by Bureau van Dijk (BvD). Since the online platform only allows for downloading

the last 10 observations for each firm, I construct a balanced annual panel from 2013 to 2018 in

theG-7 countries (US, Canada, United Kingdom, France, Germany, Italy, and Japan), and extend

it with 11 other economies in the EU area (Austria, Belgium, Denmark, Finland, Greece, Ireland,

Luxemburg, Netherlands, Portugal, Spain, Sweden). Below, I describe the sampling criteria and
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the estimation method for measuring productivity shocks at the firm level.

I focus on public and private limited firms only. I exclude firms in agriculture, utility, finance,

insurance, real estate, and public administration, based on the industry classification ofNACEv2-

2 digit codes. The panel dataset includes firms that report the variables of interest in each year:

employment (n), fixed assets (kf ), tangible fixed assets (k), and operating revenue (y). I drop

observations withmissing or negative values of these variables. To deflate the variables for capital

and value-added by sector, I merge the dataset with the Structural Analysis Database (STAN) in

the OECD and convert (y, k, kf , y) respectively into real terms. Each firm’s investment in period

t is defined as the net difference of its capital between period t and t + 1. All variables used

in the regression analysis are winsorized at the top and the bottom 1 percent. The final dataset

contains 254,276 firms with 1,525,656 observations in the G-7 countries, and 636,796 firms with

3,820,776 observations in the extended sample.

To estimate the production function using Equation (6), I follow the Olley-Pakes method, a

conventional approach of structurally estimating the relative shares of factors of production. The

method uses a two-step procedure to address selection and simultaneity biases and to control for

within-firm serial correlations. Specifically, the method assumes that each firm observes its own

productivity beforemaking the decisions of employment and investment in each period, whereas

capital remains fixed within the period. This is in line with the timing assumption in my model,

so the estimates of βk and βn can be directly used for retrieving firm-level productivity from the

data. I estimate these coefficients with country- and year-fixed effects, repeating 40 times for

bootstrapping.49

In Table 17, the estimate of βn ranges from 0.68 to 0.81 across different samples or capital

variables. This is consistent with those in the existing empirical works that particularly study

balanced panels, although the value is typically assumed to be 0.6 in many macro models. The

value of βn slightly falls when I use total fixed assets instead of tangible fixed assets in the regres-
49I use the Stata package prodest provided by Ravigatti and Mollisi (2018).
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Table 17 : Comparison of Production Function Estimates

Dep. variable log y

Sample G-7 G-7+EU11

(1) (2) (3) (4)

logn 0.732*** 0.677*** 0.811*** 0.767***
(334.22) (265.33) (668.30) (478.55)

log k 0.199*** 0.176***
(99.85) (90.59)

log kf 0.246*** 0.219***
(145.45) (87.76)

obs. 486,874 520,477 1,142,439 1,255,291
firms 217,076 220,717 526,242 544,586
Wald-p 0.00 0.00 0.00 0.00

Note: t-statistics in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. y is operating revenue, n is
employment, k is tangible fixed asset, and kf is total fixed assets. Wald-p is the p-value of the Wald
statistic for constant-returns-to-scale. All variables are winsorized at the 1 percent level.

sion (columns 2 and 4). Lastly, the capital coefficients are also within a reasonable range of the

values reported in previous studies.

From the fitted values of yi,j,t in the above regression, the residuals are themeasured (revenue-

based) firm productivity xi,j,t for firm i in country j at year t. I then eliminate the firm-fixed

effects by demeaning the measured productivity and convert it into percentage terms x̃i,j,t. The

resulting distribution of x̃ is positively skewed and dispersed in all specifications considered in

Table 17. For instance, in the first column of the table, the estimates imply that the standard

deviation of x̃ is 0.26 and the skewness is 1.63. In the baseline model, I estimate Equation (7)

with asset-size weights and fixed effects, and use the empirical moments of idiosyncratic shocks

to calibrate the parameter values of the assumed Pareto distribution.50 In the alternative model,

I instead use the demeaned log x̃ for the regression and retrieve the corresponding idiosyncratic

shocks which exhibits the skewness of 0.23. Ignoring this skewness, I only calibrate the value of

ση, the standard deviation of Gaussian innovations in the assumed log-AR(1) process for ϵ.
50To control formultiple fixed effects in the regression, I use the Stata package reghdfe provided by Correia (2017).
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D.2 Leverage Regression

DataConstruction I separately construct a balanced panel of firms in theOrbis database. This

is because the sample size drastically becomes smaller in recent years, possibly due to the report-

ing and collecting time lags of the financial variables that are mainly used in my estimation. As

before, I focus on public and private limited firms only. I exclude firms in finance, insurance, real

estate, medical sector, and public administration, based on the industry classification of NACIS

2017 primary codes. The panel dataset includes firms that report the variables of interest for all

years, and I winsorize all variables used in the regression at the top and the bottom 1 percent.

The financial data are in US dollars based on the exchange rate reported by the Orbis. Lastly, I

use US SIC primary codes of individual firms to control the industry fixed effects up to 3 digits.

The resulting dataset contains 184,565 firms with a total of 1,060,143 observations from 2010 to

2015, and Table 18 presents the summary statistics. Consistent with the existing studies, I define

the following financial ratios to be used in the regression analysis.

• collateral ratio: asset tangibility measured as the ratio of tangible fixed assets to total assets.

• profit ratio: firm profitability measured as the ratio of net income to total assets.

• total leverage: defined as total liabilities (excluding shareholders’ funds) over total assets.

• financial leverage: defined as short-term borrowing (current liabilities) plus long-term

debt over total assets.

• short-term leverage: defined as short-term borrowing over total assets.

In the empirical analysis, I establish the robust relationship between employment and lever-

age at the firm level. Since the Orbis coverage of US firms is limited and non-representative, I

follow the approahc of Rajan and Zingales (1995) by including observations in other developed
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Table 18 : Descriptive Statistics, Orbis G-7 Sample

Mean Std. Dev

operating revenue (mil. USD) 54,202.0 231,906.6
total assets (mil. USD) 52,024.5 236,863.0
tangible fixed assets (mil. USD) 11,556.7 55,133.6
employment 148.4 625.1

collateral ratio 0.214 0.222
profit ratio 0.030 0.073
total leverage 0.664 0.227
financial leverage 0.571 0.234
short-term leverage 0.475 0.231

Note: Statistics from a balanced panel of 184,565 firms from 2010 to 2015. All variables
are winsorized at the 1 percent level.

Table 19 : Firm Shares by country, Orbis G-7 Sample

US Canada UK France Germany Italy Japan

share of firms (%) 0.99 0.01 8.38 12.63 3.89 61.30 12.80
share of pvt. firms (%) 11.58 0.00 93.78 84.73 87.67 87.76 11.20

Note: There are 136,276 private limited firms out of 184,565 firms. share of firms is the population share of firms in each country, and share of pvt.
firms is the country-specific share of private firms.

economies. My dataset contains private companies that typically rely on limited financing op-

tions. Further, this type of firms in the US plays a key role in shaping the skewed size distribution

in the BDS.51 Given that my focus is on the empirical size-leverage relationship in an aggregate

economy, it is important to incorporate such firms as many as possible. As reported in Table 19,

the share of private firms is more than 77 percent in my dataset from the Orbis, and I further

show that the empirical result is robust when only such firms are considered. By controlling

industry-country-year fixed effects in the leverage regression, I reduce the potential bias arising

from different financial institutions and business environment across countries. In addition, I

use asset size as the weight for the panel fixed-effects regression.

Additional Empirical Results First, I consider potential differences between private and listed
51Cabral and Mata (2003) show that financing constraints significantly affect the shape of firm size distribution.
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Table 20 : Fixed-effects Leverage Regression, Private and Listed Firms

Private Firms Listed Firms
Dep. variable tlevi,t flevi,t stlevi,t tlevi,t flevi,t stlevi,t

(1) (2) (3) (4) (5) (6)

empi,t−1 0.020*** 0.012*** 0.014*** 0.025*** 0.012*** 0.016***
(16.02) (9.29) (11.48) (14.45) (8.09) (19.90)

collaterali,t−1 0.019* -0.026*** -0.223*** -0.006 -0.035*** -0.163***
(1.87) (-2.64) (-22.53) (-0.45) (-2.81) (-19.85)

profiti,t−1 -0.731*** -0.684*** -0.314*** -0.840*** -0.722*** -0.353***
(-25.92) (-25.40) (-13.48) (-16.40) (-17.19) (-13.30)

prodi,t−1 0.033*** 0.026*** 0.025*** 0.014*** 0.016*** 0.020***
(13.83) (10.37) (9.91) (2.99) (3.91) (8.42)

obs. 670,387 670,387 670,387 197,071 197,071 197,071
adj. R2 0.182 0.182 0.338 0.372 0.319 0.542

Note: t-statistics in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Each regression includes terms for industry-country-year fixed
effects. tlev is total leverage, flev is financial leverage that includes both short-term and long-term debt, stlev is short-term leverage.
emp is employment size in logs, collateral the ratio of tangible fixed assets to total assets, profit is net income over total assets, and
prod is a measure of labor productivity that divides turnover by employment. All variables are winsorized at the 1 percent level.

firms in their financing decisions. This is motivated by the work of Dinlersoz et al. (2019) who

find a positive relationship between firm leverages and employment size especially for private

firms in the US. Table 20 reports the leverage regression results respectively for private and listed

firms in the G-7 countries.

The table shows that all coefficients on both private and listed firms’ employment are positive

and significant. Their values range from 0.012 to 0.025, possibly reflecting differences in financ-

ing decisions by firm type and borrowing method. While the employment coefficient is robust

to the changes in the dependent variable, other firm controls do not exhibit systematic patterns.

This motivates additional studies for identifying firm-level determinants of leverage.

Next, Table 21 shows the regression results with different measures of firm leverage, respec-

tively from the sample of the G-7 countries and that of the US. Again, all regression coefficients

on employment are positive and significant, implying that firms are likely to bemore leveraged as

they grow and their financing constraints are relaxed. While the majority of firms in the sample

are listed in the US, the above result still confirms the importance of firm size as a determinant
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Table 21 : Fixed-effects Regression, G-7 and US Firms

G-7 US
Dep. variable tlevi,t flevi,t stlevi,t tlevi,t flevi,t stlevi,t

(1) (2) (3) (4) (5) (6)

empi,t−1 0.022*** 0.010*** 0.012*** 0.030*** 0.009*** 0.018***
(18.76) (10.33) (17.60) (9.99) (3.51) (13.59)

collaterali,t−1 0.002 -0.027*** -0.189*** -0.031 -0.013 -0.094***
(0.24) (-3.26) (-29.16) (-0.98) (-0.44) (-5.74)

profiti,t−1 -0.823*** -0.729*** -0.340*** -0.605*** -0.488*** -0.216***
(-22.54) (-24.01) (-16.86) (-10.94) (-9.38) (-7.30)

prodi,t−1 0.022*** 0.021*** 0.024*** -0.013 -0.006 0.003
(7.07) (7.47) (13.10) (-1.46) (-0.78) (0.64)

obs. 867,458 867,458 867,458 8,427 8,427 8,427
adj. R2 0.289 0.256 0.453 0.493 0.456 0.656

Note: t-statistics in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Each regression includes terms for industry-year fixed effects.
tlev is total leverage, flev is financial leverage that includes both short-term and long-term debt, and stlev is short-term leverage.
emp is employment size, collateral the ratio of tangible fixed assets to total assets, profit is net income over total assets, and prod is
a measure of labor productivity that divides turnover by emp. All variables are winsorized at the 1 percent level.

of firms’ financing decisions.
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