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Abstract

We propose HSB, a novel learning method
that takes into account user heterogeneity by
clustering users into groups according to their
item preferences. HSB incorporates the idea
that user heterogeneity in item preferences
can be observed by investigating their sparse
relevant user features (SRF) w.r.t. each item.
Regarding each item, SRF is a subset of all
user features; users with the same SRF (i.e.,
the values of their SRF are the same) have
the same level of interest in this item. HSB
clustering puts users with the same SRF into
the same group w.r.t. each item and make
recommendations accordingly, so heterogene-
ity in preferences is addressed. Moreover,
HSB uses statistical feature selection tools
to ensure predictive performance when ex-
posed to high-dimensional features. Theo-
retical analysis for such novel combination of
bandit learning methods and statistical tools
as well as regrets analysis are given. Real
data as well as synthetic data studies are
conducted to demonstrate the competitive
prediction performance of HSB against that
of a pool of state-of-the-art heterogeneity-
sensitive learning methods.

1 INTRODUCTION

In comparison to traditional commerce, ecommerce
such as online web services tends to have an advan-
tage in that every person with Internet access is a
potential customer. This advantage is also a difficulty,
however, because the brick-and-mortar strategy of
hiring salespeople to recommend and sell business
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products to each online visitor is almost impossible.
Recommendation systems (RSs) are proposed as a
solution to this situation. A main task of an RS is to –
based on historical user activities – suggest products
that are likely to be favored by the user and at the
same time identify potentially popular products (or
items) in the inventory. Among other approaches, the
multi-armed bandit has proven to be an efficient way
to deal with this problem, in the literature known as
the ‘exploration-exploitation (EE) trade-off problem’.
Due to the promising results of applications of bandits,
a substantial amount of quality work has contributed
to the study of multi-armed and contextual ban-
dits [Auer et al., 2001, Abbasi-Yadkori et al., 2011,
Auer, 2002, Chu et al., 2011, Krause and Ong, 2011,
Lai and Robbins, 1985, Langford and Zang, 2007,
Li et al., 2010] (and references therein). The effi-
ciency of these benchmark learning methods more or
less assumes that all users have a uniform item pref-
erence, which largely simplifies the computation with
learning performance maintained when applications
are not very involved.

In reality, however, consumers with distinct features,
e.g., genders, job classes, or other individual sta-
tus, tend to have different preferences when facing a
given set of choices. In light of this, our work aims
at improving the quality of recommendation by con-
sidering the effect of inherent user heterogeneity in
their choice-making process when information on user
features is available. Specifically, we propose HSB
(Heterogeneity-Sensitive Bandit), a learning method
that allows two users with distinct user features to
have possibly different item preferences. On the other
hand, distinct users can have the same features, and
hence the same preference; we call these users ‘same-
type users’.

Defining user type w.r.t. user features is common for
many learning methods. Our novel improvement is
based on the idea that only a small subset of user fea-
tures are needed to decide the user type. In most learn-
ing situations, how many and which user features are
included in the system does not depend on learners.
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Without any prior information, there is a tendency to
record more features than are needed for designing a
reliable learning machine. As a result, only a subset
of user features are informative in the sense that they
can be used for identifying the type of a user. Such a
subset of informative user features are referred to as
sparse relevant user features(SRF).

The concept of sparse relevant user features is crucial
in our work. It has two traits: i) often the number of
relevant features is very small compared with that of
all features (sparse); ii) since each item may attract
different types of users, the set of relevant user fea-
tures for this item may be different from those for other
items (item-dependent). Sparsity of relevant features
prevents users from being clustered into impractically
many groups. For example, given a typical learning
situation with a set of 30 binary user features, identi-
fying user types by the values of their features results
in many distinct yet meaningless user types (230 in
this case). On the other hand, the second trait can
be seen from this example: the ‘genders’ factor may
be relevant for a purchase decision for the novel se-
ries Twilight, whereas it can be less decisive w.r.t. the
Harry Potter series. The precise relevance of such fea-
tures shall be decided numerically by the learner, on
the fly; we hence do not presume all items share the
same set of relevant features.

If users are the same type regarding an item, these
users share the same level of interest in this item; hence
they are clustered into the same group (w.r.t. this
item). The heterogeneity of two users can be reflected
in terms of interest levels in items when they are in dif-
ferent groups w.r.t. these items. With users clustered,
the novel clustering of bandits with user features, which
is rooted in the multi-armed bandit framework, is then
used to address the EE problem. HSB therefore inher-
its the competence of LinUCB [Chu et al., 2011] and
UCB1 [Auer et al., 2001] to balance the EE problem
and improves learning by the idea of sparse relevant
user features.

Specifically, HSB addresses a practical learning situa-
tion in which aggregate observations are many but the
received samples of each individual user are few. In
other words, HSB clustering inference does not hinge
on how many observations the learner has in a sin-
gle user’s historical data. More precisely, what HSB
needs to select relevant features (and hence make the
clustering inference) of a given item is data consisting
of dependent variables (user responses or payoffs when
items are assigned) and covariates (user features) w.r.t.
the item; individual information (e.g., user ID) uti-
lized for storing each user’s historical activities plays
no role in the selection. HSB therefore takes advantage
of learning user heterogeneity by identifying relevant

user features, yielding improved learning performance
with benchmark bandits in practical situations such
as in the Yahoo! R6B dataset. Roughly 50k distinct
users visit the Yahoo! website in the first 70k visits
in a Yahoo! dataset (hence the averaged visiting times
for each user is no more than 2; see simulation section).
Such learning situations are common in applications.

Moreover, the statistical selection tools we use enable
our learning method to select relevant features from
high-dimensional features in practice. Most learning
methods demand preprocessed user features to func-
tion normally when the number of features is so many
as to be proportional to total learning rounds. With
binary user features and finitely many user features
and items, we show that with high probability, the re-
gret upper bound for HSB is the sum of multiple classic
multi-armed bandits’ regret upper bounds; the sum-
mation depends on how many relevant features (hence
user groups) each item corresponds to. A key result for
regret analysis which may be of independent interest
is the almost surely feature selection of the statisti-
cal tool; consistent feature selection is not enough for
sequential data(see section 4). To the authors’ knowl-
edge, the idea of combining statistical feature selection
given sequential data has never been formally studied.

1.1 RELATED WORK

In terms of how users with different preferences are
identified, HSB forms a contrast to state-of-the-art
learning methods that also consider heterogeneity
in item preferences. In [Cesa-Bianchi et al., 2013],
the user network (clusters) are predefined and
static over time. DynUCB, COFIBA, CLUB
and CAB[Nguyen and Lauw, 2014, Li et al., 2016,
Gentile et al., 2014, Gentile et al., 2017]1 cluster users
based on individual (hence user IDs are involved) item
preferences estimated on the fly. For CLUB, each
user is associated with estimated item preferences;
for this user, the estimation is based on her own
historical activity data before the current round.
Clustering is then performed by separating two users
when two estimated preferences differ from each other
by a non-trivial data-driven amount (an estimated
confidence bound). Clustering in CAB shares most
spirit with that of CLUB but CAB forms user groups
w.r.t. a given item as well as the coming user (seen by
the learner at the current round): the estimated users
group includes users that tend to give a similar payoff
to the given item as the coming user. Therefore,

1To see how their estimated (items’) context vectors can
be explained as user item preferences, let context vectors’
there be one-hot encoding vectors; also note that in this
work we use the term ‘users’ contextual information’ (see
section 2) as an alternative to ‘user features’.
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the clustering inference made by CAB is similar
to that by HSB in the sense that the inference is
item-dependent. COFIBA also makes item-dependent
clustering in a way similar to CAB but is somewhat
involved. Among these methods, DynUCB is the
only one has fixing number of (predefined constant)
user clusters; DynUCB re-assigns the coming user to
the closest group (the measurement is the distances
between the item-independent estimated preferences,
which are updated over time, of this user and each
group) at each round.

In terms of how the clustering inference evolves as the
observations accumulate, CAB also resembles HSB. At
each round, both HSB and CAB ‘forget’ the cluster-
ing results made in previous rounds, and make new
clustering inferences based on the data in hand. This
flexibility allows the methods to react quickly to a sud-
den missing set of data such as when an influential user
drops off the account or a popular product is currently
not for sale; they simply perform another clustering at
the next round using the updated data. On the other
hand, CLUB, COFIBA and DynUCB’s clustering in-
ferences depend on the entire sequential data collected
prior to the current time.

Overall HSB is unique among state-of-the-art meth-
ods for its clustering inference is SRF-based (instead of
individual-based). Besides, the flexible algorithm de-
signs (both item-dependent and ”forgetting” cluster-
ing inference) equip HSB as well as some other meth-
ods, especially CAB, the ability to handle dynamic
learning situations. In section 5 we shall see the com-
petitive performance of HSB against other benchmark
and state-of-the-art methods.

2 Learning Model, Clustering of
Bandits With User Features, and
Statistical Tools

2.1 Learning Model

We consider a bandit learning environment where an
algorithm receives one user it and available items set
Ct = {xt,1, . . . ,xt,ct} at discrete time t; all users are
assumed to be in a user set U = {xU1 , . . . ,xUn} ⊂
{0, 1}dU and items in item set Ct ⊂ {x1, . . . ,xM} ≡
I ⊂ RdI . Once a user it is assigned an item x ∈ Ct
by the algorithm, she delivers a payoff, yt ∈ {0, 1},
indicating she likes the item (yt = 1, or click) or not
(yt = 0).

For each item m, we model the relation between the
user’s features (or, equivalently, the user’s contextual
information) and her interest level for the assigned
items by a logistic model. We define fm(xU ) as the

probability for a user xU to like item m,

fm(xU ) =
exp

(
βm

′
xU
)

1 + exp
(
βm

′
xU
) , (1)

where xU ∈ U and βm
′

= (βm1 , . . . , β
m
dU

)
′

is the con-
stant (but unknown) coefficient vector. Conditional
on it, {yt = 1} is independent of other varialbles and
with probobility fm(it). We refer to fm(xU ) as xU ’s
interest level for item m. In addition, the model as-
sumes there are subsets Jm ⊂ {1, . . . , dU} such that
βmi = 0, i ∈ Jm, m = 1, . . . ,M .

(1) provides a general framework for modeling item
preferences while taking into account user group
information (e.g., user xU ’s item preference is
(f1(xU ), . . . , fM (xU ))

′
). In practice, the use of the lo-

gistic model gives our algorithm access to modern sta-
tistical feature selection methods as well as a straight-
forward model interpretation when selecting relevant
features for each item. Under (1) and given an upcom-
ing user it ∈ U , the machine’s goal is to recommend
item m such that m = arg maxm′≤M fm′ (it). The re-
gret incurred by recommending item m̄ is defined to
be (at time t)

rt = max
m′≤M

fm′ (it)− fm̄(it) (2)

When the performance is evaluated by (2) (in terms
of minimizing the regret), a competitive learning al-
gorithm must be able to balance the samples used for
estimating user preference means and those used for
deciding the best m̄ at each round t: this is known
as the exploration-exploitation (EE) problem. To
address the EE problem under framework (1) given
Jj , j = 1, . . . ,M , we introduce our novel approach
clustering of bandits with user features in Section 2.2.
Note that Jj is essentially unknown to the machine
ahead of time in most practical cases. In section 2.3,
we introduce statistical sparse relevant feature selec-
tion methods that can be used to estimate Jj under
modeling framework (1).

2.2 Clustering of Bandits With User
Features

The relevant feature index set Jj is used to cluster
users w.r.t item j. For any two distinct users with
same values of relevant features (xUi = xU

′

i for i ∈ Jj ,
where xUi , x

U ′
i are the i-th component in xU ,xU

′
, re-

spectively), their interest levels for the item are the
same; otherwise they can have different interest lev-
els for this item. Therefore, for each item j, there
are at most 2#Jj (our feature space is assumed to be
{0, 1}dU ) different groups of users in the sense that
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users in the same group exhibit the same interest in
the item and may or may not do so with users from
different groups. We cluster users into these 2#Jj

groups w.r.t item j. After the clustering, each item
faces groups of users such that i) the user groups are
mutually exclusive and collectively exhaustive (collec-
tively equivalent to U); ii) these groups change across
items if and only if the sets of relevant features do so.

When Jj is given and users are clustered in such a fash-
ion, a version of the multi-armed bandit method can
be used to balance the EE problem. Define gj(x

U )
to be the user group that xU belongs to w.r.t item
j. Let Aj,t(D), Cj,t(D), D ⊂ U denote the number
of assignments and clicks, respectively, w.r.t. item
j before round t based on historical activity data of

D. A naive estimator for fj(x
U ) is then

Cj,t(gj(x
U ))

Aj,t(gj(xU ))
.

The upper confidence bound [Lai and Robbins, 1985,
Auer et al., 2001], given upcoming user it and item j,
is calculated by

UCBj,t =
Cj,t(gj(it))

Aj,t(gj(it))
+ α

√
log (1 + t)

1 +Aj,t(gj(it))
,

where α > 0 is the exploration tuning parameter. The
machine then assigns the item maximizing user it’s
UCBs. Notice that if the values of Jj are identical,
the bandit (a traditional UCB1 ([Auer et al., 2001])

for example) is essentially clustered into 2#J1

inde-
pendent bandits run at the same time, each of which
corresponds to a unique group of users.

2.3 Statistical Sparse Relevant Feature
Selection

Logistic Trimming

Logistic regression is typically applied to differenti-
ate relevant features from less informative features
[Fan and Li, 2006]. Given the sample x1, . . . , xn ∈ Rp
for some constant p and the corresponding binary re-
sponses y1, . . . , yn, we define the logistic loss function
(log-likelihood) as

ln(β) =
1

n

n∑
t=1

(
ytx

′

tβ − log (1 + exp (x
′

tβ))
)
,

where β = (β1, . . . , βp)
′ ∈ Rp; and the mean vector

estimator is β̂J,n = arg maxβ∈Θ;βi=0,i∈Jc ln(β), where
J ⊂ {1, . . . , p} ≡ Jp, J

c = {1, . . . , p}\J and Θ ⊂ Rp is
the parameter space. To retrieve the information for
the relevant features, we define the information cri-
terion (IC, the sum of the estimated goodness of fit
and a penalty proportional to the complexity of the
fitted model) as ICn(J) = ln(β̂J,n) + #JRn, where

Rn = O
(

(logn)1+ε

n

)
is some deterministic sequence

with arbitrary small ε > 0. The selection procedure is
described in Algorithm 1.

Algorithm 1 Logistic Trimming

Input: {xi, yi}ni=1, RF = ∅; Output: RF ;

1: for j = 1, . . . , p do
2: if n ≥ p and ICn(Jp) ≤ ICn(Jp\{j}) then
3: RF = RF ∪ {j}
4: end if
5: end for

Logistic Orthogonal Matching Pursuit

Logistic Orthogonal Matching Pursuit(LOMP) out-
puts a set of selected relevant features and meanwhile
addresses selection from high-dimensional features(i.e.
a large number of features). The algorithm LOMP
in [Chen et al., 2018] adopts orthogonal matching pur-
suit and attempts to select the variable minimizing the
objective function while fixing all other variables (gra-
dient descent) at each step. The algorithm eventu-
ally stops the selection process and holds only a mi-
nor portion of the whole variables considered as those
most likely to “explain” the dependent variable. The
last step of the algorithm trims off unnecessary vari-
ables retained from previous selection in a way similar
to Logistic Trimming, and reports the resulted set of
variables; we refer the reader to [Chen et al., 2018] for
a specific description of the algorithm. Processing the
algorithm in this way sidesteps the dimensional issue,
as only a handful of variables is under consideration
at any one time, while still making efficient use of the
information for all variables.

3 Heterogeneity-Sensitive Bandit

Heterogeneity-sensitive bandit (HSB) consists of two
parts: A protection mechanism in Algorithm 2 that
protects the information quality of the collected data
from deteriorating, and Algorithm 3, which neatly in-
tegrates the clustering of bandits with user features
and statistical feature selection methods for better pre-
diction performance.

Data Collection and Protection Mechanism

Protection is mainly about storing sets of data while
ensuring for the smooth application of logistic regres-
sion. Algorithm 2 keeps tracks of and updates two
kinds of data collections – X(x), y(x), X̄(x), ȳ(x),
x ∈ I – for usage in UCB calculations and relevant
feature selection. At round t (line 13), the algorithm
stores information on the coming user it ∈ U , as-
signment xa′t

, and delivered payoff yt by appending

them accordingly to the end of X(xa′t
), y(xa′t

), all of

which start out as empty sets. As for the sophisti-
cated collections of X̄(x), ȳ(x), for all x ∈ I, HSB
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assesses the quality of information associated with
X̄(xj), a

′

t = j, and appends it, yt to X̄(xj), ȳ(xj),
respectively, if they are qualified (the minimum eigen-
value such that λmin(λj) ≥ c0, i.e., if the average mini-
mum eigenvalue of sample covariate-variance matrix is
non-degenerate). If not, the algorithm stops append-
ing data and, at rounds t ∈ Q (lines 4, 5), the algo-
rithm assigns item j to the coming users dU times (if
xj ∈ Ct; lines 3, 5) without optimizing UCBs. If too
many items are disqualified, the algorithm randomly
selects one from among them.

Algorithm 2 Heterogeneity-Sensitive Bandit

Input
- Set of users U , set of items I;
- Recorded data X̄(e), ȳ(e), X(e), y(e) = ∅, e ∈ I;
- a0 = 0, fj = 0, λj = βIdU , tj = 1 for all j ≤ M ,
Q = {ib|i ∈ N} for any b > 2;

1: for t = 1, . . . , T do
2: if fj > 0 for any j ∈ {i : xi ∈ Ct} then

3: a
′

t = j; at such that xt,at = xj ;
4: else if t ∈ Q and λmin(λj) < c0 for some
j ∈ {i : xi ∈ Ct} then

5: a
′

t = j, fa′t
= dU , at such that xt,at = xj ;

6: else
7: Set at, a

′

t = Algorithm 3;
8: Set flag to TRUE;
9: end if

10: Observe payoff yt;
11: Append it, yt to X(xt,at), y(xt,at), respec-

tively;
12: if not flag or (flag and λmin(λa′t

) ≥ c0) then

13: Append it, yt to X̄(xt,at), ȳ(xt,at), respec-
tively;

14: Set
(
λ
a
′
t
, t
a
′
t

)
=

(
λ
a
′
t
t
a
′
t
+iti

′
t

t
a
′
t
+1

, t
a
′
t

+ 1

)
;

15: Set flag to FALSE;
16: end if
17: fa′t

= max{fa′t − 1, 0};
18: end for
λmin(A) denotes the minimum eigenvalue of A.

Learning User Preferences and Making
Predictions

Having X̄(xj), ȳ(xj) in hand at round t (line
1), Algorithm 3 applies statistical feature selection
methods(’Logistic(X, y)’ denotes the application of ei-
ther Logistic Trimming or Logistic Orthogonal Match-
ing Pursuit to datasets X, y) to each j = 1, . . . ,M
of X̄(xj), ȳ(xj) to obtain and record the correspond-

ing relevant users’ features, R̂F j ⊂ {1, . . . , dU}, j =
1, . . . ,M . The user subset w.r.t. items s given at time
t, P̂s, can then be constructed (line 2). The UCBs are

calculated accordingly. Notice that the users cluster-
ing inference made in Algorithm 3 is updated at each
round.

For notation, we define xU (D), non-empty D ⊂
{1, . . . , dU}, to be a real number index such that
xU (D) = xU

′
(D) if and only if the D-th features in

xU and xU
′

are identical; if D = ∅, define xU (D) =
xU
′
(D) for any xU ,xU

′
. Let yj(D), D ⊂ U , denote the

subset of y(xj) associated with users D only. More-
over, we define a function, l(.), for measuring the
length of yj(x

U ) and the ones vector, 1 = (1, . . . , 1)
′
,

with a length equivalent to that of whichever vector it
is multiplied by.

analysis section).

Algorithm 3

Input
- Set of users U , set of items I;
- Exploration parameter α;
- Users’ historical activity data;
- User it;

Output Decision at time t: at, a
′

t;

1: Set R̂F j = Logistic(X̄(xj), ȳ(xj)), j = 1, . . . ,M ;

2: Set P̂s =
{
xU |xU (R̂Fks) = it(R̂Fks),xU ∈ U

}
,

where ks’s are such that xks = xt,s, s = 1, . . . , ct;

3: Recommend at, a
′

t such that xa′t
= xt,at and

at = arg max
j=1,...,ct

y
′
j(P̂j)1

l(yj(P̂j))
+ ˆCBj ,

ˆCBj = α

√√√√ log (1 +
∑
s≤ct l(ys(P̂s)))

1 + l(yj(P̂j))
;

4 Regrets Analysis

We show with high probability that HSB almost surely
selects relevant features. The regrets of deploying HSB
can hence be bounded by a sum of multiple multi-
armed regrets bounds plus strategic assignments and
a deterministic number.

Condition 1. A sequence of {zt,1, zt,2} such that

P (zt,2 = q|zt,1) =

 exp
(
z
′
t,1β
∗
)

1 + exp
(
z
′
t,1β
∗
)

q  1

1 + exp
(
z
′
t,1β
∗
)
1−q

,

q = 1, 0, where zt,1 ∈ RdU and β∗ = (β∗1 , . . . , β
∗
dU

)
′ ∈

Θ ⊂ RdU , |Θ| < ∞; ii) zt,2 conditional on zt,1 is inde-
pendent of all other variables.

Condition 2. A sequence {xi} such that xi’s are
independently and identically distributed with 0 <

‖x1‖ <∞ and λmin

(
E(x1x

′

1)
)
> 0.
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Contrary to standard consistent feature selec-
tion [Zhao and Yu, 2007, Fan and Li, 2001, Zou, 2006,
Chen et al., 2018], in a sequential context, selection
is an ongoing activity as sample size increases while
preserving all previous data. Theorem 1 adapts sta-
tistical feature selection for sequential data by a re-
sult of almost sure feature selection. The relation be-
tween users’ contextual information and responses to
assigned item j is assumed to satisfy Condition 1 with
β∗ = βj .

Theorem 1. Fix an item j. Assume the it’s
drawn from U satisfy Condition 2. Let Ĵt =
Logistic(X̄(xj), ȳ(xj)) (Logistic Trimming is applied).
Then

P (Ĵt = Jj eventually) = 1.

Note that at times t when fj 6= 0, Logistic Trimming
is not applied to data. Regrets analysis of HSB re-
quires the result in Theorem 1 and the standard re-
sults of regrets bound for multi-armed bandit prob-
lems [Abbasi-Yadkori et al., 2011]. Theorem 2 gives a
regrets upper bound for HSB.

Theorem 2. Consider an environment with a se-
quence of {it, Ct} such that Ct = {xt,1, . . . ,xt,ct},
1 ≤ ct for all t, is arbitrarily drawn from I; it’s drawn
from U satisfy Condition 2. Then with Logistic Trim-
ming and

ˆCBj =

√√√√ (l(yj(P̂j)) + 1)

l(yj(P̂j))2

(
1 + 2 log

(
2KUM(1 + l(yj(P̂j)))

1/2

δ

))
,

where KU = # ∪k Jk, HSB has regrets, of probability
1− δ −Mδ2, such that for all large T ,

T∑
t=1

rt ≤ 2
KUM

(
3∆M +

16

∆m
log

(
2KU+1M

∆mδ

))
+ Tδ2,dU ,b + dUT

1
b ,

(3)

where ∆M = maxE, ∆m = minE\{0}, E =
{|fj(xU ) − fk(xU

′
)| : j, k ≤ M ;xU ,xU

′ ∈ U}, and
Tδ2,dU ,b is a constant depending on subscript parame-
ters and δ2 is due to the application of Theorem 1.

By letting δ be 1
T , the first term in (3) yields a clas-

sical log T upper bound with high probability; the
third term has a trade-off relation to the constant term
Tδ2,dU ,b. Built upon our novel perspective toward the
usage of users’ contextual information, HSB maintains
a regrets upper bound of standard multi-armed bandit
problems plus a constant resulting from the applica-
tion of Theorem 1 and strategic assignments. Theo-
retically, b can be arbitrarily large; we can set it to
a constant greater than 2 so as to guarantee a better
bound than

√
T , an upper bound for standard contex-

tual bandits.

5 Experiments

5.1 Datasets

Artificial datasets

In the artificial datasets there are 500 items, and
#U = I ∈ {50, 5000} users, each associated with 100
user features represented by a vector of 100 binary
numbers (xU ∈ {0, 1}100). All user features are gener-
ated uniformly at random from {0, 1}. A user’s item
preference is described by a vector of 500 probabilities,
each of which indicates the interest level of this user for
the corresponding item, i.e. the chance this user clicks
on the corresponding item (if the item is assigned).
The interest levels in a preference vector are decided
by a simple linear probability model. Specifically, item
j is associated with a coefficient vector of length 100,
βj = (βj1, . . . , β

j
100)

′
, and a set of indexes of relevant

user features, Jj ⊂ {1, . . . , 100}. The coefficient vec-
tor is sparse in the sense that βji = 0 if i 6∈ Jj and
#Jj is a relatively small number. In the datasets, one
of two index subsets, J∗1 and J∗2 , is randomly assigned
to Jj with equal chance. On the other hand, without
replacement we draw four numbers from {1, . . . , 100}
and let J∗1 , J

∗
2 be sets of first two and last two numbers,

respectively. We set the non-zero coefficients in βj to
(p,−p) with p ∈ {0.05, 0.1}. The interest level of user

xU for item j is βj
′
xU + εj , where εj is drawn from a

uniform (0.1, 0.15) distribution that is independent of
all other variables. There are in total 2#(J∗1∩J

∗
2 ) = 16

types of users.

The total learning rounds T = 10, 000; at each round
t, a it is randomly drawn from U and served to the
machine. The machine assigns one item m̄ at time t
and the user clicks through (yt = 1) with probability

βm̄
′
it+ εm̄. At time t, we evaluate the performance of

a learning algorithm run on the artificial datasets by
the averaged total click-throughs (click-through rate,

CTR) given by i1, . . . , it, i.e.,
∑
i≤t yi

t .

Yahoo dataset

Two real datasets, 18k and 550k, were extracted from
the Yahoo! R6B dataset [Li et al., 2011]. Yahoo! R6B
records the website visitor click logs for news articles
displayed on Yahoo!’s front page. The dataset is a
text file consisting of millions of lines, each of which
contains the information about a single visit. The
information includes a timestamp, the visitor’s user
features, whether the visitor clicked through, the new
articles available to be displayed, and the displayed
article. The visiting activities were recorded chrono-
logically from October 2 to 16, 2011. At each line t,
the available article set Ct contains roughly 30 to 50
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articles. At the same time, there is an article drawn
from Ct uniformly at random and displayed to user
it (on the Yahoo! front page) by the website server.
Moreover, it’s user features were recorded as a bi-
nary vector of dimension 136. For more details, see
[Gentile et al., 2014, Li et al., 2016, Li et al., 2011].

We prepared our 18k dataset using the following steps.
We used only data from the first 7 days and removed
visits for which the user features were all zeros (except
the first feature, which is always 1). As these users are
guests to the website, they have no features. Since the
original dataset provided no information about user
IDs, we viewed visitors with the same user features
(all 136 user features) as the same user when prepar-
ing the datasets. Filtering out users that visited the
website less than 50 times resulted in our first dataset,
18k. Thus this dataset recorded visiting activities for
roughly 18k users.

In addition to the 18k dataset, we also sought to eval-
uate the algorithms on a less conditional environment,
in the sense that the visit times were not considered
when preparing the dataset. More precisely, we again
began with the first 7 days and took out guest ac-
tivities. For the 550k dataset, we retained only the
i-th line such that i

3 is an integer. The resulting new
dataset contained 2,787,635 lines and 552,588 distinct
users (hence the name 550k). Only one-third of the
lines were retained for 550k, so 18k and 550k contained
roughly the same number of text lines.

We followed [Li et al., 2011] for the offline evaluation
of learning algorithms. As the item (article) assigned
by the machine at time t sometimes did not coincide
with the assigned item in the recorded activities at
line t, we deleted such lines and moved on to the next
line whenever mismatches occurred. Roughly 70,000
rounds remained after running these algorithms on
the datasets. The averaged click-throughs until time

t = 1, . . . , T ,
∑
i≤t yi

t , were used for evaluating the per-
formance of the learning algorithms.

LastFM dataset

LastFM contains users, music artists, tags made by
users for artists, and information about music listening
activities. In the dataset, there are 1892 users and
17632 artists along with a document recording which
user has listened to which artists and another file with
information about tagging activities.

We generated a dataset of T = 15,000 rounds with the
following steps. 100 artists were randomly drawn from
12133 artists who were tagged by at least one user;
these 100 artists made up the available items set, Ct,
for all t. The visitor at each time, it, was drawn uni-
formly at random (with replacement) from 1892 users.

The payoff of assigning artist (item) j ∈ Ct to it was 1
if the artist had been listened to by it and 0 otherwise.
At each round, one artist was assigned to it and payoff

yt was observed by the machine;
∑
i≤t yt

t , t = 1, . . . , T
was used to evaluate the learning methods.

In addition, we used user tags to form user features.
All tagged words were split by spaces, dashes, hyphens,
and carets, yielding 9264 distinct ‘finer tags’. A ver-
sion of TFIDF was used to generate user features: the
i-th feature was 1 for user xU if she tagged the i-th
finer tag for any artist and 0 otherwise. Each user
was associated with a 9264-dimensional binary vector
representing the user features.

5.2 Algorithms

The tests results were averaged over 6 and 3 runs for
CAB on lastFM and the rest experiments, respectively.
The exploration-exploitation parameter α for every al-
gorithm (except for RAN) and edge deletion parame-
ter α2 for CLUB were tuned by grid searching for the
best setting on {0, 0.01, . . . , 0.2} and {0, 0.1, . . . , 0.5},
respectively. We set γ = 0.2 for CAB. For tuning we
used the first 60,000 text lines in Yahoo! datasets and
1,000 rounds for the artificial and lastFM datasets.
With the tuned parameters, the reported tests results
were based on the rest of the Yahoo datasets and an-
other independently generated t− t0 = 10,000, 15,000
rounds for the artificial and lastFM datasets, respec-
tively. In all of our datasets, item contexts were given
by one-hot encoding binary vectors, i.e. where the i-th
item’s context is a all-zeros vector of length M with
the i-th component set to 1.

• HSB: We evaluated a variant of HSB, where the
protection mechanism was suppressed by setting
the conditions of the if/else statements in line 2
and 4 to FALSE2 and LOMP was used. Intercept
was added into user features if it was not included.

• CLUB [Gentile et al., 2014]: An algorithm that
specializes in learning user clusters on the fly. We
implemented a variant of CLUB with an Erdos-
Renyi graph as the initial user graph.

• CAB [Gentile et al., 2017]: At each round, CAB
estimates the preference similarity between the
coming individual and the other users regarding
each item; it makes the prediction based on this
similarity information.

• LinUCB & LinUCB-IND: Variants of benchmark
algorithms. One single instance of LinUCB

2The protection mechanism can play a crucial role in
particular practical situations. However, it is mainly of
theoretical use in our experiments.
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(a) I = 50; p = 0.05 (b) I = 50; p = 0.1

(c) I = 5, 000; p = 0.1 (d) Yahoo 18k

(e) Yahoo 550k (f) lastFM

[Chu et al., 2011] was used in LinUCB and each
distinct individual used her own instance of Lin-
UCB ing LinUCB-IND.

• RAN: Recommends an item uniformly drawn
from Ct at each round.

5.3 Results

In the artificial datasets there was a uniform item
preference if p was set to 0. When I is relativly
small, LinUCB-IND effectively addresses heterogene-
ity in preference. Compared with (b) and (c), the re-
sults in (a) suggests seeing case p = 0.05 as a case
with almost uniform user preference, due to the close-
ness in performance of LinUCB-IND and LinUCB. In
light of this, the cases p = 0.1 exhibit appropriate lev-
els of heterogeneity, as the performance of LinUCB is
essentially equivalent to that of RAN when p = 0.1.

As expected, HSB’s performance is independent of I,
whereas all others are essentially RAN when there
are 5, 000 distinct users given a heterogeneity level of
p = 0.1. This result demonstrates the difference be-
tween the clustering methods adopted in CLUB, CAB,
and HSB. CLUB and CAB clusterings tend to work
very well when every user has relatively rich historical
activity data (compared to T ) such as the cases in (a)

and (b); on the other hand, the HSB clustering relies
on the sparsity of relevant user features for competitive
performance.

With relatively few distinct users, only CAB is sensi-
tive enough to compete with LinUCB-IND in an en-
vironment with mild heterogeniety in user preference
(p = 0.05). LinUCB-IND is not at its most efficient
state in the sense that there are only 16 user types but
the information of 50 distinct users are used; adaptive
learning algorithms (CAB, HSB, CLUB) in this case
(p = 0.1; I = 50) use the user types information more
efficiently and outperform LinUCB-IND.

Sparse relevant features were assumed in our simula-
tion setting. We used Yahoo! and lastFM datasets to
further evaluate the practical aspect of this assump-
tion. Yahoo! is a popular, large e-company: its web-
site portal is visited by all types of users everyday. All
news articles on this website must be well-written to
attract the most types of users, with as many click-
throughs as possible. This means it is very difficult to
compete with or outperform LinUCB on the Yahoo!
dataset. For lastFM, as an online music streaming ser-
vice, it is expected to have users with heterogeneous
music tastes. However, songs from a small number of
popular artists account for a large portion of online
listening activity; we do not presume a great level of
heterogeneity. ID information is available in lastFM
but not in Yahoo!; thus in Yahoo!, we assign a unique
ID to users with a distinct set of user features.

On the 18k dataset, CLUB dominates thoroughly
along with HSB and LinUCB: CLUB and HSB (espe-
cially CLUB) prove their ability to learn and use the
information of such mild heterogeneity in user prefer-
ences. For the 550k dataset, the average visit times
for each user are too few; CLUB no longer retains
its learning advantage. HSB, on the other hand, still
maintains its learning power especially during the last
20 thousand rounds.

In the lastFM case, the average visit time for each
user is 15,000

1892 = 7.93 by t = T = 15, 000, which is far
too little for LinUCB-IND, CAB, and CLUB to learn
the intended heterogeneous item preferences. Cluster-
ing based on sparse relevant user features mitigates
the problem of insufficient samples for each distinct
user; overall, HSB outperforms LinUCB and CLUB.
The results of CLUB essentially coincide with that of
LinUCB, which is the winner between the results of
LinUCB and LinUCB-IND. On the other hand, CAB
addresses the cold-start issue at the first 4000 rounds.

The results in the lastFM case also attest the compe-
tence of HSB in selecting relevant features from 9264
user features. On the whole, these results show that
the idea of sparse relevant user features is practical.
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A Appendix

A.1 Proof of Theorem 1 and 2

Condition 1. A sequence of {zt,1, zt,2} such that i)

P (zt,2 = q|zt,1) =

 exp
(
z
′
t,1β
∗
)

1 + exp
(
z
′
t,1β
∗
)

q  1

1 + exp
(
z
′
t,1β
∗
)
1−q

,

q = 1, 0, where zt,1 ∈ RdU and β∗ = (β∗1 , . . . , β
∗
dU

)
′ ∈

Θ ⊂ RdU , |Θ| < ∞; ii) zt,2 conditional on zt,1 is inde-
pendent of all other variables.

Condition 2. A sequence {xi} such that xi’s are
independently and identically distributed with 0 <

‖x1‖ <∞, a.s. and λmin

(
E(x1x

′

1)
)
> c0 > 0.

Condition 3. This condition defines a process {zj}.
Let c0 be defined as in Condition 2 and z1 be arbitrary
but bounded (by some C > 0) vector of length dU .
Define η0 = λmin (βI) > c0 and

η1 =
1

t
λmin

∑
s≤1

zsz
′

s + βI

 .

For t > 1, we recursively define zt+1 and ηt+1. Set
counter to 0 at t = 2,

zt+1 =



if (ηt ≥ c0) and (counter = 0 or counter = dU ) :

arbitrarily zt+1 ∈ RdU with ‖zt+1‖ < C;

set counter to 0.

else if (counter = dU ) and (ηt < c0) :

an independent x1 satisfying Condition 2;

set counter = 1.

else : an independent x1 satisfying Condition 2;

set counter = counter + 1.

and

ηt+1 =
1

t
λmin

 ∑
s≤t+1

zsz
′

s + βI

 .

Let T1 = inf{t : ηt < c0}, Ti = inf{t : ηt < c0, t ≥
Ti−1 + dU}, i > 1, and T0 = 1− dU . For a process sat-
isfying Condition 3, we define a corresponding random
sequence {si} by assigning the k-th (chronologically)
element in ∪j>0{i : Tj−1 + dU ≤ i ≤ Tj} to sk. Notice
that these rounds exclude the strategical assignment
rounds (those rounds at which items are randomly as-
signed) but include Tj−1 + dU ’s.

To prove Theorem 1, we first introduce Theorem 3,
which says under the given conditions, Logistic Trim-
ming (Algorithm 1) can almost surely select relevant
features (along with a subsequence). We defer the
proof of Theorem 3 to the last paragraph after we in-
troduce Lemma 1 to 3 and notation.

Theorem 3. Given a sequence {xi, yi} satisfying
Condition 1 and {xi} satisfying Condition 3 (hence
Condition 2). Let J∗p = {i : β∗i 6= 0, i ≤ dU}
and Ĵt = Logistic(Xt, Yt), where Xt = (x1, . . . , xt)

′
,

Yt = (y1, . . . yt)
′

(Logistic Trimming is applied). Then

P (Ĵsn = J∗p eventually) = 1.

Proof of Theorem 1. With probability 1, l(ȳ(xj)) in-
creases to infinity as t in Algorithm 2 passes to infin-
ity. Consider a subsequence of X̄(xj), ȳ(xj) where Al-
gorithm 2 applies Logistic Trimming to them (only at
the rounds when fj = 0). With repeats taken off from
this subsequence we see it has the same properties as
that of {xsi , ysi}. Therefore, the proof is finished by
an application of Theorem 3.

Proof of Theorem 2. We first assume Ct = I for all
t. As T grows, each item cluster eventually receives
infinitely many samples of visting users’ features and
their responses, satisfying the requirements for Theo-
rem 1. By Theorem 1, there is an event of probabil-
ity 1−Mδ2 where the information of relevant features
w.r.t. each item is retrieved (by Logistic Trimming) at
all rounds (this is not saying when Logistic Trimming
is applied at fj 6= 0 for any j, Theorem 1 still holds;
nevertheless, at those strategic assignment rounds, the
machine makes recommendations without using users’
contextual information) after round Tδ2,dU ,b for some
Tδ2,dU ,b > 0. On this event, after round Tδ2,dU ,b, HSB
is essentially the reference algorithm. Given it and de-

fine P̂ (xj , it) =
{
xU |xU (R̂F j) = it(R̂F j),xU ∈ U

}
similar to that in Algorithm 3 (R̂F j indicates the set
of relevant user features w.r.t. items j). By an appli-
cation of Lemma 6 in [Abbasi-Yadkori et al., 2011] we
have that conditional on the event all relevant features
are retrieved, with probability 1−δ′ , given any xj ∈ I
and for all it ∈ U , t > 0,
∣∣∣∣∣∣
y
′
j(P̂ (xj , it))1

l(yj(P̂ (xj , it)))
− fj(it)

∣∣∣∣∣∣ ≤√√√√ (l(yj(P̂ (xj , it))) + 1)

l(yj(P̂ (xj , it)))2

(
1 + 2 log

(
(1 + l(yj(P̂ (xj , it))))

1/2

δ
′

))
.

(4)

Note that the assignments of item j to users gj(x
U ) are

counted by and accumulated in l(yj(P̂ (xj ,x
U )). As

argued in Theorem 7 in [Abbasi-Yadkori et al., 2011]
using (4), the total number of assignments of item j to
users gj(x

U ), l(yj(P̂ (xj ,x
U )), provided item j is not

the best choice to this group, is bounded by

3 +
16

∆m
log

(
2

∆mδ
′

)
with probability 1−δ′ (∆m can be sharpened if Ct = I
for all t; see [Abbasi-Yadkori et al., 2011]).

We can then finish the proof by arguments similar to
those in Lemma 6 and Theorem 7 (with a little bit
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more algebraic calculation: since Ct ⊂ U may not be
the same through each round, the best item w.r.t. it
can differ over time; ∆M ,∆m are needed for the ar-
gument) in the same paper. We sum over at most

2#∪kJkM (the number of distinct user groups w.r.t

item j is smaller than 2#∪kJk for all j; j ≤M) regrets
upper-bounds as well as the strategic assignments and
let δ

′
= δ

2#∪kJkM
to finish the proof.

Remark 1. The first and third term in (3) can be im-
proved. The 2KU in the first term can be further sharp-
ened by exploiting the assumption of uniform drawn it
and the specification of relevant features in each item
cluster as done by [Gentile et al., 2014]. On the other

hand, the T
1
b can be viewed as an increasing function

of T , h(T ) with h(x) = x
1
b . We note that theoreti-

cally any h(x) such that limx→∞ h(x) = ∞ suffices.
Nevertheless, such improvements introduce unneces-
sary notation burden so we leave (3) as it is. For
the reader who is interested in or needs to pursue a
better bound in the first term, we refer to the discus-
sions both in the article and the supplementary file of
[Gentile et al., 2014].

Lemma 1. Let {zi} be a process satisfying Condi-
tion 3. Then there exists c1 > 0 such that

P

(
λmin

(∑
t≤sn ztz

′

t

sn

)
≥ c1 eventually

)
= 1. (5)

Proof. Recall that

ηt =
1

t
λmin

∑
s≤t

zsz
′

s + βI

 ;

and {si}: For a process satisfying Condition 3, we
define a corresponding random sequence {si} by as-
signing the k-th (chronologically) element in ∪j>0{i :
Tj−1 + dU ≤ i ≤ Tj}, where T0 ≡ 1− dU , to sk.

By the definition of {zi}, on {ηsn < c0},
zsn+1, . . . , zsn+1

will be such that

E

λmin

 sn+1∑
i=sn+1

ziz
′
i

 ∣∣∣∣∣zj , j ≤ sn
 = E

λmin

dU∑
i=1

xix
′
i

 > 0,

where xi’s satisfy Condition 2. By this, dU < ∞,
and the fact that if ηsn−1

< c0, ηsn is the min-
imum eigenvalue of the arithmetic mean of all the
terms in the numerator of ηsn−1 and

∑sn+1

i=sn+1 ziz
′

i. By
this observation and tedious calculation, there exist
β, c0, k0,∆ > 0 such that for all n ≥ k0,

E(ηsn − ηsn−1 |ηsn−1 < c0) ≥ ∆

n
. (6)

A proper choice of β and the boundedness of zj imply
that for all large n (say, n > k0 for some k0 > 0), if

ηsn ≥ c0, then ηsn+1 ≥ c3 for some c3 < c0; we pick an
arbitrary c2 such that c2 < c3. Moreover, we introduce
a process {η∗i,t}i≥1,t≥1 whose existence is guaranteed
by (6): η∗i,t such that on {ηsi+t−1

< c0},

ηsi+t−1 + η∗i,t ≤ ηsi+t and E
(
η∗i,t|ηsi+t−k , k ≥ 1

)
=

∆

i+ t
;

or otherwise η∗i,t is independent of all other random
variables and

E
(
η∗i,t
)

=
∆

i+ t
,
∥∥η∗i,t∥∥ ≤ C

i+ t
.

For any C∆̄ ≥ k0 and a large β depending on C∆̄, c0, c2,
we have, by the boundedness of zi’s and the definitions
of η∗i,t, c3,∑
i≥C∆̄

1ηsi<c2 − C∆̄ ≤
∑
i≥C∆̄

∑
j≥1

1ηsi−1
≥c0,ηsi<c01ηsi+j<c2

≤
∑
i≥C∆̄

∑
j≥1

1ηsi−1
≥c0,ηsi<c01ηsi+

∑j
t=1 η

∗
i,t<c2

≤
∑
i≥C∆̄

∑
j≥1

1
c3+

∑j
t=1 η

∗
i,t<c2

, a.s.

(7)

C∆̄, whose value will be specified, is used to over-
come initial exceptions when bounding the last term
probabilistically. Hoeffding’s inequality is employed
to bound the sum of probability of events in (7); typ-
ical requirements for this inequality to work include
conditional boundedness and conditional mean being
equivalent to unconditional mean, properties that have
been satisfied by η∗i,t since it is bounded by C

i+t and

E
(
η∗i,t|η∗i,s, s < t

)
= ∆

i+t . By a version of Hoeffding’s
inequality, for all i ≥ 1, j ≥ 1,

P

∣∣∣∣∣∣c3 +

j∑
t=1

η
∗
i,t −

c3 + E

 j∑
t=1

η
∗
i,t

∣∣∣∣∣∣ ≥ ∆̄ (log (i + j)− log (i + 1))


≤ exp

(
−2∆̄2 (log (i + j)− log (i + 1))2∑j

t=1(i + t)−2C2

)
.

(8)

To bound the summation of (8) over i and j, we cat-
egorize it into three parts with custom argument for
each one. Without loss of generality, C = 1. Given
C∆̄, ∆̄, d, α, p1 such that 0 < d < 1; 2∆̄2α ≥ 1;

C∆̄ ≥ max{3, k0, (exp (α)−1)1/d−1, exp ( (1+d)α
d2 )−1};

and for i ≥ C∆̄,
∑p1i+1
k=i k−1 ≤ c3− c2. One more con-

dition for C∆̄ is that given α, d satisfying previously
stated conditions; for i ≥ C∆̄, j ≥ (1 + i)1+d, we have

(log (i+ j)− log (i+ 1))
2 ≥ α log j. (9)

The proof of (9) is omitted as it involves only simple
but tedious calculation.

• 1 ≤ j ≤ p1i, C∆̄ ≤ i: Ignored. As η∗i,j ’s are

bounded by ∆
i+j , a wise pick of p1 such that
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log p1 ≤ c3−c2
2 prevents the series (c3 +

∑j
t=1 η

∗
i,t)

from ‘touching’ the lower bound c2. Note that
given p1, for j ≥ p1i, log (i+ j)− log (i+ 1) ≥ c4
for some c4 > 0.

• p1i ≤ j ≤ (1 + i)1+d, C∆̄ ≤ i: By the definition of
c4,

∑
i≥C∆̄

∑
(1+i)1+d≥j≥p1i

exp

(
−2∆̄2 (log (i + j)− log (i + 1))2∑j

t=1(i + t)−2

)

≤
∑
i≥C∆̄

(1 + i)
1+d

exp (−(1 + i)
1−d

2∆̄
2
c
2
4)

<∞.

• (1 + i)1+d ≤ j, C∆̄ ≤ i: Using (9), the definition
of α, and some basic algebraic calculation,

∑
i≥C∆̄

∑
j≥(1+i)1+d

exp

(
−2∆̄2 (log (i+ j)− log (i+ 1))2∑j

t=1(i+ t)−2

)

≤
∑
i≥C∆̄

∑
j≥(1+i)1+d

exp

(
−2∆̄2α log j∑j
t=1(i+ t)−2

)

≤
∑
i≥C∆̄

∑
j≥2

j−i <∞.

Note that for a proper choice of ∆̄, we have, on
the complement event of that in (8),

∑j
t=1 η

∗
i,t ≥

E
(∑j

t=1 η
∗
i,t

)
−∆̄ (log (i+ j)− log (i+ 1)) > 0. Com-

bining this, a proper choice of c4, we have bounded the
summation of (8) over all i, j. By the boundedness of
the summation of (8) (over i, j), (7), and the Borel-
Cantelli Lemma, we have

lim
m→∞

P (∩n≥m{ηsn ≥ c2}) = 1. (10)

By (10), the convexity of λmin, and β <∞, there exists
c1 > 0 such that (5).

Notation

For Lemmas 1 to 3 and the proof of Theorem
3, we define the following notation. Let σ(x) =

exp (x) (1 + exp (x))
−1
, x ∈ R1; β∗ stands for the

true parameters; δ(n) = s0n
−1/2 (log n)

1/2+ε
for

some s0 > 0 and arbitrary ε > 0; let Rn =

O
(

(logn)1+2ε

n

)
. β̂J,n = arg maxβ∈Θ;βi=0,i∈Jc ln(β),

where J ⊂ {1, . . . , p}, Jc = {1, . . . , p}\J . Define the
ball By(x) = {z : ‖z − x‖ ≤ y} . For ci’s, we reuse
these notations.

The following lemmas concern processes satisfying
(11). We state and prove the lemmas in context with-
out special process indexes for generality; replacing∑
n with

∑
sn

makes the lemma applicable (the dimen-
sion p = dU < ∞) to processes satisfying Condition 3
with special round indexes, {xsi}.

Lemma 2. Let the process {xi} satisfy the condition
for n ≥ n0,

λmin

(∑n
t=1 xtx

′

t

n

)
> c1, (11)

for some c1, n0 > 0. Define J to be any subset
of ⊂ J∗p = {i|β∗i 6= 0, i = 1, . . . , p} and Bn ={∥∥∥β̂J,n − β∗∥∥∥ ≤ δ(n)

}
. Then

lim
m→∞

P (∩n≥mBn) = 1, (12)

for a proper choice of s0 in δ(n).

Proof. Define Θn = Θ ∩ Bcδ(n)(β); given any vi ∈
Rp, i = 1, . . . , p with vi⊥vj if i 6= j; ‖vi‖ = 1. More-
over,

E1,n =

λmin

∑n
t=1 xtx

′
t

n

 > c1

 ,
E2,n =

{
inf

β∈Θn

p
max
i=1

1

n

∣∣∣∣∣
n∑
t=1

(
σ(x
′
tβ
∗
)− σ(x

′
tβ)

)
x
′
tvi

∣∣∣∣∣
≥ c2n

−1/2
(logn)

1/2+ε

}
,

E3,n =

{
p

max
i=1

1

n

∣∣∣∣∣
n∑
t=1

(
yt − σ(x

′
tβ
∗
)

)
x
′
tvi

∣∣∣∣∣ < c3n
−1/2

(logn)
1/2+ε

}
.

By assumption, ∑
n

P (Ec1,n) <∞. (13)

By the definition of yt’s; the boundedness of xi’s and
Θ; p < ∞; an arbitrarily small c3 > 0; and a version
of Hoeffding’s inequality, we have∑

n

P (Ec3,n|Fx) <∞, (14)

where Fx stands for the sigma field generated by the
process {xi}.

For any vi ∈ Rp, i = 1, . . . , p with vi⊥vj if i 6= j;

‖vi‖ = 1; and z ∈ Rp; we have maxpi=1

∥∥∥z′vi∥∥∥ ≥ ‖z‖
p .

Therefore there exists c4 > 0 (depending on c1) such
that on E1,n,

inf
β∈Θn

p
max
i=1

1

n

∣∣∣∣∣(β − β∗)′
n∑
t=1

xtx
′

tvi

∣∣∣∣∣ ≥ c4n−1/2(log n)1/2+ε.

(15)
By (15); the boundedness of xi and Θ;

σ(x
′

tβ
∗)− σ(x

′

tβ) =
σ(x

′

tβc)

1 + σ(x
′
tβc)

x
′

t(β − β∗)

for some βc ∈ B‖β∗−β‖(β∗) by Taylor’s expansion; and
a proper choice of c2, s0 (start by fixing a s0 > 0;
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then pick a small enough c2. In a later usage we need
c2 > c3; it is possible since c3 > 0 is arbitrarily small
in (14)), and for all large n,

E1,n ⊂ E2,n. (16)

On E2,n ∩ E3,n,

inf
β∈Θn

p
max
i=1

1

n

∣∣∣∣∣
n∑
t=1

(
yt − σ

(
x
′

tβ
))

x
′

tvi

∣∣∣∣∣
≥ inf
β∈Θn

p
max
i=1

1

n

∣∣∣∣∣
n∑
t=1

(
σ
(
x
′

tβ
∗
)
− σ

(
x
′

tβ
))

x
′

tvi

∣∣∣∣∣
− p

max
i=1

1

n

∣∣∣∣∣
n∑
t=1

(
yt − σ

(
x
′

tβ
∗
))

x
′

tvi

∣∣∣∣∣
≥ (c2 − c3)n−1/2(log n)1/2+ε > 0.

(17)

Note that |∇ln(β)vi| =

n−1
∣∣∣∑n

t=1

(
yt − σ

(
x
′

tβ
))

x
′

tvi

∣∣∣; if it is not zero

then it is not the solution of the optimization. Hence,
by (13), (14), (16), (17), and the Borel-Cantelli
Lemma we have (12).

Lemma 3. Let {xi} be the process sat-
isfying (11), J∗p ⊂ J , and En ={∥∥∥∇ln(β̂J,n)

∥∥∥2

≤ c0n−1 (log n)
1+2ε

}
. We have

∑
n

P (Ecn) <∞ (18)

for some proper choice of c0.

Proof. Set s0 in δ(n) to that in Lemma 2. By Taylor’s
formula and the boundedness of xt’s and Θ, there ex-
ists c5 > 0 such that for all t,

sup
β∈Bδ(n)(β∗)

∣∣∣σ (x′tβ∗)− σ (x′tβ)∣∣∣ ≤ c5δ(n). (19)

Let E4,n =
{

supv:‖v‖=1 n
−1
∣∣∣∑n

t=1

(
yt − σ

(
x
′
tβ
∗
))
x
′
tvi

∣∣∣ ≤ c7δ(n)
}
.

Some algebraic manipulation, (14), a proper choice of
c7, and ∑

n

P (Ec4,n) <∞. (20)

On E4,n ∩
{∥∥∥β̂J,n − β∗∥∥∥ ≤ δ(n)

}
, by (19) and the

boundedness of xt, there exists some c6 > 0 such that

∥∥∥∇ln(β̂J,n)
∥∥∥2

=
1

n2

∥∥∥∥∥
n∑
t=1

(
yt − σ

(
x
′
tβ̂J,n

))
xt

∥∥∥∥∥
2

≤ 1

n2

∥∥∥∥∥
n∑
t=1

(
yt − σ

(
x
′
tβ
∗
))

xt

∥∥∥∥∥
2

+
1

n2
sup

β∈Bδ(n)(β∗)
2

∥∥∥∥∥
n∑
t=1

(
yt − σ

(
x
′
tβ
∗
))

xt

∥∥∥∥∥
×

∥∥∥∥∥
n∑
t=1

(
σ
(
x
′
tβ
∗
)
− σ

(
x
′
tβ
))

xt

∥∥∥∥∥
+

1

n2
sup

β∈Bδ(n)(β∗)

∥∥∥∥∥
n∑
t=1

(
σ
(
x
′
tβ
∗
)
− σ

(
x
′
tβ
))

xt

∥∥∥∥∥
2

≤ c6
(logn)1+2ε

n
.

(21)

By Lemma 2, (20), and (21), we have finished the
proof.

Proof of Theorem 3. Notation is simplified; see the
notation notice of Lemma 2, 3. Since p < ∞, es-
sentially we need (22) and (23). For p ≥ k such that
β∗k 6= 0,

lim
m→∞

P (∩n≥m {ICn(Jp − {k}) > ICn(Jp)}) = 1;

(22)
and for p ≥ k such that β∗k = 0,

lim
m→∞

P (∩n≥m {ICn(Jp − {k}) ≤ ICn(Jp)}) = 1.

(23)
Denote Jp − {k} by Jp,k. For (22), we note that
ICn(Jp−{k}) > ICn(Jp); Taylor’s formula implies for

some βc ∈ B‖β̂Jp,n−β̂Jp,k,n‖(β̂Jp,n),

Rn < ln(β̂Jp,k,n)− ln(β̂Jp,n)

= −∇ln(β̂Jp,n)
(
β̂Jp,n − β̂Jp,k,n

)
− 1

2

(
β̂Jp,n − β̂Jp,k,n

)′
∇2ln(βc)

(
β̂Jp,n − β̂Jp,k,n

)
.

(24)

The second term on the RHS of (24) can be bounded
from below. By the boundedness of xt and Θ, there
exists some C > 0 such that for all large n, on Bn ∩
E1,n,

−1

2

(
β̂Jp,n − β̂Jp,k,n

)′
∇2ln(βc)

(
β̂Jp,n − β̂Jp,k,n

)
≥ 1

2
inf
β∈Θ

λmin

(
−∇2ln (β)

) ∥∥∥β̂Jp,n − β̂Jp,k,n∥∥∥2

≥ |βk|C.
(25)
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Since ∇ln(β̂Jp,n) is a vector of zeros, (25) says

(24) is true on Bn ∩ E1,n, for all large n. (26)

To get (22), we use (26) and Lemma 1, 2.

(23) is tighter than the other; ICn(Jp−{k}) ≤ ICn(Jp)
implies

Rn ≥ ln(β̂Jp,k,n)− ln(β̂Jp,n). (27)

We need another Taylor’s expansion:

∇ln(β̂Jp,k,n)
′

= ∇ln(β̂Jp,n)
′
+∇2ln(βc)

(
β̂Jp,n − β̂Jp,k,n

)
= ∇2ln(βc)

(
β̂Jp,n − β̂Jp,k,n

)
,

(28)

for some βc ∈ B‖β̂Jp,n−β̂Jp,k,n‖(β̂Jp,n). By convexity

of ln and (28), we have that there exists some C > 0
such that for all large n, on E1,n ∩ En,

ln(β̂Jp,k,n)− ln(β̂Jp,n) ≤ ∇ln(β̂Jp,k,n)
(
β̂Jp,k,n − β̂Jp,n

)
≤
[

inf
β∈Θ

λmin

(
−∇2ln(β)

)]−1 ∥∥∥∇ln(β̂Jp,k,n)
∥∥∥2

≤ C (logn)1+2ε

n
.

(29)

By this, we have

(27) is true on E1,n ∩ En, for all large n

and a proper choice of Rn = O

(
(log n)1+2ε

n

)
.

(30)

To get (23), we use (30) and Lemma 1, 3, and the
Borel-Cantelli Lemma (note that J∗p ⊂ Jp,k in this
case).


