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Abstract

We explore an upper bound of the mean squared prediction error (MSPE) of an ar-

bitrary synthetic control (SC) method in predicting the counterfactual of a treated unit.

This potential MSPE is essential for unifying and comparing a variety of SC methods.

It is established without assuming the true outcome model or imposing a combination

restriction on the SC unit, and allows for the use of auxiliary models to deal with the po-

tential imperfect matching between the treated unit and the SC unit. We further propose

a generalized SC method to regularize the squared-bias and variance components of the

potential MSPE. The regularized SC method encompasses several existing SC methods or

their variants, and generates useful complements to existing methods. We also show the

usefulness of our method by simulation and empirical illustration.
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1 Introduction

Policy evaluation involves estimating the effect of an intervention on certain outcome vari-

ables of the treated unit. Conceptually, the intervention effect may only be identified by

contrasting the post-intervention outcomes of the treated unit with their counterfactual

defined in the absence of intervention. By construction, the counterfactual is unobserved.

Conventionally, it is common to estimate the intervention effect by the method of com-

parative case study (CCS) that identifies the counterfactual as the outcomes of an ideal

controlled unit which is subjectively selected or determined by a natural experiment. It is

also popular to estimate the intervention effect using the difference-in-differences method

which requires the treated unit and the controlled unit to share parallel trends in the

absence of intervention. Recently, the synthetic control (SC) method has been regarded

as a promising alternative to these conventional methods, and has attracted a wide variety

of empirical applications and theoretical extensions; see, e.g., Athey and Imbens (2017),

Samartsidis et al. (2019) and Abadie (2021) for discussions.

The canonical SC method (CSC) was first introduced by Abadie and Gardeazabal (2003)

in a case study. It replaces the ideal control unit of CCS, which is often infeasible in prac-

tice, by a data-driven SC unit. The CSC unit is a convex combination of a donor pool of

untreated units that optimally matches the pre-intervention outcomes and features of the

treated unit. The convex combination restriction is considered for avoiding the extrapo-

lation and maintaining the sparsity (interpretability) of the composition of the CSC unit.

By assuming that the CSC unit perfectly matches the treated unit in their pre-intervention

outcomes and features, Abadie, Diamond and Hainmueller (2010, ADH) established the

unbiasedness (a bias bound) of the counterfactual predicted by the outcomes of the CSC

unit when the true outcome model is assumed to be an autoregressive model (a linear

latent factor model without the parallel-trend assumption).

Nonetheless, as discussed by ADH (2010), CSC may have an “interpolation bias” if

the counterfactual is a nonlinear function of the pre-intervention features. Moreover, the

perfect-matching assumption fails if the pre-intervention outcomes and features of the

treated unit are outside of the convex hull of their untreated counterparts. ADH (2010,

p.495) addressed that CSC is not recommended for use in the presence of this poor-

matching problem. Motivated by (one of) these two potential problems, several extensions

of CSC have been recently proposed. In particular, Abadie and L’Hour (2019) proposed

the penalized SC method (PSC) which accounts for the potential interpolation bias of
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CSC. Researchers have also extended CSC with, or without, using auxiliary models for

refining the poor-matching problem. Doudchenko and Imbens (2017) proposed a synthesis

of related methods that determines the combination weights of a SC unit by estimating

a penalized regression; see also Valero (2015) for the use of the Lasso regression. This

approach deals with the poor-matching problem by relaxing the convex combination re-

striction of CSC. It also considers the inclusion of intercept in the penalized regression; see,

e.g., Valero (2015), Doudchenko and Imbens (2017) and Ferman and Pinto (2019). This

demeaned design itself is also useful for refining the poor-matching problem if the problem

reflects the mean difference between the pre-intervention outcomes of the treated unit and

the SC unit. Chen (2020) also considered a model-based SC method (MSC) that explains

the poor-matching problem using a set of observed factors in the distributional context.

In the mean context, MSC reduces to a demeaned SC method (DSC) when the observed

factor degenerates to a constant. It is also related to, but different from, the augmented

SC method (ASC) of Ben-Michael et al. (2021) which deals with the poor-matching prob-

lem of CSC from the aspect of bias correction; see also Abadie and L’Hour (2019), among

others, for related bias-correction methods.

In this paper, we explore an upper bound of the mean squared prediction errors (MSPE)

of the counterfactual predicted by an arbitrary SC method. This potential MSPE is es-

sential for unifying and comparing various SC methods. It is established in a generalized

context that does not assume the true outcome model or impose a combination restriction

on the SC unit, and allows for the use of auxiliary models to refine the potential poor-

matching problem. The potential MSPE is applicable to assessing the potential biases

of the counterfactual predicted by an arbitrary SC method and the potential variance of

the prediction errors. We also propose a generalized SC method to regularize the poten-

tial squared-bias and variance components of the potential MSPE. The regularized SC

method (RSC) unifies a number of existing SC methods or their variants, and generates

useful complements to existing methods. We also show the usefulness of the proposed

method by comparing RSC with existing SC methods via theoretical discussions, simula-

tion and empirical illustration.

The remainder of this paper is organized as follows. In Section 2, we define a generalized

context of SC, establish the potential MSPE of an arbitrary SC method, and introduce the

proposed RSC. In Section 3, we compare RSC with existing SC methods from theoretical

viewpoints. Section 4 includes the simulation. Section 5 contains the empirical illustration.

Section 6 concludes this paper. The mathematical proofs are collected in the Appendix.
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2 The Proposed Method

Let {yit} be an outcome sequence of the ith unit at time t, for i = 1, 2, . . . , n + 1 and

t = 1, 2, . . . , T . Following Abadie and Gardeazabal (2003), ADH (2010, 2015), among

many others, we focus on the context of single treated unit. Among the n + 1 units, the

first unit (i = 1) is the treated unit that experienced an intervention (or said a treatment)

at T0 + 1 for some T0 < T , and the remaining (i ≥ 2) constitutes a donor pool of n

untreated units that are not affected by the intervention. Let δt be the intervention effect

on the treated unit for t ≥ T0 + 1, and y1t(0) be the counterfactual outcome of the treated

unit that would appear if the intervention was hypothetically absent for t ≥ T0+1. Denote

the T0 × 1 vector of pre-intervention outcomes:

Yi := (yi1, . . . , yiT0)>,

for i ≥ 1. A basic setting of the SC method is to extract {δt}Tt=T0+1 from {y1t}Tt=T0+1 by

first matching Y1 using a linear combination of the Yi’s of the n untreated units and then

predicting {y1t(0)}Tt=T0+1 using the same combination of the post-intervention outcomes

{yit}Tt=T0+1’s of the n untreated units.

This setting is popular in the recent SC literature; see, e.g., Doudchenko and Im-

bens (2017), Ferman and Pinto (2019) and Ben-Michael et al. (2021). As suggested by

Doudchenko and Imbens (2017, p.20), it might be extended to include another vector of

pre-intervention covariates, denoted as zi, by replacing Yi with the residual of the regres-

sion: Yi on zi in the setting; see also Abadie (2021, p.419) and Ben-Michael et al. (2021)

for related discussions. In the following, we adopt this setting and consider a generalized

framework to define the matching and prediction problems of the SC method.

2.1 A generalized framework of SC

LetM(θ) be an “auxiliary model” which is considered for explaining the cross-sectional dif-

ferences among the yit’s in the absence of intervention using a set of observable covariates,

µit(θi) be a submodel ofM(θ) with the dependent variable yit, and θ̂ := (θ̂>1 , θ̂
>
2 , . . . , θ̂

>
n+1)

>

be an estimator of the parameter vector θ := (θ>1 , θ
>
2 , . . . , θ

>
n+1)

> generated from the pre-

intervention outcomes of the n+ 1 units:

Y := (Y1, Y2, . . . , Yn+1)

3



and possibly other pre-intervention covariates. Importantly, we do not assume M(θ) to

be the true model of the yit’s in the absence of intervention. The auxiliary role of M(θ)

for the SC method will be explained later. Let w := (w2, . . . , wn+1)
> be a n-dimensional

weighting vector in Rn. We denote ∆µit(θ1, θi) := µ1t(θ1)− µit(θi),

yt(w) :=
∑
i≥2

wiyit, (1)

mt(w, θ) :=
∑
i≥2

wi∆µit(θ1, θi) (2)

and

yt(w, s) := yt(w) + s ·mt(w, θ), (3)

for t = 1, 2, . . . , T , where “
∑

i≥2” represents “
∑n+1

i=2 ,” and s is a selection variable which

equals one if M(θ) is used (otherwise, zero), and define the following T0 × 1 vectors:

Y (w) := (y1(w), y2(w), . . . , yT0(w))> , (4)

M(w, θ) := (m1(w, θ),m2(w, θ), . . . ,mT0(w, θ))> (5)

and

Y (w, s) := Y (w) + s ·M(w, θ). (6)

In this framework, an arbitrary SC method matches the treated unit’s pre-intervention

outcome vector Y1 using

Ŷ (w, s) := Y (w) + s ·M(w, θ̂), (7)

and predicts the counterfactual y1t(0) using

ŷt(w, s) := yt(w) + s ·mt(w, θ̂) (8)

and estimates the intervention effect δt by

δ̂t = y1t − ŷt(w, s), (9)

for t ≥ T0 + 1, by the choice of (w, s) and the design of M(θ) if s = 1. In the case where

s = 0, the restrictions: Ŷ (w, s) = Y (w, s) = Y (w) and ŷt(w, s) = yt(w, s) = yt(w) are

satisfied, and the SC method chooses a particular w to match Y1 by Y (w) and to predict
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y1t(0) by yt(w) without usingM(θ). In the case where s = 1,M(θ) is an auxiliary model

which is introduced to refine the poor-matching problem that arises when Y1− Y (w) 6= 0.

The refinement is based on interpreting Y1 − Y (w) using M(w, θ̂). We consider this

generalized framework because it is flexible enough to encompass a wide variety of SC

methods, as will be discussed in Section 3.

2.2 Potential MSPE

Since an arbitrary SC method estimates the intervention effect by predicting the counter-

factual, it is undoubtedly essential to explore the potential properties of the prediction.

Denote the unit simplex:

W := {w|w ∈ [0, 1]n and ι>nw = 1} , (10)

where ιn := (1, . . . , 1)> denotes a n × 1 vector of one. ADH (2010) established a bias

bound of the prediction generated by CSC, which sets s = 0 and requires w to satisfy the

convex-combination restriction: w ∈W, by assuming that the true model (of the yit’s) is

a linear factor model and that the perfect-matching condition:

Y1 = Y (w) (11)

holds for some w ∈ W; see Botosaru and Ferman (2019) for related discussions. Several

studies also explored the bias bounds or the prediction errors of their SC methods by

assuming that the true model is a linear model or a linear factor model; see, e.g., Amjad

et al. (2018) that relaxes the restriction: w ∈ W and Ferman and Pinto (2019) and Ben-

Michael et al. (2021) that further relax the perfect-matching condition. In the following,

we explore a potential MSPE of an arbitrary SC method that predicts y1t(0) by ŷt(w, s)

without assuming the true model or the perfect-matching condition and without requiring

a combination restriction.

Let ψt(Yi) := IE[yit|Yi] be the unknown conditional mean function of yit given Yi, and

D1t be a binary intervention variable for the treated unit (i = 1) with the two potential

outcomes: D1t = 0 (untreated) and D1t = 1 (treated) for t ≥ T0 + 1. Denote Dit := 0 for

t ≤ T0 if i = 1 and for all t’s if i ≥ 2, a T0 × 1 vector:

mi·(θ) := (∆µi1(θ1, θi), . . . ,∆µiT0(θ1, θi))
>
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and a n× 1 vector:

m·t(θ) := (∆µ2t(θ1, θ2), . . . ,∆µn+1,t(θ1, θn+1))
> .

We make the following assumptions:

Assumption 1 For t ≥ T0 + 1 and for all i’s,

(i) yit = ψt(Yi) + δtDit + εit, where εit is a zero-mean error;

(ii) IE[ψt(Yi)|Yi, D1t] = ψt(Yi);

(iii) IE[εit|Yi, D1t] = 0.

Assumption 2 For t ≥ T0 + 1 and for i ≥ 2,

(i) |ψt(·)| ≤ ξψ,0 and ‖∇ψt(·)‖ ≤ ξψ,1, for some finite ξψ,0 and ξψ,1;

(ii) ‖mi·(θ)‖ ≤ ξm,0 and ‖∇θ>m·t(·)‖ ≤ ξm,1, for some finite ξm,0 and ξm,1, if s = 1.

Assumption 3 For t ≥ T0 + 1 and for all i’s,

(i) IE[εit|Y ] = 0, IE[ε2it|Y ] = σ2ε <∞ and IE[εitεjt|Y ] = 0, for j 6= i;

(ii) IE[mt(w, θ̂)−mt(w, θ)|Y ] = 0 and σ2θ := IE[‖θ̂ − θ‖2|Y ] <∞, if s = 1.

Assumption 1 (i) requires Yi to be informative for predicting yit in a reduced form. It also

requires the treated and untreated units to be comparable in the sense that they share

the same conditional mean function ψt(·) in the absence of intervention. This condition

is often presented in a stricter form in related studies. As mentioned, ADH (2010) as-

sumes the true model to be a linear factor model; see also Gobillon and Magnac (2016),

Xu (2017) and Ben-Michael et al. (2021), among others, for the use of factor models.

For the treated unit (i = 1), Assumption 1(ii) implies “no anticipation effect” of the in-

tervention, and Assumption 1(iii) is an unconfoundedness condition. For the untreated

units (i ≥ 2), Assumption 1(ii) and (iii) imply “no interference effect” of the interven-

tion. Such an assumption is standard in the SC literature; see ADH (2010, p.494) for

related discussions. It is essential for interpreting δt as the average treatment effect on

the treated. It is also important for the contextual evaluation of the SC method discussed

by Abadie (2021, Section 5). Assumption 2 requires ψt(·) and M(θ) to be bounded and

differentiable. This condition is weak but essential for establishing the potential MSPE of

the prediction of counterfactual generated by an arbitrary SC method. Assumption 3 is

considered for simplicity. It requires the reduced-form error εit to be unpredictable by Y .

It also requires that, given Y , εit is conditionally homoskedastic and uncorrelated to εjt;
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moreover, mt(w, θ̂) is unbiased for mt(w, θ) with a finite σ2θ if s = 1. Note that σ2θ is a

measure for the estimation uncertainty of θ̂, and reduces to ‖θ̂− θ‖2 if θ̂ is fully generated

from Y .

In the Appendix, we show the following decomposition:

Lemma 1 Given Assumption 1, for t ≥ T0 + 1,

y1t(0)− ŷt(w, s) = Biast(w, s) + ut(w, s), (12)

where

Biast(w, s) := ψt(Y1)−
∑
i≥2

wiψt(Yi)− s ·mt(w, θ)

= (ψt(Y1)− ψt(Y (w, s)))︸ ︷︷ ︸
Biaspre,t(w,s): pre-intervention bias

+

ψt(Y (w))−
∑
i≥2

wiψt(Yi)


︸ ︷︷ ︸

Biasnl,t(w): nonlinearity bias

+ (ψt(Y (w, s))− ψt(Y (w))− s ·mt(w, θ))︸ ︷︷ ︸
Biasms,t(w,s): model specification bias

(13)

and

ut(w, s) := (ε1t − εt(w))︸ ︷︷ ︸
et(w): intrinsic error

−s ·
(
mt(w, θ̂)−mt(w, θ)

)
︸ ︷︷ ︸

estimation uncertainty

, (14)

with εt(w) :=
∑

i≥2wiεit.

This shows that an arbitrary SC method that predicts y1t(0) using ŷt(w, s) is potentially

biased because of the possible presence of the “pre-intervention bias” Biaspre,t(w, s), the

“nonlinearity bias” Biasnl,t(w) and the “model specification bias” Biasms,t(w, s) that are

defined in (13). Note that the pre-intervention bias and the nonlinearity bias correspond to

the “extrapolation bias” and the “interpolation bias” considered by Kellogg et al. (2020),

respectively, if s = 0 and w ∈ W. In the following, we further interpret these potential

bias components.

We interpret Biaspre,t(w, s) as the pre-intervention bias because it is zero if the pre-

intervention outcomes satisfy a weak form of the perfect-matching condition:

Y1 = Y (w, s); (15)
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otherwise, it is in general non-zero. Note that (15) reduces to the perfect-matching condi-

tion (11) if s = 0. As mentioned, a SC method with s = 0 has the poor-matching problem

if (11) is not satisfied, and a SC method with s = 1 defends against this type of bias by

interpreting Y1 − Y (w) using M(w, θ̂).

We interpret Biasnl,t(w) as the nonlinearity bias because it is zero when ψt(·) is linear

in the sense that

ψt(Y ) = α1t + Y >β1t, (16)

where Y is an arbitrary T0 × 1 vector, and α1t and β1t are, respectively, a scalar and a

T0×1 vector of unknowns that could be time-varying, if the convex-combination restriction:

w ∈W and condition (11) are satisfied. To see this point, note that

Biasnl,t(w) = (1− ι>nw)ψt(Y (w)) +
∑
i≥2

wi (ψt(Y (w))− ψt(Yi)) . (17)

If w ∈W, we can simplify (17) as:

Biasnl,t(w) =
∑
i≥2

wi (ψt(Y1)− ψt(Yi)) . (18)

If w ∈W and that the linearity in (16) is satisfied, we can further simplify (18) as:

Biasnl,t(w) =
∑
i≥2

wi (Y >
1 β1t − Y >

i β1t) = (Y1 − Y (w))>β1t, (19)

which is zero under condition (11). In comparison, Biasnl,t(w) is in general non-zero when

ψt(·) is nonlinear even if condition (11) holds for some w ∈W. This is consistent with the

interpolation bias discussed by ADH (2010) and Kellogg et al. (2020).

We interpret Biasms,t(w, s) as the model specification bias because it is zero when

s = 0; that is, when the SC method does not involve the use of M(θ). Note that, under

the linearity in (16),

Biasms,t(w, s) = Y (w, s)>βt − Y (w)>βt − s ·mt(w, θ)

= s · (M(w, θ)>βt −mt(w, θ)) .

Thus, Biasms,t(w, 1) reduces to zero if the linearity also holds for M(w, θ) in predicting

mt(w, θ); otherwise, it is in general non-zero.

In addition to these potential bias components, the decomposition in (12) also includes
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the composite error: ut(w, s) shown in (14), which comprises the intrinsic error et(w) and

the measure of estimation uncertainty σ2θ if s = 1. Importantly, this means that the choice

of (w, s) might influence the theoretical properties of the counterfactual predicted by the

SC method through the potential biases and the variance of prediction errors. To make

this point clear, we need to further explore the conditional MSPE:

MSPEt(w, s) := IE
[

(y1t(0)− ŷt(w, s))2
∣∣∣Y ] , (20)

which summarizes the potential biases and variance generated by predicting y1t(0) using

ŷt(w, s) for t ≥ T0 + 1.

Let ‖ · ‖1 be the L1 norm of a vector, and ‖ · ‖ be the L2 norm of a vector or the

Frobenius norm of a matrix. In particular, ‖w‖1 :=
∑

i≥2 |wi| and ‖w‖ :=
√∑

i≥2w
2
i . We

define the following divergence measures:

Bp(w) := ‖Y1 − Y (w)‖, (21)

Bp(w, s) := ‖Y1 − Y (w, s)‖, (22)

Bc(w) :=
∑
i≥2
|wi|‖Y1 − Yi‖ (23)

and

Ba(w) := |1− ι>nw| . (24)

Note that Bp(w) measures the divergence of the perfect-matching condition (11), Bp(w, s)

measures the divergence of a weak form of the perfect-matching condition defined in (15),

Bc(w) measures the divergence of the “perfect-control condition:”

Y1 = Yi, if wi 6= 0, (25)

and Ba(w) measures the divergence of the aggregation restriction: w ∈ A, where

A := {w|w ∈ Rn and ι>nw = 1} .

Also, note that Bp(w, s) = Bp(w) holds if s = 0. Moreover, condition (25) is stricter than

condition (11), and the restriction: w ∈ A is weaker than the restriction: w ∈W.

In the Appendix, we show the following result:
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Proposition 1 Given Assumptions 1-3, for t ≥ T0 + 1,

MSPEt(w, s) = Bias2t (w, s) + σ2t (w, s), (26)

σ2t (w, s) = σ2ε
(
1 + ‖w‖2

)
+ s · IE[(mt(w, θ̂)−mt(w, θ))

2|Y ], (27)

|Biaspre,t(w, s)| ≤ Biaspre(w, s) := ξψ,1Bp(w, s), (28)

|Biasnl,t(w)| ≤ Biasnl(w) := ξψ,0Ba(w) + ξψ,1 (‖w‖1Bp(w) +Bc(w)) , (29)

|Biasms,t(w, s)| ≤ Biasms(w, s) := (1 + ξψ,1)ξm,0(s · ‖w‖1), (30)

|Biast(w, s)| ≤ Bias(w, s) := ξψ,1 (Bp(w, s) + ‖w‖1Bp(w) +Bc(w)) + ξψ,0Ba(w)

+ (1 + ξψ,1)ξm,0 (s · ‖w‖1) ,
(31)

σ2t (w, s) ≤ σ̄2(w, s) := σ2ε + (σ2ε + s · ξ2m,1σ2θ)‖w‖2 (32)

and

MSPEt(w, s) ≤MSPE(w, s) := Bias
2
(w, s) + σ̄2(w, s). (33)

This shows that, given Y , the MSPE is composed of the squared bias of ŷt(w, s) and the

variance of the prediction error: σ2t (w, s), which is the same as σ2ε(1+‖w‖2) if s = 0 and in-

fluenced by the estimation uncertainty of θ̂ if s = 1. It also shows that the pre-intervention

bias, the nonlinearity bias, the model specification bias, the potential bias and the vari-

ance of prediction errors are, respectively, bounded above by Biaspre(w, s), Biasnl(w),

Biasms(w, s), Bias(w, s) and σ̄2(w, s). If w ∈ W, Biaspre(w, s) reduces to ξψ,1Bp(w) if

s = 0, and Biasnl(w) degenerates to ξψ,1Bc(w) if Bp(w) = 0, where Bp(w) and Bc(w)

correspond to the “interpolation measure” and the “extrapolation measure”considered by

Kellogg et al. (2020), respectively. In addition, the bias of ŷt(w, s), the variance σ2t (w, s)

and the MSPE are, respectively, bounded above by Bias(w, s), σ̄2(w, s) and MSPE(w, s).

These bounds all hold for t ≥ T0 + 1. Given the unknown ξψ,0 and ξψ,1 (and the model-

specific ξm,0 and ξm,1 if s = 1), the bounds are determined by the choice of (w, s).

Before further discussions, it should be noted that the decomposition presented in

Lemma 1 is by no means unique and that the upper bounds presented in Proposition 1
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are not ensured to be the least upper bounds that are difficult to establish in our context.

Nonetheless, the decomposition and these bounds have important implications on the SC

method. In particular, MSPE(w, s) constitutes a potential (conservative) MSPE of an

arbitrary SC method that predicts the counterfactual y1t(0) using ŷt(w, s) for t ≥ T0 + 1.

This allows us to contrast the potential differences among different SC methods in a unified

framework. In addition, as shown by (31), (32) and (33), MSPE(w, s) is governed by the

“matching-quality” divergences: B2
p(w, s), ‖w‖21B2

p(w) and B2
c (w) and the combination

measures: B2
a(w), s · ‖w‖21 and ‖w‖2 that may be regularized by the choice of (w, s).

This illustrates that the prediction problem is inseparable from the matching problem for

the SC method through the choice of (w, s), and motivates us to propose a generalized

SC method, that is RSC, by regularizing the squared bias and variance components of

MSPE(w, s) via the choice of (w, s). As will be shown in Section 3, several existing SC

methods, or their variants, amount to choosing (w, s) by minimizing a certain combination

of the components of MSPE(w, s), and hence an encompassed by RSC.

2.3 The regularized SC method

To introduce RSC, note that Bp(w, s) is dependent on the unknown parameter θ in the

case where s = 1. In this case, we estimate Bp(w, s) using its θ̂-based counterpart:

B̂p(w, s) := ‖Y1 − Ŷ (w, s)‖.

Note that the restriction: B̂p(w, s) = Bp(w, s) = Bp(w) holds if s = 0. Since MSPE(w, s)

is governed by the matching-quality divergences and the combination measures, it is sen-

sible to choose (w, s) by minimizing a multiple-objective function:

Q(w, s|r) := B̂2
p(w, s) + r1‖w‖21B2

p(w) + r2B
2
c (w) + r3B

2
a(w) + r4(s · ‖w‖21) + r5‖w‖2, (34)

where r := (r1, r2, r3, r4, r5) ≥ 0 denotes a vector of regularization parameters that controls

how the divergence measures are regularized. However, this minimization problem is

complicated because Q(w, s|r) is highly nonlinear in terms of w given a specific (s, r).

To simplify this minimization problem as a quadratic programming problem, we adopt

a sign-and-size restriction of w: w ∈ S(τ), where

S(τ) :=
{
w|w ∈ Rn+ and ι>nw ≤ τ, for some τ ≥ 1

}
. (35)
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This restriction implies ‖w‖21B2
p(w) ≤ τ2B2

p(w) and s · ‖w‖21 ≤ s · τ2 because ‖w‖1 = ι>nw

when w ∈ Rn+. It also implies B2
a(w) ≤ bτ , where bτ := max(1, (1− τ)2), because 1− τ ≤

1−ι>nw ≤ 1 when w ∈ Rn+ and ι>nw ≤ τ . Accordingly, we may use the restriction: w ∈ S(τ)

to establish an upper bound of Q(w, s|r):

Q̄(w, s|τ, r) := B̂2
p(w, s) + r1τ

2B2
p(w) + r2B

2
c (w) + r3bτ + r4(s · τ2) + r5‖w‖2,

=

{
B̂2
p(w, 1) + r1τ

2B2
p(w) + r2B

2
c (w) + r5‖w‖2 + r3bτ + r4τ

2, if s = 1,

(1 + r1τ
2)B2

p(w) + r2B
2
c (w) + r5‖w‖2 + r3bτ , if s = 0.

(36)

Note that Q̄(w, s|τ, r) considerably simplifies Q(w, s|r). It only involves the matching-

quality divergences: B̂2
p(w, s), B2

c (w) and s · B2
p(w) and the squared L2 norm: ‖w‖2.

Moreover, because Bc(w) =
∑

i≥2wi‖Y1 − Yi‖ holds under the sign restriction: w ∈ Rn+,

we may further present the minimization of Q̄(w, s|τ, r) with respect to w as a quadratic

programming problem for a fixed (s, τ, r).

To see this point, note that by rescaling the coefficients and removing the constants

of Q̄(w, s|τ, r), we transform the minimization of Q̄(w, s|τ, r) with respect to w to the

minimization of the following function with respect to w:

Q∗(w|s, κ) := B̂2
p(w, s) + κ1B

2
c (w) + κ2‖w‖2 + s · κ3B2

p(w) (37)

under the constraint: w ∈ S(τ), for a fixed (s, κ), where κ is a regularization-parameter

vector such that κ = (κ1, κ2) ≥ 0, if s = 0, or κ = (κ1, κ2, κ3) ≥ 0, if s = 1. Accordingly,

we propose a generalized SC method, that is RSC, that chooses the following w:

wrsc(s, τ, κ) := argmin
w∈S(τ)

Q∗(w|s, κ), (38)

for a fixed (s, τ, κ). In the Appendix, we show that wrsc(s, τ, κ) is the solution to a

quadratic programming problem:

wrsc(s, τ, κ) = argmin
w∈S(τ)

(
1

2
w>V w − v>w

)
, (39)

where

V := 2
(
Ŷ
s>
(−1)Ŷ

s
(−1) + κ1DYD

>
Y + κ2In + s · κ3Y >

(−1)Y (−1)

)
(40)
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and

v := 2
(
Ŷ
s
(−1) + s · κ3Y (−1)

)>
Y1 (41)

are defined by the following T0 × n matrices:

Y (−1) := (Y2, . . . , Yn+1),

M (−1)(θ̂) := (M2(θ̂), . . . ,Mn+1(θ̂))

and

Ŷ
s
(−1) := Y (−1) + s ·M (−1)(θ̂)

and the n× 1 vector:

DY := (‖Y1 − Y2‖, . . . , ‖Y1 − Yn+1‖)> .

In applications, we solve wrsc(s, τ, κ) using the R package “quadprog” for a fixed (s, τ, κ).

3 Comparison with Existing SC Methods

In this section, we illustrate that several existing SC methods, or their variants, could be

interpreted as particular RSCs with different settings of (s, τ, κ), and the proposed method

generates useful complements to existing SC methods.

3.1 Convex combination

We first consider the case where s = 0 and τ = 1. In this case, wrsc(s, τ, κ) degenerates to

wrsc(0, 1, κ1, κ2) = argmin
w∈S(1)

B2
p(w) + κ1B

2
c (w) + κ2‖w‖2. (42)

In comparison, CSC chooses the following w:

wcsc := argmin
w∈W

‖Y1 − Y (w)‖2. (43)

Note that CSC is fundamentally essential for the whole SC literature. It generalizes CCS by

replacing a restrictive assumption that the perfect-control condition (25) holds for a single

control unit with a weaker assumption that the perfect-matching condition in (11) holds
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for w = wcsc; that is, Bp(wcsc) = 0. Importantly, because Bp(w) = ‖Y1−Y (w)‖, as shown

in (21), and W ⊂ S(1), RSC includes CSC as a special case where w = wrsc(0, 1, 0, 0).

Under the perfect-matching condition: Bp(wcsc) = 0, ADH (2010) established a bias

bound of CSC by assuming the true model to be a linear factor model. Indeed, Proposi-

tion 1 implies that an arbitrary SC method with s = 0 and w ∈W has the bias bound:

Bias(w, 0) = ξψ,1 (2Bp(w) +Bc(w)) ; (44)

see (31). This illustrates that the perfect-matching condition is insufficient for ensuring

the unbiasedness of CSC if ψt(·) is unknown, unless Bc(wcsc) = 0. Since the nonlinearity

bias of an arbitrary SC method with s = 0 and w ∈W is bounded above by

Biasnl(w) = ξψ,1 (Bp(w) +Bc(w)) , (45)

as implied by (29), this result is consistent with the statement of ADH (2010) that CSC

may have an interpolation bias if the counterfactual is a nonlinear function of the pre-

intervention features. Therefore, it is theoretically important to regularize not only the

pre-intervention bias but also the nonlinearity bias, which might appear if Bc(wcsc) > 0, by

choosing w. This notion is an essential motivation of PSC which is originally established

in the context of multiple treated units.

In the context of single treated unit, PSC sets s = 0 and w ∈ W, and chooses the

following w:

wpsc := argmin
w∈W

‖Y1 − Y (w)‖2 + λ
∑
i≥2

wi‖Y1 − Yi‖2, (46)

where λ ≥ 0 is a regularization parameter. This method includes CSC (a nearest-neighbor

matching estimator) as a special case where λ = 0 (λ → ∞), and regularizes not only

the pre-intervention bias measured by B2
p(w) but also the interpolation bias measured by∑

i≥2wi‖Y1 − Yi‖2 if λ > 0. This design is consistent with the suggestion of ADH (2010,

2015) about reducing the interpolation bias by matching the treated unit and the untreated

units in a pairwise way; see also Kellogg et al. (2020) for a related model-average estimator.

Importantly, (42) reduces to

wrsc(0, 1, κ1, 0) = argmin
w∈S(1)

B2
p(w) + κ1B

2
c (w) (47)

if κ2 = 0. By comparing (46) with (47), we observe that the RSC with w = wrsc(0, 1, κ1, 0)

14



amounts to a variant of PSC because B2
c (w) is quite similar to

∑
i≥2wi‖Y1 − Yi‖2 in

measuring the pairwise-matching divergence.

Moreover, as implied by (27) and (32), an arbitrary SC method with s = 0 and w ∈W
has the variance of prediction errors: σ2t (w, 0), which is bounded above by

σ̄2(w, 0) = σ2ε(1 + ‖w‖2). (48)

By comparing (42) with (46), we observe that the RSC with w = wrsc(0, 1, κ1, κ2) regular-

izes not only the squared-bias measures: B2
p(w) and B2

c (w) but also the squared L2-norm

of w: ‖w‖2 in order to control for σ̄2(w, 0). This is an essential feature of this particular

RSC that is not shared by CSC and PSC.

In addition to the potential nonlinearity (interpolation) bias, CSC encounters the poor-

matching problem if Bp(wcsc) > 0. This problem is not uncommon in practice. It appears

when Y1 is outside of the convex hull of Y (−1) := (Y2, . . . , Yn+1). Intuitively, this problem

is closely related to the fact that CSC is constrained by the setting: s = 0 and w ∈W. In

comparison, RSC allows us to deal with this problem by relaxing the convex-combination

restriction: w ∈W, by setting s = 1 with a suitable design of M(θ), or by both.

3.2 Relaxation of convex combination

In the case where s = 0 and τ ≥ 1, wrsc(s, τ, κ) reduces to

wrsc(0, τ, κ1, κ2) = argmin
w∈S(τ)

B2
p(w) + κ1B

2
c (w) + κ2‖w‖2. (49)

Note that (49) includes

wrsc(0, τ, 0, 0) = argmin
w∈S(τ)

B2
p(w) (50)

as a special case where κ1 = κ2 = 0. The RSC with w = wrsc(0, τ, 0, 0) generalizes

CSC by relaxing the convex-combination restriction: w ∈W. Conceptually, this is useful

for remedying the poor-matching problem of CSC because the relationship: W ⊂ S+(τ)

implies B2
p(wrsc(0, τ, 0, 0)) ≤ B2

p(wcsc) when τ ≥ 1. It is essential to observe that the

choice of w = wrsc(0, τ, 0, 0) might be interpreted as a non-negative Lasso estimator for
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the coefficient vector of the regression: Y1 on Y (−1):

wlasso(+) := argmin
w∈Rn+

‖Y1 − Y (w)‖2 + λ‖w‖1, (51)

where λ ≥ 0 is a penalization parameter that corresponds to τ . The choice of w =

wrsc(0, τ, 0, κ2) further extends the former by accounting for the regularization of ‖w‖2.
This interpretation illustrates that the RSC with w = wrsc(0, τ, 0, κ2) is a variant of the

penalized-regression approach considered by the SC literature.

Specifically, Valero (2015) proposed replacing wcsc by estimating w using the Lasso

regression. Doudchenko and Imbens (2017) proposed estimating w using the elastic-net

regression, which encompasses the Lasso regression and the ridge regression that penalize

‖w‖1 and ‖w‖2, respectively. See also Amjad et al. (2018), Li (2020), Hollingsworth and

Wing (2020), Ben-Michael et al. (2021) and Chernozhukov et al. (2021), among others,

for related studies. The penalized-regression approach is in between CSC and the least

squares (LS) method that minimizes B2
p(w) without imposing any restriction on w, but

the LS method is infeasible if T0 < n. In comparison, the RSC with w = wrsc(0, τ, 0, κ2)

relaxes the size restriction: τ = 1 but maintains the sign restriction: w ∈ Rn+ for the

reasons explained in Section 2.3.

Importantly, by Proposition 1, we also observe that refining the poor-matching problem

by relaxing the restriction: w ∈W is not without costs. As implied by (31), an arbitrary

SC method that sets s = 0 but relaxes the restriction: w ∈W has the bias bound:

Bias(w, 0) = ξψ,1 ((1 + ‖w‖1)Bp(w) +Bc(w)) + ξψ,0Ba(w) (52)

and the variance bound σ̄2(w, 0) shown in (48). The bias bound in (52) tends to be larger

than that in (44) because it includes two additional components: ξψ,1‖w‖1Bp(w) and

ξψ,0Ba(w). Meanwhile, Bc(w) and σ̄2(w, 0) might also increase because ‖w‖1 and ‖w‖2

tend to increase after the relaxation. In comparison, the RSC with w = wrsc(0, τ, κ1, κ2)

accounts for the potential costs of relaxing the size restriction: τ = 1 by regularizing not

only B2
p(w) but also B2

c (w) and ‖w‖2.
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3.3 Model and bias correction

In the case where s = 1 and τ = 1, wrsc(s, τ, κ) degenerates to

wrsc(1, 1, κ1, κ2, κ3) = argmin
w∈S(1)

B̂2
p(w, 1) + κ1B

2
c (w) + κ2‖w‖2 + κ3B

2
p(w), (53)

which includes

wrsc(1, 1, 0, 0, 0) = argmin
w∈S(1)

B̂2
p(w, 1) (54)

as a special case where κ1 = κ2 = κ3 = 0. The particular RSC with w = wrsc(1, 1, 0, 0, 0)

generalizes CSC by substituting condition (15) for condition (11) and usingM(θ) to refine

the potential poor-matching problem. This RSC includes MSC as a special case.

Specifically, MSC is established by extending ADH’s (2010) linear factor model using

a vector of observed factors, denoted as xt here, to control for the poor-matching problem

of CSC. Denote the pre-intervention LS estimator:

θ̂i =

[
T0∑
t=1

xtx
>
t

][
T0∑
t=1

xtyit

]
,

and the residual for all (i, t)’s:

ỹit := yit − x>
t θ̂i.

Note that ỹit is conceptually different from the residual of the regression: Yi on zi men-

tioned in Section 2 because, unlike xt, zi is considered for predicting yit for t ≥ T0 + 1

rather than for explaining Y1 − Y (w). Denote X := (x>
1 , . . . , x

>
T0

)>, Ỹi := (ỹi1, . . . , ỹiT0)>

and Ỹ (w) =
∑

i≥2wiỸi. MSC chooses the following w:

wmsc := argmin
w∈W

‖Ỹ1 − Ỹ (w)‖2. (55)

Since

Ỹ1 − Ỹ (w) =
(
Y1 −Xθ̂1

)
−
∑
i≥2

wi

(
Yi −Xθ̂i

)
= Y1 − Y (w)−

∑
i≥2

wi(Xθ̂1 −Xθ̂i),

17



the objective function in (55) is the same as B̂2
p(w, 1) =

∥∥∥Y1 − Y (w)−M(w, θ̂)
∥∥∥2 with

M(w, θ̂) =
∑

i≥2wi(Xθ̂1 −Xθ̂i). Thus, the RSC with w = wrsc(1, 1, 0, 0, 0) includes MSC

as a special case where µit(θi) = x>
t θi. Note that MSC further reduces to the DSC of

Ferman and Pinto (2019, Equation 7) when xt = 1 and θi = µi. It also corresponds to

the DSC of Doudchenko and Imbens (2017), which chooses w = wcsc(d) as a part of the

minimizer:

(wcsc(d), α̂) := argmin
w∈W

‖Y1 − Y (w)− α · ιT0‖
2 , (56)

with α̂ denoting an estimator for the intercept α; see also Valero (2015). The objective

function in (56) is the same as B2
p(w, 1) when µit(θi) = µi with µi := IE[yit]. This illustrates

that DSC is useful for refining the poor-matching problem of CSC if the pre-intervention

bias is due to the mean difference between Y1 and Y (w).

According to (2) and (8), an arbitrary SC method with s = 1 generates the following

prediction of counterfactual:

ŷt(w, 1) = yt(w) +

µ1t(θ̂1)−∑
i≥2

wiµit(θ̂i)

 . (57)

By introducing the choice of w = wcsc in (57), we obtain that

ŷt(wcsc, 1) = yt(wcsc) +

µ1t(θ̂1)−∑
i≥2

wcsc,iµit(θ̂i)


︸ ︷︷ ︸

bias-correction term

, (58)

where wcsc,i is an element of wcsc. Importantly, although the predictions: ŷt(w, 1), with

w = wrsc(1, 1, 0, 0, 0), and ŷt(wcsc, 1) both set s = 1, they are generated from different

choices of w; see also Chen (2020, p.511). In particular, ŷt(wcsc, 1) amounts to a bias

correction of yt(wcsc) for the poor-matching problem of CSC. In comparison, ASC is

motivated by (58), and interprets µit(θi) as a linear model of ψt(Yi); see Ben-Michael

et al. (2021, Equations 9 and 10). See also Abadie and L’Hour (2019, Equation 9) for

a similar bias correction of PSC and Chernozhukov et al. (2019) and Arkhangelsky et

al.(2021) for related bias-reduction methods. Specifically, ASC assumes that ψt(Yi) is a

time-invariant linear function of Yi, and estimates the coefficients using a ridge regression.

Ben-Michael et al. (2021, Equation 18) showed that, by this assumption and relaxing the

sign restriction: w ∈ Rn+, this ASC amounts to a SC method that sets s = 0 and chooses
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the following w:

wasc := argmin
w∈A

1

2λ
‖Y1 − Y (w)‖2 +

1

2
‖w − wcsc‖2, (59)

where ‖w − wcsc‖2 is interpreted as the “level of extrapolation,” and the regularization

parameter λ > 0 controls for the deviation of w from wcsc.

As implied by (31) and (32), an arbitrary SC method with s = 1 has the bias bound:

Bias(w, 1) = ξψ,1 (Bp(w, 1) +Bp(w) +Bc(w)) + (1 + ξψ,1)ξm,0 (60)

and the variance bound:

σ̄2(w, 1) = σ2ε + (σ2ε + ξ2m,1σ
2
θ)‖w‖2, (61)

respectively. By comparing (44) with (60) and comparing (48) with (61), we may observe

that sets s = 1 and uses M(θ) to refine the pre-intervention bias of CSC is at the cost

of generating an additional bias component (1 + ξψ,1)ξm,0 and an additional variance

component ξ2m,1σ
2
θ‖w‖2. The result in (60) also reminds us that the “bias-corrected”

prediction in (58) is not necessarily unbiased. Compared to the aforementioned model-

based methods, the RSC with w = wrsc(1, 1, κ1, κ2, κ3) regularizes not only B̂2
p(w, 1) and

‖w‖2 but also B2
c (w).

In addition, RSC is also applicable to the case where s = 1 and τ ≥ 1. In this

case, RSC refines the poor-matching problem by relaxing the convex-combination restric-

tion and using the auxiliary model M(θ) simultaneously. In particular, the RSC with

w = wrsc(1, τ, 0, 0, 0) extends the non-negative Lasso estimator or MSC by choosing the

following w:

wlasso(+) := argmin
w∈Rn+

‖Ỹ1 − Ỹ (w)‖2 + λ‖w‖1, (62)

where λ ≥ 0 corresponds to τ . In the case where µit = µi, this particular RSC corresponds

to a modified SC method considered by Li (2020, Equation 4).

3.4 Selection of regularization parameters

Like the penalized regressions, PSC, ASC and RSC all involve certain regularization pa-

rameters to be selected in their general forms. In the literature, it is common to select
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the regularization parameter(s) of a SC method by minimizing a validation criterion. For

the RSC method, we let V (s, τ, κ) be such a validation criterion which is dependent on

the choice of (s, τ, κ). Following Abadie and L’Hour (2019), we set V (s, τ, κ) to be the

empirical MSPE of the RSC method in a validation period before the intervention; see

also ADH (2015), Amjad et al.(2018, p.10) and Abadie (2021, p.397) for this setting.

Specifically, we split the pre-intervention period into the training period: t ∈ [1, R] and

the validation period: t ∈ [R + 1, T0]. In addition, we let Y R be the first R × (n + 1)

submatrix of Y that comprises the pre-intervention outcomes in the training period, and

θ̂R and wR,rsc(s, τ, κ) be, respectively, the counterparts of θ̂ and wrsc(s, τ, κ) obtained by

replacing Y R with Y . Accordingly, we set V (s, τ, κ) to be the empirical MSPE:

V (s, τ, κ) =
1

T0 −R+ 1

T0∑
t=R+1

(y1t − ŷt(w, s))2 , (63)

with ŷt(w, s) = yt(w) + s · mt(w, θ̂R) and w = wR,rsc(s, τ, κ), and select (s, τ, κ) as the

following minimizer:

(s∗, τ∗, κ∗) = argmin
s,τ,κ

V (s, τ, κ). (64)

For particular RSC methods, PSC and ASC, we also select the regularization parameters

by minimizing the associated empirical MSPEs in a similar way. In applications, we set R

to be the integer part of 2
3T0 for simplicity. Theoretically, one might also replace the afore-

mentioned validation criterion by a cross-validation criterion. However, the computational

cost of cross validation could be prohibitive for the most general form of RSC.

4 Monte Carlo Simulation

In this simulation, we consider the following data generating processes (DGP):

y∗it = hit + λ>
i ft + δtDit + εit,

where h1t = a+ bt, hit = 0 for i ≥ 2, λi = (λ1i, λ2i)
>, ft = (1, t)>, δt = 0 if t ≤ T0, δt = t

if t ≥ T0 + 1, and λ1i ∼ N(0, 1) λ2i ∼ U(0, 0.2) and εit ∼ N(0, σ2) are independently

and identically distributed random variables, and generate yit from the transformation:

yit = y∗it if c = 1, and yit = |y∗it|1.5 if c = 2. To generate different types of data, we consider

the following settings of (a, b, c, σ2):
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� DGP1: (a, b, c, σ2) = (0, 0, 1, 1);

� DGP2: (a, b, c, σ2) = (5, 0, 1, 1);

� DGP3: (a, b, c, σ2) = (5, 0.2, 1, 1).

Note that the designed context of CSC holds under DGP1, but fails under DGP2 (DGP3)

because of the poor-matching problem caused by the mean (-and-trend) difference between

the treated unit and the untreated units. We also let DGP4-6 be the nonlinear counterparts

of DGP1-3, respectively, that are defined by replacing c = 1 with c = 2, and DGP7-12

be the counterparts of DGP1-6, respectively, that are defined by replacing σ2 = 1 with

σ2 = 2.

In addition, we consider the existing SC methods: CSC, DSC, MSC, ASC and PSC

and the following RSCs:

� RSCp: w = wrsc(s, τ, κ1, κ2) = wrsc(0, 1, 0, 0),

� RSCc: w = wrsc(s, τ, κ1, κ2) = wrsc(0, 1, κ1, 0),

� RSCw: w = wrsc(s, τ, κ1, κ2) = wrsc(0, 1, 0, κ2),

� RSCg: w = wrsc(s, τ, κ1, κ2) = wrsc(0, τ, κ1, κ2),

� RSCp(D): w = wrsc(s, τ, κ1, κ2, κ3) = wrsc(1, 1, 0, 0, 0),

� RSCc(D): w = wrsc(s, τ, κ1, κ2, κ3) = wrsc(1, 1, κ1, 0, 0),

� RSCw(D): w = wrsc(s, τ, κ1, κ2, κ3) = wrsc(1, 1, 0, κ2, 0),

� RSCg(D): w = wrsc(s, τ, κ1, κ2, κ3) = wrsc(1, τ, κ1, κ2, κ3),

� RSCp(M): w = wrsc(s, τ, κ1, κ2, κ3) = wrsc(1, 1, 0, 0, 0),

� RSCc(M): w = wrsc(s, τ, κ1, κ2, κ3) = wrsc(1, 1, κ1, 0, 0),

� RSCw(M): w = wrsc(s, τ, κ1, κ2, κ3) = wrsc(1, 1, 0, κ2, 0),

� RSCg(M): w = wrsc(s, τ, κ1, κ2, κ3) = wrsc(1, τ, κ1, κ2, κ3).

Among these SC methods, RSCp, RSCp(D) and RSCp(M) correspond to CSC, DSC

and MSC, respectively, and RSCc is a variant of PSC. Given s = 0, the subscript “p”

of RSCp means that this RSC regularizes Bp(w), the subscript “c” of RSCc means that

21



this RSC regularizes not only Bp(w) but also Bc(w), the subscript “w” of RSCw means

that this RSC regularizes not only Bp(w) but also ‖w‖2, and the subscript “g” of RSCg

means that RSCg is the general form of RSC that regularizes B2
p(w), B2

c (w) and ‖w‖2

by allowing τ ≥ 1. Given s = 1, RSCc(D), RSCw(D) and RSCg(D) are, respectively,

the counterparts of RSCc, RSCw and RSCg that use M(θ) with xt = 1, and RSCc(M),

RSCw(M) and RSCg(M) are, respectively, the counterparts of RSCc, RSCw and RSCg

that use M(θ) with xt = (1, t)>. Correspondingly, DSC and MSC use the same M(θ)’s

as RSCp(D) and RSCp(M), respectively. In this simulation, we set λ = κ1 for PSC,

and multiply the objective function in (59) by 2λ, with λ = κ2, for ASC, and select the

regularization parameters of RSC using the validation method discussed in Section 3.4

based on the settings: τ = 1, 1.1, . . . , 1.5, κ1 = 0, 1, . . . , 5, κ2 = 0, 100, 200, . . . , 5000 and

κ3 = 0, 1, . . . , 5.

Let ŷ
(b)
1t (w, s) be the ŷ1t(w, s) of a SC method generated by the bth replication of the

simulation for b = 1, 2, . . . , B with B denoting the number of replications. We measure

the finite-sample performance of a SC method using the average of the absolute biases:

|bias| := 1

T − T0

T∑
t=T0+1

|biasB,t|,

where biasB,t := δ̂B,t − δt, δ̂B,t := B−1
∑B

b=1 δ̂
(b)
t and δ̂

(b)
t := ŷ

(b)
1t (w) − y1t(0), and the

average of the root mean squared errors (RMSEs):

RMSE :=
1

T − T0

T∑
t=T0+1

RMSEB,t,

where RMSEB,t :=

√
B−1

∑B
b=1(δ̂

(b)
t − δt)2. In Table 1, we report these two performance

measures of the SC methods for the settings: n = 50, T = T0 + 10, T0 = 50 or 100, and

B = 1000. The main simulation findings are summarized as follows.

Firstly, CSC performs quite well in its designed context (DGP1 or DGP7), but the

performance of CSC is worsened beyond its designed context (under the other DGPs).

More specifically, given T0 = 50, CSC has |bias| = 0.03 and RMSE = 1.203 under DGP1

that increase to 0.182 and 2.531 (9.905 and 10.578) under DGP2 (DGP3), respectively.

The |bias| of CSC further increases to 0.213, 1.812 and 61.038 under DGP4-6, respectively,

and the RMSE of CSC increase to 4.195, 12.386 and 66.009 under these DGPs. This shows
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that the performance of CSC is damaged by the poor-matching problem which is due to

the mean (and trend) difference under DGP2 (DGP3) and further complicated by the

nonlinearity under DGP4-6. This result is even more evident when T0 = 100. In addition,

the performance of CSC is slightly worsened by the increase of σ2.

Secondly, focusing on the existing methods, DSC has similar performance to CSC under

DGP1 (or DGP7), but outperforms CSC under the other DGPs. Given T0 = 50, DSC has

|bias| = 0.033 (0.044) and RMSE = 1.164 (1.586) under DGP1-2 (DGP7-8). This shows

that DSC is useful for refining the poor-matching problem of CSC caused by the mean

difference. However, DSC is generally outperformed by MSC and ASC except for DGP5

that comprises the mean difference and the nonlinearity. Given T0 = 50, compared to DSC

that has |bias| = 3.347 (30.508) and RMSE = 3.914 (34.506) under DGP3 (DGP6) that

comprises the mean-and-trend difference, MSC has |bias| = 0.029 (3.533) and RMSE =

1.122 (8.594) and that ASC has |bias| = 0.209 (3.754) and RMSE = 8.272 (12.634) under

the same DGP. Meanwhile, the |bias| and RMSE of MSC are invariant under DGP1-

3 (DGP7-9). This illustrates that MSC outperforms DSC because it uses a more flexible

M(θ) to deal with the poor-matching problem of CSC. We also observe that MSC has

smaller |bias|’s relative to ASC in several cases as T0 = 50, but the results are reversed as

T0 = 100. In addition, MSC has smaller RMSE’s relative to ASC for all cases considered.

In comparison, PSC has similar performance to CSC in our simulation.

Thirdly, as expected, RSCp, RSCp(D) and RSCp(M) are essentially identical to CSC,

DSC and MSC in terms of their performance, and RSCc has very similar performance

to PSC for all DGPs. This is consistent with the theoretical relationships among these

SC methods, and shows that RSC is useful for unifying existing methods. In this unified

framework, RSCp(D) and RSCp(M) generalize CSC using auxiliary models, and RSCg

generalizes CSC by setting s = 0 but relaxing the restriction: τ = 1. The simulation shows

that RSCp(D) and RSCp(M) considerably outperform RSCg in most cases, and suggests

that it is better to refine the potential biases of CSC using suitable auxiliary models rather

than simply relaxing the aggregation restriction.

Fourthly, RSCg substantially outperforms DSC and MSC in terms of |bias| under

DGP6 (DGP12) which comprises a complicated divergence from the designed context

of CSC. Under DGP6 (DGP12), DSC and MSC are of the |bias|’s: 30.508 (31.212) and

3.533 (3.683), respectively, and RSCg(D) and RSCg(M) are, respectively, of much smaller

|bias|’s: 2.093 (2.170) and 1.661 (1.588). It is useful to observe that DSC has the same

performance as RSCp(D), and RSCg(D) shares the same M(θ) as RSCp(D). Thus,
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the aforementioned result indeed reflects that RSCg(D) remedies the bias of DSC under

DGP6 (DGP12) by suitably selecting the regularization parameters. The same inter-

pretation also applies to the relative performance of the MSC method and the RSCg(M)

method. Moreover, we observe that RSCw(M) uniformly outperforms the other SC meth-

ods in terms of RMSE for all DGPs and for both T0’s considered in this simulation.

Generally speaking, these results show that RSC does not only encompass certain

existing SC methods but also generate useful complements to existing methods. In partic-

ular, RSCw(M) compares favourably with the other SC methods in terms of RMSE. The

design of RSCw(M) reflects the importance of first dealing with the pre-intervention bias

of CSC using a relatively flexibleM(θ) and then suitably regularizing ‖w‖2. Note that the

regularization of ‖w‖2 is beyond the consideration of MSC, and is useful for controlling

the potential cost of using M(θ) discussed in Section 3.3.

5 Empirical Illustration

In this section, we further compare the performance of different SC methods using two

case studies. The first one is the case study considered by ADH (2010), and the second

one is a hypothetical case study based on the former. The motivation and design of the

hypothetical case study will be explained later.

5.1 Actual case study

In the case study of ADH (2010), the outcome variable yit is the cigarette sales of a state

in the tth year of the sampling period: 1970-2000, the intervention variable Dit is defined

by California’s Tobacco Control Program (CTCP) that took place in 1989 (T0 = 20),

California is the treated unit (i = 1), and the donor pool of untreated units comprises

37 states (n = 37) that did not have a similar program during the sampling period; see

Figure 1 for the outcome sequences {yit}’s. ADH (2010) found that, with the use of certain

pre-intervention covariates, the cigarette sales of the synthetic California, which is defined

by the convex combination of the Yi’s, for i ≥ 2, based on CSC, closely matches Y1 in

the pre-intervention period: 1970-1988, and the counterfactual cigarette sales predicted

by CSC are considerably lower than the y1t’s in the post-intervention period: 1989-2000.

This shows the effectiveness of CTCP for reducing California’s cigarette sales.

In the following, we apply not only CSC but also the other SC methods considered in

Section 4 to estimating the intervention effects of CTCP. We also utilize this case study to
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Figure 1: The outcome sequences of California (red), the hypothetical treated unit (blue)
and the untreated units (gray).

assess the relative performance of the SC methods in real data. For the SC methods with

regularization parameters, the parameters are selected using the same validation method

and settings as the simulation, and the validation method is implemented by splitting the

pre-intervention period into the training period: 1970-1981 (R = 12) and the validation

period: 1982-1988. Note that the general form of RSC involves 1836 different settings

of (τ, κ1, κ2) when s = 0 and 11016 different settings of (τ, κ1, κ2, κ3) when s = 1. In

Table 2, we report the minimum, the maximum and the deciles of the validation criterion

values and the associated regularization parameters among these settings. The minimum

corresponds to RSCg if s = 0 and RSCg(D) or RSCg(M) if s = 1. The criterion values and

the regularization parameters of RSCp, RSCc, RSCw, RSCp(D), RSCc(D), RSCw(D),

RSCp(M), RSCc(M) and RSCw(M) are reported in the same table. In Figure 2, we

compare the outcome sequence of California {y1t}Tt=1 with the synthetic outcome sequences

{ŷ1t(w, s)}Tt=1’s generated by the SC methods considered in the simulation. In Table 3,

we further report the pre-intervention RMSEs:

RMSEpre :=

√√√√ 1

T0

T0∑
t=1

(y1t − ŷ1t(w, s))2 = T
−1/2
0 B̂p(w, s)
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Table 2: Validation criterion values and regularization parameters of RSC.

s = 0 s = 1(D) s = 1(M)

V τ κ1 κ2 V τ κ1 κ2 κ3 V τ κ1 κ2 κ3

(a) Actual

10% 21.221 1.0 4 700 24.675 1.2 0 1900 3 2.612 1.2 0 1000 2
20% 23.771 1.4 5 0 32.259 1.2 0 3000 2 5.996 1.1 2 4600 3
30% 36.594 1.1 3 700 38.671 1.0 0 2600 1 8.117 1.4 2 2900 1
40% 47.547 1.0 5 3400 45.368 1.2 0 4300 1 9.368 1.4 3 4300 4
50% 50.733 1.5 5 4100 50.159 1.3 2 2400 5 10.884 1.2 3 3200 2
60% 53.505 1.2 5 5000 53.191 1.2 4 4800 4 12.194 1.5 5 4200 4
70% 58.456 1.0 3 3000 56.080 1.2 2 2900 3 14.455 1.2 3 2500 4
80% 65.352 1.3 2 2800 58.665 1.5 5 2600 2 21.337 1.4 5 1900 5
90% 76.222 1.1 2 4500 64.330 1.1 1 4100 5 40.498 1.1 0 3600 0
max 94.271 1.5 1 5000 97.664 1.5 1 5000 0 75.470 1.5 5 300 0

RSCp 31.376 1.0 0 0 13.545 1.0 0 0 0 28.423 1.0 0 0 0
RSCc 18.913 1.0 2 0 13.545 1.0 0 0 0 28.423 1.0 0 0 0
RSCw 20.168 1.0 0 700 5.361 1.0 0 400 0 28.423 1.0 0 0 0
RSCg 14.190 1.0 5 600 5.361 1.0 0 400 0 0.193 1.0 0 2400 1

(b) Hypothetical

10% 246.861 1.2 0 2900 391.730 1.5 0 3900 3 266.047 1.5 0 900 5
20% 834.537 1.1 1 3800 435.769 1.2 0 1300 1 306.520 1.0 0 2900 1
30% 995.658 1.4 1 800 488.354 1.0 0 700 5 386.375 1.3 4 3800 2
40% 1205.623 1.4 2 2500 542.671 1.0 1 5000 1 461.029 1.0 5 700 5
50% 1399.580 1.5 3 4400 562.003 1.1 3 300 3 496.031 1.1 1 3800 4
60% 1525.764 1.5 3 3300 574.723 1.4 2 2200 5 524.667 1.1 2 3300 5
70% 1704.009 1.0 2 1200 601.841 1.2 4 4000 1 563.594 1.5 3 5000 5
80% 1842.213 1.0 3 3600 658.143 1.1 3 400 5 592.009 1.1 3 3700 4
90% 1903.964 1.0 3 1000 842.679 1.1 2 2900 0 855.081 1.1 1 4900 0
max 1955.163 1.5 5 5000 469.551 1.5 5 5000 0 1211.832 1.5 5 5000 0

RSCp 552.156 1.0 0 0 13.542 1.0 0 0 0 30.716 1.0 0 0 0
RSCc 552.156 1.0 0 0 13.542 1.0 0 0 0 30.716 1.0 0 0 0
RSCw 519.274 1.0 0 100 5.397 1.0 0 400 0 30.716 1.0 0 0 0
RSCg 32.707 1.5 0 0 5.397 1.0 0 400 0 30.714 1.1 0 0 0

Note: “Actual” and “Hypothetical” represent the actual case study and the hypothetical case study, respectively. “V”
represents the validation criterion value; that is, the MSPE in the validation period. The entries are the deciles and
the maximum of the criterion values and the associated (τ, κ1, κ2) of the RSCs with s = 0, the RSCs with “s = 1(D)”
that sets s = 1 and uses M(θ) with xt = 1, and the RSCs with “s = 1(M)” that sets s = 1 and uses M(θ) with

xt = (1, t)>. The minimum corresponds to RSCg . “s = 0” includes RSCp, RSCc, RSCw and RSCg ; “s = 1(D)”
includes RSCp(D), RSCc(D), RSCw(D) and RSCg(D); “s = 1(M)” includes RSCp(M), RSCc(M), RSCw(M) and
RSCg(M).

and the estimated intervention effects {δ̂t}Tt=T0+1’s of the SC methods. The main empirical

findings are summarized as follows.

Firstly, Table 2 shows that although CSC performs reasonably well, it is outperformed

by certain RSCs in the validation period. Recall that CSC corresponds to RSCp. Table 2

shows that RSCp has the criterion value: 31.376, which is between the 20% quantile:

23.771 and the 30% quantile: 36.594 of the criterion values when s = 0. In comparison,

RSCg(M), defined by the choice of (τ, κ1, κ2, κ3) = (1, 0, 2400, 1), has the minimum crite-

rion value: 0.193 among all the RSC methods. Like CSC, RSCg(M) also sets τ = 1 and

κ1 = 0. Importantly, unlike CSC, RSCg(M) selects s = 1 by usingM(θ) with xt = (1, t)>,

and regularizes ‖w‖2 and Bp(w) by setting κ2 = 2400 and κ3 = 1.

27



1970 1975 1980 1985 1990 1995 2000

4
0

6
0

8
0

1
0

0
1

2
0

(a) Actual

 

 

Original
CSC
DSC
MSC
ASC
PSC
RSCp
RSCc
RSCw
RSCg
RSCp(D)
RSCc(D)
RSCw(D)
RSCg(D)
RSCp(M)
RSCc(M)
RSCw(M)
RSCg(M)

1970 1975 1980 1985 1990 1995 2000

1
4

0
1

6
0

1
8

0
2

0
0

2
2

0
2

4
0

(b) Hypothetical

 
 

Original
CSC
DSC
MSC
ASC
PSC
RSCp
RSCc
RSCw
RSCg
RSCp(D)
RSCc(D)
RSCw(D)
RSCg(D)
RSCp(M)
RSCc(M)
RSCw(M)
RSCg(M)

Figure 2: The outcome sequences of (a) California and (b) the hypothetical treated unit
and the associated synthetic outcome sequences generated by different SC methods. The
blue dashed line is evaluated at T0 = 19 (that is, 1989).

Secondly, Table 2 also shows that RSCc(D) reduces to RSCp(D) by setting κ1 = 0, and

RSCc(M) and RSCw(M) both degenerate to RSCp(M) by setting τ = 1 and κ1 = κ2 = 0.

Thus, the former two SC methods and the latter three SC methods are, respectively, of

the same performance in this case study. From Table 3, we also observe that PSC, RSCc

and RSCg have the same performance in this case study.

Thirdly, Figure 2 shows that the Y (w)’s generated by most of the SC methods closely

match Y1. However, the Y (wpsc) generated by PSC (RSCc or RSCg) does not suitably

match Y1. This reflects the trade off between minimizing Bp(w) and regularizing Bc(w)

in this case study. In comparison, it is visually difficult to distinguish CSC from the other

SC methods regarding their performance in matching Y1. Nonetheless, Table 3 shows that

RSCp(M), RSCc(M) or RSCw(M) has the minimum RMSEpre: 0.938 among the SC

methods. In comparison, CSC has a larger RMSEpre: 2.484.

Fourthly, Figure 2 also shows that the counterfactuals ŷ1t(w, s)’s predicted by the SC

methods are consistently greater than the y1t’s in the post-intervention period. Accord-

ingly, we obtain the same conclusion as ADH (2010) regarding the effectiveness of CTCP

for reducing the treated state’s cigarette sales. However, our conclusion is a consensus

resulted from different SC methods. In addition, Figure 2 and Table 3 show that different
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SC methods might generate different δ̂t’s. In particular, after excluding PSC (RSCc or

RSCg), the absolute intervention effects estimated by other SC methods are obviously

smaller than those estimated by CSC (RSCp or RSCw).

5.2 Hypothetical case study

In the following, we consider a hypothetical case study that has the same intervention

effects as, but a different type of data from, the (previous) actual case study. The only

difference between the two cases is due to the design that the hypothetical case is defined by

replacing the outcome sequence of the treated unit {y1t}Tt=1 with a hypothetical outcome

sequence {y∗1t}Tt=1, where y∗1t := α + y1t and α = 100. As shown by Figure 2, unlike the

actual outcome sequence {y1t}T0t=1 which is surrounded by its untreated counterparts, the

hypothetical outcome sequence {y∗1t}
T0
t=1 is essentially above all but one of the untreated

counterparts. By this design, the hypothetical case mimics a poor-matching problem that

does not appear in the actual case. It should be noted that, because the hypothetical case

is artificial, the associated results do not have direct empirical interpretations. However,

this design is useful for assessing the potential robustness of the SC methods. Specifically,

although the poor-matching problem is not uncommon in real data, the intervention effects

across different real-data case studies are typically incomparable. In comparison, because

the hypothetical case shares the same intervention effects as the actual case, the design

allows us to assess the potential robustness of a SC method by comparing the intervention

effects estimated from the actual and hypothetical cases. For ease of comparison, we plot

{y∗1t}Tt=T0+1 and the associated synthetic outcome sequences in Figure 2, and report the

validation criterion values and the regularization parameters (the pre-intervention RMSEs

and the estimated intervention effects) of the hypothetical case in Table 2 (Table 3). The

main findings are summarized as follows.

Firstly, as shown by Table 2, the validation performance of CSC (RSCp) is considerably

worsened in the hypothetical case because of the poor-matching problem. Specifically,

RSCp has the validation criterion value: 552.156, which is substantially greater than

its actual counterpart: 31.376. In comparison, RSCg, defined by setting τ = 1.5 and

κ1 = κ2 = 0, has the criterion value: 32.707 in the hypothetical case. This shows that

relaxing the restriction: τ = 1 is useful for refining the poor-matching problem of the CSC

method to some extent. Nonetheless, RSCg is considerably outperformed by RSCw(D),

defined by setting τ = 1 and (κ1, κ2, κ3) = (0, 400, 0), which has the minimum criterion
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value: 5.397 in this case. This shows again the importance of refining the poor-matching

problem by first using a suitable M(θ) and then regularizing ‖w‖2.
Secondly, Table 2 shows that RSCc reduces to RSCp by setting κ1 = 0. This result is

interesting. It reflects that Bp(w) dominates Bc(w) in the regularization problem of RSCc

when the poor-matching problem is obvious. Table 2 also shows that RSCg(D) reduces

to RSCw(D) by setting (κ1, κ3) = (0, 0), and RSCc(D) and RSCw(D) both degenerate

to RSCp(D) by setting κ1 = κ2 = 0 in this case. Table 3 further shows that RSCw

has similar performance to RSCp (RSCg), RSCp(D) and RSCc(D) are identical, and

RSCp(M), RSCc(M), RSCw(M) and RSCg(M) have the same performance in this case.

Thirdly, Figure 2 shows that CSC (RSCp or RSCc) is obviously different from the

other SC methods in matching {y∗1t}
T0
t=1. Specifically, CSC (RSCp or RSCc) is unable

to match the pre-intervention outcomes of the hypothetical treated unit. By contrast,

the other SC methods still match the pre-intervention outcomes quite well. Specifically,

Table 3 shows that CSC (PSC) has RMSEpre = 12.009, while RSCp(M), RSCc(M),

RSCw(M) or RSCg(M) has the minimum RMSEpre: 0.936 in this case.

Fourthly, Figure 2 shows that, unlike the actual case, the counterfactuals predicted by

the SC methods are not consistently greater than the post-intervention outcomes of the

hypothetical treated unit, even though the hypothetical case shares the same intervention

effects as the actual case. This finding illustrates that some of the SC methods are not

robust in estimating the intervention effects. To see this point, we further report the dif-

ference between the RMSEs and the difference between the estimated intervention effects

of the two cases for each SC method in Table 3. The differences are essential zero for

DSC and MSC, and are also close to zero for RSCw(D), RSCg(D), RSCp(M), RSCc(M)

and RSCw(M). By contrast, the absolute intervention effects estimated by the other SC

methods in the hypothetical case are obviously lower than their actual counterparts, es-

pecially for CSC, ASC, PSC and the particular RSCs without using auxiliary models by

setting s = 0.

6 Conclusions

The notion of SC has been widely regarded as essential for policy evaluation. In the recent

literature, researchers have proposed various extensions of CSC that choose the weight-

ing vector w in different ways, including PSC that considers the potential interpolation

bias of CSC, different penalized-regression methods that account for the potential poor-
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matching problem of CSC without using auxiliary models (s = 0), and DSC, MSC and

ASC that deal with the potential poor-matching problem of CSC using auxiliary mod-

els (s = 1). In this paper, we propose a unified approach to compare and generate useful

complements of existing methods in a generalized context where the true outcome model

is unknown. This approach is established by first exploring an upper bound of the MSPE

of the counterfactual predicted by an arbitrary SC and then proposing a generalized SC

method, that is RSC, to regularize the components of this potential MSPE by the choice

of (w, s) under a sign-and-size restriction: w ∈ S(τ) for τ ≥ 1. The components include

the matching-quality divergences: B̂2
p(w, s), B2

c (w) and B2
p(w) (if s = 1) and the squared

L2-norm: ‖w‖2. We illustrate that RSC includes several existing SC methods, or their

variants, as particular examples with different restrictions of regularization parameters.

By this unified approach, we assess the potential biases and MSPEs of a particular SC

method and generate useful new SC methods. In particular, we observe that the RSC

that regularizes both B̂2
p(w, s) and ‖w‖2 is a useful complement of MSC because MSC

regularizes B̂2
p(w, s) but overlooks ‖w‖2 which is essential for determining the potential

variance of its prediction error. The simulation shows that this type of RSC performs

favorably in comparison with MSC and many other SC methods. We also illustrate the

usefulness of our method using the case study considered by ADH (2010), and assess the

robustness of SC methods in estimating the intervention effects by comparing this case

study with an associated hypothetical case study.
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[13] Chernozhukov, V., K. Wüthrich and Y. Zhu (2021). An exact and robust conformal

inference method for counterfactual and synthetic controls, Journal of the American

Statistical Association, forthcoming.

[14] Doudchenko and Imbens (2017). Balancing, regression, difference-in-differences and

synthetic control methods: A Synthesis, Working paper, NBER.

[15] Ferman, B. and C. Pinto (2019). Synthetic controls with imperfect pre-treatment fit,

Working paper, Sao Paulo School of Economics.

[16] Gobillon, L. and T. Magnac (2016). Regional policy evaluation: Interactive fixed

effects and synthetic controls, Review of Economics and Statistics, 98, 535-51.

[17] Hollingsworth, A. and C. Wing (2020). Tactics for design and inference in synthetic

control studies: An applied example using high-dimensional data, Working paper,

Indiana University.

33



[18] Kellogg, M., M. Mogstad, G. Pouliot and A. Torgovitsky (2020). Combining match-

ing and synthetic controls to trade off biases from extrapolation and interpolation,

Working paper, NBER.

[19] Li, K. T. (2020). Statistical inference for average treatment effects estimated by syn-

thetic control methods, Journal of the American Statistical Association, 115, 2068-83.

[20] Samartsidis, P., S. R. Seaman, A. M. Presanis, M. Hickman and D. De Angelis (2019).

Assessing the causal effect of binary interventions from observational panel data with

few treated units, Statistical Science, 34, 486-503.

[21] Valero, R. (2015). Synthetic control method versus standard statistical techniques: A

comparison for labor market reforms, Working paper, University of Alincante.

[22] Xu, Y. (2017). Generalized synthetic control method: Causal inference with interac-

tive fixed effects models, Political Analysis, 25, 57-76.

34



Supplementary Appendix of

“Regularization of Synthetic Controls for
Policy Evaluation”

Yi-Ting Chen

Department of Finance

National Taiwan University

This appendix presents the mathematical proofs of the paper.

Proof of Lemma 1

Under Assumption 1, the counterfactual y1t(0) is evaluated at the potential outcome of

the intervention variable: D1t = 0, and has the form:

y1t(0) = ψt(Y1) + ε1t, (A1)

for t ≥ T0 + 1. According to (3) and (A1), we have

y1t(0)− ŷt(w, s) = (ψt(Y1) + ε1t)−
(
yt(w) + s ·mt(w, θ̂)

)
= (ψt(Y1) + ε1t)−

∑
i≥2

wiyit + s ·mt(w, θ̂)


= (ψt(Y1) + ε1t)−

∑
i≥2

wi(ψt(Yi) + εit) + s ·mt(w, θ̂)


= ψt(Y1)−

∑
i≥2

wiψt(Yi)− s ·mt(w, θ)

+

ε1t −∑
i≥2

wiεit

− s · (mt(w, θ̂)−mt(w, θ)
)
,

(A2)

for t ≥ T0 + 1, in which the second equality is due to (1), the third equality is due to

Assumption 1(i) for i ≥ 2. We obtain this lemma from (A2). 2
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Proof of Proposition 1

To see (26), note that Assumption 3 implies

IE[et(w)|Y ] = 0

and

IE[uit(w, s)|Y ] = 0.

Thus,

MSPEt(w, s) = Bias2t (w, s) + σ2t (w, s),

where

σ2t (w, s) := var[ut(w, s)|Y ] = IE[e2t (w)|Y ] + s · IE[(mt(w, θ̂)−mt(w, θ))
2|Y ],

and

IE[e2t (w)|Y ] = σ2ε
(
1 + ‖w‖2

)
.

Thus, we have 26).

To show (28), note that

Biaspre,t(w, s) = ψt(Y1)− ψt(Y (w, s)).

Under Assumption 2(i), we may use the mean-value expansion to show that

ψt(Y1) = ψt(Y (w, s)) +∇ψ>
t (Y †1w)(Y1 − Y (w, s)),

where Y †1w is a mean value such that ‖Y †1w−Y (w, s)‖ ≤ ‖Y1−Y (w, s)‖. Given this result,

we may use the Cauchy-Schwarz inequality to further show that

|Biaspre,t(w, s)| ≤ ‖∇ψt(Y †1w)‖‖Y1 − Y (w, s)‖

≤ ξψ,1‖Y1 − Y (w, s)‖,
(A3)

where the last inequality is due to Assumption 2(i). Thus, we have (28).

2



To show (29), note that

Biasnl,t(w) = ψt(Y (w))−
∑
i≥2

wiψt(Yi). (A4)

Under Assumption 2(i), we may also use the mean-value expansion to show that

ψt(Y (w)) = ψt(Yi) +∇ψ>
t (Y †wi)(Y (w)− Yi),

where Y †wi is a mean value such that ‖Y †wi − Yi‖ ≤ ‖Y (w)− Yi‖. By the Cauchy-Schwarz

inequality, we may further show that

|ψt(Y (w))− ψt(Yi)| ≤ ‖∇ψt(Y †wi)‖‖Y (w)− Yi‖

≤ ξψ,1‖Y (w)− Yi‖.
(A5)

Given the decomposition:

Y (w)− Yi = (Y (w)− Y1) + (Y1 − Yi) , (A6)

we may use the triangle inequality to show that

‖Y (w)− Yi‖ ≤ ‖Y1 − Yi‖+ ‖Y1 − Y (w)‖

= ‖Y1 − Yi‖+Bp(w).
(A7)

By introducing (A7) in (A5), we have

|ψt(Y (w))− ψt(Yi)| ≤ ξψ,1 (‖Y1 − Yi‖+Bp(w)) . (A8)

By applying the triangle inequality to (17), we further obtain

|Biasnl,t| ≤ |1− ι>nw| |ψt(Y (w))|+
∑
i≥2
|wi||ψt(Y (w))− ψt(Yi)|

≤ ξψ,0Ba(w) +
∑
i≥2
|wi||ψt(Y (w))− ψt(Yi)|,

(A9)

where the last inequality is due to Assumption 2(i). By introducing (A8) in (A9), we have

(29).
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To show (30), note that

Biasms,t(w, s) = ψt(Y (w, s))− ψt(Y (w))− s ·mt(w, θ). (A10)

By applying the triangle inequality to (A10), we have

|Biasms,t(w, s)| ≤ |ψt(Y (w, s))− ψt(Y (w))|+ s · |mt(w, θ)|. (A11)

Under Assumption 2(i), we may use the mean-value expansion to show that

ψt(Y (w, s)) = ψt(Y (w)) +∇ψ>
t (Y †ws)(Y (w, s)− Y (w)),

= ψt(Y (w)) +∇ψ>
t (Y †ws)(s ·M(w, θ)),

where Y †ws is a mean value such that ‖Y †ws − Y (w)‖ ≤ ‖Y (w, s)− Y (w)‖, and the second

equality is due to (6). By the Cauchy-Schwarz inequality, we may further show that

|ψt(Y (w, s))− ψt(Y (w))| ≤ ‖∇ψt(Y †ws)‖‖s ·M(w, θ)‖

≤ s · ξψ,1‖M(w, θ)‖.
(A12)

According to (2) and (5), we can write that

M(w, θ) =
∑
i≥2

wimi·(θ). (A13)

By applying the triangle inequality to (A13), we have

‖M(w, θ)‖ ≤
∑
i≥2
|wi|‖mi·(θ)‖ ≤

∑
i≥2
|wi|ξ2m,0 = ξm,0‖w‖1, (A14)

where the second inequality is due to Assumption 2(ii). By introducing (A14) in (A12),

we have

|ψt(Y (w, s))− ψt(Y (w))| ≤ ξψ,1ξm,0s · ‖w‖1. (A15)

The triangle inequality also implies

|mt(w, θ)| ≤
∑
i≥2
|wi||µ1t(θ1)− µit(θi))| ≤ ξm,0‖w‖1. (A16)
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By introducing (A15) and (A16) in (A11), we obtain

|Biasms,t(w, s)| ≤ (1 + ξψ,1)ξm,0(s · ‖w‖1). (A17)

This shows (30).

In addition, given (13), we obtain (31) from (28) and (29).

To show (32), note that, according to (2),

mt(w, θ̂)−mt(w, θ) =
∑
i≥2

wi

(
∆µit(θ̂1, θ̂i)−∆µit(θ1, θi)

)
= w>(m·t(θ̂)−m·t(θ)).

Accordingly, we may use the Cauchy-Schwartz inequality to show that

(
mt(w, θ̂)−mt(w, θ)

)2
≤ ‖w‖2‖m·t(θ̂)−m·t(θ)‖2. (A18)

By the mean-value expansion, we have

m·t(θ̂) = m·t(θ) +∇θ>m·t(θ†)(θ̂ − θ),

where θ† is a mean value such that ‖θ† − θ‖ ≤ ‖θ̂ − θ‖. Thus,

‖m·t(θ̂)−m·t(θ)‖ = ‖∇θ>m·t(θ†)(θ̂ − θ)‖ ≤ ‖∇θ>m·t(θ†)‖‖θ̂ − θ‖

≤ ξm,1‖θ̂ − θ‖,
(A19)

where the first inequality is due to the Schwarz matrix inequality, and the second inequality

is due to Assumption 2(ii). From (A18) and (A19), we have

(
mt(w, θ̂)−mt(w, θ)

)2
≤ ξ2m,1‖w‖2‖θ̂ − θ‖2. (A20)

According to (A20) and Assumption 3(ii), we obtain

IE

[(
mt(w, θ̂)−mt(w, θ)

)2∣∣∣∣Y ] ≤ ξ2m,1σ2θ‖w‖2. (A21)

The result in (32) is due to (27) and (A21).

In addition, given (26) we may obtain (33) from (31) and (32). 2
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Derivation of (39)

To show (39), note that

B̂2
p(w, s) = ‖Y1 − Ŷ (w, s)‖2 = ‖Y1 − Ŷ

s
(−1)w‖2

= (Y >
1 − w>Ŷ

s>
(−1))(Y1 − Ŷ

s
(−1)w)

= Y >
1 Y1 − 2w>Ŷ

s>
(−1)Y1 + w>Ŷ

s>
(−1)Ŷ

s
(−1)w,

Bc(w) =

∑
i≥2

wi‖Y1 − Yi‖

2

= (D>
Y w)>(D>

Y w) = w>DYD
>
Y w,

and

B2
p(w) = Y >

1 Y1 − 2w>Y >
(−1)Y1 + w>Y >

(−1)Y (−1)w.

Accordingly, we can rewrite (37) as:

Q∗(w, s|κ) =
(
Y >
1 Y1 − 2w>Ŷ

s>
(−1)Y1 + w>Ŷ

s>
(−1)Ŷ

s
(−1)w

)
+ κ1 (w>DYD

>
Y w)

+ κ2w
>w + s · κ3

(
Y >
1 Y1 − 2w>Y >

(−1)Y1 + w>Y >
(−1)Y (−1)w

)
= (1 + s · κ3)Y >

1 Y1

+ w>
(
Ŷ
s>
(−1)Ŷ

s
(−1) + κ1DYD

>
Y + κ2In + s · κ3Y >

(−1)Y (−1)

)
w

− 2w>
(
Ŷ
s
(−1) + s · κ3Y (−1)

)>
Y1

= (1 + s · κ3)Y >
1 Y1 +

(
1

2
w>V w − v>w

)
,

(A22)

where V and v are, respectively, defined in (40) and (41). Since (1 + s · κ3)Y >
1 Y1 is free of

w, we obtain (39) from (38) and (A22). 2
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