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Abstract

We explore an upper bound of the mean squared prediction error (MSPE) of an ar-
bitrary synthetic control (SC) method in predicting the counterfactual of a treated unit.
This potential MSPE is essential for unifying and comparing a variety of SC methods.
It is established without assuming the true outcome model or imposing a combination
restriction on the SC unit, and allows for the use of auxiliary models to deal with the po-
tential imperfect matching between the treated unit and the SC unit. We further propose
a generalized SC method to regularize the squared-bias and variance components of the
potential MSPE. The regularized SC method encompasses several existing SC methods or
their variants, and generates useful complements to existing methods. We also show the

usefulness of our method by simulation and empirical illustration.
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1 Introduction

Policy evaluation involves estimating the effect of an intervention on certain outcome vari-
ables of the treated unit. Conceptually, the intervention effect may only be identified by
contrasting the post-intervention outcomes of the treated unit with their counterfactual
defined in the absence of intervention. By construction, the counterfactual is unobserved.
Conventionally, it is common to estimate the intervention effect by the method of com-
parative case study (CCS) that identifies the counterfactual as the outcomes of an ideal
controlled unit which is subjectively selected or determined by a natural experiment. It is
also popular to estimate the intervention effect using the difference-in-differences method
which requires the treated unit and the controlled unit to share parallel trends in the
absence of intervention. Recently, the synthetic control (SC) method has been regarded
as a promising alternative to these conventional methods, and has attracted a wide variety
of empirical applications and theoretical extensions; see, e.g., Athey and Imbens (2017),
Samartsidis et al. (2019) and Abadie (2021) for discussions.

The canonical SC method (CSC) was first introduced by Abadie and Gardeazabal (2003)
in a case study. It replaces the ideal control unit of CCS, which is often infeasible in prac-
tice, by a data-driven SC unit. The CSC unit is a convex combination of a donor pool of
untreated units that optimally matches the pre-intervention outcomes and features of the
treated unit. The convex combination restriction is considered for avoiding the extrapo-
lation and maintaining the sparsity (interpretability) of the composition of the CSC unit.
By assuming that the CSC unit perfectly matches the treated unit in their pre-intervention
outcomes and features, Abadie, Diamond and Hainmueller (2010, ADH) established the
unbiasedness (a bias bound) of the counterfactual predicted by the outcomes of the CSC
unit when the true outcome model is assumed to be an autoregressive model (a linear
latent factor model without the parallel-trend assumption).

Nonetheless, as discussed by ADH (2010), CSC may have an “interpolation bias” if
the counterfactual is a nonlinear function of the pre-intervention features. Moreover, the
perfect-matching assumption fails if the pre-intervention outcomes and features of the
treated unit are outside of the convex hull of their untreated counterparts. ADH (2010,
p.495) addressed that CSC is not recommended for use in the presence of this poor-
matching problem. Motivated by (one of) these two potential problems, several extensions
of CSC have been recently proposed. In particular, Abadie and L’'Hour (2019) proposed
the penalized SC method (PSC) which accounts for the potential interpolation bias of



CSC. Researchers have also extended CSC with, or without, using auxiliary models for
refining the poor-matching problem. Doudchenko and Imbens (2017) proposed a synthesis
of related methods that determines the combination weights of a SC unit by estimating
a penalized regression; see also Valero (2015) for the use of the Lasso regression. This
approach deals with the poor-matching problem by relaxing the convex combination re-
striction of CSC. It also considers the inclusion of intercept in the penalized regression; see,
e.g., Valero (2015), Doudchenko and Imbens (2017) and Ferman and Pinto (2019). This
demeaned design itself is also useful for refining the poor-matching problem if the problem
reflects the mean difference between the pre-intervention outcomes of the treated unit and
the SC unit. Chen (2020) also considered a model-based SC method (MSC) that explains
the poor-matching problem using a set of observed factors in the distributional context.
In the mean context, MSC reduces to a demeaned SC method (DSC) when the observed
factor degenerates to a constant. It is also related to, but different from, the augmented
SC method (ASC) of Ben-Michael et al. (2021) which deals with the poor-matching prob-
lem of CSC from the aspect of bias correction; see also Abadie and L’'Hour (2019), among
others, for related bias-correction methods.

In this paper, we explore an upper bound of the mean squared prediction errors (MSPE)
of the counterfactual predicted by an arbitrary SC method. This potential MSPE is es-
sential for unifying and comparing various SC methods. It is established in a generalized
context that does not assume the true outcome model or impose a combination restriction
on the SC unit, and allows for the use of auxiliary models to refine the potential poor-
matching problem. The potential MSPE is applicable to assessing the potential biases
of the counterfactual predicted by an arbitrary SC method and the potential variance of
the prediction errors. We also propose a generalized SC method to regularize the poten-
tial squared-bias and variance components of the potential MSPE. The regularized SC
method (RSC) unifies a number of existing SC methods or their variants, and generates
useful complements to existing methods. We also show the usefulness of the proposed
method by comparing RSC with existing SC methods via theoretical discussions, simula-
tion and empirical illustration.

The remainder of this paper is organized as follows. In Section 2, we define a generalized
context of SC, establish the potential MSPE of an arbitrary SC method, and introduce the
proposed RSC. In Section 3, we compare RSC with existing SC methods from theoretical
viewpoints. Section 4 includes the simulation. Section 5 contains the empirical illustration.

Section 6 concludes this paper. The mathematical proofs are collected in the Appendix.



2 The Proposed Method

Let {yi} be an outcome sequence of the ith unit at time ¢, for ¢ = 1,2,...,n + 1 and
t =1,2,...,T. Following Abadie and Gardeazabal (2003), ADH (2010, 2015), among
many others, we focus on the context of single treated unit. Among the n + 1 units, the
first unit (¢ = 1) is the treated unit that experienced an intervention (or said a treatment)
at Ty + 1 for some Ty < T, and the remaining (i > 2) constitutes a donor pool of n
untreated units that are not affected by the intervention. Let J; be the intervention effect
on the treated unit for ¢ > T+ 1, and y;,(0) be the counterfactual outcome of the treated
unit that would appear if the intervention was hypothetically absent for ¢ > T+ 1. Denote

the Ty x 1 vector of pre-intervention outcomes:

5/; = (yi17 o 7yiTo)T7

for 4 > 1. A basic setting of the SC method is to extract {5t}tT:TO+1 from {ylt}tT:TO+1 by
first matching Y7 using a linear combination of the Y;’s of the n untreated units and then
predicting {y1:(0) }%F:TO 41 using the same combination of the post-intervention outcomes
{yit}?:TOH’s of the n untreated units.

This setting is popular in the recent SC literature; see, e.g., Doudchenko and Im-
bens (2017), Ferman and Pinto (2019) and Ben-Michael et al. (2021). As suggested by
Doudchenko and Imbens (2017, p.20), it might be extended to include another vector of
pre-intervention covariates, denoted as z;, by replacing Y; with the residual of the regres-
sion: Y; on z; in the setting; see also Abadie (2021, p.419) and Ben-Michael et al. (2021)
for related discussions. In the following, we adopt this setting and consider a generalized

framework to define the matching and prediction problems of the SC method.

2.1 A generalized framework of SC

Let M(0) be an “auxiliary model” which is considered for explaining the cross-sectional dif-
ferences among the y;+’s in the absence of intervention using a set of observable covariates,
11i¢(0;) be a submodel of M () with the dependent variable y;;, and 8 := (67,65, ..., é;H)T
be an estimator of the parameter vector 6 := (6{,6;,...,6,,,)" generated from the pre-

intervention outcomes of the n + 1 units:

Y = (Yl, YQ, oo 7Yn+1)



and possibly other pre-intervention covariates. Importantly, we do not assume M(6) to
be the true model of the y;’s in the absence of intervention. The auxiliary role of M(0)
for the SC method will be explained later. Let w := (wa, ..., wy4+1)" be a n-dimensional

weighting vector in R™. We denote A (01, 6;) := p1(01) — wie(0;),

yt(w) = sz’yz‘t, (1)

i>2
mt(w,H) = ZwiAuit(Hl,Qi) (2)
i>2
and
ye(w, s) := y(w) + s - my(w, ), (3)
for t =1,2,...,T, where “}_,.," represents “Z?j;,” and s is a selection variable which

equals one if M (@) is used (otherwise, zero), and define the following Ty x 1 vectors:

Y(w) = (y1(w), y2(w), ..., yn, (w)) ", (4)
M(w,0) = (mi(w,0),mz(w,0), ..., mg(w,0)" (5)

and
Y(w,s) =Y (w)+s-M(w,0). (6)

In this framework, an arbitrary SC method matches the treated unit’s pre-intervention

outcome vector Y] using

~ ~

Y(w,s) =Y (w)+s - M(w,0), (7)
and predicts the counterfactual y14(0) using

Jr(w, s) := ye(w) + s - my(w, 0) (8)
and estimates the intervention effect J; by
St =Yt — gt(wv 5)7 (9)

for t > Ty + 1, by the choice of (w, s) and the design of M(0) if s = 1. In the case where
s = 0, the restrictions: Y (w,s) = Y (w,s) = Y(w) and §¢(w,s) = ys(w,s) = y:(w) are
satisfied, and the SC method chooses a particular w to match Y7 by Y (w) and to predict



y1¢(0) by y:(w) without using M (#). In the case where s = 1, M(0) is an auxiliary model
which is introduced to refine the poor-matching problem that arises when Y; — Y (w) # 0.
The refinement is based on interpreting ¥; — Y (w) using M (w,0). We consider this
generalized framework because it is flexible enough to encompass a wide variety of SC

methods, as will be discussed in Section 3.

2.2 Potential MSPE

Since an arbitrary SC method estimates the intervention effect by predicting the counter-
factual, it is undoubtedly essential to explore the potential properties of the prediction.

Denote the unit simplex:
W := {w|w € [0,1]" and ¢, w = 1}, (10)

where ¢, := (1,...,1)" denotes a n x 1 vector of one. ADH (2010) established a bias
bound of the prediction generated by CSC, which sets s = 0 and requires w to satisfy the
convex-combination restriction: w € W, by assuming that the true model (of the y;;’s) is

a linear factor model and that the perfect-matching condition:
Yi=Y(w) (11)

holds for some w € W; see Botosaru and Ferman (2019) for related discussions. Several
studies also explored the bias bounds or the prediction errors of their SC methods by
assuming that the true model is a linear model or a linear factor model; see, e.g., Amjad
et al. (2018) that relaxes the restriction: w € W and Ferman and Pinto (2019) and Ben-
Michael et al. (2021) that further relax the perfect-matching condition. In the following,
we explore a potential MSPE of an arbitrary SC method that predicts y1+(0) by g:(w,s)
without assuming the true model or the perfect-matching condition and without requiring
a combination restriction.

Let 14(Y;) := E[y;|Y;] be the unknown conditional mean function of y;; given Y;, and
D1; be a binary intervention variable for the treated unit (: = 1) with the two potential
outcomes: Di; = 0 (untreated) and Dy = 1 (treated) for ¢ > Ty + 1. Denote D;; := 0 for
t<Tpifi=1and for all t’sif i > 2, a Ty x 1 vector:

mi.(0) == (Apir(01,0:), . .., Apiry (01,60:)) "



and a n x 1 vector:

mt(e) = (AMZt(Hla 02)7 s 7A/“L?’L+1,t(91a 07%1»1))T
We make the following assumptions:

Assumption 1 Fort > 1Ty + 1 and for all i’s,

(1) yit = V1(Yi) + 0:Djt + €i¢, where €4 is a zero-mean error;
(i1) B[ (Yi)|Yi, Dii] = ¢ (Y3);

(111) E[e|Yi, D1t] = 0.

Assumption 2 Fort > Ty + 1 and fori > 2,

(i) [t ()| < &po and [V ()| < &y1, for some finite Ey o and &y 1;
(11) [|m;. (0)|| < &mo and [|[Vormi()|| < &m,a, for some finite &y o and &1, if s = 1.

Assumption 3 Fort > Ty + 1 and for all i’s,
(i) E[eit]Y] =0, E[e2|Y] = 02 < 0o and Elejejt|Y] =0, for j # i;
(ii) Elmy(w,0) — my(w,0)|Y] = 0 and 03 = E[||6 — 0]]2]Y] < oo, if s = 1.

Assumption 1 (i) requires Y; to be informative for predicting y;; in a reduced form. It also
requires the treated and untreated units to be comparable in the sense that they share
the same conditional mean function v(-) in the absence of intervention. This condition
is often presented in a stricter form in related studies. As mentioned, ADH (2010) as-
sumes the true model to be a linear factor model; see also Gobillon and Magnac (2016),
Xu (2017) and Ben-Michael et al. (2021), among others, for the use of factor models.
For the treated unit (i = 1), Assumption [Ifii) implies “no anticipation effect” of the in-
tervention, and Assumption [If(iii) is an unconfoundedness condition. For the untreated
units (i > 2), Assumption [Ifii) and (iii) imply “no interference effect” of the interven-
tion. Such an assumption is standard in the SC literature; see ADH (2010, p.494) for
related discussions. It is essential for interpreting é; as the average treatment effect on
the treated. It is also important for the contextual evaluation of the SC method discussed
by Abadie (2021, Section 5). Assumption [2| requires ¢;(-) and M () to be bounded and
differentiable. This condition is weak but essential for establishing the potential MSPE of
the prediction of counterfactual generated by an arbitrary SC method. Assumption 3] is
considered for simplicity. It requires the reduced-form error €;; to be unpredictable by Y.

It also requires that, given Y, € is conditionally homoskedastic and uncorrelated to €jy;



moreover, m;(w, ) is unbiased for m;(w,d) with a finite o3 if s = 1. Note that o7 is a
measure for the estimation uncertainty of , and reduces to || — 6]|? if 0 is fully generated
from Y.

In the Appendix, we show the following decomposition:

Lemma 1 Given Assumption (1], fort > Ty + 1,

y1¢(0) — Je(w, s) = Biasi(w, s) + us(w, s), (12)

where

Biasi(w, s) := (Y1) — Zwiwt(Yi) —s-my(w, )

i>2

= (VM) = (Y (w,9)) + | (Y (w) =D wiye(Y7)
i>2 (13)

Biaspre,t(w,s): pre-intervention bias

Biasnl’t(w): nonlinearity bias

+ (e (Y (w, 5)) = ¢ (Y(w)) — s - my(w,0))

Biasms,t(w,s): model specification bias

and
u(w, s) == (1 — e(w)) —s- (mt(w, é) — my(w, (9)), (14)
N——_— ——

et (w) intrinsic error

estimation uncertainty
with e (w) 1= 3 ;50 wiit.

This shows that an arbitrary SC method that predicts y1,(0) using ;(w, s) is potentially

biased because of the possible presence of the *

‘pre-intervention bias” Biasyre (w, s), the
“nonlinearity bias” Bias,; +(w) and the “model specification bias” Biasms:(w, s) that are
defined in . Note that the pre-intervention bias and the nonlinearity bias correspond to
the “extrapolation bias” and the “interpolation bias” considered by Kellogg et al. (2020),
respectively, if s = 0 and w € W. In the following, we further interpret these potential
bias components.

We interpret Biaspye(w, s) as the pre-intervention bias because it is zero if the pre-

intervention outcomes satisfy a weak form of the perfect-matching condition:

Y1 =Y (w,s); (15)



otherwise, it is in general non-zero. Note that reduces to the perfect-matching condi-
tion if s = 0. As mentioned, a SC method with s = 0 has the poor-matching problem
if is not satisfied, and a SC method with s = 1 defends against this type of bias by
interpreting Y; — Y (w) using M (w, 6).

We interpret Bias,; +(w) as the nonlinearity bias because it is zero when 1 (-) is linear

in the sense that
Ui(Y) = are + Y By, (16)

where Y is an arbitrary Ty x 1 vector, and aq; and B¢ are, respectively, a scalar and a
Ty x 1 vector of unknowns that could be time-varying, if the convex-combination restriction:

w € W and condition ([L1f) are satisfied. To see this point, note that

Biasn(w) = (1 — tyw) (Y (w)) + Y wi (¥e(Y (w)) — ve(Y7)) . (17)

i>2

If w e W, we can simplify as:

Biasy +(w sz V(Y1) — (V7)) - (18)

i>2

If w € W and that the linearity in is satisfied, we can further simplify as:

Biasn(w) =Y wi (Y; By — Y fue) = (Y1 = Y (w)) " Bu, (19)

1>2
which is zero under condition . In comparison, Biasy; +(w) is in general non-zero when
¥¢(+) is nonlinear even if condition holds for some w € W. This is consistent with the
interpolation bias discussed by ADH (2010) and Kellogg et al. (2020).

We interpret Biasy,s:(w,s) as the model specification bias because it is zero when

s = 0; that is, when the SC method does not involve the use of M(#). Note that, under
the linearity in ,
Biasmsi(w,s) =Y (w,s)" B — Y (w) B — s - my(w, )
=s-(M(w,0)" B — my(w,0)).
Thus, Biasms(w,1) reduces to zero if the linearity also holds for M (w, @) in predicting

my(w, 6); otherwise, it is in general non-zero.

In addition to these potential bias components, the decomposition in also includes



the composite error: u;(w, s) shown in ([I4)), which comprises the intrinsic error e;(w) and
the measure of estimation uncertainty 03 if s = 1. Importantly, this means that the choice
of (w, s) might influence the theoretical properties of the counterfactual predicted by the
SC method through the potential biases and the variance of prediction errors. To make

this point clear, we need to further explore the conditional MSPE:
MSPE(w,s) = E | (11:(0) - u(w, )| Y], (20)

which summarizes the potential biases and variance generated by predicting y1;(0) using
t(w, s) for t > Ty + 1.

Let || - |1 be the L; norm of a vector, and || - || be the Ly norm of a vector or the
Frobenius norm of a matrix. In particular, [[wl|y := 37,5, [wi] and [Jw|| := /375, w?. We

define the following divergence measures:

By(w) := [[Y1 = Y (w)], (21)
Bp(w,s) :=[[Y1 =Y (w, s)|, (22)
Be(w) =Y |wi||[Y1 - Y| (23)
i>2
and
Bo(w) :== 1 — ¢,w]|. (24)

Note that B, (w) measures the divergence of the perfect-matching condition , By(w, s)
measures the divergence of a weak form of the perfect-matching condition defined in ,

B.(w) measures the divergence of the “perfect-control condition:”
Yi=Y, ifw #0, (25)
and B,(w) measures the divergence of the aggregation restriction: w € A, where
A= {wjw e R" and ¢ ,w =1}.

Also, note that By(w, s) = By(w) holds if s = 0. Moreover, condition is stricter than
condition , and the restriction: w € A is weaker than the restriction: w € W.
In the Appendix, we show the following result:



Proposition 1 Given Assumptions fort>1Ty+1,

MSPE;(w,s) = Biasi(w, s) + o (w, s), (26)
of(w,s) = o2 (L+ wl?®) + 5 - E[(me(w, 8) — my(w,0))*|Y], (27)
|Biaspre,i(w, s)| < Biaspre(w, s) := &y.1Bp(w, s), (28)
| Biasn4(w)| < Biasn(w) := &y0Ba(w) + &pa ([wli Bp(w) + Be(w)), (29)
|Biasms t(w, s)| < Biasms(w, s) := (1 + &p1)émo(s - |wl1), (30)
| Biasi(w, s)| < Bias(w, s) := &1 (By(w, ) + [[w]1Bp(w) + Be(w)) + &y,0Ba(w) (31)

+ (14 &p1)8mo (s - [Jwll1),
oi(w,s) < 5%(w,s) = 02 + (02 + 5 - &, 108) [w]® (32)

and

MSPE,(w,s) < MSPE(w, s) := Bias (w, s) + 52(w, 5). (33)

This shows that, given Y, the MSPE is composed of the squared bias of §;(w, s) and the
variance of the prediction error: o7 (w, s), which is the same as o2(1+||w||?) if s = 0 and in-
fluenced by the estimation uncertainty of 0 if s = 1. It also shows that the pre-intervention
bias, the nonlinearity bias, the model specification bias, the potential bias and the vari-
ance of prediction errors are, respectively, bounded above by Biasye(w,s), Biasy(w),
Biasms(w, s), Bias(w,s) and 6%(w,s). If w € W, Biaspe(w, s) reduces to & 1 Bp(w) if
s = 0, and Biasy(w) degenerates to &,1B.(w) if By(w) = 0, where By,(w) and B.(w)
correspond to the “interpolation measure” and the “extrapolation measure” considered by
Kellogg et al. (2020), respectively. In addition, the bias of §;(w, s), the variance o?(w, s)
and the MSPE are, respectively, bounded above by Bias(w, s), 32(w, s) and MSPE(w, s).
These bounds all hold for ¢t > Ty + 1. Given the unknown &y ¢ and &, 1 (and the model-
specific &, 0 and &, 1 if s = 1), the bounds are determined by the choice of (w, s).

Before further discussions, it should be noted that the decomposition presented in

Lemma [1| is by no means unique and that the upper bounds presented in Proposition

10



are not ensured to be the least upper bounds that are difficult to establish in our context.
Nonetheless, the decomposition and these bounds have important implications on the SC
method. In particular, M SPFE(w, s) constitutes a potential (conservative) MSPE of an
arbitrary SC method that predicts the counterfactual y1,(0) using §:(w, s) for t > Ty + 1.
This allows us to contrast the potential differences among different SC methods in a unified
framework. In addition, as shown by , and , MSPE(w, s) is governed by the
“matching-quality” divergences: B3(w,s), ||w||iB2(w) and BZ(w) and the combination
measures: B2(w), s - |lw||? and ||w||? that may be regularized by the choice of (w,s).
This illustrates that the prediction problem is inseparable from the matching problem for
the SC method through the choice of (w,s), and motivates us to propose a generalized
SC method, that is RSC, by regularizing the squared bias and variance components of
MSPE(w, s) via the choice of (w,s). As will be shown in Section 3, several existing SC
methods, or their variants, amount to choosing (w, s) by minimizing a certain combination

of the components of M SPFE(w, s), and hence an encompassed by RSC.

2.3 The regularized SC method

To introduce RSC, note that B,(w,s) is dependent on the unknown parameter 6 in the

case where s = 1. In this case, we estimate Bj,(w, s) using its f-based counterpart:

By(w,s) = ||Y1 =Y (w,s)]|.

Note that the restriction: By(w,s) = Bpy(w,s) = B,(w) holds if s = 0. Since MSPE(w, 5)
is governed by the matching-quality divergences and the combination measures, it is sen-

sible to choose (w, s) by minimizing a multiple-objective function:

Q(w, slr) == By(w, s) + ri|w|[i By (w) + r2 B2 (w) + 3B (w) + ra(s - |[wl[F) + rs[w]|*, (34)

where r := (r1,72,7r3,74,75) > 0 denotes a vector of regularization parameters that controls
how the divergence measures are regularized. However, this minimization problem is
complicated because Q(w, s|r) is highly nonlinear in terms of w given a specific (s, r).

To simplify this minimization problem as a quadratic programming problem, we adopt

a sign-and-size restriction of w: w € S(7), where

S(7) := {wjw € R} and ,w < 7, for some 7 >1}. (35)

11



This restriction implies [|w[|?B3(w) < 72Bj(w) and s - lw|[f < s-72 because ||w; = 1w
when w € R It also implies B2(w) < b,, where b, := max(1, (1 — 7)?), because 1 — 7 <
I—t,w < 1whenw € R} and ¢, w < 7. Accordingly, we may use the restriction: w € S(r)

to establish an upper bound of Q(w, s|r):

Q(w, s|r,1) == B2(w,s) + rim>Ba(w) + raB2(w) + r3bs + r4(s - 72) + 75/|w]|?,

_ Eg(w, 1) 4+ 1172 B2(w) 4 reB2(w) + r5||w]|* 4+ rabr + 1472, if s =1, (36)
(1—}—1"17'2)312)(10) + 1o B2 (w) + 75||wl|? + r3b,, it s =0.

Note that Q(w, s|7,r) considerably simplifies Q(w, s|r). It only involves the matching-
quality divergences: Bg(w,s), B2(w) and s - Bi(w) and the squared Ly norm: ||w]|?.
Moreover, because Be(w) = 3,5, w;l|Y1 — ;|| holds under the sign restriction: w € R,
we may further present the minimization of Q(w, s|7,7) with respect to w as a quadratic
programming problem for a fixed (s, ,7).

To see this point, note that by rescaling the coefficients and removing the constants
of Q(w,s|r,r), we transform the minimization of Q(w,s|r,r) with respect to w to the

minimization of the following function with respect to w:
Q*(wls, k) = Bg(w, s) + k1 B2 (w) + ra||w|)® + s - mng(w) (37)

under the constraint: w € S(7), for a fixed (s, k), where k is a regularization-parameter
vector such that k = (k1,k2) > 0, if s =0, or kK = (K1, k2, k3) > 0, if s = 1. Accordingly,

we propose a generalized SC method, that is RSC, that chooses the following w:

wrsc(37 T, Kv) := argmin Q* (w|57 H)v (38)
weS(T)

for a fixed (s,7,k). In the Appendix, we show that w,s.(s,7, k) is the solution to a

quadratic programming problem:

1
Wyse(8, T, k) = argmin <wTVw - ’UT’UJ> , (39)
weS(T)
where
V=2 (Yfil)iff_l) + k1 Dy DY + kol + 5 - ng{_l)Y(_1)> (40)

12



and
s T
vi=2 (Y(,l) +s- I£3Y(,1)> Y1 (41)

are defined by the following Ty x n matrices:
Y(—l) = (}/27 B YTL+1)7

M () (0) :== (Ms(D), ..., Mny1(6))

and
Yy =Y +s My @)

and the n x 1 vector:
Dy = ([|Y1 = Ya|,..., [[Y1 = Yoy -

In applications, we solve wys.($, T, k) using the R package “quadprog” for a fixed (s, 7, k).

3 Comparison with Existing SC Methods

In this section, we illustrate that several existing SC methods, or their variants, could be
interpreted as particular RSCs with different settings of (s, 7, k), and the proposed method

generates useful complements to existing SC methods.

3.1 Convex combination

We first consider the case where s = 0 and 7 = 1. In this case, w,s.(s, T, k) degenerates to

Wrse(0, 1, K1, K2) = argmin Bﬁ(w) + k1 B2 (w) + Kz |lw||?. (42)
weS(1)

In comparison, CSC chooses the following w:

Wese := argmin || Y] — Y (w)]|% (43)
weW

Note that CSC is fundamentally essential for the whole SC literature. It generalizes CCS by
replacing a restrictive assumption that the perfect-control condition holds for a single
control unit with a weaker assumption that the perfect-matching condition in holds
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for w = wese; that is, By(wese) = 0. Importantly, because By(w) = ||Y1 — Y (w)]||, as shown

in , and W C S(1), RSC includes CSC as a special case where w = w;s.(0,1,0,0).
Under the perfect-matching condition: Bp(wese) = 0, ADH (2010) established a bias

bound of CSC by assuming the true model to be a linear factor model. Indeed, Proposi-

tion [I] implies that an arbitrary SC method with s = 0 and w € W has the bias bound:
Bias(w,0) = &y 1 (2Bp(w) + Be(w)) (44)

see . This illustrates that the perfect-matching condition is insufficient for ensuring
the unbiasedness of CSC if ¢(-) is unknown, unless B.(w¢s.) = 0. Since the nonlinearity

bias of an arbitrary SC method with s = 0 and w € W is bounded above by
Biasp(w) = &1 (Bp(w) + Be(w)), (45)

as implied by , this result is consistent with the statement of ADH (2010) that CSC
may have an interpolation bias if the counterfactual is a nonlinear function of the pre-
intervention features. Therefore, it is theoretically important to regularize not only the
pre-intervention bias but also the nonlinearity bias, which might appear if B.(wcs.) > 0, by
choosing w. This notion is an essential motivation of PSC which is originally established
in the context of multiple treated units.
In the context of single treated unit, PSC sets s = 0 and w € W, and chooses the
following w:
Wpee = argmin [[Yi = Y (w)|[* + XY wi|| Vi - Yi]?, (46)
weW i>2
where A > 0 is a regularization parameter. This method includes CSC (a nearest-neighbor
matching estimator) as a special case where A\ = 0 (A — o), and regularizes not only
the pre-intervention bias measured by Bz (w) but also the interpolation bias measured by
Y iso will Y1 — Y;||? if A > 0. This design is consistent with the suggestion of ADH (2010,
2015) about reducing the interpolation bias by matching the treated unit and the untreated
units in a pairwise way; see also Kellogg et al. (2020) for a related model-average estimator.

Importantly, (42) reduces to

Wyrse(0, 1, k1,0) = argmin Bz(w) + k1 B2 (w) (47)
weS(1)

if k9 = 0. By comparing with , we observe that the RSC with w = wys.(0, 1, k1, 0)
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amounts to a variant of PSC because B2(w) is quite similar to Y iso willY1 — Y;|? in
measuring the pairwise-matching divergence.
Moreover, as implied by and , an arbitrary SC method with s =0 and w € W

has the variance of prediction errors: ¢Z(w,0), which is bounded above by
o*(w,0) = o2(1 + [|w]]*). (48)

By comparing with , we observe that the RSC with w = wys.(0, 1, k1, k2) regular-
izes not only the squared-bias measures: B>(w) and BZ(w) but also the squared Ly-norm
of w: ||w||? in order to control for #2(w, 0). This is an essential feature of this particular
RSC that is not shared by CSC and PSC.

In addition to the potential nonlinearity (interpolation) bias, CSC encounters the poor-
matching problem if By,(wese) > 0. This problem is not uncommon in practice. It appears
when Y} is outside of the convex hull of Y'(_yy := (Y2,...,Y,41). Intuitively, this problem
is closely related to the fact that CSC is constrained by the setting: s =0 and w € W. In
comparison, RSC allows us to deal with this problem by relaxing the convex-combination

restriction: w € W, by setting s = 1 with a suitable design of M(#), or by both.

3.2 Relaxation of convex combination

In the case where s = 0 and 7 > 1, wys(s, 7, k) reduces to

Wyse(0, T, K1, K2) = argmin Bz(w) + k1 B2 (w) + ko |lw|?. (49)
weS(T)

Note that includes

Wyse(0,7,0,0) = argmin Bg(w) (50)
weS(T)
as a special case where k1 = k3 = 0. The RSC with w = ws(0,7,0,0) generalizes

CSC by relaxing the convex-combination restriction: w € W. Conceptually, this is useful
for remedying the poor-matching problem of CSC because the relationship: W C S (1)
implies Bg(wrsc(O,T,O,O)) < Bf,(wcsc) when 7 > 1. It is essential to observe that the

choice of w = wys:(0,7,0,0) might be interpreted as a non-negative Lasso estimator for
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the coefficient vector of the regression: Y3 on Y (_y:

Wigsso(+) = aigelﬂlén Y1 — Y (w)]|* + AJwl|1, (51)
where A > 0 is a penalization parameter that corresponds to 7. The choice of w =
wrse(0,7,0, k2) further extends the former by accounting for the regularization of ||w/|?.
This interpretation illustrates that the RSC with w = w;s.(0, 7,0, k2) is a variant of the
penalized-regression approach considered by the SC literature.

Specifically, Valero (2015) proposed replacing wes. by estimating w using the Lasso
regression. Doudchenko and Imbens (2017) proposed estimating w using the elastic-net
regression, which encompasses the Lasso regression and the ridge regression that penalize
|wl|l; and ||w||?, respectively. See also Amjad et al. (2018), Li (2020), Hollingsworth and
Wing (2020), Ben-Michael et al. (2021) and Chernozhukov et al. (2021), among others,
for related studies. The penalized-regression approach is in between CSC and the least
squares (LS) method that minimizes B2(w) without imposing any restriction on w, but
the LS method is infeasible if Ty < n. In comparison, the RSC with w = w;s.(0, 7,0, k2)
relaxes the size restriction: 7 = 1 but maintains the sign restriction: w € R’} for the
reasons explained in Section 2.3.

Importantly, by Proposition[I} we also observe that refining the poor-matching problem
by relaxing the restriction: w € W is not without costs. As implied by , an arbitrary
SC method that sets s = 0 but relaxes the restriction: w € W has the bias bound:

Bias(w,0) = &1 (1 + [lwl[1) By(w) + Be(w)) + &p,0Ba(w) (52)

and the variance bound &2(w, 0) shown in . The bias bound in tends to be larger
than that in because it includes two additional components: & 1|jwl|/1Bp(w) and
£y.0Ba(w). Meanwhile, B.(w) and %(w,0) might also increase because |w(; and ||w]|?
tend to increase after the relaxation. In comparison, the RSC with w = w;s.(0, 7, K1, K2)
accounts for the potential costs of relaxing the size restriction: 7 = 1 by regularizing not
only Bg(w) but also B2(w) and |wl|?.
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3.3 Model and bias correction

In the case where s = 1 and 7 = 1, wys.(s, 7, k) degenerates to

Wrse(1,1, K1, Ko, K3) = argminég(w, 1) + k1 B?(w) + roljw||® + mng(w), (53)
weS(1)

which includes

wrse(1,1,0,0,0) = argmin Bz(w, 1) (54)
wes(1)
as a special case where k1 = ko = k3 = 0. The particular RSC with w = w;4(1,1,0,0,0)
generalizes CSC by substituting condition for condition and using M () to refine
the potential poor-matching problem. This RSC includes MSC as a special case.
Specifically, MSC is established by extending ADH’s (2010) linear factor model using
a vector of observed factors, denoted as x; here, to control for the poor-matching problem

of CSC. Denote the pre-intervention LS estimator:

i i
0; = [Z ﬂftl“;] [Z $tyit] ;
=1 =1

and the residual for all (i,¢)’s:

Jit = yir — ] 0;.
Note that g;; is conceptually different from the residual of the regression: Y; on z; men-
tioned in Section 2 because, unlike x;, z; is considered for predicting y;; for ¢ > Ty + 1
rather than for explaining Y1 — Y (w). Denote X := (z{,...,zp)", Y; = (Fits -, Uimy) "
and Y (w) = ;5o w;Y;. MSC chooses the following w:

Winse = argmin ||Y; — Y (w)]|%. (55)
weW

Since

Vi V() = (Yi - X00) = Y wi (Vi - X0:)

122

=Y — Y(w) - sz(Xél —Xéi)a

122
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the objective function in is the same as Bg(w, 1) = HY1 —Y(w) — M(w,é)”2 with
M (w,0) = > is2 wi(X0, — X0;). Thus, the RSC with w = wy(1,1,0,0,0) includes MSC
as a special case where p;(0;) = x;6;. Note that MSC further reduces to the DSC of
Ferman and Pinto (2019, Equation 7) when z; = 1 and 6; = ;. It also corresponds to
the DSC of Doudchenko and Imbens (2017), which chooses w = wey(q) as a part of the
minimizer:

(wcsc(d)7 OA‘) := argmin HYl - Y(w) — LTy H2 ) (56)
weW

with & denoting an estimator for the intercept «; see also Valero (2015). The objective
function in is the same as Bg(w, 1) when p(0;) = p; with p; := Ely;]. This illustrates
that DSC is useful for refining the poor-matching problem of CSC if the pre-intervention
bias is due to the mean difference between Y; and Y (w).

According to and (), an arbitrary SC method with s = 1 generates the following

prediction of counterfactual:

Je(w, 1) = ye(w) + | pue(6r) =D wipnar(6i) | - (57)
i>2
By introducing the choice of w = wege in , we obtain that

yt(wcsca 1) = yt(wcsc) + Mlt(él) - chsc,iﬂit(éi) s (58)
i>2

bias-correction term

where wese; is an element of wes.. Importantly, although the predictions: g;(w,1), with
w = wyse(1,1,0,0,0), and g (wese, 1) both set s = 1, they are generated from different
choices of w; see also Chen (2020, p.511). In particular, g;(wesc, 1) amounts to a bias
correction of y;(wese) for the poor-matching problem of CSC. In comparison, ASC is
motivated by (58), and interprets ju;(6;) as a linear model of 1;(Y;); see Ben-Michael
et al. (2021, Equations 9 and 10). See also Abadie and L’'Hour (2019, Equation 9) for
a similar bias correction of PSC and Chernozhukov et al. (2019) and Arkhangelsky et
al.(2021) for related bias-reduction methods. Specifically, ASC assumes that ¢;(Y;) is a
time-invariant linear function of Y;, and estimates the coefficients using a ridge regression.
Ben-Michael et al. (2021, Equation 18) showed that, by this assumption and relaxing the

sign restriction: w € R'}, this ASC amounts to a SC method that sets s = 0 and chooses
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the following w:

1 1
Wase = argmin o[ Vi = ¥ (w)||* + S [lw — wesc||*, (59)
wEA 22 2
where ||w — wesc||? is interpreted as the “level of extrapolation,” and the regularization
parameter A > 0 controls for the deviation of w from wese.
As implied by and , an arbitrary SC method with s = 1 has the bias bound:

%(w7 1) = fw,l (Bp(w’ 1) + Bp(w) + Bc(w)) + (1 + fw,l)fm,o (60)

and the variance bound:
5% (w,1) = 02 + (02 + & 107) lw]|?, (61)

respectively. By comparing with and comparing with , we may observe
that sets s = 1 and uses M(#) to refine the pre-intervention bias of CSC is at the cost
of generating an additional bias component (1 + &y 1)&m,0 and an additional variance
component 5,2njlcr§||w||2. The result in also reminds us that the “bias-corrected”
prediction in is not necessarily unbiased. Compared to the aforementioned model-
based methods, the RSC with w = wysc(1, 1, k1, k2, k3) regularizes not only Eg(w, 1) and
|w]]? but also B2(w).

In addition, RSC is also applicable to the case where s = 1 and 7 > 1. In this
case, RSC refines the poor-matching problem by relaxing the convex-combination restric-
tion and using the auxiliary model M () simultaneously. In particular, the RSC with
w = wrse(1,7,0,0,0) extends the non-negative Lasso estimator or MSC by choosing the

following w:

Wiasso(+) *= arglﬂgin Vi =Y (w)|* + Mw]s, (62)
weRY

where A > 0 corresponds to 7. In the case where u;s = p;, this particular RSC corresponds
to a modified SC method considered by Li (2020, Equation 4).

3.4 Selection of regularization parameters

Like the penalized regressions, PSC, ASC and RSC all involve certain regularization pa-

rameters to be selected in their general forms. In the literature, it is common to select
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the regularization parameter(s) of a SC method by minimizing a validation criterion. For
the RSC method, we let V (s, 7, k) be such a validation criterion which is dependent on
the choice of (s,7,k). Following Abadie and L’Hour (2019), we set V (s, T, k) to be the
empirical MSPE of the RSC method in a validation period before the intervention; see
also ADH (2015), Amjad et al.(2018, p.10) and Abadie (2021, p.397) for this setting.
Specifically, we split the pre-intervention period into the training period: ¢t € [1, R] and
the validation period: ¢ € [R 4+ 1,Tp]. In addition, we let Y r be the first R x (n + 1)
submatrix of Y that comprises the pre-intervention outcomes in the training period, and
Or and WRrsc(S, T, k) be, respectively, the counterparts of § and Wyse(S, T, k) obtained by

replacing Y g with Y. Accordingly, we set V (s, 7, k) to be the empirical MSPE:

To
1 N 2
V(SvTv ’i) - TO —R+1 t_zR;H (ylt - yt(wv 3)) ) (63)

with g¢(w,s) = ye(w) + s - me(w, ) and w = wrse(s, 7, 5), and select (s, 7, k) as the
following minimizer:

(s*, 7", k") = argmin V (s, 7, k). (64)

5T H
For particular RSC methods, PSC and ASC, we also select the regularization parameters
by minimizing the associated empirical MSPEs in a similar way. In applications, we set R
to be the integer part of %To for simplicity. Theoretically, one might also replace the afore-
mentioned validation criterion by a cross-validation criterion. However, the computational

cost of cross validation could be prohibitive for the most general form of RSC.

4 Monte Carlo Simulation

In this simulation, we consider the following data generating processes (DGP):
Yir = hit + N fi + 0Dyt + €it,

where hiy = a+bt, hjy =0 for i > 2, \; = ()\11‘, /\Qi)T, fr = (1,t)T, 0 =0ift <Tp, o¢ =t
if t > Tp+ 1, and A\j; ~ N(0,1) Ay ~ U(0,0.2) and ;s ~ N(0,02) are independently
and identically distributed random variables, and generate y;; from the transformation:

’1.5

yie =y, if e =1, and vy = |yj;|" if ¢ = 2. To generate different types of data, we consider

the following settings of (a, b, ¢, o?):
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e DGP1: (a,b,c,0?) = (0,0,1,1);
e DGP2: (a,b,c,0?) = (5,0,1,1);
e DGP3: (a,b,c,0?) = (5,0.2,1,1).

Note that the designed context of CSC holds under DGP1, but fails under DGP2 (DGP3)
because of the poor-matching problem caused by the mean (-and-trend) difference between
the treated unit and the untreated units. We also let DGP4-6 be the nonlinear counterparts
of DGP1-3, respectively, that are defined by replacing ¢ = 1 with ¢ = 2, and DGP7-12
be the counterparts of DGP1-6, respectively, that are defined by replacing o2 = 1 with
o =2.

In addition, we consider the existing SC methods: CSC, DSC, MSC, ASC and PSC
and the following RSCs:

e RSCy: w = wypse(s, T, K1, k2) = wrse(0,1,0,0),

e RSCe: w = wyse(s, T, K1, k2) = Wrse(0, 1, k1,0),

¢ RSCy: w = wyse(s, T, K1, K2) = Wrse(0, 1,0, Ka),

o RSCy: w = wyse(s, T, K1, k2) = Wrse(0, T, K1, K2),

e RSC,(D): w = wyge(S, T, K1, K2, K3) = Wrse(1,1,0,0,0),

e RSC.(D): w = wyse(s, T, K1, k2, k3) = wrse(1, 1, K£1,0,0),

¢ RSCy(D): w = wrse(s, T, K1, Ka, K3) = wrse(1, 1,0, ko, 0),

e RSCy(D): w = Wrse(S, T, K1, K2, k3) = Wrse(1, T, K1, K2, K3),
e RSC,H(M): w = wysc(s,T, K1, K2, kK3) = wrse(1,1,0,0,0),

e RSC.(M): w = wyse(s, T, k1, k2, k3) = wrse(1, 1, K1,0,0),

e RSCy(M): w = wyse(8, T, K1, K2, kK3) = Wrse(1, 1,0, K2,0),
o RSCy(M): w = wyse(s,T, K1, k2, K3) = Wrsc(1, T, K1, K2, K3).

Among these SC methods, RSC,, RSC,(D) and RSC),(M) correspond to CSC, DSC
and MSC, respectively, and RSC, is a variant of PSC. Given s = 0, the subscript “p”
of RSC), means that this RSC regularizes By(w), the subscript “c” of RSC, means that
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this RSC regularizes not only B,(w) but also B.(w), the subscript “w” of RSC,, means
that this RSC regularizes not only B,(w) but also ||w||?, and the subscript “g” of RSCy
means that RSCy is the general form of RSC that regularizes Bg(w), B2(w) and ||w]|?
by allowing 7 > 1. Given s = 1, RSC.(D), RSCy(D) and RSCy(D) are, respectively,
the counterparts of RSC., RSC\, and RSC, that use M(0) with z; = 1, and RSC.(M),
RSC,(M) and RSCy(M) are, respectively, the counterparts of RSC,, RSC,, and RSC,,
that use M(#) with z; = (1,¢)". Correspondingly, DSC and MSC use the same M(0)’s
as RSCp(D) and RSC,(M), respectively. In this simulation, we set A\ = k1 for PSC,
and multiply the objective function in by 2\, with A = ko, for ASC, and select the
regularization parameters of RSC using the validation method discussed in Section 3.4
based on the settings: 7 = 1,1.1,...,1.5, k1 = 0,1,...,5, kg = 0,100, 200,...,5000 and
k3 =0,1,...,5.

Let gjg? (w, s) be the §14(w, s) of a SC method generated by the bth replication of the
simulation for b = 1,2,..., B with B denoting the number of replications. We measure

the finite-sample performance of a SC method using the average of the absolute biases:

T

. 1 .
|bias| = T—T Z |biasp|,
t=Tp+1

where biasp; = 5B,t — O, SB,t = B! Zle 51@ and 52@ = gjﬁz)(w) — 41¢(0), and the

average of the root mean squared errors (RMSEs):

T

> RMSEp,,
t=To+1

1
MSE :=
RMS T,

where RMSER; == \/B—l 25:1(5§b) — )2 In Table we report these two performance
measures of the SC methods for the settings: n = 50, T' = Ty + 10, Ty = 50 or 100, and
B =1000. The main simulation findings are summarized as follows.

Firstly, CSC performs quite well in its designed context (DGP1 or DGPT), but the
performance of CSC is worsened beyond its designed context (under the other DGPs).
More specifically, given Ty = 50, CSC has |bias| = 0.03 and RMSE = 1.203 under DGP1
that increase to 0.182 and 2.531 (9.905 and 10.578) under DGP2 (DGP3), respectively.
The |bias| of CSC further increases to 0.213, 1.812 and 61.038 under DGP4-6, respectively,
and the RM SE of CSC increase to 4.195, 12.386 and 66.009 under these DGPs. This shows
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that the performance of CSC is damaged by the poor-matching problem which is due to
the mean (and trend) difference under DGP2 (DGP3) and further complicated by the
nonlinearity under DGP4-6. This result is even more evident when Ty = 100. In addition,
the performance of CSC is slightly worsened by the increase of 2.

Secondly, focusing on the existing methods, DSC has similar performance to CSC under
DGP1 (or DGP7), but outperforms CSC under the other DGPs. Given T = 50, DSC has
|bias| = 0.033 (0.044) and RMSE = 1.164 (1.586) under DGP1-2 (DGP7-8). This shows
that DSC is useful for refining the poor-matching problem of CSC caused by the mean
difference. However, DSC is generally outperformed by MSC and ASC except for DGP5
that comprises the mean difference and the nonlinearity. Given T = 50, compared to DSC
that has |bias| = 3.347 (30.508) and RM SE = 3.914 (34.506) under DGP3 (DGP6) that
comprises the mean-and-trend difference, MSC has |bias| = 0.029 (3.533) and RMSE =
1.122 (8.594) and that ASC has |bias| = 0.209 (3.754) and RMSE = 8.272 (12.634) under
the same DGP. Meanwhile, the |bias| and RMSE of MSC are invariant under DGP1-
3 (DGPT7-9). This illustrates that MSC outperforms DSC because it uses a more flexible
M(0) to deal with the poor-matching problem of CSC. We also observe that MSC has
smaller |bias|’s relative to ASC in several cases as Ty = 50, but the results are reversed as
To = 100. In addition, MSC has smaller RM SE’s relative to ASC for all cases considered.
In comparison, PSC has similar performance to CSC in our simulation.

Thirdly, as expected, RSC),, RSCy(D) and RSC,(M) are essentially identical to CSC,
DSC and MSC in terms of their performance, and RSC. has very similar performance
to PSC for all DGPs. This is consistent with the theoretical relationships among these
SC methods, and shows that RSC is useful for unifying existing methods. In this unified
framework, RSCy(D) and RSCy,(M) generalize CSC using auxiliary models, and RSCy
generalizes CSC by setting s = 0 but relaxing the restriction: 7 = 1. The simulation shows
that RSC,(D) and RSCy(M) considerably outperform RSCy in most cases, and suggests
that it is better to refine the potential biases of CSC using suitable auxiliary models rather
than simply relaxing the aggregation restriction.

Fourthly, RSC, substantially outperforms DSC and MSC in terms of |bias| under
DGP6 (DGP12) which comprises a complicated divergence from the designed context
of CSC. Under DGP6 (DGP12), DSC and MSC are of the |bias|’s: 30.508 (31.212) and
3.533 (3.683), respectively, and RSCy (D) and RSC, (M) are, respectively, of much smaller
|bias|’s: 2.093 (2.170) and 1.661 (1.588). It is useful to observe that DSC has the same
performance as RSCy(D), and RSCy(D) shares the same M(#) as RSC,(D). Thus,

24



the aforementioned result indeed reflects that RSC,(D) remedies the bias of DSC under
DGP6 (DGP12) by suitably selecting the regularization parameters. The same inter-
pretation also applies to the relative performance of the MSC method and the RSCy (M)
method. Moreover, we observe that RSC, (M) uniformly outperforms the other SC meth-
ods in terms of RMSFE for all DGPs and for both Ty’s considered in this simulation.
Generally speaking, these results show that RSC does not only encompass certain
existing SC methods but also generate useful complements to existing methods. In partic-
ular, RSC,, (M) compares favourably with the other SC methods in terms of RMSE. The
design of RSC,,(M) reflects the importance of first dealing with the pre-intervention bias
of CSC using a relatively flexible M () and then suitably regularizing ||w||?. Note that the
regularization of ||w||? is beyond the consideration of MSC, and is useful for controlling

the potential cost of using M(6) discussed in Section 3.3.

5 Empirical Illustration

In this section, we further compare the performance of different SC methods using two
case studies. The first one is the case study considered by ADH (2010), and the second
one is a hypothetical case study based on the former. The motivation and design of the

hypothetical case study will be explained later.

5.1 Actual case study

In the case study of ADH (2010), the outcome variable y;; is the cigarette sales of a state
in the tth year of the sampling period: 1970-2000, the intervention variable D;; is defined
by California’s Tobacco Control Program (CTCP) that took place in 1989 (Ty = 20),
California is the treated unit (¢ = 1), and the donor pool of untreated units comprises
37 states (n = 37) that did not have a similar program during the sampling period; see
Figurefor the outcome sequences {y;:}’s. ADH (2010) found that, with the use of certain
pre-intervention covariates, the cigarette sales of the synthetic California, which is defined
by the convex combination of the Y;’s, for ¢ > 2, based on CSC, closely matches Y7 in
the pre-intervention period: 1970-1988, and the counterfactual cigarette sales predicted
by CSC are considerably lower than the y14’s in the post-intervention period: 1989-2000.
This shows the effectiveness of CTCP for reducing California’s cigarette sales.

In the following, we apply not only CSC but also the other SC methods considered in

Section 4 to estimating the intervention effects of CTCP. We also utilize this case study to
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Figure 1: The outcome sequences of California (red), the hypothetical treated unit (blue)
and the untreated units (gray).

assess the relative performance of the SC methods in real data. For the SC methods with
regularization parameters, the parameters are selected using the same validation method
and settings as the simulation, and the validation method is implemented by splitting the
pre-intervention period into the training period: 1970-1981 (R = 12) and the validation
period: 1982-1988. Note that the general form of RSC involves 1836 different settings
of (7,k1,k2) when s = 0 and 11016 different settings of (7, k1, k2, k3) when s = 1. In
Table [2| we report the minimum, the maximum and the deciles of the validation criterion
values and the associated regularization parameters among these settings. The minimum
corresponds to RSCy if s = 0 and RSC,(D) or RSCy(M) if s = 1. The criterion values and
the regularization parameters of RSC,, RSC., RSC,, RSC,(D), RSC.(D), RSC,(D),
RSCy(M), RSC.(M) and RSC,(M) are reported in the same table. In Figure [2| we
compare the outcome sequence of California {y1;}._; with the synthetic outcome sequences
{91¢(w, s)}I_,’s generated by the SC methods considered in the simulation. In Table
we further report the pre-intervention RMSEs:

To

1 . -~ N
RMSEpre = ?0 Z (ylt - ylt(w7 3))2 = TO 1/2310(7“”7 5)
t=1
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Table 2: Validation criterion values and regularization parameters of RSC.

s=0 s=1(D) s=1(M)
V 7 K1 K2 V 7T K1 K2 K3 V. T K1 K2 K3
(a) Actual
10% 21.221 1.0 4 700 24.675 1.2 0 1900 3 2.612 1.2 0 1000 2
20% 23.771 1.4 5 0 32.259 1.2 0 3000 2 5996 1.1 2 4600 3
30% 36.594 1.1 3 700 38.671 1.0 0 2600 1 8117 1.4 2 2900 1
40% 47.547 1.0 5 3400 45.368 1.2 0 4300 1 9.368 1.4 3 4300 4
50% 50.733 1.5 5 4100 50.159 1.3 2 2400 5 10.884 1.2 3 3200 2
60% 53.505 1.2 5 5000 53.191 1.2 4 4800 4 12.194 1.5 5 4200 4
70% 58.456 1.0 3 3000 56.080 1.2 2 2900 3 14.455 1.2 3 2500 4
80% 65.352 1.3 2 2800 58.665 1.5 5 2600 2 21.337 1.4 5 1900 5
90% 76.222 1.1 2 4500 64.330 1.1 1 4100 5 40.498 1.1 0 3600 O
max 94.271 1.5 1 5000 97.664 1.5 1 5000 O 75.470 1.5 5 300 O
RSC, 31.376 1.0 0 0 13.545 1.0 O 0 0 28.423 1.0 O 0 0
RSC. 18913 1.0 2 0 13.545 1.0 0 0 0 28.423 1.0 0 0 0
RSCy 20.168 1.0 0 700 5361 1.0 0 400 O 28.423 1.0 0 0 0
RSCy 14.190 1.0 5 600 5361 1.0 O 400 O 0.193 1.0 0 2400 1
(b) Hypothetical
10% 246.861 1.2 0 2900 391.730 1.5 0 3900 3 266.047 1.5 0 900 5
20% 834.537 1.1 1 3800 435.769 1.2 0 1300 1 306.520 1.0 0 2900 1
30% 995.658 1.4 1 800 488.354 1.0 0 700 5 386.375 1.3 4 3800 2
40% 1205.623 1.4 2 2500 542.671 1.0 1 5000 1 461.029 1.0 5 700 5
50% 1399.580 1.5 3 4400 562.003 1.1 3 300 3 496.031 1.1 1 3800 4
60% 1525.764 1.5 3 3300 574.723 1.4 2 2200 5 524.667 1.1 2 3300 5
70% 1704.009 1.0 2 1200 601.841 1.2 4 4000 1 563.594 1.5 3 5000 5
80% 1842.213 1.0 3 3600 658.143 1.1 3 400 5 592.009 1.1 3 3700 4
90% 1903.964 1.0 3 1000 842.679 1.1 2 2900 O 855.081 1.1 1 4900 O
max 1955.163 1.5 5 5000 469.551 1.5 5 5000 O 1211.832 1.5 5 5000 O
RSC, 552.156 1.0 0 0 13.542 1.0 O 0 0 30.716 1.0 O 0 0
RSC. 552.156 1.0 O 0 13.542 1.0 0 0 0 30.716 1.0 O 0 0
RSCy 519.274 1.0 0 100 5397 1.0 0O 400 O 30.716 1.0 0 0 0
RSCy 32,707 1.5 0 0 5.397 1.0 0 400 O 30.714 1.1 0 0 0
Note: “Actual” and “Hypothetical” represent the actual case study and the hypothetical case study, respectively. “V”

represents the validation criterion value; that is, the MSPE in the validation period. The entries are the deciles and
the maximum of the criterion values and the associated (7, k1, k2) of the RSCs with s = 0, the RSCs with “s = 1(D)”
that sets s = 1 and uses M(6) with z; = 1, and the RSCs with “s = 1(M)” that sets s = 1 and uses M(0) with
Ty = (l,t)T4 The minimum corresponds to RSCy. “s = 0” includes RSCp, RSC., RSCy and RSCy; “s = 1(D)”
includes RSCp (D), RSC:(D), RSCy (D) and RSCy4(D); “s = 1(M)” includes RSCp(M), RSC:(M), RSCy (M) and

RSC,(M).

and the estimated intervention effects {St}tT:TO 41 s of the SC methods. The main empirical

findings are summarized as follows.

Firstly, Table [2] shows that although CSC performs reasonably well, it is outperformed
by certain RSCs in the validation period. Recall that CSC corresponds to RSC),. Table |2|
shows that RSC), has the criterion value: 31.376, which is between the 20% quantile:
23.771 and the 30% quantile: 36.594 of the criterion values when s = 0. In comparison,
RSC4(M), defined by the choice of (7, k1, k2, k3) = (1,0,2400, 1), has the minimum crite-
rion value: 0.193 among all the RSC methods. Like CSC, RSCy(M) also sets 7 = 1 and
k1 = 0. Importantly, unlike CSC, RSCy(M) selects s = 1 by using M(6) with z; = (1,¢)7,

and regularizes ||w||? and Bp(w) by setting ko = 2400 and k3 = 1.
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Figure 2: The outcome sequences of (a) California and (b) the hypothetical treated unit
and the associated synthetic outcome sequences generated by different SC methods. The
blue dashed line is evaluated at Ty = 19 (that is, 1989).

Secondly, Table[2|also shows that RSC.(D) reduces to RSCy(D) by setting 1 = 0, and
RSC.(M) and RSC\, (M) both degenerate to RSCy(M) by setting 7 = 1 and k1 = kg = 0.
Thus, the former two SC methods and the latter three SC methods are, respectively, of
the same performance in this case study. From Table 3] we also observe that PSC, RSC.
and RSCy have the same performance in this case study.

Thirdly, Figure [2| shows that the Y (w)’s generated by most of the SC methods closely
match Y;. However, the Y (wps.) generated by PSC (RSC, or RSCy) does not suitably
match Yj. This reflects the trade off between minimizing B,(w) and regularizing B.(w)
in this case study. In comparison, it is visually difficult to distinguish CSC from the other
SC methods regarding their performance in matching Y;. Nonetheless, Table [3]shows that
RSCy(M), RSC.(M) or RSCy(M) has the minimum RMSE,,.: 0.938 among the SC
methods. In comparison, CSC has a larger RMSE),..: 2.484.

Fourthly, Figure [2| also shows that the counterfactuals §1¢(w, s)’s predicted by the SC
methods are consistently greater than the y1;’s in the post-intervention period. Accord-
ingly, we obtain the same conclusion as ADH (2010) regarding the effectiveness of CTCP
for reducing the treated state’s cigarette sales. However, our conclusion is a consensus
resulted from different SC methods. In addition, Figure 2l and Table [3|show that different
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SC methods might generate different éy’s. In particular, after excluding PSC (RSC. or
RSCy), the absolute intervention effects estimated by other SC methods are obviously
smaller than those estimated by CSC (RSC), or RSC,,).

5.2 Hypothetical case study

In the following, we consider a hypothetical case study that has the same intervention
effects as, but a different type of data from, the (previous) actual case study. The only
difference between the two cases is due to the design that the hypothetical case is defined by
replacing the outcome sequence of the treated unit {ylt}le with a hypothetical outcome
sequence {y%,}X |, where yf, := a + yi; and o = 100. As shown by Figure [2| unlike the
actual outcome sequence {ylt}fgl which is surrounded by its untreated counterparts, the
hypothetical outcome sequence {y}‘t}ﬁl is essentially above all but one of the untreated
counterparts. By this design, the hypothetical case mimics a poor-matching problem that
does not appear in the actual case. It should be noted that, because the hypothetical case
is artificial, the associated results do not have direct empirical interpretations. However,
this design is useful for assessing the potential robustness of the SC methods. Specifically,
although the poor-matching problem is not uncommon in real data, the intervention effects
across different real-data case studies are typically incomparable. In comparison, because
the hypothetical case shares the same intervention effects as the actual case, the design
allows us to assess the potential robustness of a SC method by comparing the intervention
effects estimated from the actual and hypothetical cases. For ease of comparison, we plot
{yft};f:TO 41 and the associated synthetic outcome sequences in Figure |2 and report the
validation criterion values and the regularization parameters (the pre-intervention RMSEs
and the estimated intervention effects) of the hypothetical case in Table 2 (Table . The
main findings are summarized as follows.

Firstly, as shown by Table[2] the validation performance of CSC (RSC),) is considerably
worsened in the hypothetical case because of the poor-matching problem. Specifically,
RSC), has the validation criterion value: 552.156, which is substantially greater than
its actual counterpart: 31.376. In comparison, RSC,, defined by setting 7 = 1.5 and
k1 = kg = 0, has the criterion value: 32.707 in the hypothetical case. This shows that
relaxing the restriction: 7 = 1 is useful for refining the poor-matching problem of the CSC
method to some extent. Nonetheless, RSCj is considerably outperformed by RSC,, (D),

defined by setting 7 = 1 and (k1, k2, k3) = (0,400,0), which has the minimum criterion
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value: 5.397 in this case. This shows again the importance of refining the poor-matching
problem by first using a suitable M(6) and then regularizing |jw/||?.

Secondly, Table [2| shows that RSC. reduces to RSC), by setting x1 = 0. This result is
interesting. It reflects that B, (w) dominates B.(w) in the regularization problem of RSC.
when the poor-matching problem is obvious. Table [2| also shows that RSCy(D) reduces
to RSCy (D) by setting (k1,k3) = (0,0), and RSC.(D) and RSC\, (D) both degenerate
to RSC,(D) by setting k1 = ko = 0 in this case. Table |3| further shows that RSC),,
has similar performance to RSC), (RSCy), RSC,(D) and RSC.(D) are identical, and
RSC,(M), RSC.(M), RSCy (M) and RSCy4(M) have the same performance in this case.

Thirdly, Figure [2 shows that CSC (RSC), or RSC.) is obviously different from the
other SC methods in matching {yft}tTil. Specifically, CSC (RSC), or RSC,) is unable
to match the pre-intervention outcomes of the hypothetical treated unit. By contrast,
the other SC methods still match the pre-intervention outcomes quite well. Specifically,
Table [3| shows that CSC (PSC) has RMSE,.. = 12.009, while RSC,(M), RSC.(M),
RSCy(M) or RSCy(M) has the minimum RMSE,,.: 0.936 in this case.

Fourthly, Figure [2| shows that, unlike the actual case, the counterfactuals predicted by
the SC methods are not consistently greater than the post-intervention outcomes of the
hypothetical treated unit, even though the hypothetical case shares the same intervention
effects as the actual case. This finding illustrates that some of the SC methods are not
robust in estimating the intervention effects. To see this point, we further report the dif-
ference between the RMSEs and the difference between the estimated intervention effects
of the two cases for each SC method in Table Bl The differences are essential zero for
DSC and MSC, and are also close to zero for RSCy,(D), RSC,(D), RSCy,(M), RSC.(M)
and RSC,,(M). By contrast, the absolute intervention effects estimated by the other SC
methods in the hypothetical case are obviously lower than their actual counterparts, es-
pecially for CSC, ASC, PSC and the particular RSCs without using auxiliary models by
setting s = 0.

6 Conclusions

The notion of SC has been widely regarded as essential for policy evaluation. In the recent
literature, researchers have proposed various extensions of CSC that choose the weight-
ing vector w in different ways, including PSC that considers the potential interpolation

bias of CSC, different penalized-regression methods that account for the potential poor-
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matching problem of CSC without using auxiliary models (s = 0), and DSC, MSC and
ASC that deal with the potential poor-matching problem of CSC using auxiliary mod-
els (s = 1). In this paper, we propose a unified approach to compare and generate useful
complements of existing methods in a generalized context where the true outcome model
is unknown. This approach is established by first exploring an upper bound of the MSPE
of the counterfactual predicted by an arbitrary SC and then proposing a generalized SC
method, that is RSC, to regularize the components of this potential MSPE by the choice
of (w,s) under a sign-and-size restriction: w € S(7) for 7 > 1. The components include
the matching-quality divergences: Bg(w, s), BZ(w) and B}(w) (if s = 1) and the squared
Lo-norm: |lwl||?. We illustrate that RSC includes several existing SC methods, or their
variants, as particular examples with different restrictions of regularization parameters.
By this unified approach, we assess the potential biases and MSPEs of a particular SC
method and generate useful new SC methods. In particular, we observe that the RSC
that regularizes both f?g(w, s) and ||wl||? is a useful complement of MSC because MSC
regularizes Bg (w, s) but overlooks ||w||* which is essential for determining the potential
variance of its prediction error. The simulation shows that this type of RSC performs
favorably in comparison with MSC and many other SC methods. We also illustrate the
usefulness of our method using the case study considered by ADH (2010), and assess the
robustness of SC methods in estimating the intervention effects by comparing this case

study with an associated hypothetical case study.
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Supplementary Appendix of
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Yi-Ting Chen
Department of Finance
National Taiwan University

This appendix presents the mathematical proofs of the paper.

Proof of Lemma [T

Under Assumption |1 the counterfactual y1:(0) is evaluated at the potential outcome of

the intervention variable: Dq; = 0, and has the form:
y1:(0) = (Y1) + €1s, (A1)
for t > Ty + 1. According to and , we have
10(0) = Gu(w, ) = (VY1) + 21) = ((w) + 5 - mi(w, )

= (Pe(Y1) +enr) — szyzt—l-s my(w, 6)

1>2
(wt(}/i + 51t Z Wi wt + €1t) +s- mt(wv é) (AQ)
1>2
=Y (Y1) szwt —s-my(w, )

i>2

1t — Zwié‘z‘t - S (mt(wv é) — my(w, 9)) )

i>2

for t > Ty + 1, in which the second equality is due to , the third equality is due to
Assumption [I[i) for i > 2. We obtain this lemma from (A2). O



Proof of Proposition

To see , note that Assumption (3| implies

Ele;(w)[Y] =0
and
Elui(w,s)|Y] = 0.
Thus,
MSPFE;(w,s) = Bias?(w, s) + o2(w, s),
where
o2(w, s) := var[us(w, s)|Y] = E[e?(w)|Y] + s - E[(mq(w, é) —my(w,0))?|Y],

and

Elej (w)[Y] =02 (1+ w]?).

Thus, we have .
To show , note that

Biaspre (w, s) = (Y1) — (Y (w, 5)).
Under Assumption (i), we may use the mean-value expansion to show that
oY1) = (Y (w, ) + Vo (Y, ) (Y1 = Y (w, 9)),

where wa is a mean value such that HYlTw —Y(w,s)]| <||Y1 —Y(w,s)||. Given this result,

we may use the Cauchy-Schwarz inequality to further show that

| Biasyres(w, )| < |V (V) [Yi = Y (w, )|
< EyallY1 =Y (w,s)],

(A3)

where the last inequality is due to Assumption i). Thus, we have .



To show , note that

Biaspi(w) = ¢ (Y (w)) — Zwﬂl}t(Yi)-

1>2

Under Assumption (i)7 we may also use the mean-value expansion to show that

Y (Y (w)) = 0(Y3) + Vi (Y)Y (w) = Y5),

(A4)

where YU]:Z- is a mean value such that ||YJH Y| < ||Y(w) — Y;]|. By the Cauchy-Schwarz

inequality, we may further show that

[e(Y (w)) = (V)] < IV (VI (w) = Yil|
< &y allY(w) = Yil.

Given the decomposition:
Y(w) =Y =Y (w) -Y1)+ (M1 - Yi),
we may use the triangle inequality to show that

1Y (w) = Yil| < [[Y1 = Yil[ + [[Y1 = Y (w)]|
= Y1 = Yil + Bp(w).

By introducing (A7) in (A5)), we have

[ (Y (w)) = (Vi) < &1 (V1 = Yill + Bp(w)) -

By applying the triangle inequality to , we further obtain

| Biasnt,| < |1 — tqw] [1e(Y (w))] + D [wil [ (Y (w)) — ¢(Yi)]

i>2

< &0Ba(w) + Y Jwil [y (Y (w)) = 1 (Y3)],

i>2

(A6)

(A8)

(A9)

where the last inequality is due to Assumption [2{i). By introducing (A8) in (A9), we have

£9).



To show , note that
Biasms t(w, s) = Y (Y(w, 5)) — (Y (w)) — 5 - my(w, 0). (A10)
By applying the triangle inequality to , we have
| Biasms,t(w, s)] < [¢1(Y(w,s)) = (Y (w))| + 5 - [ma(w, 0)]. (A11)

Under Assumption (i), we may use the mean-value expansion to show that

(Y (w,5)) = (Y (w)) + Vo (VL) (Y (w, 5) = Y (w)),
= (Y (w)) + Vi (V) (s - M(w,0)),

where Y,ls is a mean value such that HYJ,S —Y(w)| < ||Y(w,s) —Y(w)]], and the second
equality is due to @ By the Cauchy-Schwarz inequality, we may further show that

[e(Y (w, 5)) = (Y (w))] < (Ve (V)]s - M(w,0)]

(A12)
< 5 Sy [[M(w,0)]].
According to and , we can write that
M(w,0) = wm.(0). (A13)
i>2
By applying the triangle inequality to (A13]), we have
1M (w,0)| <> il [mi(0)] < D Jwilin0 = Emollwly, (A14)

i>2 i>2

where the second inequality is due to Assumption (ii). By introducing (A14) in (A12),

we have
(Y (w, 5)) = (Y (w))| < Ep18&m,05 - [lwl]1. (A15)
The triangle inequality also implies

ma(w, 0)] <Y |willpa(61) — par(6:))] < mollwlly. (A16)

i>2



By introducing (A15)) and (A16|) in (A1l]), we obtain
|Biasiss(w,5)] < (1 + &s.1)émols - [w]y). (A17)

This shows (30]).

In addition, given , we obtain from and .
To show , note that, according to (2),

mi(w, 0) — my(w,0) = 3wy (Amt(él, 0;) — Apie(61, ei))
i>2
= w" (m4(0) — m4(0)).

Accordingly, we may use the Cauchy-Schwartz inequality to show that
(. 0) = mu(200))” < JulPma(0) = mo @) (19
By the mean-value expansion, we have
m.4(0) = m.(0) + Vyrm.(67)(0 — 6),

where 67 is a mean value such that [0 — 6] < || — 6]|. Thus,

Im.4(8) = m.e(0)| = [Vgrm.o(67) (0 — 0)| < [[Vgrm.(6)[1[16 — 6

X (A19)
< &mallf =0,

where the first inequality is due to the Schwarz matrix inequality, and the second inequality
is due to Assumption [2{ii). From (A18) and (A19)), we have

5 2 _ 2 2119 2
(me(u,0) — mew.0))” < &1 lwl216 - 0] (A20)
According to (A20) and Assumption [3[(ii), we obtain
. 2
B | (miw.0) ~ mi(u.0)°| Y| < 1080l (A21)

The result in is due to and (A21]).
In addition, given we may obtain from and . O



Derivation of (39)
To show , note that

S

Bi(w,s) = ||Y1 = Y (w,8)|* = |1 = Y _ywl?

~ ST ~_S
=Y - wTY(—l))(Yl - Y(—1)w)

2

Be(w)= | Y w1 =Yi| | =(Djw) (Djw)=w"DyDjuw,
1>2

and
By(w)=Y{'Y1 —20'Y [ ) Vi+w' Y Y pw.
Accordingly, we can rewrite as:

ST S ~_S

Q*(w, 8|K,) = <}/1TY1 — 2’UJTY/\7( 1)Y1 + wTY(il)Y(_l)’UJ> + K1 (wTDYD;"UJ)
+ Kow W+ S K3 (Yle — 2wTY(71)Y1 + wTY(Tfl)Y(,l)w)
=(1+s-rm3)V1'Y1

~_S

. A22
tuw’ (Y(L)Y(_l) + k1 Dy Dy + kol + 5 - ng{_l)Y(_l)) w (A2

s T
— 2w’ (Y(fl) +s- /ﬁ:gY(,l)) Y1
1
= (14 s5-r3)Y]' Y] + (QwTVw — va> ,

where V' and v are, respectively, defined in and ({41)). Since (1+ s-k3)Y;"Y] is free of
w, we obtain from and (A22). O
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