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1 Introduction

Labor markets in developed economies have exhibited secular trends

since the late 20th century. A particularly notable trend is job polarization

(Goos and Manning, 2007). As depicted in Figure 1, both employment and

wages have increased substantially more for occupations at the top and bot-

tom of the wage distribution. In contrast, middle-wage occupations have

seen relative declines in both employment and wages.

The primary explanation for this phenomenon focuses on a few episodes

of technological changes, often embedded in capital, which have reduced

demand for middle-wage occupations. Autor and Dorn (2013) points out

the rise of computers that substitute routine tasks, and Acemoglu and Re-

strepo (2022) investigate the role of robots that replace workers in manufac-

turing industries. However, robots and computers account for a small frac-

tion of capital expenditure, with 0.7% and 3% of equipment expenditures

in 2019, respectively.1 Thus, a wider range of capital needs to be covered to

capture the innovation embodied in capital more precisely.

This paper constructs a measure of capital-embodied innovation (CEI)

across a comprehensive set of capital goods at the occupation level and

examines its heterogeneous effects across different occupations. We first

group the capital goods at the occupation level from O*NET into two types

based on their similarity with the occupational tasks. If capital performs

a function similar to the tasks of an occupation, the capital is classified as

task-similar for the occupation. If the function of capital is different from

1The computer expenditure share is from BEA fixed assets, and the robot share is from
the 2019 Annual Capital Expenditure Survey of the Census Bureau. Even when combined
with related equipment, such as mainframe and storage devices, computer-related equip-
ment makes up 9.7% of total investments.
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Figure 1: Job Polarization in the U.S.
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Notes: This figure plots log employment and wage changes between 1980
and 2015 over the wage in 1980 at the occupation level. The changes are
fitted by cubic spline functions with five knots. Data source: IPUMS-USA
(employment), IPUMS-CPS (wage)

occupational tasks but still is used by occupations, the capital is called task-

dissimilar. This classification is made with text similarities between the de-

scription of capital goods from Wikipedia and occupational task descrip-

tions from O*NET. Then, CEI is measured at the occupation level separately

for different capital types by matching patents with capital goods based on

text similarities between abstracts of patents and Wikipedia articles on cap-

ital goods. With this measure, we estimate the effect of CEI on labor market

changes across occupations in a structural model of occupational labor de-

mand.

Our approach complements recent work by Caunedo et al. (2023). While

Caunedo et al. (2023) examine the impact of capital-embodied technical

changes measured with capital prices at the occupation level, we measure

innovation directly from patent data. This divergence is important for two

reasons. First, changes in capital prices can stem from innovation but also
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from different factors including trade or shifts in market structure. Isolat-

ing technological factors behind these price changes is important for evalu-

ations of R&D policies. Second, new technologies also change the produc-

tivity of capital in production and demand for occupational services. Our

measure captures the effect of CEI on the demand for capital and occupa-

tional services even when capital prices are fixed.

Similar to this paper, Kogan et al. (2023) and Autor et al. (2024) esti-

mate innovation at the occupation level by matching patents with the tasks

of occupations, distinguishing between labor-saving and labor-augmenting

innovations. While they focus on patents closely related to occupations’

tasks or micro-titles, our analysis extends this scope by also accounting for

innovation in capital goods that, although not directly related to occupa-

tional tasks, are still used by these occupations. Our findings indicate that

55% of innovation occurs in such capital goods, particularly those used by

high-wage occupations, which significantly contributes to increased wages

and employment in these occupations. Also, our analysis captures price

changes of capital goods that are not driven by innovation.

We begin by building a general equilibrium model, wherein occupa-

tional service is produced using task-similar and task-dissimilar capital along-

side occupational labor. The two types of capital are allowed to have differ-

ent elasticities of substitution with labor. Depending on the relative mag-

nitude of the elasticity of substitution, changes in cost efficiency of capi-

tal can either increase or decrease the demand for labor at the occupation

level.

The parameters of this model are estimated in a simultaneous equa-

tion system derived from the first-order conditions of cost minimization for
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occupational service production. We devise shift-share instruments from

academic publications and immigration shocks from Latin American coun-

tries to identify the elasticity of substitution and the effect of CEI. Exoge-

nous shifts in academic publications that patents cite lower the cost of new

patents, while exogenous shifts in Latin American immigrants increase la-

bor supply disproportionately more in occupations in which the immigrants

have a comparative advantage.

The results indicate that the elasticity of substitution between labor and

task-similar capital is higher than the elasticity of substitution between oc-

cupational services. On the other hand, the elasticity of substitution be-

tween labor and task-dissimilar capital is lower than the elasticity of sub-

stitution across different occupational services. These results suggest that

while lower user costs of task-similar capital reduce occupational labor de-

mand, lower user costs of task-dissimilar capital raise it. In our framework,

CEI affects occupational labor demand in three ways. First, CEI reduces the

user costs of capital. Also, CEI changes the productivity of capital even with

constant user costs. Lastly, CEI has an impact on the demand for occupa-

tional services. Overall, CEI on task-similar capital decreases occupational

labor demand, while CEI on task-dissimilar capital increases demand.

We find that, between 1980 and 2015, occupations were heterogeneously

exposed to CEI. First, CEI was heterogeneous across occupations. CEI on

task-dissimilar capital (CEI-d) was biased toward high-wage occupations,

whereas CEI on task-similar capital (CEI-s) was biased toward low-wage

occupations. Second, occupations were differently affected by CEI depend-

ing on their capital intensity. Middle-wage occupations became relatively

more intensive in task-similar capital compared to high- and low-wage oc-
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cupations, while high-wage occupations became more intensive in task-

dissimilar capital. At the same time, non-abstract and routine occupations

had more CEI-s but less CEI-d. These occupations also had faster growth

in the intensity of task-similar capital but slower growth in the intensity of

task-dissimilar capital.

We run a counterfactual equilibrium of the estimated model with patent

measures fixed at their levels in 1980. Our results indicate the role of CEI in

reallocating labor demand toward high-wage, abstract, and non-routine oc-

cupations. CEI contributes to 42–51% of the difference in log wage changes

between high-wage (fifth quintile) and middle-wage (second, third, and

fourth quintiles combined) occupations. As for employment, CEI contributes

to 2–8% of the difference between high- and middle-wage occupations. For

task-biased labor market changes, CEI contributes to 83–94% of wage growth

and 10–18% of employment growth favoring abstract occupations. Like-

wise, CEI produces 71–84% and 7–25% of the bias against routine occupa-

tions in wage and employment growth, respectively.

Related Literature

This paper first contributes to the literature on the sources of job polar-

ization (e.g., Acemoglu, 1999; Autor et al., 2006; Goos and Manning, 2007;

Lee and Shin, 2017; Bárany and Siegel, 2018; Keller and Utar, 2023). In par-

ticular, many papers, including Autor and Dorn (2013), Goos et al. (2014),

Michaels et al. (2014), and Acemoglu and Restrepo (2022), study technical

changes in specific capital goods such as computers, information technol-

ogy equipment, and robots. They find that these changes have reduced the

demand for middle-wage occupations, and thereby contributed to job po-
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larization. Our research extends this body of work by developing a measure

of innovation for a comprehensive range of capital goods at the occupa-

tional level. Our findings highlight the significant impact of innovation in

broad types of capital goods that led to labor market changes.

Second, this paper contributes to a broader literature that studies the

complementarity between capital and worker skills (Griliches, 1969; Goldin

and Katz, 2008; Hornstein et al., 2005). Most papers assume that workers

from different skill groups have different elasticities of substitution with

capital, and the magnitude of elasticity determines how labor demand for a

worker group responds to capital accumulation, (Krusell et al., 2000; Berlingieri

et al., 2022; Caunedo et al., 2023). Our analysis categorizes capital goods

into two types and allows these types to have different elasticities of sub-

stitution with labor. This feature allows us to capture a rich heterogeneity

of complementarity between capital and labor with only two elasticities of

substitution.

Lastly, this paper is related to a growing literature that applies textual

analysis on patent data to measure innovation (Argente et al., 2023; Deche-

zleprêtre et al., 2020; Zhestkova, 2021; Bloom et al., 2021; Kelly et al., 2021;

Mann and Püttmann, 2023). Existing papers match patents similar to task

descriptions of occupations to measure exposure to new technologies. Webb

(2019) matches occupations with technologies on artificial intelligence and

robots while Kogan et al. (2023) include a broader set of new technologies

for matching. Autor et al. (2024) categorize labor-augmenting and labor-

saving technologies by matching patents with micro titles and tasks of oc-

cupations. Unlike these papers, we use ‘Tools Used’ data from O*NET to

match patents with capital goods used by occupations. By doing so, our
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innovation measure also includes new technologies that are not similar to

occupational tasks but utilized by occupational workers in the form of capi-

tal. Our results indicate that these technologies also reallocate labor demand

across occupations and are quantitatively as important as new technologies

similar to occupational tasks.

The remainder of the paper is organized as follows. Section 2 outlines

the empirical framework. Section 3 describes the data used for the analy-

sis and the procedure to construct CEI measures. Section 4 discusses the

estimation strategy and results. Section 5 presents the results from counter-

factual exercises. Section 6 concludes.

2 Empirical Framework

2.1 Overview

The economy is static and consists of firms and workers. Final goods are

produced with industrial outputs. A representative firm in each industry

combines occupational services to make industrial outputs. Occupational

services are produced with labor and capital, where capital is a bundle of

individual capital goods. For example, an aerospace company integrates

tasks from aerospace engineers, engine mechanics, and janitors to produce

its industrial output. Production of occupational services associated with

engine mechanics requires not only engine mechanics but also services from

capital bundles comprised of pressure indicators and wire cutters.

Two types of capital enter the production of occupational services. First,

task-similar capital performs similar functions as occupational tasks. In
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contrast, task-dissimilar capital fulfills functions that are distinct from oc-

cupational tasks but are essential to producing occupational services. One

capital good can be task-similar for one occupation but task-dissimilar for

another. For instance, for engine mechanics involved in engine mainte-

nance, an engine test stand is considered a task-similar capital good. How-

ever, for aerospace engineers designing new aircraft, the same engine test

stand is viewed as a task-dissimilar capital good. We allow different capital

bundles of these two types of capital goods to have different elasticities of

substitution with labor.

Capital bundles are supplied elastically at the user costs determined by

CEI below. Different occupations work with capital bundles with different

compositions of capital goods. Also, each industry requires a different com-

position of capital goods for a given occupation. Thus, the composition and

the user costs of capital bundles vary by both occupation and industry.

The labor market is distinguished by occupations but not by industries.

Thus, the wage is set at the occupation level, and workers are indifferent

across industries within an occupation. Workers select the occupation that

offers them the highest utility, considering both wages and individual pref-

erences. Firms in each industry hire workers of different occupations. The

equilibrium occupational wages clear all occupational labor markets.

In this economy, CEI shifts occupational labor demand in three chan-

nels. First, CEI affects the user costs of capital. Second, beyond the user

costs, CEI influences the productivity of capital in the production function.

This happens when CEI changes the management and storage costs and the

range of capital usage in occupational service production. Lastly, CEI di-

rectly shifts the relative demand for occupational services. The innovation
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might change how occupational services are used in industrial production

even when the costs and productivity of capital are fixed. The third chan-

nel also accounts for a potential misspecification of the production func-

tion.

2.2 Capital Bundles

Competitive capital producers combine capital goods to make occupa-

tion and industry specific bundles of task-similar and task-dissimilar capi-

tal. Different capital goods are combined to produce capital bundles, kjio,

of capital type j ∈ {s, d}, s for task-similar capital and d for task-dissimilar

capital, to be used by occupation o in the industry i as follows:

kjio = Ajiof(xjio1, · · · , xjioN) ,

where Ajio is the factor-neutral productivity of capital bundle production,

xjion is the quantity of capital goods, and f(·) is an aggregator, which is a

constant return to scale.

The user cost of the capital bundle is given by the zero profit condi-

tion:
rjio =

∑
n∈Njo

λk
in

xjion

kjio
, (1)

where λk
in is the user cost of capital good n in industry i, and Njo is a set

of capital goods that are categorized as group j for occupation o. Notice

that this condition holds whenever the production of a capital bundle has

a constant return to scale, the zero-profit condition holds, and xjion/kjio is

the share of capital categories. In our case, we set these shares at fixed-cost

capital stocks.
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To simplify the aggregation, we assume that there exists a technology

base index that determines Ajio, the factor-neutral productivity of capital

bundle production. The technology base for the capital bundle is an expenditure-

weighted average of the knowledge bases for individual capital goods.

Pjio =
∑
n∈Njo

λk
ioxjion

rjiokjio
#Patentn =

∑
n∈Njo

κjion#Patentn , (2)

where #Patentn is a measure of the capital-embodied knowledge base for

capital good n and defined as the average number of patents applied to

capital good n in Section 3.3. From now on, a change in technology base

index Pjio is defined as CEI-j for j ∈ {s, d}. CEI shifts the user costs of

capital bundles, rjio, as implied by the following equation.

log rjio = −γj1 logPjio + logωjio1, (3)

where ωjio1 is the component of user costs of capital that are not explained

by CEI. γj1 is positive when prices of capital goods decrease with CEI-j,

thereby reducing the user cost of capital. On the other hand, γj1 can also be

negative if depreciation rates for existing capital rise with CEI, increasing

the user costs. For example, innovation in computer technology could have

lowered the cost of computations. However, the value of existing computer

stocks could depreciate more rapidly due to this innovation.
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2.3 Labor Demand

Aggregate output Y is a Cobb-Douglas composite of industrial out-

puts.

Y =
∏
i

Y αi
i .

Industrial output in sector i, Yi aggregates occupational services with a con-

stant elasticity of substitution, σ.

Yi =

(∑
o

µioy
σ−1
σ

io

) σ
σ−1

,

where µio is the occupation demand shifter for industry i, occupation o. Oc-

cupational service yio is produced with capital and labor as in the following

equation.

yio =

(
a

ρd−1

ρd
dio k

ρd−1

ρd
dio +Θ

ρd−1

ρd
io

) ρd
ρd−1

, (4)

Θio ≡
(
a

ρs−1
ρs

sio k
ρs−1
ρs

sio + l
ρs−1
ρs

io

) ρs
ρs−1

. (5)

In this equation, kdio denotes task-dissimilar capital with its productivity,

adio, and ksio is task-similar capital with its productivity, asio. lio refers to

the labor in sector i and occupation o. ρs and ρd are the elasticity of sub-

stitution of labor with task-similar and task-dissimilar capital, respectively.

As in Krusell et al. (2000), the nested CES structure allows different sub-

stitutability between production inputs. This nested CES structure implies

that the elasticity of substitution between task-dissimilar capital and task-

substituting capital is also ρd.
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A representative firm of industry i chooses labor and capital inputs to

minimize the production costs given the user costs of task-similar and task-

dissimilar capital, rsio and rdio, and the occupational wage wo. The first-

order conditions are described as the following equations.

rsio
wo

= a
ρs−1
ρs

sio

(
ksio
lio

)− 1
ρs

, (6)

rdio
wo

=

(
a

ρs−1
ρs

sio k
ρs−1
ρs

sio + l
ρs−1
ρs

io

) ρs−ρd
(ρs−1)ρd

a
ρd−1

ρd
dio k

− 1
ρd

dio l
1
ρs
io , (7)

wo

wp

=
µio

µip

(
yio
yip

)− 1
σ
+ 1

ρd

(
a

ρs−1
ρs

sio k
ρs−1
ρs

sio + l
ρs−1
ρs

io

) ρd−ρs
(ρs−1)ρd

(
z

ρs−1
ρs

sip k
ρs−1
ρs

sip + l
ρs−1
ρs

ip

) ρd−ρs
(ρs−1)ρd

(
lio
lip

)− 1
ρs

. (8)

Combining these three equations, we get the following equation that gov-

erns the relative labor demand within industry i.

wo

wp

=
µio

µip

(
ỹio
ỹip

)− 1
σ
+ 1

ρd Θ̃
ρd−ρs
ρsρd

io

Θ̃
ρd−ρs
ρsρd

ip

(
lio
lip

)− 1
σ

. (9)

In this equation, Θ̃io = Θio/lio and ỹio = yio/lio are defined as the labor

efficiencies for the inner and the outer composites of occupational service

production. After imposing the first order conditions, they can be expressed

as follows.

Θ̃io =

(
aρs−1
sio

(
rsio
wo

)1−ρs

+ 1

) ρs
ρs−1

, (10)

ỹio = Θ̃
ρs−ρd

ρs
io

(
aρd−1
dio

(
rdio
wo

)1−ρd

+ Θ̃
ρd−1

ρs
io

) ρd
ρd−1

.

12



Θ̃io and ỹio decrease unambiguously with rsio and rdio, respectively. In other

words, lower user costs of capital increase the labor efficiency for the inner

and outer composites of occupational service production. Similarly, higher

asio and adio raise Θ̃io and ỹio.

Equation (9) shows that the relative magnitudes of the elasticities of sub-

stitution shape how capital-embodied changes affect labor demand across

occupations, consistent with Caunedo et al. (2023). A decrease in user costs

of task-dissimilar capital increases ỹio and raises demand for occupational

services through scale effects. If σ > ρd, the demand increases more elasti-

cally than the substitution toward task-dissimilar capital, increasing relative

labor demand through substitution effects.

Likewise, if ρs > σ, substitution toward task-similar capital is stronger

than an overall demand increase for occupational services. An increase in

Θ̃io from lower user costs of task-similar capital raises both ỹio and Θ̃io. Since

d log ỹio/d log Θ̃io < 1, ρs > σ implies that lower user costs of task-similar

capital reduce the relative labor demand.

In this framework, we also allow the CEI to directly affect the produc-

tivity of capital and demand for occupational services. For simplicity, we

assume that the same technology base in Equation (2), Pjio, determines the

productivity of the capital, ajio, and the demand shifter, µio, as in the follow-

ing equations.

log ajio = γj2 logPjio + logωjio2 , (11)

log µio = γs3 logPsio + γd3 logPdio + logωio3 , (12)

where ωjio2 and ωio3 are the residual components of the capital productivity
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and occupation demand shifters, respectively. Positive γj2 implies that the

productivity of the capital increases with CEI-j, even after its effect on user

costs. However, the productivity of the capital can also decrease with CEI

if more advanced capital raises maintenance costs. Likewise, positive γj3

means that industrial production depends more on the occupational service

with a higher degree of CEI-j.

To capture the effects of CEI-s and CEI-d on labor demand across occu-

pations, combine Equations (3), (10), and (11) and express Θ̃io and ỹio as in

the following equations.

Θ̃io =

(
P

γ̃s(ρs−1)
sio

(
ω̃sio

wo

)1−ρs

+ 1

) ρs
ρs−1

, (13)

ỹio = Θ̃
ρs−ρd

ρs
io

(
P

γd(ρd−1)
dio

(
ωdio

wo

)1−ρd

+ Θ̃
ρd−1

ρs
io

) ρd
ρd−1

.

In this equation, γ̃j = γj1 + γj2 and ω̃jio = ωjio1 − ωjio2 for j ∈ {s, d}. γ̃j > 0

implies that the user cost of capital per productivity unit is cheaper with

more CEI-j. Then, Θ̃io and ỹio increase in Psio and Pdio, respectively. If we

further assume ρs > σ > ρd, then cheaper user costs per productivity unit

of task-similar capital associated with CEI-s reduce relative labor demand

for occupation o within industry i. On the other hand, CEI-d raises labor

demand.

2.4 Labor Supply and Equilibrium

The labor supply side is modeled with a standard structure of occu-

pation choice. L number of ex-ante homogeneous workers are indexed by

n ∈ [0,L]. Worker n observes the wage of each occupation determined in the
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market, wo, occupation-specific utility ξo, and idiosyncratic utility realized

for each occupation νno. The worker chooses an occupation that gives the

highest utility. Importantly, all workers receive the same wage and utility

for any given occupation. Consequently, once they choose an occupation,

they are indifferent across industries. The occupation choice problem can

be written as follows:

o∗ = argmax
o

{logwo + log ξo + νno} .

Assuming that νno follows an i.i.d. Type 1 Extreme Value Distribution with

scale parameter 1/β, the following iso-elastic labor supply function is de-

rived.

Lo

L
=

exp(β logwo + βξo)∑
p exp(β logwp + βξp)

. (14)

The labor market equilibrium consists of occupational wages that equate the

labor supply to the labor demand, which consists of industry-level demands

for each occupation.

3 Data and Measurement

3.1 Data

The “Tools Used” data from O*NET serves as our primary reference for

identifying the capital goods each occupation works with.2 O*NET com-

piles a comprehensive list of machines or equipment vital for occupational
2This study uses version 25.0, which was updated in August 2020. Given that O*NET

started offering ”Tools Used” data in 2015, we are unable to assess the time series variation
in the composition of capital goods.
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roles (Dierdorff et al., 2006). To illustrate, security managers use capital

goods such as security control systems, alarm systems, and video monitors.

The data encompasses 4,180 distinct capital goods used by 775 occupations.

Notably, each capital good is associated with a title and a corresponding

United Nations Standard Products and Services Code (UNSPSC).

To measure innovation on these capital goods, we use patent data from

the United States Patent and Trademark Office (USPTO).3 This dataset in-

cludes the entire patents registered in the U.S. spanning from 1970 to 2015.

The exercise uses the application year, title, and abstract of patents. The ap-

plication year is used instead of the grant year since it is closer to the actual

innovation year. Design patents are excluded to focus on quality improve-

ment. In the end, we have 6.1 million utility and plant patents.

For occupational employment at the industry level in 1980 and 2015,

we use the microdata from the Decennial Census of 1980 and the Ameri-

can Community Survey (ACS) from 2015 to 2019 for observations in 1980

and 2015, respectively. The data is downloaded from the Integrated Pub-

lic Use Microdata Series (IPUMS). The ACS samples from multiple surveys

are used to increase the size of the samples in each occupation by industry.

Employment is measured by the number of workers with the occupation

and the industry code. Each observation is used with sampling weights

from the Census Bureau. The Decennial Census and the ACS are also used

to construct immigrant supply instruments in Section 4. Our analysis uses

prime-aged workers between the ages of 25 and 54.

Occupational wages are sourced from the microdata for the Annual So-

cial and Economic Supplement of the Current Population Survey. The wage

3Bulk file is downloaded through patentsview.org.
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is measured with the average weekly wage earnings and computed as the

annual labor income divided by the number of weeks worked. Observa-

tions in 1980–1984 and 2015–2019 are used to calculate wages in 1980 and

2015, respectively.4

To account for heterogeneous labor productivity across workers with

different observable characteristics, we residualize wages using the Mince-

rian regression, controlling for age (each age enters as dummies), education

level, race, and year fixed effects as in Berlingieri et al. (2022). For this re-

gression, we only consider full-time male workers who worked 40 weeks

or more in the preceding year. Samples with zero or missing information

on individual characteristics are excluded. Furthermore, observations with

a nominal hourly wage below 50% of the federal minimum wage for the

given year are omitted.

The occupation and industry codes are harmonized using the OCC1990

and the IND1990 variables provided by the IPUMS. The 2010 Standard Oc-

cupational Classification Code (SOC Code) on O*NET data is mapped to

the OCC1990 variable using correspondence between the OCC1990 and the

2010 SOC Code variables in the ACS 2012-2018. Likewise, the IND1990 vari-

able is converted to the NAICS code using the correspondence between the

IND1990 and the NAICS in the ACS. Then, the NAICS in the ACS is aggre-

gated to the 63 NAICS industries in National Income and Product Accounts

(NIPA) by the Bureau of Economic Analysis (BEA).

For capital stocks and user costs of capital at the occupation and indus-

4The CPS-ASEC is not used to measure employment at the occupation and industry
level because of its small sample size. The wage variables from the ACS and Decennial
Census are not used because the wage variables last year are measured without informa-
tion on the occupation of the last year.
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try level, we use fixed-cost capital estimates from the BEA. These estimates

are measured in the 2012 US dollar at the industry and the NIPA capital

category level. Depreciation rates are computed by the ratio of current-cost

capital depreciation to the current-cost capital stock. The stock of each cat-

egory is prorated with an intensity-weighted number of workers in each

occupation. Then, we follow the imputation procedure of Caunedo et al.

(2023) to calculate a quantity index of capital bundles at the occupation and

industry level for each capital type. The user costs of capital bundles are

derived from a series of user costs at the level of capital goods with the

zero-profit condition in Equation (1). The final index of capital bundles

is measured as a chained index from the base year, 1980, and the average

growth rate of NIPA capital categories weighted by the expenditure share.

For details on the imputation process, see Appendix B.

3.2 Classifying Capital Goods: Task-Dissimilar versus Task-

Similar

For each occupation, we categorize capital goods into two categories:

task-similar capital and task-dissimilar capital. The capital whose function

closely aligns with the tasks of an occupation is categorized as task-similar.

In contrast, the capital used by an occupation whose function does not mir-

ror the occupational tasks is labeled as task-dissimilar. One capital good

may be task-similar for one occupation and task-dissimilar for another, re-

flecting the diverse nature of tasks across different occupations. At this

point, we only allow different degrees of substitution elasticity between the

two types of capital and labor and do not presuppose these relationships

with occupational labor demand before the estimation.
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Existing literature that matches occupations with patents based on text

similarity (e.g., Webb, 2019; Kogan et al., 2023) often finds a strong labor-

displacement effect of innovations. Our classification is motivated by the

negative effect of new technologies performing similar tasks to those of oc-

cupations. If new technologies are used by workers in an occupation, new

technologies may have different effects. The occupation-level list of capital

goods provided by O*NET becomes a useful intermediary to identify which

occupations use new technologies.

Specifically, the classification exploits the degree of text similarity be-

tween the tasks associated with an occupation and the descriptions of cap-

ital goods. We use “Task Statements” data from O*NET for occupational

tasks.5 For example, a security manager has tasks such as “Respond to

medical emergencies, bomb threats, fire alarms, or intrusion alarms, follow-

ing emergency response procedures.” For descriptions of capital, we use

Wikipedia articles, which offer product-level descriptions for text analysis

(Argente et al., 2023). Utilizing the Wikipedia Application Programming

Interface (API), we locate Wikipedia pages for 1,825 among 4,180 capital

goods listed.6

We then compute text similarity between Wikipedia articles of capital

goods and occupational tasks by counting the common words. A standard

5Version of 25.0, updated in August 2020, is used. On average, each occupation lists 23
tasks.

6We use the wikipediaapi package in Python, accessible at https://pypi.org/
project/wikipedia/. The data was downloaded on 02/28/2021. Appendix Table A1
details the proportion of tools found in Wikipedia, categorized by their NIPA category.
Tools related to electronics, furniture, and machinery are more frequently found, whereas
those pertaining to mining, medical equipment, and aircraft are less common. For our
analysis, tools without a corresponding Wikipedia page are excluded, and we calculate
similarities based on the average of the remaining tools.
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procedure from the natural language processing literature is used to pre-

pare the texts for our analysis. First, we remove stopwords, words that

are insignificant in delivering the content. For example, “is,” “where,” and

“have” are classified as stopwords. Removing them prevents erroneous

matches between two texts solely based on shared functional words rather

than substantive content. Then, words are lemmatized to standardize word

forms.7 For example, “generating” or “generated” is changed to “generate.”

This step ensures that words with analogous meanings, though in different

forms, align appropriately.

Next, we calculate the pairwise similarity between tasks and capital

goods. Specifically, each text is vectorized to compute cosine similarity,

which quantifies the share of overlapped words between two texts. Words

are weighted by the frequency-inverse document frequency (TF-IDF). The

weight of words i in document j, represented as ωij , is defined as follows:

ωij = TFij · IDFi , TFij =
fij∑
i fij

, IDFi = log

(
J∑

j 1{i ∈ j}

)
,

where J is the number of total documents. Therefore, IDFij increases when

the word appears frequently within the document but decreases when it is

common across other documents. This transformation helps us to match

two texts that have meaningful common words. The resulting similarity

score ranges from 0 to 1 by construction. A score of 0 indicates no shared

words, while a score of 1 demonstrates identical texts.

After constructing similarity scores for each capital goods and task, we

aggregate the similarities to the capital-occupation level. Given that each

7The spacy package in Python is used from https://spacy.io/.
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Figure 2: Distribution of Similarity of Capital-Occupation Pairs
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Notes. This figure plots the density of text similarity between capital goods
and occupation tasks. The text similarity between the description of capital
goods and each task of occupation is calculated and aggregated at the capital-
occupation level.

occupation encompasses multiple tasks, it has multiple similarities with

each capital good. We compute the unweighted average of these similar-

ities across tasks to obtain similarities at the capital-occupation level.

Figure 2 shows the distribution of similarity between capital goods and

occupations. The distribution is right-skewed, indicating many capital-

occupation pairs do not have many overlapping words. A capital good is

considered task-similar to the occupation if the similarity exceeds the 90th

percentile; all other capital goods are classified as task-dissimilar.8 Figure

2 also presents several examples of capital-occupation pairs. In this graph,

8The reduced-form results using different threshold can be found in Appendix D.
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glass cutter is task-similar for glaziers but task-dissimilar capital for craft

artists. Likewise, sewing machine is task-similar capital for tailors but task-

dissimilar for designers.

Table 1 shows capital intensity among various groups of occupations.

Capital intensity is the average capital stock per employee, where the capi-

tal stock is measured following Caunedo et al. (2023) as in Appendix B. As

shown in Panel A, the intensity of task-similar capital was the highest for

middle-wage occupations in 2015, whereas the intensity of task-dissimilar

capital was the highest for high-wage occupations. Panel B and C sort oc-

cupations based on their abstract and routine scores from Autor and Dorn

(2013). In Panel B, abstract occupations had the lowest intensity of task-

similar capital but the highest intensity of task-dissimilar capital. Con-

versely, Panel C indicates that routine occupations recorded high intensities

for both task-similar and task-dissimilar capital.

3.3 Measuring Capital-Embodied Innovation

Capital-embodied innovation is measured by matching patents to capi-

tal goods. To do so, we calculate text similarities between patents and cap-

ital goods, following a procedure similar to the previous section. Patents

are assigned to a capital good if the similarity score of patent titles and

abstracts to occupational tasks exceeds the 90th percentile across patent-

capital pairs.9 Based on the similarity scores, some patents may not be

relevant to any capital goods, whereas others may be matched with mul-

tiple capital goods. We constrain the matching such that a single patent

9The reduced form exercises are conducted with various thresholds, but the result
roughly stays the same.
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Table 1: Capital Intensity over Occupations

Similar Dissimilar

1Q 2Q-4Q 5Q 1Q 2Q-4Q 5Q

Panel A. Across Wage in 1980

1980 8.14 7.43 7.99 25.22 26.48 21.26
2015 12.05 16.29 16.19 49.32 90.56 122.31

Panel B. Across Abstract Score

1980 16.27 7.44 1.32 24.63 27.65 17.31
2015 28.21 14.97 5.16 59.61 88.92 113.61

Panel C. Across Routine Score

1980 1.48 10.47 5.62 5.68 28.63 41.24
2015 3.00 19.31 17.64 37.02 101.22 122.30

Notes. This table presents the capital intensity for task-similar and task-
dissimilar capital across occupations segmented into three groups. Capital
intensity is defined as the average capital stock per employee, with values ex-
pressed in thousands of 2012 dollars. Panel A sorts occupations by their aver-
age wages in 1980, Panel B by abstract scores, and Panel C by routine scores.
The columns labeled 1Q and 5Q correspond to occupations in the first and
fifth quintiles, respectively, whereas the 2Q-4Q columns encompass occupa-
tions within the second to fourth quintiles.

can connect to, at most, five capital goods. As a result, 27% of patents are

matched with at least one capital good. Appendix Table A2 shows the share

of patents that matched at least one capital good across patent classes and

periods. Appendix Figure A1 shows an example of the matching between

patent and capital good.

Next, the number of patents across capital goods is aggregated at the

occupation level. Note that each occupation uses multiple capital goods,

which are classified into two groups: task-similar and task-dissimilar. We

take the unweighted average over capital goods within each NIPA capital

category for each occupation, industry, and capital group. Then, the average
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Table 2: Summary Statistics of Patents Matched with Capital Goods

Similar Dissimilar

Mean SD. Mean SD. N

1970 – 1980 43.1 91.5 44.7 69.9 15,902
1980 – 1990 90.3 174.3 93.5 130.1 15,902
1990 – 2000 134.2 260.1 166.1 217.7 15,902
2000 – 2015 417.7 805.7 540.2 637.3 15,902

Notes. This table displays the summary statistics of patents matched with
task-dissimilar and task-similar capital goods aggregated at the occupation-
industry level. We take the average number of patents, weighted by capital
expenditure share in each period.

number of patents is calculated across the NIPA categories, each category

weighted by capital expenditure share in each period.10 By taking averages

across capital goods and then capital categories, our CEI measures do not

reflect the variety of capital goods within capital categories and the number

of capital categories within capital bundles.

Table 2 presents the summary statistics for the average number of patents

on capital at the occupation and industry level. The number of patents

has increased over time but with different degrees across occupations. Ini-

tially, the number of patents was comparable between task-similar and task-

dissimilar capital. However, over time, task-dissimilar capital experienced

faster growth in patents than task-similar capital, suggesting that more patents

are made on capital goods used as task-dissimilar capital.

10We use capital expenditure at the occupation-industry-category level. Capital goods
in UNSPSC codes are mapped to NIPA capital categories following crosswalks made in
Caunedo et al. (2023).
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Table 3: CEI Measure over the Wage in 1980

Similar Dissimilar

1Q 2Q-4Q 5Q 1Q 2Q-4Q 5Q

Panel A. Across Wage in 1980

2.22 1.58 1.76 2.91 3.24 3.69
Panel B. Across Abstract Score

2.49 1.44 1.86 2.80 3.31 3.63
Panel C. Across Routine Score

1.06 2.05 1.56 3.55 3.25 2.96

Notes. This table presents the employment-weighted averages of CEI across
three bins of occupations. Panel A categorizes occupations based on their av-
erage wages in 1980, Panel B uses the abstract score, and Panel C employs the
routine score. The CEI is defined in Equation (15). The columns labeled 1Q
and 5Q represent the occupations in the first and fifth quintiles, respectively,
while the columns under 2Q-4Q cover occupations within the second to fourth
quintiles.

Finally, our measure of CEI is the following:

CEI-jio ≡ log

(∑
n∈Njo

κjion,1970−2015 · # Patentn,1970−2015∑
n∈Njo

κjion,1970−1980 · # Patentn,1970−1980

)
, j ∈ {s, d}.

(15)

In this equation,Njo represents the set of type j capital goods used by occu-

pation o, and κjion indicates the capital expenditure share of capital good n

within type j of industry i and occupation o. # Patentn,t refers to the num-

ber of patents corresponding to capital n in period t. Note that CEI can vary

across industries within an occupation due to differences in expenditure

shares of capital categories.

Table 3 displays CEI across various occupational groups. Panel A sorts

occupations by their average wages in 1980, showing that CEI-s was the
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highest for low-wage occupations, while CEI-d was the highest for high-

wage occupations. This suggests that the innovation on task-dissimilar cap-

ital was biased toward high-wage occupations. Panel B categorizes occupa-

tions by their abstract task score calculated in Autor and Dorn (2013), and

shows that abstract occupations experienced modest CEI-s but the highest

CEI-d. Finally, when occupations are arranged by the routine task score, oc-

cupations in the lowest quintile experienced the lowest CEI-s but the high-

est CEI-d. Thus, CEI-s was biased towards low-wage, non-abstract, and

routine occupations, while CEI-d was biased towards high-wage, abstract,

and non-routine occupations. Autor and Dorn (2013) hypothesize a decline

in the cost of substituting routine workers over time. Our findings align

with this hypothesis, showing that innovation in task-similar capital was

more prevalent in routine occupations.

4 Estimation

4.1 Strategy

We use the first-order conditions of the cost minimization in Section 2.3

to estimate model parameters. Specifically, Equations (6), (7), and (9) are

used to estimate the elasticities of substitution for the inner CES compos-

ite, for the outer CES composite, and across different occupational services,

respectively. The nested CES structure makes it possible to estimate param-

eters jointly in a system of linear equations. The equations can be rewritten
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as follows:
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In these equations, κs ≡ 1
ρs

, κd ≡ ρd−ρs
ρs(ρd−1)

, and κa ≡ σ−ρs
ρs(σ−1)

. Also, γ̃j2 ≡

γj2 × ρs−1
ρs

, and γ̃j3 ≡ γj3 × ρs−1
ρs

× σ
σ−1

, for j ∈ {s, d}. ω̃sio, ω̃dio, and ν̃io

are the residual demand components. γ1s and γ1d are also jointly estimated

using Equation (3). The parameters of this equation system are estimated

by Seemingly Unrelated Regression (SUR) with the model-imposed linear

constraints.

The residual demand components, ω̃sio, ω̃dio, and ν̃io, are correlated with

CEI when innovation activities respond endogenously to demand shocks.

For example, if the productivity of capital increases for the production of

occupational services, firms invest more in the technology related to the

capital. Also, with more demand for some occupational services, firms are

more incentivized to make innovations on related capital goods.

Thus, we introduce a set of instrumental variables, Zio, which include

the publication (zsio and zdio) and the immigration instruments (zLatin,G).

We argue that these instrumental variables are orthogonal to the demand

shocks conditional on controls.

Publication instruments are Bartik-style shift-share instruments that cap-

27



ture heterogeneous knowledge spillover from academic publications to patents.

More academic publications in some fields lower the cost of making new

knowledge in a patent class particularly more if the patent class cites dis-

proportionately more papers from the field. Immigration instruments cap-

ture relative changes in labor supply at the occupation level when different

ethnic groups have different comparative advantages, and the immigration

trends are different across ethnic groups. We use immigration shocks from

Latin America to construct the supply instruments. See Appendix C for

more details.

Controls include industry-fixed effects and log computer stock per worker

in 2015 and 1980 at the occupation and industry level. The industry-fixed

effects control for industry-level demand shocks. The log computer stock

captures the idea that computers affect the way workers work with capital

and thereby change the productivity of capital inputs. For instance, manu-

facturing workers can be substituted more easily with robots if computers

facilitate their control of robots. Chemical engineers benefit more from bet-

ter microscopes if computers help them analyze data.

The equations are taken with logs and then differenced between 1980

and 2015 to estimate the model parameters. We prefer this long-difference

specification because it is ambiguous when innovations represented in patents

affect capital used by firms and labor demand. In our context, log-differencing

also removes time-invariant components of measurement errors associated

with the text-matching procedure. For example, if the Wikipedia articles

about lasers are easier to match than the Wikipedia articles for computers

and the errors are multiplicatively separable and constant over time, log-

differencing the number of patents cancels out the errors. Lastly, when an
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Table 4: Parameter Estimates - First Order Conditions

ρs γs ρd γd σ

Estimate 3.302 0.272 1.650 0.282 2.679
SE (0.267) (0.030) (0.041) (0.014) (0.163)

Notes. This table shows the estimates and the standard errors of the SUR
model with Equations (16)-(18). ρs (ρd) is the elasticity of substitution between
task-similar (task-dissimilar) capital and labor. σ is the elasticity of substitution
between different occupational services. γs (γd) is the coefficient of CEI-s (-d)
on capital-labor substitution equation.

occupation does not have any task-similar capital, ∆ksio is undefined and

omitted from estimation.

4.2 Results

Tables 4 and 5 show the estimation results. In Table 4, the estimate for

σ is smaller than the estimate for ρs but larger than ρd. These estimates are

different at the 95% significance level. As discussed in Section 2.3, these

values imply that the scale effect of CEI to increase the occupational service

demand is smaller than the substitution effect between labor and capital for

task-similar capital, but the reverse is true for task-dissimilar capital. As a

result, an increase in productivity or a decrease in user cost of task-similar

capital reduces relative labor demand. On the other hand, an increase in

productivity or a decrease in user cost of task-dissimilar capital raises rela-

tive labor demand.

The elasticity of substitution between task-similar capital and labor is

3.3, whereas the elasticity between labor and task-dissimilar capital is 1.65.

These estimates fall into a marginally higher range than the estimates in

Caunedo et al. (2023). Caunedo et al. (2023) assume a single elasticity of
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substitution between capital and labor for each occupation and find out

that the elasticity ranges from 0.7 to 2.2. They use time-series variations in

birth rates and the supply of educated workers to construct the occupation-

level supply shifter. Also, as in Krusell et al. (2000), they use yearly time-

series variations to estimate the elasticity with capital. The estimation in

this paper deals with long-term adjustments in the labor market over three

decades and uses cross-sectional variations. We also construct a labor sup-

ply shifter with cross-sectional exposure to immigration from Latin Amer-

ica. Our higher estimates are likely to result from dealing with a longer time

horizon and cross-sectional variations for estimation.

The elasticity of substitution across occupational labor inputs, σ, is also

estimated at a value higher than in the literature. In Caunedo et al. (2023),

the value is calibrated at 1.3, whereas this paper estimates the value of 2.7.

This value is also larger than the estimates in Lee and Shin (2017), 0.7, and

Burstein et al. (2019), 2. The higher estimate of the elasticity between oc-

cupational services is again likely a result of the longer time horizon for

adjustments. On top of that, these papers use more aggregated levels of oc-

cupation codes. Caunedo et al. (2023) and Lee and Shin (2017) report results

with 11 occupations. Burstein et al. (2019) have variations from 30 occu-

pations. We have 291 occupations distinguished by three-digit occupation

codes from the 1990 Census.

Because user costs of capital and relative productivity of capital both

enter Equations (6) and (7), only a linear combination of γj1 and γj2 is iden-

tified in the first order conditions. Estimates of γs = γs1 + ρs−1
ρs

γs2 and

γd = γd1 +
ρd−1
ρd

γd2 are both positive. The positive estimates imply that the

production of occupational services becomes more capital-intensive with
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Table 5: Parameter Estimates - Effects of CEI

γs1 γs2 γs3 γd1 γd2 γd3

Estimate 0.836 -0.810 -0.119 0.265 0.113 0.245
SE (0.022) (0.027) (0.019) (0.013) (0.038) (0.019)

Notes. This table shows the estimates and standard errors of CEI coefficients
in Equations (3), (11), and (12). γs1 (γd1) is the coefficient of CEI-s (CEI-d) on
user costs of capital. γs2 (γd2) is the coefficient of CEI-s (CEI-d) on the relative
productivity of capital. γs3 (γd3) is the coefficient of CEI-s (CEI-d) on demand
shifter for occupational service.

CEI-s and CEI-d.

Table 5 presents the estimation results for the coefficient of CEI mea-

sures on user costs of capital, productivity of capital, and demand shifters

for occupational services. γ1
j , the effect of CEI on user cost of capital, is also

estimated in the SUR system as a separate estimation between CEI measure

and user costs of capital using publication instruments. Then, γj2 is recov-

ered from γj = γj1 +
ρj−1

ρj
γj2.

The estimates for γj1 are significantly positive and sizeable. A 1% in-

crease in CEI-s reduces the user cost of task-similar capital by 0.8%, whereas

a 1% increase in CEI-d reduces the user cost of task-dissimilar capital by

0.3%. However, the estimate for γs2 is negative, and the estimate for γd2

is positive. γs2 and γd2 govern how CEI-s and CEI-d affect capital produc-

tivity in the capital-labor substitution equations after taking their effect on

user costs into account. Thus, CEI-s reduces the productivity of task-similar

capital relative to labor inputs, whereas CEI-d raises the productivity of

task-dissimilar capital.

This negative productivity effect of CEI-s cancels out the effect of CEI-s

on the user cost. The productivity effect of CEI-s is strong enough to nullify
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most effects of CEI-s on inner labor efficiency, Θ̃io, and relative labor de-

mand in Equation (6) because γs1 + γs2 is insignificant but positive at 0.03.

On the other hand, the productivity effect of CEI-d amplifies the effect of

CEI-d on occupational labor efficiency, ỹio. Combining these results with

ρ̂s > σ̂ > ρ̂d implies that CEI-s (CEI-d) reduces (raises) relative labor de-

mand by raising labor efficiency, Θ̃io (ỹio). The estimate for γs3 is still nega-

tive although insignificant, while the estimate for γd3 is positive. These es-

timates imply that CEI-s further reduces demand for occupational services

while CEI-d raises it even after taking into account their effects on labor

efficiencies. These results are consistent with the reduced-form findings in

Appendix D.

We consider two values for the elasticity of occupational labor sup-

ply, β, 0.3 and 1. Caunedo et al. (2023) calibrates β = 0.3 at the yearly

frequency and with coarser occupational codes. Since we consider labor

supply adjustments over more than 30 decades with more detailed occu-

pational codes, the supply elasticity at 0.3 is likely to be a lower bound. To

capture the possibility that labor supply is more elastic to the wage changes,

counterfactual equilibrium with β = 1 is also derived in Section 5.

5 Counterfactuals

5.1 CEI and Labor Market Polarization

The counterfactual exercise aims to address the following question: what

happens to the labor market and the polarization measures without the con-

tribution of CEI? To address this question, a counterfactual equilibrium is

calculated with the technology base measures measures fixed at the level of
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1980. Other demand and supply shocks stay at their levels of 2015.

Table 6: Counterfactual Polarization

Wage Employment

1Q 2Q-4Q 5Q 1Q 2Q-4Q 5Q

Actual Change -0.085 -0.489 0.574 0.194 -0.656 0.462

Panel A. Varying Supply Elasticity
Without CEI (β=0.3) 0.258 -0.390 0.132 0.232 -0.663 0.431
Without CEI (β=1) 0.217 -0.419 0.202 0.287 -0.661 0.374

Panel B. Similar vs. Dissimilar CEI
Without CEI-s 0.091 -0.512 0.421 0.209 -0.669 0.460
Without CEI-d 0.132 -0.330 0.198 0.216 -0.657 0.441

Panel C. Different Channels
Without ∆ User Costs -0.121 -0.498 0.619 0.113 -0.537 0.424
Without ∆ Productivity 0.646 -0.829 0.183 0.270 -0.698 0.428
Without ∆ Occ. Demand 0.257 -0.390 0.133 0.233 -0.666 0.433

Notes. This table shows the actual and the counterfactual growth rates of wage and
employment growth of occupations grouped by their wages in 1980. The counter-
factual equilibrium fixes the CEI measures at their levels of 1980. The wage and
employment changes are subtracted from the mean and divided by the standard
deviation of occupation-level changes in each case. Columns under 1Q and 5Q
denote occupations with 1980 wage levels in the first and the fifth quintiles, re-
spectively. Columns under 2Q-4Q denote occupations between the two quintiles.
Panel A summarizes counterfactual equilibria with patent measures fixed at their
1980 level for supply elasticity β = 0.3 and β = 1. Panel B fixes patent measures of
either similar or dissimilar capital to the 1980 level. Panel C fixes patent measures
to the 1980 level only when calculating changes in user costs, capital productivity,
and occupational demand, respectively. Panels B and C assume β = 0.3.

The first row of Table 6 summarizes wage and employment changes

between 1980 and 2015 for three occupation bins grouped by their resid-

ual wages in 1980. As in Autor and Dorn (2013), employment and wage

changes at the occupation level take a U-shape form over the wage level

in 1980. High-wage occupations with their 1980 wages in the fifth quin-

tile have 0.57 and 0.46 standard deviations higher wage and employment
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growth rates than the average occupations, respectively. Low-wage occu-

pations also exhibit higher cross-sectional wage and employment growth

rates than the average. Middle-wage occupations experience lower growth

in terms of both wage and employment; the wage growth rate is lower by

0.49 standard deviations than the average, and the employment growth rate

is lower by 0.66 standard deviations than the average.

Panel A of Table 6 shows the counterfactual employment and wage

growth when the technology base, Pjio, is fixed at the level of 1980 with

different values of labor supply elasticity, β. Under the counterfactual equi-

librium without CEI, wage and employment increase less for high-wage

occupations and decrease less for middle-wage occupations. This comes

from high-wage occupations having higher CEI-d and higher intensity of

task-dissimilar capital. Although high-wage occupations have higher CEI-

s, which lowers their labor demand, the effect of CEI-d dominates.

The wage effect is larger than the effect on employment. This is due to

the calibrated value of supply elasticity β being too low to generate large

responses in employment. Between 1980 and 2014, employment changes

were more dispersed, exhibiting a standard deviation of 0.64, compared to

wage changes, which had a standard deviation of 0.11. Thus, with consid-

ered values of supply elasticity, most employment changes result from non-

wage supply shifter, ϵo. If β = 0.3, the difference between the relative wage

growth of high-wage occupations to the middle-wage ones is decreased

by 51% (=1-(0.390+0.132)/(0.489+0.574)) whereas the relative employment

growth of high-wage occupations is decreased by 2% (=1-(0.663+0.431)/(0.656+0.462)).

If β = 1, the relative growth of high-wage occupations decreases by 42% and

7.5% in terms of wage and employment, respectively. Thus, counterfactual
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equilibrium features larger employment effects and smaller wage effects if

the supply elasticity is calibrated at a higher value.

Panel B of Table 6 shows polarization measures from counterfactual

equilibrium when only one type of capital has the technology base measure

fixed at the level of 1980. Unless specified otherwise, we set the benchmark

supply elasticity at β = 0.3 following Caunedo et al. (2023) in the analyses

below.

Both CEI-s and CEI-d contribute to the growth of high-wage occupa-

tions, although the effect of CEI-d is quantitatively larger than the effect

of CEI-s. Firstly, the coefficients for CEI-d are larger in magnitude than the

CEI-s. 1% higher CEI-d increases the labor efficiency of task service produc-

tion ỹio by 0.38% (γd1 + γd2 in Table 5). On the other hand, as for CEI-s, the

labor efficiency is increased only by 0.03% (γs1 + γs2) because the negative

effect of CEI-s on productivity cancels out most effects on user costs. The

coefficient estimate of CEI-d on demand shifter (γd3) is larger in magnitude

(0.245) than the coefficient estimate of CEI-d (-0.119) in Table 5.

Panel C of Table 6 summarizes the counterfactual results when the im-

pact of CEI changes is muted for only one of the user costs of capital, pro-

ductivity, and the demand shifter in the production function at each time.

Excluding the user-cost channel moderately increases relative demand for

high-wage occupations. This is because, before being canceled out by neg-

ative productivity effects (γs2), the estimated effect of CEI-s on user costs

(γs1) is large at 0.84. Thus, high-wage occupations are substituted more

with task-similar capital when CEI-s lowers user costs.

At the same time, excluding the productivity channel raises the de-
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mand for low-wage occupations substantially while reducing the demand

for middle- and high-wage occupations. This is because low-wage occupa-

tions have lower intensity of task-similar capital and lower CEI-s. Without

the large negative productivity effect of CEI-s, task-similar capital reduces

the relative labor demand mainly in middle- and high-wage occupations.

Due to its smaller productivity effect, the role of CEI-d is limited.

The occupational demand channel has the largest effect on polarization

between middle- and high-wage occupations. Without the changes in occu-

pational demand shifters, the relative demand for high-wage occupations

decreases with their higher CEI-d despite their higher CEI-s. The increase

in the demand for middle-wage occupations is smaller than the increase for

low-wage occupations because middle-wage occupations have lower CEI-s

and higher CEI-d, all of which raise their relative labor demand.

5.2 CEI and Task-Biased Labor Market Changes

We test what task-biased labor market changes would look like with-

out CEI between 1980 and 2015 and thereby see if CEI constitutes task-

biased technical changes in Autor et al. (2003). The task bias of labor market

changes is measured in the following auxiliary regression that regresses the

wage and employment changes on the occupation-level abstract and rou-

tine task scores from Autor and Dorn (2013).

∆ log y1980−2015,o = α0 + α1 · Task Scoreo + εo. (19)

The estimates for α1 summarize the correlation between abstract and rou-

tine task scores with cross-sectional changes of wage and employment at
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Table 7: Counterfactual: Task-Biased Labor Market Changes

Abstract Routine

Wage Employment Wage Employment

Actual Change 0.471 0.195 -0.321 -0.255
Without CEI (β=0.3) 0.013 0.159 -0.050 -0.236
Without CEI (β=1) 0.079 0.097 -0.093 -0.199

Notes. This table shows the actual and the counterfactual regression coefficients of
occupation-level wage and employment growth rates on occupational task scores
from Autor and Dorn (2013) as in Equation (19). The counterfactual equilibrium
fixes the CEI measures at their levels of 1980. Columns β = 0.3 and β = 1 set the
elasticity of occupational labor supply at 0.3 and 1, respectively.

the occupation level and thus are used as a measure of task bias of labor

market changes in 1980-2015.

Table 7 shows the estimates for regression coefficients. In this period, if

an occupation has one standard deviation higher score of abstract tasks, the

occupation has 0.47 and 0.20 standard deviations higher wage and employ-

ment growth rates, respectively. The bias is smaller both for abstract and

routine task scores in the absence of CEI. In particular, abstract and rou-

tine bias in wage growth is close to zero if CEI is absent. When β = 0.3,

the model predicts that one standard deviation higher abstract (routine)

task score is associated with 0.013 (-0.051) standard deviation higher (lower)

wage growth without CEI. Put differently, CEI makes 97% (84%) of abstract-

(routine-) biased wage changes. As for employment, CEI contributes to 18

(7.5)% of abstract- (routine-) biased changes.

37



6 Conclusion

This paper develops a measure of capital-embodied innovations (CEI)

using a text-based matching between patents and descriptions of capital

goods from Wikipedia. Then, we use this measure to study the impact of

technological factors on labor market trends. Occupation-level differences

in the use of capital goods give useful cross-sectional variations to identify

the impact of CEI.

This paper also proposes an important factor that determines the re-

lationship between capital-embodied changes and occupational labor de-

mand. If capital functions similarly to the tasks of occupation, technolog-

ical changes that reduce the user costs of the capital promote substitution

towards capital and lower the labor demand. On the other hand, if capi-

tal fulfills functions different from occupational tasks but is still essential in

performing occupational tasks, technological changes in this type of capital

raise the relative labor demand for occupational labor. This distinction im-

plies that the effect of CEI depends heavily on the relationship between the

function of capital and occupational tasks.

High-wage occupations experienced higher CEI and became more capital-

intensive on task-dissimilar capital than middle-wage occupations. Coun-

terfactual analysis shows that CEI can explain 42–51% of the difference in

log wage changes between high-wage and middle-wage occupations. Sim-

ilarly, occupations with higher abstract scores experienced higher CEI on

task-dissimilar capital. Consequently, we find that CEI explains 83–94% of

the wage growth favoring abstract occupations.

With the CEI measures from patents, technological factors can be iso-
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lated from others, such as trade and outsourcing. Innovations shaped bi-

ased trends of labor market demand, which implies that innovation poli-

cies can generate biased labor market trends. As long as these policies af-

fect innovations on various capital in a different magnitude or occupations

are exposed to capital differently, innovation policies have heterogeneous

consequences across occupations. Then, a supplementary policy needs to

target more exposed occupations to reduce structural unemployment and

lower labor market inequality. The results in this paper call for continuing

research on the long-run responses of the labor market to innovation poli-

cies through CEI.
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Table A1: Share of Tools Found in Wikipedia

NIPA Description Found in Wikipedia (%)

20 Electrical transmission, distribution, and industrial apparatus 73.08%
4 Computers and peripheral equipment 69.64%

30 Furniture and fixtures 63.16%
27 Ships and boats 62.86%
40 Service industry machinery 60.00%
11 Office and accounting equipment 54.22%
29 Other equipment 53.13%
41 Electrical equipment, n.e.c. 53.10%
19 General industrial including materials handling equipment 52.03%
13 Fabricated metal products 49.62%

5 Communication equipment 48.59%
22,25 Trucks, buses, and truck trailers + autos 48.57%

14 Engines and turbines 46.81%
36 Construction machinery 44.44%
33 Agricultural machinery 42.86%

9 Nonmedical instruments 40.19%
10 Photocopy and related equipment 37.66%
18 Special industry machinery, n.e.c. 35.29%
39 Mining and oilfield machinery 31.13%
17 Metalworking machinery 30.61%
28 Railroad equipment 30.00%

6 Medical equipment and instruments 26.07%
26 Aircrafts 14.29%

A Details in Text Matching

This appendix reports the details of matching between capital goods

and patent data. Table A1 displays the share of tools found in Wikipedia

over NIPA categories.

Using the crosswalk between UNSPSC and NIPA from Caunedo et al.

(2023), we assign a two-digit NIPA code to 4,180 tools. Then, we calculate

the share of tools that are found in Wikipedia for each NIPA category. Table

A1 shows that electronics, furniture, and machinery are more likely to be

found in Wikipedia, while mining, medical equipment, and aircraft are less

likely to be found in Wikipedia.

Table A2 shows the share of patents matched with at least one tools
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Table A2: Patent-tool Matching Rate across Patent Class and Period

Patent Class Matching Rate (%)
1970–1980 1980–1990 1990–2000 2000–2015

Human necessities 22.50 22.07 22.69 18.38
Transportation 33.19 32.75 33.48 26.80
Chemistry 6.74 7.31 8.18 9.06
Textile 28.53 30.61 31.36 26.19
Construction 32.14 31.30 31.87 24.29
Engineering 43.23 42.47 42.99 34.49
Physics 28.06 27.60 25.50 20.86
Electricity 27.48 27.74 25.87 21.87

Notes. This table presents the share of patents matched with at least one tool,
by period and patent class (IPC 1 digit level).

Figure A1: Example of Text Matching between Patent and Wikipedia

Patent: Systems, apparatuses and
methods for reading an amino acid
sequence (10139417)
system apparatus method reading
amino acid sequence embodiment
present disclosure relate amino acid
modified amino acid peptide protein
identification sequencing mean ex-
ample electronic detection individ-
ual amino acid small peptide

Wikipedia: Protein sequencer
protein sequencing practical process
determining amino acid sequence
part protein peptide may serve iden-
tify protein characterize post trans-
lational modification typically par-
tial sequencing protein provides suf-
ficient information one sequence tag
identify reference database protein
sequence derived conceptual trans-
lation gene

Notes. This figure shows an example of an abstract of the matched patent and Wikipedia
article of the capital good. Blue texts are common words between two texts.

across period and patent classes. Patent class is IPC 1 digit level.
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Table A3: Example of Matched Capital Goods and Title of Patents

Capital Goods Title of Patent

Battery chargers Power tool, battery, charger and method
of operating the same

Belt conveyors Conveyor belt assembly
Cash registers Theft proof cash drawer assembly

Desktop computers Method and system for managing windows
desktops in a heterogeneous server environment

Glass cutters Discrete glass sheet cutting

Satellite phone Communication system with direct
link to satellite

Sewing machine needles Multiple-needle sewing machine
Smoke detectors Smoke detector system for a house

Tire pressure gauge Tire pressure control system, tire pressure
control device and tire pressure control method

Touch screen monitors Technologies for interacting with computing
devices using haptic manipulation

Notes. This table shows examples of matched capital goods and the title of patents

B Measures of Capital Stock and User Costs

Occupation-specific capital stock and user costs are calculated using

procedures in Caunedo et al. (2023). Each occupation has a set of capital

goods in UNSPSC codes. These UNSPSC codes are converted to the NIPA

capital category using the crosswalk in Table 1 of the Online Appendix for

Caunedo et al. (2023). The 2012 fixed-price capital stock series is used to

measure the quantity of capital category n for each occupation o in each

year y. The capital intensity of an occupation o for the NIPA capital cate-

gory n is first defined by the number of UNSPSC codes from “Tools Used”

that are mapped into n. Let #Capitaln,so (#Capitaln,co ) denote the number

of task-similar (task-dissimilar) capital goods and Kn
i the capital expendi-

ture (based on the fixed price in 2012 USD) of industry i on capital type n.
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Then, the capital stock of occupation o, industry i, capital good n is imputed

as

xsiont =
liot#Capitaln,so∑

p lipt#Capitaln,sp +
∑

p lipt#Capitaln,cp
Kint (A1)

xdiont =
liot#Capitaln,co∑

p lipt#Capitaln,sp +
∑

p lipt#Capitaln,cp
Kint. (A2)

Kint is the current- and fixed-cost stock of of NIPA capital category n and in-

dustry i in year t. Thus, capital stocks are prorated across occupations with

an intensity-weighted number of workers. If an occupation in an industry

is missing from the O*NET and thus does not have any tool, the average

intensity of tools in the industry is assigned to the occupation to adjust the

capital stock. However, this occupation is not included in the regression

analysis.

The price deflator is calculated as the ratio between current-cost and

fixed-cost capital stock from the BEA and used as a capital price index. De-

preciation rates are computed from depreciated capital stock data from the

BEA. Specifically, the BEA depreciation rate dint is calculated as the ratio

of the depreciated capital stock in a year to the average between the capi-

tal stock evaluated at the end of the year and the capital stock evaluated at

the end of the previous year. Because BEA-reported depreciation measures

reflect both physical and economic depreciation, the physical depreciation

rate is calculated using the following equation.

1− δint = (1− dint)
qint/λ

c
t

qint−1/λc
t−1

(A3)

In this equation, λc
t is the price of consumption, and qint is the price deflator.
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The user cost of capital category n for industry i and year t also comes from

Caunedo et al. (2023) that follows Jorgenson (1963).

λk
int =

qint
λc
t−1

[
R−

(
1− δ̄int

) qkint/λ
c
n

qkint−1/λ
c
t−1

]
. (A4)

R = 1.02 is the gross return on a safe asset, and δ̄int is the average (physical)

deflation rate of capital category n in industry i and the decade group t be-

longs to. If t = 1980, . . . , 1989, δ̄ =
∑1989

t=1980 δint with δint the annual deflation

rate. We use λc
t = 1.

The quantity index of capital type j = s, d for occupation o and industry

i in year t is given as the following equation.

kjiot = kjiot−1e
κk
jiot , kjio1980 =

∑
n

xjion1980 (A5)

κk
jiot =

∑
n

λk
intxjiont∑

n′ λk
in′txjion′t

κk
int. (A6)

κk
int is the growth rate of capital category n. Thus, γk

jiot is the expenditure-

weighted average growth rate of capital type j. Unlike Caunedo et al.

(2023), we normalize the occupation-level stock, not user costs of each occu-

pation and industry, with the level in 1980. We take this approach because

we are interested in the cross-sectional differences in capital stock and user

cost series at the occupation level.

The user cost for the capital bundle is computed as follows.

rjiot =

∑
n λ

k
intxjiont

kjiot
. (A7)
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C Instrumental Variables

C.1 Academic Publication Shock

A simple OLS regression of labor market variables on innovation may

yield a biased estimate if technical changes are directed by labor demand

shocks (Acemoglu, 2002). For example, when an unobserved demand shock

hits the IT sector, the value of innovation in the IT sector will increase. This

leads to an increase in innovation incentives on capital used in the IT sec-

tor, such as computers. Then, our CEI measure can be correlated with this

unobserved demand shock correlated with wage and employment growth

rates.

On the other hand, innovation activities can also be affected by labor

supply shocks. More labor supplies in an occupation can imply that the re-

turn to capital innovation becomes smaller with substitution towards cheaper

labor inputs. For example, if immigrants are more likely to work in con-

sumer service sectors and more immigrants arrive, firms in consumer ser-

vice sectors are less incentivized to invest in labor-saving capital technology.

In this case, the coefficient of CEI measures on employment can be under-

estimated. Whether the OLS overestimates or underestimates the true coef-

ficient is an empirical question.

To avoid this problem, academic publication shock is used as an in-

strument for patents. Inventors use knowledge from academic publications

when they innovate and apply for a patent. For example, innovation in the

computer sector builds on the knowledge produced in the electronic engi-

neering field. Therefore, the increase in the number of papers in electronic

engineering is positively correlated with innovation in the computer sector
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but not necessarily with demand shocks for IT workers.

To measure knowledge diffusion from academic publications to patents,

we use citation data from patents to academic publications following the

literature (Arora et al., 2021). Specifically, a large number of citations from

patents within a technology class to papers in a specific academic field sug-

gests that the academic field serves as an upstream source of knowledge for

that technology class. Citation data is sourced from data provided by Marx

and Fuegi (2020), who show that 17.6% of USPTO patents cite at least one

academic paper, with an average of two academic citations per patent.

We construct the upstreamness of an academic field m to patent class n

by using citations made from 1970 to 1980. For the academic field, the Web

of Science Field is used, encompassing 251 distinct fields. For patents, 3-

digit IPC patent classes, comprising 387 classes, are used. The upstreamness

αnm is calculated as below:

αnm =
cnm∑
m cnm

,

where cnm is the number of citations from patent class n to academic field m

in 1970–1980. The left panel of Figure A2 plots αnm, showing the variation of

citation share over patent classes. Engineering and chemistry are the fields

that receive the most citations from patents.

Next, the upstream measure for each technology class is calculated and

aggregated into the occupation-industry level as below:

Upstreamj
io = ∆ log

(∑
n

snio
∑
m

αnmPm

)
,
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Figure A2: Citation Share and Publication Growth Rate
Notes. Panel A plots the share of citations from patent technology classes (row) to academic
fields (column) in 1970–1980. The graph only contains the IPC classes that have more than
50,000 citations to science in the entire period. When the color gets closer to blue, it has a
higher citation share. Panel B displays the growth rates of publications between 1980–2015
in different academic fields. Publication data comes from MAG and includes publications
associated only with European institutions.

where Pm is the number of publications in field m, and snio is the stock-

adjusted share of patent class n in capital goods used for occupation o and

industry i for capital type j ∈ {d, s}. The instrument variable takes difference-

in-logs at the occupation by industry level.

For the growth rate of publications, we source data from the Microsoft

Academic Graph (MAG, Sinha et al. (2015)). Only papers affiliated with Eu-

ropean institutions are counted to avoid the potential bias from US patent-

ing firms also supporting academic projects, which could inflate the publi-

cation counts in the US. The right panel of Figure A2 displays the growth

rate distribution of publications. The fields with the highest growth rates

include artificial intelligence, information systems, hardware, software en-

gineering, and control systems.

Figure A3 displays the scatter plots between CEI measures and the re-
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Figure A3: CEI and Publication Instrument
Notes. Panel A plots CEI-d and Panel B plots CEI-s over the publication instrument. Each
circle corresponds to an occupation code in OCC1990, and the size of a circle corresponds
to the employment of each occupation in the 1980 Decennial Census.

sulting academic publication instruments at the occupation level. The pub-

lication instruments are strongly positively associated with the actual CEI

measures.

C.2 Immigration Shock

In order to identify the elasticity of substitution in the production func-

tion separately from the effects of CEI measures, an exogenous supply shifter

is needed. This shifter is calculated using trends in Latin American im-

migration and heterogeneous exposures to Latin American Immigration.

From 1980 to 2015, the population of Latin American-born workers in the

U.S. surged eightfold, while the number of U.S.-born workers doubled. As

a result, the share of workers born in Latin America in total US employment

increased from 2.3% in 1980 to almost 10% in 2015, as shown in Panel A of

Figure A4.

Immigrants from Latin America are likely to have comparative advan-
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Figure A4: Share of Workers Born in Latin America
Notes. Panel A plots the share of workers in the U.S. who were born in Latin America over
the years. Panel B plots the share of workers born in Latin America in 1980 at the occupa-
tion level and draws the histogram of the observations. Each occupation is weighted by
the number of workers in 1980.

tages different from those of US-born workers, influencing their choice of

occupation differently. Panel B of Figure A4 shows the histogram of the

share of workers from Latin America in 1980 across different occupations,

with the weight of each occupation based on its employment numbers that

year. The proportion of Latin American workers significantly differs among

occupations. For instance, in 1980, 13.5% of farm workers were from Latin

America, whereas less than 0.2% of speech therapists were born in the re-

gion. Consequently, a surge in Latin American immigration would dispro-

portionately affect the labor supply in certain occupations, such as farm

workers.

We group Latin American countries into three groups: Mexico (G1),

other Central American countries (G2), and Southern American countries

(G3). For each group, the heterogeneous exposure to immigration shock is

computed based on the share of workers from Latin America in 1980. The
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Bartik immigration shock for each country group G and occupation o is de-

fined as in the following equation.

zLatin,G =
∑
c∈G

lc,1980o

l1980c

log

(
Lc,2015 − lc,2015o

Lc,1980 − lc,1980o

)
.

Here, lc,to is the number of workers from country c in occupation o at period t,

and Lc,1980 =
∑

o l
c,1980
o is the total number of workers in country c. Workers

in occupation o are subtracted from calculating the supply shock to rule

out the effect of occupation-level shocks associated with more immigration

from country group c.

D Reduced-Form Results

Table A4 shows reduced-form estimates from the linear regression of

wage and employment changes between 1980 and 2015 on CEI measures.

Samples include occupations without task-similar capital with their CEI-

s measures fixed at zero. All regressions include a Bartik-type demand

shifter that predicts wage increases at the occupation level with the aver-

age of industry-level wage increases weighted by the industrial composi-

tion of each occupation. Also, regressions control for industry-fixed effects.

These fixed effects are estimated separately for occupations with and with-

out task-similar capital. Wage and employment changes are normalized

with cross-sectional mean and standard deviation.

Panel A of Table A4 shows the results on wage changes. CEI-s have

overall negative effects on wages, whereas CEI-d has overall positive ef-

fects, especially when we use publication IV. The OLS estimates of CEI-s
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are larger than the IV estimates, which is consistent with patenting incen-

tives that are more responsive to demand shocks for occupational tasks. As

for CEI-d, the OLS estimates are smaller than the IV estimates from columns

(3) to (4). This is consistent with innovation activities increasing elastically

to shocks biased to capital at the occupation level. Estimation results of

employment changes in Panel B overall trace out the wage results.

Table A4: Reduced-Form Results: Baseline

(1) (2) (3) (4)
OLS IV OLS IV

Panel A. Wage
CEI-s -0.013 -0.085 0.015 -0.090

(0.011) (0.031) (0.011) (0.030)
CEI-d 0.084 0.058 -0.079 0.037

(0.010) (0.027) (0.009) (0.024)

Panel B. Employment
CEI-s 0.117 -0.423 0.087 -0.529

(0.012) (0.038) (0.012) (0.041)
CEI-d 0.107 0.550 0.046 0.508

(0.010) (0.032) (0.010) (0.032)

First Stage F - 619.5 - 675.7
Controls ✓ ✓

N 10880 10880 10880 10880

Notes. This table shows coefficient estimates from linear regression of wage
and employment changes between 1980 and 2015. Occupations without task-
similar capital are included with CEI-s measures fixed at zero. All regressions
include Bartik demand shifter based on industry-level wage changes and sep-
arate industry fixed effects for occupations with and without task-similar capi-
tal. All observations are weighted with 1980 employment. Columns with con-
trols mean that the linear regression includes the occupational offshorability
index, as well as the routine, manual, and abstract task scores from Autor and
Dorn (2013). Columns (1) and (3) estimates with the OLS, and columns (2) and
(4) instruments CEI measures with publication instruments in Appendix C.
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D.1 Different Thresholds

The baseline threshold is set at the 90th percentile of the task-capital

similarity score distribution to distinguish the task-similar and task-dissimilar

capital goods. This threshold successfully gives opposite signs to CEI-s and

CEI-d measures in the reduced-form regression. Table A5 and A6 show

reduced-form results with different thresholds for task-similar capital. Intu-

itively, if the similarity increases substitutability with labor, a higher thresh-

old reduces the average substitutability of task-similar capital and increases

the reduced-form coefficient on employment growth. Indeed, the coeffi-

cients for CEI-s are lower with a higher threshold, and the coefficients for

CEI-d are smaller in Table A5 with the 95th percentile as thresholds for task-

similar capital.

Table A6 shows the reduced-form results with the 75th percentile as the

threshold for the task-similar capital. If we include capital goods that are

marginally less similar to occupational tasks as task-similar capital, the co-

efficient estimates of CEI-s become higher compared to the baseline case in

Table A4. The coefficient estimates for CEI-s and CEI-d for wage in column

(4) even switch the sign.
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Table A5: Reduced-Form Results with 95th Percentile Threshold

(1) (2) (3) (4)
OLS IV OLS IV

Panel A. Wage
CEI-s 0.142 -0.023 0.058 -0.097

(0.010) (0.021) (0.010) (0.023)
CEI-d 0.065 0.018 -0.062 0.011

(0.009) (0.025) (0.009) (0.023)

Panel B. Employment
CEI-s 0.031 -0.135 -0.087 -0.254

(0.011) (0.023) (0.012) (0.026)
CEI-d 0.103 0.335 0.027 0.262

(0.010) (0.026) (0.010) (0.026)

First Stage F - 927.7 - 968.7
Controls ✓ ✓

N 10889 10889 10889 10889

Notes. This table shows coefficient estimates from linear regression of wage
and employment changes between 1980 and 2015 on CEI measures rede-
fined with the 95th percentile of task-capital similarity score as thresholds for
similar-dissimilar distinction. Occupations without task-similar capital are in-
cluded with CEI-s measures fixed at zero. All regressions include Bartik de-
mand shifter based on industry-level wage changes and separate industry
fixed effects for occupations with and without task-similar capital. All ob-
servations are weighted with 1980 employment. Columns with controls mean
that the linear regression includes the occupational offshorability index, as well
as the routine, manual, and abstract task scores from Autor and Dorn (2013).
Columns (1) and (3) estimates with the OLS, and columns (2) and (4) instru-
ments CEI measures with publication instruments in Appendix C.
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Table A6: Reduced-Form Results with 75th Percentile Threshold

(1) (2) (3) (4)
OLS IV OLS IV

Panel A. Wage
CEI-s -0.011 -0.005 -0.074 0.010

(0.010) (0.026) (0.009) (0.023)
CEI-d 0.071 -0.152 -0.017 -0.008

(0.010) (0.029) (0.009) (0.024)

Panel B. Employment
CEI-s 0.119 -0.191 0.073 -0.281

(0.011) (0.030) (0.011) (0.033)
CEI-d 0.039 0.521 0.018 0.546

(0.011) (0.034) (0.011) (0.034)

First Stage F - 762.3 - 799.5
Controls ✓ ✓

N 10753 10753 10753 10753

Notes. This table shows coefficient estimates from linear regression of wage
and employment changes between 1980 and 2015 on CEI measures rede-
fined with the 75th percentile of task-capital similarity score as thresholds for
similar-dissimilar distinction. Occupations without task-similar capital are in-
cluded with CEI-s measures fixed at zero. All regressions include Bartik de-
mand shifter based on industry-level wage changes and separate industry
fixed effects for occupations with and without task-similar capital. All ob-
servations are weighted with 1980 employment. Columns with controls mean
that the linear regression includes the occupational offshorability index, as well
as the routine, manual, and abstract task scores from Autor and Dorn (2013).
Columns (1) and (3) estimates with the OLS, and columns (2) and (4) instru-
ments CEI measures with publication instruments in Appendix C.

60



D.2 Patent Citations

Table A7 exhibits the reduced-form coefficients of CEI measures rede-

fined with the number of citations on patents associated with occupations.

The signs of coefficients, as well as the magnitudes, do not change signifi-

cantly with citation-based measures of CEI.

D.3 Market Valuations of Patents

Table A8 shows the reduced-form coefficient estimates of CEI measures

redefined with market valuations of patents calculated as in Kogan et al.

(2017). The signs of coefficients, as well as the magnitudes, do not change

significantly with citation-based measures of CEI.
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Table A7: Reduced-Form Results with Patent Citations

(1) (2) (3) (4)
OLS IV OLS IV

Panel A. Wage
CEI-s 0.010 -0.080 0.035 -0.085

(0.011) (0.029) (0.010) (0.028)
CEI-d 0.091 0.057 -0.074 0.036

(0.009) (0.026) (0.009) (0.024)

Panel B. Employment
CEI-s 0.103 -0.403 0.070 -0.501

(0.011) (0.035) (0.012) (0.038)
CEI-d 0.107 0.542 0.045 0.503

(0.010) (0.032) (0.010) (0.031)

First Stage F - 621.7 - 677.3
Controls ✓ ✓

N 10880 10880 10880 10880

Notes. This table shows coefficient estimates from linear regression of wage and
employment changes between 1980 and 2015 on CEI measures redefined with
citation-weighted number of patents. Occupations without task-similar capital are
included with CEI-s measures fixed at zero. All regressions include Bartik demand
shifter based on industry-level wage changes and separate industry fixed effects for
occupations with and without task-similar capital. All observations are weighted
with 1980 employment. Columns with controls mean that the linear regression in-
cludes the occupational offshorability index, as well as the routine, manual, and
abstract task scores from Autor and Dorn (2013). Columns (1) and (3) estimates
with the OLS, and columns (2) and (4) instruments CEI measures with publication
instruments in Appendix C.
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Table A8: Reduced-Form Results with Patent Valuations

(1) (2) (3) (4)
OLS IV OLS IV

Panel A. Wage
CEI-s -0.029 -0.069 -0.031 -0.076

(0.008) (0.026) (0.007) (0.026)
CEI-d 0.103 0.061 -0.054 0.044

(0.008) (0.025) (0.007) (0.022)

Panel B. Employment
CEI-s 0.113 -0.339 0.083 -0.440

(0.008) (0.033) (0.009) (0.037)
CEI-d 0.128 0.530 0.079 0.512

(0.008) (0.031) (0.008) (0.031)

First Stage F - 383.0 - 390.8
Controls ✓ ✓

N 10820 10820 10820 10820

Notes. This table shows coefficient estimates from linear regression of wage and
employment changes between 1980 and 2015 on CEI measures redefined with mar-
ket values of patents computed as in Kogan et al. (2017). Occupations without
task-similar capital are included with CEI-s measures fixed at zero. All regressions
include Bartik demand shifter based on industry-level wage changes and separate
industry fixed effects for occupations with and without task-similar capital. All ob-
servations are weighted with 1980 employment. Columns with controls mean that
the linear regression includes the occupational offshorability index, as well as the
routine, manual, and abstract task scores from Autor and Dorn (2013). Columns (1)
and (3) estimates with the OLS, and columns (2) and (4) instruments CEI measures
with publication instruments in Appendix C.
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E Computers and Robots

Computers and robots have been considered the most important tech-

nological changes in the labor market. This section shows the importance

of computers and robots to generate labor market changes.

Table A9: Share of Computer and Robot in CEI measures

Mean SD. Median

Computer - dissimilar 0.08 0.12 0.03
Computer - similar 0.05 0.19 0.00
Robot - dissimilar 0.00 0.03 0.00
Robot - similar 0.01 0.07 0.00

Notes. This table displays the summary statistics of the share of computer and
robot patents at the occupation-industry level.

Table A9 shows the share of computers and robots in CEI measures at

the occupation-industry level. A capital good is considered a computer if

the commodity title has the words “computer” or “laptop.” On the other

hand, a capital good is considered a robot if the title has the words “auto-

matic”, “robot,” or “drone.” Computers account for 8% of task-dissimilar

capital and 5% of task-similar capital, on average. Robots account for 0% of

task-dissimilar capital and around 1% of task-similar capital.

In Appendix F.3, we repeat the counterfactual exercise after setting only

innovations unrelated to computers fixed at the level in 1980 and show that

computer-related CEI accounts for about 40% of the baseline counterfactual

results. Since robots account for a negligible fraction of capital inputs, coun-

terfactual equilibrium remains quantitatively unchanged after setting only

innovations unrelated to robots fixed at the level in 1980.
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F Counterfactual Appendix

F.1 Counterfactual Details

The counterfactual exercise aims to derive the counterfactual equilib-

rium without CEI in 1980-2015. Residual terms in demand-side equations,

such as ωjio1, ωjio2, ωio3, and αi, are fixed at their levels in 2015. We only

allow Psio and Pdio to be at their levels in 1980. The total employment L is

also fixed at its level in 2015. The two following equations are additionally

needed to run the counterfactual equilibrium.

1 =
αiµio

αjµjo

(
Yi

Yj

) 1
σ
−1(

yio
yjo

) 1
ρd

− 1
σ
(
Θ̃io

Θ̃jo

) ρd−ρs
ρsρd

(
lio
ljo

)− 1
ρd

(A8)

Yi = lio

∑
o

µio

(
lio
li0

)σ−1
σ

ỹ
σ−1
σ

io

 σ
σ−1

= li0Ỹi (A9)

Equation (A8) is derived from the first order conditions of cost minimiza-

tion with respect to lio and ljo, respectively. Equation (A9) expresses indus-

trial outputs as a linear function of lio, labor input of a reference occupation

0, and Ỹi that only depends on the ratio of labor inputs relative to a refer-

ence occupation 0. The manager (OCC1990 = 22) is used as the reference

occupation.

By combining Equations (A8) and (A9), the following equation is de-

rived.

1 =
αiµio

αjµjo

(
Ỹi

Ỹj

) 1
σ
−1(

ỹio
ỹjo

) 1
ρd

− 1
σ
(
Θ̃io

Θ̃jo

) ρd−ρs
(ρs−1)ρd

(
lio
ljo

)−1

(A10)
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We use this equation to pin down the industry-level employment of an oc-

cupation.

F.2 Counterfactual without User Cost Changes

This appendix shows how user cost changes alone contribute to labor

market trends heterogeneous for different occupations using the structural

model estimated in section 4. User cost changes heterogeneous across occu-

pations cannot generate much of the heterogeneous labor market changes

observed in the data. Table A10 summarizes the changes of user costs for

similar and dissimilar capital over occupation groups made from occupa-

tional wage level in 1980. After adjustments of inflation, all occupation

groups have declines in user costs of capital. However, especially high-

wage occupations experience larger reduction in user costs of both similar

and dissimilar capital.

Table A11 summarizes labor market polarization in a counterfactual

equilibrium with changes in user costs but without CEI. The impact of user

cost changes is small because user costs decreased similarly between 1980

and 2015 across occupation groups. Still, changes in user costs contribute

to demand reallocation between low- and middle-wage occupations. Low-

wage occupations experience smaller reductions in user costs of dissimilar

capital, which reduces their relative labor demand. This force is counter-

acted by their smaller reductions in user costs of similar capital, and the

effect of similar capital dominates. The demand is mostly reallocated from

middle-wage occupations that are more intensive in similar capital than

high-wage occupations.
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Panel B of Table A11 decomposes the effects of user cost changes in

similar and dissimilar capital. With changes in user costs of task-similar

capital, labor demand is larger for middle-wage occupations but smaller

for low-wage occupations. As for dissimilar capital, the reduction of user

costs mostly boosts labor demand for high-wage occupations at the expense

of middle-wage occupations.

Table A12 compares the task bias of labor market changes in the coun-

terfactual equilibrium without changes in user costs. The effect of user

costs on task-biased labor market changes is small, although the coefficient

of abstract and routine task scores on wage changes is smaller in magni-

tude. With the non-linearity of the demand system, employment change is

slightly more biased toward abstract occupations and more biased against

routine occupations without user cost changes.
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Table A10: User Cost Changes

1Q 2Q 3Q 4Q 5Q

User Cost Change (Similar) -0.544 -0.602 -1.284 -0.834 -1.224
User Cost Change (Dissimilar) -0.496 -0.597 -1.016 -1.576 -1.100

Notes. This table summarizes the changes in user costs of similar and dissimilar
capital used by occupations in the first (1Q), second (2Q), third (3Q), fourth (4Q),
and fifth (5Q) quintiles of wage level in 1980. The changes in user costs adjust the
changes in price level measured by CPI between January 1980 and January 2015.

Table A11: Polarization without User Cost Changes

Wage Employment

1Q 2Q-4Q 5Q 1Q 2Q-4Q 5Q

Actual Change -0.085 -0.489 0.574 0.194 -0.656 0.462

Panel A. Varying Supply Elasticity
Without ∆ User Cost (β=0.3) -0.107 -0.465 0.572 0.192 -0.656 0.464
Without ∆ User Cost (β=1) -0.101 -0.471 0.572 0.191 -0.658 0.467

Panel B. Similar vs. Dissimilar User Costs
Without ∆ User Cost (Similar) -0.131 -0.441 0.572 0.188 -0.648 0.460
Without ∆ User Cost (Dissimilar) -0.091 -0.471 0.562 0.194 -0.659 0.465

Notes. This table shows the actual and the counterfactual growth rates of wage and
employment growth of occupations grouped by their wages in 1980. The counter-
factual equilibrium fixes the user costs of all capital inputs at their levels of 1980.
The wage and employment changes are subtracted from the mean and divided
by the standard deviation of occupation-level changes in each case. Columns un-
der 1Q and 5Q denote occupations with 1980 wage levels in the first and the fifth
quintiles, respectively. Columns under 2Q-4Q denote occupations between the
two quintiles. Panel A summarizes counterfactual equilibria with patent measures
fixed at their 1980 level for supply elasticity β = 0.3 and β = 1. Panel B fixes patent
measures of either similar or dissimilar capital to the 1980 level. Panel B assumes
β = 0.3.
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F.3 Counterfactual with Computer-Embodied CEI

Table A13 summarizes the share of computers in similar and dissimilar

capital stock and CEI measures. Over time, the share of computer stock in-

creased in dissimilar capital, and the increase is larger for middle-wage oc-

cupations. Because computers are innovation-intensive capital goods, the

share of computer-related patents in CEI measure is high even in 1980, and

the share does not have a noticeable change over time and is relatively uni-

form across occupation groups.

Next, Table A14 shows counterfactual changes in employment and wage

growth when only patents unrelated to computers are fixed at their level of

1980 to calculate CEI measures. CEI measures include the actual values for

computer-related patents in 2015. The results imply a modest role of com-

puters in generating labor market polarization. Compared to Table 6, the

wage growth of high-wage occupations in the fifth quintile increases by 0.1

and 0.04 when β = 0.3 and β = 1, respectively. This comes from computers

being used widely as dissimilar capital in all occupations and the intensity

of computers in CEI being mostly uniform.

Lastly, Table A15 displays the coefficient estimates of task scores on

wage and employment changes in a counterfactual equilibrium where only

the number of patents unrelated to computers is fixed at the level of 1980.

Consistent with Table A14, even when computer-related patents increase

over time, labor market changes would have been less biased toward ab-

stract and against routine occupations, and the change in wage growth co-

efficient is 40% of the change in Table 7. Thus, the contribution of computer-

related innovations is limited.
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Table A12: Task-Biased Labor Market Changes without Changes in User
Costs

Abstract Routine

Wage Employment Wage Employment

Actual Change 0.472 0.195 -0.322 -0.257
Without ∆ User Cost (β=0.3) 0.464 0.196 -0.317 -0.258
Without ∆ User Cost (β=1) 0.466 0.197 -0.320 -0.260

Notes. This table shows the actual and the counterfactual regression coefficients of
occupation-level wage and employment growth rates on occupational task scores
from Autor and Dorn (2013) as in Equation (19). The counterfactual equilibrium
fixes the user costs of all capital inputs at their levels of 1980. Columns β = 0.3 and
β = 1 set the elasticity of occupational labor supply at 0.3 and 1, respectively.

Table A13: Computer Intensity over 1980 Wage

Similar Dissimilar

1Q 2Q-4Q 5Q 1Q 2Q-4Q 5Q

Panel A. Stock Intensity
1980 0.000 0.031 0.005 0.011 0.066 0.039
2015 0.030 0.044 0.023 0.145 0.263 0.165

Panel B. CEI Intensity
1980 0.538 0.494 0.533 0.527 0.516 0.493
2015 0.562 0.492 0.501 0.632 0.619 0.598

Notes. This table summarizes the share of computers in similar and dissimilar capi-
tal over occupational wage level in 1980. The columns labeled 1Q and 5Q represent
the occupations in the first and fifth quintiles, respectively, while the columns un-
der 2Q-4Q cover occupations within the second to fourth quintiles.
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Table A14: Polarization without Computer-based CEI

Wage Employment

1Q 2Q-4Q 5Q 1Q 2Q-4Q 5Q

Actual Change -0.085 -0.489 0.574 0.194 -0.656 0.462

Without CEI (β=0.3) -0.059 -0.171 0.230 0.194 -0.631 0.437
Without CEI (β=1) 0.016 -0.257 0.241 0.216 -0.601 0.385

Notes. This table shows the actual and the counterfactual growth rates of wage and
employment growth of occupations grouped by their wages in 1980. The counter-
factual equilibrium uses CEI measures that fix only patents unrelated to computers
at their levels of 1980. The wage and employment changes are subtracted from the
mean and divided by the standard deviation of occupation-level changes in each
case. Columns under 1Q and 5Q denote occupations with 1980 wage levels in the
first and the fifth quintiles, respectively. Columns under 2Q-4Q denote occupa-
tions between the two quintiles. Columns ‘Without CEI (β = 0.3)’ and ‘Without
CEI (β = 1)’ set the elasticity of occupational labor supply at 0.3 and 1, respec-
tively.

Table A15: Polarization without Computer-based CEI

Abstract Routine

Wage Employment Wage Employment

Actual Change 0.472 0.195 -0.322 -0.257
Without CEI (β=0.3) 0.213 0.178 -0.232 -0.253
Without CEI (β=1) 0.224 0.146 -0.235 -0.248

Notes. This table shows the actual and the counterfactual regression coefficients of
occupation-level wage and employment growth rates on occupational task scores
from Autor and Dorn (2013) as in Equation (19). The counterfactual equilibrium
uses CEI measures that fix only patents unrelated to computers at their levels of
1980. Columns ‘Without CEI (β = 0.3)’ and ‘Without CEI (β = 1)’ set the elasticity
of occupational labor supply at 0.3 and 1, respectively.
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