
Public Goods, Social Alternatives, and the
Lindahl-VCG Relationship∗
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Abstract

Lindahl prices, set by a fictitious auctioneer with full knowledge of values and
costs, are a generalization of Walrasian prices. By making the efficient allocation
utility- and profit-maximizing for all participants, they induce an efficient outcome
in a decentralized way even in the presence of public goods. We study a collective
choice model with quasilinear utility, which encompasses the allocation of public and
private goods as special cases. We show that each agent’s smallest Lindahl price for
the efficient alternative is equal to his VCG transfer while the firm’s VCG transfer
is equal to the largest sum of Lindahl prices. Thus, the VCG mechanism incurs a
deficit if and only if the set of vectors of the agents’ Lindahl prices for the efficient
alternative is multi-valued. Unlike Walrasian prices, Lindahl prices are not restricted
to be anonymous or linear. This is the reason why, when considering the allocation of
private goods, the agents’ smallest Walrasian payments are at least as large as their
smallest Lindahl prices, and thus their VCG transfers. It is also why Lindahl prices
always exist while Walrasian prices may not.
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1 Introduction

Achieving an efficient provision of public goods is complicated by the agents’ incentive to free

ride (Hume, 1739; Wicksell, 1896; Samuelson, 1954). In settings with complete information,

Lindahl prices (Lindahl, 1919) induce agents to demand and the profit-maximizing firm to

supply the efficient level of a public good without requiring outside funds. However, Lindahl

prices are often dismissed on the grounds of being impractical because their implementation

requires a firm with market power to behave as a price taker and the ability to exclude those

agents who do not pay (Mas-Colell et al., 1995, p. 364). Furthermore, Lindahl prices are not

constructed to provide the participants with the correct incentives to reveal the information

about their preferences truthfully. As a case in point, Samuelson (1954, p. 388/9) notes:

But, and this is the point sensed by Wicksell but perhaps not fully appreciated

by Lindahl, now it is in the selfish interest of each person to give false signals, to

pretend to have less interest in a given collective consumption activity than he

really has, etc.

In contrast, with quasilinear utility, the seemingly unrelated VCG mechanism, which is

designed to explicitly account for the participants’ private information, provides them with

dominant strategies to report their preferences truthfully and induces efficient production

while respecting the participants’ individual rationality constraints. However, it typically

runs a deficit.1

In this paper, we show that there is a tight connection between Lindahl prices and

VCG transfers for the following general collective choice problem. There are finitely many

mutually exclusive social alternatives, which a firm can produce at some cost, and agents

with quasilinear utility. This setup encompasses a wide range of alternative interpretations.

For example, the social alternatives may represent different or differently sized public goods

or correspond to different allocations of finitely many private goods among the agents.

1The VCG mechanism derives its label from the independent contributions of Vickrey (1961), Clarke
(1971) and Groves (1973). Notable subsequent contributions include Green and Laffont (1977a,b). For
different specifications and notions of incentive compatibility, the result that efficient public good provision
is not possible without running a deficit has been shown in the literature; see, for example, Güth and Hellwig
(1986), Mailath and Postlewaite (1990) and Loertscher and Mezzetti (2019).
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A Lindahl price vector is a collection of prices, with each agent being offered an individ-

ualized price for every social alternative. A Lindahl price vector must induce every agent to

choose the same efficient alternative and the profit-maximizing firm to produce that alter-

native. In this sense, Lindahl prices implement the efficient allocation in a “decentralized”

way while always balancing the budget, since the sum of agents’ payments is equal to the

firm’s revenue.

We first show that every Lindahl price vector supports every efficient allocation, and that

the set of Lindahl price vectors is non-empty and compact. Calling the price an agent pays

for an efficient allocation his effective Lindahl price, we then demonstrate that each agent’s

VCG transfer is the effective Lindahl price that is most favorable to this agent, that is, his

smallest effective Lindahl price. Conversely, the firm’s VCG transfer corresponds to the sum

of the agents’ Lindahl prices (i.e., the firm’s revenue) at its preferred effective Lindahl price

vector, that is, the maximum revenue the firm obtains from any Lindahl price vector for an

efficient allocation.

A consequence of this equivalence result is that the VCG mechanism balances the budget

(i.e., the deficit is zero) if and only if there is a unique vector of effective Lindahl prices; that

is, a unique vector of Lindahl prices for an efficient allocation.2 We also characterize the

(weaker) conditions under which the sum of the agents’ VCG transfers covers the firm’s cost

of production. This is, for example, the case with a homogeneous private good and agents

with single-unit demand.

The study of public good problems has a long tradition in economics. Indeed, what has

become known as information economics has its roots in public good problems, originating

with the observations of Samuelson (1954) and the subsequent contributions by, for example,

Clarke (1971) and Green and Laffont (1977a,b). For a collective choice problem that encom-

passes private and public good problems as special cases, this paper establishes a general

equivalence between the transfers under the VCG mechanism (Vickrey, 1961; Clarke, 1971;

Groves, 1973) and extremal Lindahl prices (Lindahl, 1919; Mas-Colell et al., 1995). This

equivalence allows us to revisit results in the literature that relate VCG transfers to Wal-

2As we show in Appendix B, this is related to whether what Segal and Whinston (2016) define as the
marginal core is single- or multi-valued.
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rasian prices. For private goods allocation problems and single-unit demands, or additive

payoffs, it is well known that the smallest Walrasian price is the VCG transfer buyers pay;

see, for example, Leonard (1983), Demange (1982), and Gul and Stacchetti (1999). Thus,

in such cases the smallest Walrasian price is every agent’s preferred effective Lindahl price.

However, more generally, each agent’s payment based on the smallest Walrasian price (if

Walrasian prices exist) is an upper bound of his smallest VCG transfer (Gul and Stacchetti,

1999; Delacrétaz et al., 2022). The reason why the equivalence breaks down is that Walrasian

prices impose restrictions – linearity and anonymity – that are not part of the VCG mech-

anism and of Lindahl prices. Since Lindahl prices always exist, these restrictions are also

the reason why Walrasian prices may not exist. We show that it is sufficient to add one of

these restrictions to break the equivalence between VCG transfers and “restricted” Lindahl

prices. Our paper is also related to Gul and Pesendorfer (2022), who provide a cooperative

game theory foundation for Lindahl equilibrium based on weighted Nash bargaining, as well

as an axiomatization. Our paper complements theirs by highlighting the connection between

Lindahl prices and the strategic, mechanism design, notion associated with VCG transfers.

The remainder of the paper is organized as follows. Section 2 provides a motivating and

illustrating example. Section 3 introduces the model and the definitions of Lindahl prices

and of the VCG mechanism. In Section 4, we establish the equivalence between extremal

Lindahl prices and VCG transfers. Price restrictions and their implications are analyzed

in Section 5. Section 6 analyzes the conditions under which the VCG mechanism runs no

deficit and conditions for cost recovery to be possible. Section 7 concludes. All proofs are

in Appendix A. Appendix B connects effective Lindahl price vectors with the marginal core

defined by Segal and Whinston (2016).

2 Motivating Example

To illustrate the connection between VCG transfers and Lindahl prices, we begin with an

example in which there are two agents, Paul and William, who are interested in reading a

paper that Erik, the firm, can write. Erik’s cost of writing the paper is 4 while it generates

a value of 3 for Paul and a value of 2 for William. The value of the outside option of there

being no paper is 0 for both agents and for the firm. Because the welfare when the paper is
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written – that is, the sum of the agents’ values minus the firm’s cost – is 1, it is efficient to

produce the paper.

As is well known, the VCG transfer an agent pays is the joint surplus the other agent and

the firm would obtain without that agent present, or equivalently, if that agent’s value were

zero, minus the joint surplus that they obtain with that agent present. Because each agent’s

value is less than the firm’s cost, each agent is pivotal for production, meaning that the joint

surplus of the firm and the other agent is zero in the absence of this agent. Consequently,

each agent is charged a positive VCG transfer. For Paul, this transfer is 2 = −(2− 4) while

for William it is 1 = −(3 − 4). Analogously, the firm’s VCG transfer is the agents’ joint

surplus with the firm present, which is 5, minus their joint surplus without the firm, which is

0. Consequently, the firm’s VCG transfer is 5. Observe also that the agents’ VCG transfers

can equivalently be characterized as thresholds payments that are equal to the smallest values

each of them could have reported without inducing the allocation to change while the firm’s

threshold payment is the highest cost it could have reported without inducing the allocation

to change.

λP

λW

0 1 2 3 4
0

1

2

3

4
λP + λW = 4

maxλP , λW λP + λW

(a) The set of Lindahl price vectors.

λP

λW

0 1 2 3 4
0

1

2

3

4

maxλP , λW λP + λW

minλP , λW λP

minλP , λW λW

(b) Extremal Lindahl Prices.

Figure 1: Panel (a): The set of Lindahl price vectors (shaded). Panel (b): Extremal Lindahl
prices.

Consider now the set of Lindahl price vectors, which is the set of prices that make

choosing the efficient alternative optimal for each agent and for the firm. This set is depicted

in Figure 1. Because the value of the outside option is 0, the price for every agent and for
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the firm for no paper is 0. To induce the efficient choices, a Lindahl price vector (λP , λW )

that charges Paul a price of λP and William a price of λW has to make it optimal for the

agents to buy the paper, which requires λP ≤ 3 and λW ≤ 2, and for the firm to produce it,

which in turn requires λP + λW ≥ 4.

Observe then that the largest sum of Lindahl prices, given by the top right corner of

the shaded triangle in Figure 1, is equal to 5, which is precisely the firm’s VCG transfer.

Likewise, the smallest Lindahl price for Paul, given by the first coordinate of the top left

corner of the triangle, is 2, and the smallest Lindahl price for William, corresponding to

the second coordinate in the bottom right corner of the triangle, is 1. Thus, each agent’s

smallest Lindahl price is his VCG transfer. To develop intuition for the equivalence, consider

first the firm’s problem. The largest sum of Lindahl prices simply consists of the sum of

the agents’ values. Because there is no production without the firm, this sum is the firm’s

social marginal product, that is, its VCG transfer. To understand the connection between an

agent’s smallest Lindahl price and his VCG transfer, it is useful to view the VCG transfers

as threshold payments. With that interpretation in mind, notice that at the top left and

bottom right corners of the triangle, the utility of the other agent (William respectively

Paul) is 0 and the firm’s profit is 0. Thus, the smallest value an agent can report in the

VCG mechanism without inducing the allocation to change – his VCG transfer – is indeed

his smallest Lindahl price.

In the remainder of the paper, we show, among other results, that Lindahl prices exist

for general social choice problems and that the equivalence between the agents’ smallest

Lindahl prices and the firm’s largest sum of Lindahl prices and VCG transfers extends to

these general problems.

3 Setup

We consider an economy with a firm, denoted by f , a finite set of agents N , whose typical

element we denote by i, with N := |N | ≥ 1, and a finite set of social alternatives A, whose

typical element we denote by a, with A = |A| satisfying A ≥ 2. Producing alternative a ∈ A

involves the cost ca ∈ [0, c] with c > 0 for the firm; let c = (ca)a∈A. Likewise, agent i’s value

for alternative a is denoted vai and assumed to satisfy vai ∈ [0, v] with v > 0; let vi = (vai )a∈A
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and v = (vi)i∈N . We assume that A contains the null alternative, or outside option, a0 at

which every agent and the firm obtain their status quo payoffs, which we normalize to 0; that

is, we assume ca0 = 0 and va0i = 0 for all i ∈ N . The agents and the firm have quasilinear

utility, so that if alternative a is chosen and the firm is paid t, the firm’s payoff is t−ca while

agent i’s payoff when paying t and the alternative is a is vai − t.

Given values and costs (v, c), the set of efficient allocations, denoted A∗, contains all

allocations that maximize the sum of the agents’ values minus the firm’s cost; that is,

A∗ = arg max
a∈A

∑
i∈N

vai − ca.

As the set of alternatives is finite, the set of efficient alternatives is nonempty; however, it

may be multi-valued. Letting a∗ ∈ A∗ be any efficient allocation, the maximized (social)

welfare, denoted W , is the sum of values minus costs at an efficient allocation; that is,

W =
∑
i∈N

va
∗

i − ca
∗
.

Note that W does not depend on a∗ since all efficient allocations yield the same welfare.

We assume that c ≥ Nv, which means that if the firm has sufficiently high costs for

all alternatives (except the outside option), then it is efficient to provide the outside option

alternative a0 even if all the agents have the highest possible values for every alternative

a ∈ A \ {a0}.

Suppose now that agent i ∈ N is not present (or equivalently, vi = 0). Then, the set of

efficient alternatives becomes

A∗−i = arg max
a∈A

∑
j∈N\{i}

vaj − ca,

Letting a∗−i ∈ A∗−i be any efficient alternative when i is absent, the welfare in the economy

in which agent i is absent is

W−i =
∑

j∈N\{i}

v
a∗−i

j − ca∗−i ,

which also does not depend on which efficient alternative is picked, since all of them give by

definition the same level of welfare.

Our model offers a wide range of interpretations and applications. For example, the

alternatives a ∈ A could be public goods that differ with respect to scale and scope, in
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which case, generically, one would expect vai 6= va
′
i for all a, a′ ∈ A with a 6= a′. As a case in

point, a could be building a public swimming pool and a′ building a public swimming pool

and a bridge.3 On the other hand, the alternatives could be different feasible allocations of

a given set of private goods, which by definition exhibit rivalry in consumption and permit

exclusion. In contrast to public goods, we now have vai = va
′
i for all a, a′ that do not differ

in the bundle of goods i obtains.4

3.1 Lindahl Price Vectors

In the classic environment underlying Lindahl prices, all agents and the firm are price takers

and choose a social alternative that maximizes their payoff. As with Walrasian prices, where

these prices come from is not part of the model. To fix ideas, they may be thought of as

being set by a fictitious and benevolent auctioneer who has complete information about the

agents’ values and the firm’s costs.5

A price vector specifies, for each agent, a non-negative price of each non-null alternative

and a zero price for the null alternative; that is, the set of price vectors is {0}N × RN ·(A−1)
≥0 .

Given values and costs (v, c), a Lindahl price vector is a price vector that supports an efficient

allocation a∗ ∈ A in the sense that, under that price vector, (i) it is optimal for every agent

i ∈ N to choose a∗, (i.e., choosing a∗ maximizes i’s payoff) and (ii) it is optimal for the

firm to provide a∗ (i.e., providing a∗ maximizes the firm’s payoff, or profit. Formally, a price

vector λ is a Lindahl price vector if, for some a∗ ∈ A,

a∗ ∈ arg max
a∈A

vai − λai for every i ∈ N and (1)

a∗ ∈ arg max
a∈A

∑
i∈N

λai − ca. (2)

Note that λa
∗
i is the Lindahl price agent i pays, which we will refer to as agent i’s effective

Lindahl price.

3As both the swimming pool and the bridge admit, in principle, exclusion the model also encompasses
“public goods with exclusion,” which are sometimes also referred to as club goods.

4We formally define the private goods environment in Section 5.2
5This set of assumptions is, of course, subject to a criticism that is familiar from debates related to

the Walrasian model. For example, Samuelson (1955, p. 354) writes that “there is something circular and
unsatisfactory” about constructions like Lindahl’s: “[T]hey show what the final equilibrium looks like, but
by themselves they are not generally able to find the desired equilibrium.”
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3.2 VCG Mechanism

The informational assumptions underlying the VCG mechanism are fundamentally different

from those used in the analysis of Lindahl prices. In particular, every agent i ∈ N is now

assumed to be privately informed about his type vi = (vai )a∈A and the firm to be privately

informed about its cost c = (ca)a∈A except, of course, that va0i = 0 = ca0 is commonly known.

In lieu of an auctioneer who sets prices given knowledge about v and c, the stipulation is

now that there is a mechanism designer who uses the direct mechanism 〈α, τ 〉 that asks the

agents to report their values and the firm its costs. The function α : [0, v]NA× [0, c]A → A∗ is

the social choice rule that selects an efficient alternative a∗ ∈ A∗ and τ : [0, v]NA× [0, c]A →

RN+1 is the transfer rule with, for i ∈ N , τa
∗
i being the transfer from agent i to the designer

and τa
∗

f being the transfer from the designer to the firm when the selected efficient alternative

is a∗ ∈ A∗. (Though implicit in our notation, A∗ and thus a∗ are defined with respect to the

reported values and costs (v, c).) The VCG transfer paid by agent i ∈ N is i’s externality

on other agents; that is, the welfare of others when i is not present minus the welfare of

others when i is present:

τa
∗

i =

 ∑
j∈N\{i}

v
a∗−i

j − ca∗−i


︸ ︷︷ ︸

Welfare of others when i is not present, W−i

−

 ∑
j∈N\{i}

va
∗

j − ca
∗


︸ ︷︷ ︸

Welfare of others when i is present, W − va∗
i

≥ 0. (3)

The inequality in (3) follows from the fact that a∗−i is an allocation that is efficient when

agent i is not present. Note that, since the VCG transfer paid by agent i can be written as

τa
∗
i = W−i−(W−va∗i ), it depends on which efficient allocation is picked when i is present, but

not on which efficient allocation is picked when i is absent. The payoff of agent i under the

VCG mechanism is va
∗
i − τa

∗
i = W −W−i and does not depend on which efficient allocation

is chosen when i is present.

The VCG transfer that the firm receives is equal to the externality of the firm on the

agent; that is, the agents’ welfare when f is present minus the agents’ welfare when f is not

present:

τa
∗

f =
∑
i∈N

va
∗

i︸ ︷︷ ︸
Agents’ welfare when f is present

− 0︸ ︷︷ ︸
Agents’ welfare when f is not present

≥ 0. (4)
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Intuitively, the firm is paid for the value its presence creates for the agents. The welfare

of the agents when the firm is absent (or equivalently, c = (c)) is zero since nothing is

produced, and therefore only the null alternative is available. It is evident from (4) that the

firm’s VCG transfer at efficient allocation a∗ is positive if and only if there exists an agent i

such that va
∗
i > 0. The firm’s VCG transfer at a∗ can be written as τa

∗

f = W + ca
∗

and the

firm’s payoff under the VCG mechanism is τa
∗

f − ca
∗

= W .

As is well known, the VCG mechanism is the ex-post efficient, dominant strategy incen-

tive compatible (DIC), ex-post individually rational (EIR) mechanism that minimizes the

designer’s deficit (i.e., the difference between the transfer to the firm and the sum of the

transfers from the agents).6 A mechanism is DIC if, for all i ∈ N , all vi, v̂i ∈ [0, v]A, all

v−i ∈ [0, v](N−1)A and all c ∈ [0, c]A:

v
α(vi,v−i,c)
i − τ i(vi,v−i, c) ≥ v

α(v̂i,v−i,c)
i − τ i(v̂i,v−i, c)

and, for all c, ĉ ∈ [0, c]A and all v ∈ [0, v]NA:

τ f (c,v)− cα(v,c) ≥ τ f (ĉ,v)− cα(v,ĉ).

That is, for any reported type profile of all others, every agent and the firm are better off

reporting their true types than reporting anything else.

A mechanism satisfies EIR if for all possible type profiles the payoff of every agent i ∈ N

and the firm f is non-negative; that is, it is at least as high as the payoff from the outside

option, or null alternative, a0. A mechanism satisfying DIC and EIR is ex-post efficient if it

always chooses an efficient allocation, that is, if α(v, c) ∈ A∗ for all (v, c).

4 The Lindahl-VCG Equivalence

Observe that Lindahl price vectors satisfy complete-information analogues to the incentive

compatibility and individual rationality constraints insofar as they give every agent and the

6Holmström (1979) showed that DIC and ex post efficiency imply that the mechanism has to be a Groves’
mechanism (Groves, 1973), given a smoothly connected type space, which is an assumption that is satisfied
in our setting. Making the EIR constraint hold with equality for the worst-off types then means that the
mechanism maximizes revenue subject to efficiency, DIC and EIR. The direct mechanism that does this is
the VCG mechanism.
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firm the incentive to choose an efficient alternative a∗ and make participation preferable to

walking away with the outside option.

We next establish two properties of the set of Lindahl price vectors, which we denote by Λ.

First, the set of Lindahl price vectors is independent of which efficient alternative is chosen.

Therefore, it can equivalently be defined as the set of price vectors that supports an efficient

allocation or the set of price vectors that supports all efficient allocations.7 Second, the set

of Lindahl price vectors is nonempty (and compact), which implies that an auctioneer who

knows the values and cost for each alternative can always find prices that clear the market.

Proposition 1.

(a) Every Lindahl price vector supports every efficient allocation.

(b) The set of Lindahl price vectors is nonempty and compact.

Given any efficient allocation a∗, agent i’s (i ∈ N ) smallest Lindahl price is the smallest

price for a∗ that i can face in any Lindahl price vector (i.e., the smallest effective Lindahl

price):

λa
∗

i = min
λ∈Λ

λa
∗

i .

The firm’s Lindahl revenue given λ is simply
∑

i∈N λ
a∗
i . Accordingly, its largest Lindahl

revenue, denoted λ
a∗

f , is the largest revenue for providing the efficient alternative a∗ that the

firm can collect in any Lindahl price vector, that is,

λ
a∗

f = max
λ∈Λ

∑
i∈N

λa
∗

i .

As the set of Lindahl price vectors is a nonempty, compact set (by part (b) of Proposition 1),

each agent’s smallest Lindahl price and the firm’s largest Lindahl revenue are well defined.

It is worth noting that, while the set of Lindahl price vectors does not depend on which

efficient alternative is chosen, the smallest Lindahl prices and the largest Lindahl revenue

do; that is, for another efficient alternative a] ∈ A∗ \{a∗}, it may be that λa
]

i 6= λa
∗

i for some

i ∈ N or λ
a]

f 6= λ
a∗

f .

7See also Corollary 1 in Bikhchandani and Mamer (1997) and Claim 1 in Delacrétaz et al. (2022) for a
similar result in a private good setting.
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The proof that the set of Lindahl price vectors is nonempty is constructive. By setting

all prices as high as possible, i.e., λai = vai for all i ∈ N and all a ∈ A, each agent’s

payoff is zero no matter what he chooses, so they all might as well choose the efficient

allocation a∗. At this price vector, the firm’s payoff at allocation a is
∑

i∈N v
a
i − ca; that is,

welfare at allocation a. Thus, the firm’s profit-maximization problem is the same as that of

maximizing welfare. Hence, the efficient allocation a∗ is profit-maximizing. Observe also that

maxa∈A
∑

i∈N v
a
i − ca is precisely the problem the firm faces in the VCG mechanism, which

makes the firm the residual claimant to the social surplus it generates.8 Thus, the firm’s

largest Lindahl revenue is its transfer in the VCG mechanism, that is, τa
∗

f = λ
a∗

f =
∑

i∈N v
a∗
i .

Conversely, consider the relationship between Lindahl prices and VCG transfers for the

agents. To develop intuition, assume for simplicity that A only contains two elements and

that the non-null alternative is the efficient one. Let i’s Lindahl price for a∗ be λa
∗

i =

max{ca∗ −
∑

j 6=i v
a∗
j , 0} and, as always, let λa0i = 0. Agent i’s problem is then to choose

a ∈ A to maximize vai − λai . Temporarily neglecting the constraint imposed by the max,

observe that

va
∗

i −

(
ca
∗ −

∑
j 6=i

va
∗

j

)
=
∑
j∈N

va
∗

j − ca
∗
,

which is positive because a∗ 6= a0 is, by assumption, the efficient alternative. Hence, if

λa
∗

i = ca
∗ −

∑
j 6=i v

a∗
j , i will optimally choose the efficient alternative. If, on the other hand,

λa
∗

i = 0, then i’s payoff from choosing a∗ is va
∗
i , which by assumption is non-negative. Thus,

a∗ remains the optimal choice for i. Because max{ca∗ −
∑

j 6=i v
a∗
j , 0} is the VCG transfer

for agent i in a binary public good problem, it follows that τa
∗
i = λa

∗

i for binary allocation

problems.

When A contains more than two alternatives, the arguments for the agents become more

involved because, in contrast to the firm, the efficient allocation without agent i is not

necessarily a0 while the default option a0 is the only alternative available without the firm.

Nevertheless, there is a simple intuition as to why the equivalence between the agents’ small-

8We have formulated the VCG mechanism as a mechanism that asks the participants to report their types
and then chooses an alternative and transfers. Alternatively and equivalently, one can formulate the VCG
mechanism as two-stage mechanism that first asks the participants to report their types and then offers each
of them a menu of transfers, one for each alternative a ∈ A, and lets each of them choose an alternative. It
is in this formulation of the VCG mechanism that the firm faces the problem of maxa∈A

∑
i∈N v

a
i − ca.
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est Lindahl prices and their VCG transfers extends. A Lindahl price vector that minimizes

the price i pays for a∗ must be such that at allocation a∗ the agents other than i and the

firm jointly receive a surplus of W−i, the largest surplus they could achieve without i. If

they receive less, at least one of those agents or the firm would prefer a∗−i over a∗. If they

receive more, then it is possible to lower i’s price for a∗ while continuing to make sure that

the other agents and the firm prefer a∗ over all other alternatives. Therefore, i’s surplus at

a∗ is W −W−i, which is the payoff i obtains in the VCG mechanism; hence, the price i pays

equals his VCG transfer.9 We next formalize this equivalence.

Theorem 1. For any efficient alternative a∗ ∈ A∗:

(a) The smallest Lindahl price of each agent i is equal to agent i’s VCG transfer, λa
∗

i = τa
∗
i

for every i ∈ N ;

(b) The largest Lindahl revenue of the firm is equal to the firm’s VCG transfer, λ
a∗

f = τa
∗

f .

A key insight from Theorem 1 is that incentivizing (making it a dominant strategy for)

any agent to reveal their private information is possible by selecting the most favorable

Lindahl price vector for this agent. However, as we shall see, it follows from Proposition 3

that providing these incentives for all agents simultaneously is only possible if there is a

unique Lindahl price vector.

Theorem 1 also sheds new light on the deficit that the market maker “typically” incurs in

the VCG mechanism. The deficit arises because the prices that participants face come from

different Lindahl price vectors; the prices paid by the agents must be as low as possible, and

the prices collected by the firm must be as high as possible. We elaborate on this insight in

Section 6.

Recall that our model also encompasses as a special case the problem of allocating pri-

vate goods by specifying that each alternative represents an allocation in which each agent

receives a bundle of private goods and the firm produces all those bundles. Theorem 1

therefore applies to that environment: Each agent’s smallest Lindahl price equals the VCG

transfer he pays and the firm’s largest Lindahl revenue equals the VCG transfer it receives.

9That is, va
∗

i − λ
a∗

i = W −W−i so λa
∗

i = W−i −W + va
∗

i = τa
∗

i .
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This contrasts with results on Walrasian prices and VCG transfers. For example, the analy-

ses in Gul and Stacchetti (1999) and Delacrétaz et al. (2022) imply that, in general, the set

of Walrasian price vectors may be empty and, if it is nonempty, each agent’s smallest Wal-

rasian price is weakly larger than the VCG transfer he pays and the firm’s largest Walrasian

revenue is weakly smaller than the VCG transfer it receives. The discrepancy stems from

a fundamental difference between Lindahl and Walrasian prices: Lindahl prices allow freely

setting the price of each alternative for each agent, and indeed that flexibility is essential

to Theorem 1. Walrasian prices, on the other hand, satisfy anonymity – any two agents

who receive the same bundle pay the same price for that bundle – and linearity – the price

that an agent pays for a bundle equals the sum of the prices of all elements in that bun-

dle. Walrasian prices are therefore a restricted version of Lindahl prices, which drives the

difference in how they relate to VCG transfers. In the next section, we formalize the impact

on the relationship between VCG transfers and Lindahl prices of imposing restrictions, like

anonymity and linearity, on the set of permissible Lindahl prices.

5 Price Restrictions

Recall that, for each agent, a price vector specifies the non-negative price of each non-

null alternative and a zero price for the null alternative; the set of price vectors is thus

{0}N × RN ·(A−1)
≥0 . In many environments, however, additional restrictions are imposed on

price vectors. For example, in an exchange economy, prices often must be anonymous and

linear.

For that purpose, we now add a new ingredient to our model: a set of permitted or

admissible price vectors P ⊆ {0}N ×RN ·(A−1)
≥0 . The elements of P that satisfy conditions (1)

and (2) form the set of restricted Lindahl price vectors, which we denote by Λ(P). We first

state the general effects of restrictions on the Lindahl price vectors and then specialize to

the setting with private goods and Walrasian prices.

5.1 General Impact of Price Restrictions

Absent any restrictions, the set of Lindahl price vectors Λ is nonempty by Proposition 1.

This may not be the case for the set of restricted Lindahl price vectors, since Λ(P) = Λ∩P

14



and P may not contain any elements of Λ.10 If Λ(P) is nonempty and compact,11 we define

each agent i’s smallest restricted Lindahl price for any efficient allocation a∗ ∈ A∗ to be the

smallest price that i can face in any restricted Lindahl price vector:

λa
∗

i (P) = min
λ∈Λ(P)

λa
∗

i .

We similarly define the firm’s largest restricted Lindahl revenue to be the largest revenue

that the firm can collect in any restricted Lindahl price vector:

λ
a∗

f (P) = max
λ∈Λ(P)

∑
i∈N

λa
∗

i .

Theorem 2. Suppose that the restricted set of Lindahl price vectors is nonempty, i.e.,

Λ(P) 6= ∅, and compact. Then, for any efficient alternative a∗ ∈ A∗:

(a) The smallest restricted Lindahl price of each agent i is at least i’s VCG transfer,

λa
∗

i (P) ≥ τa
∗
i for every i ∈ N ; λa

∗

i (P) = τa
∗
i if and only if (arg minλ∈Λ λ

a∗
i ) ∩ P 6= ∅.

(b) The largest restricted Lindahl revenue of the firm is at most the firm’s VCG transfer,

λ
a∗

f (P) ≤ τa
∗

f ; λ
a∗

f (P) = τa
∗

f if and only if (arg maxλ∈Λ

∑
i∈N λ

a∗
i ) ∩ P 6= ∅.

Theorem 2 provides the important insight that, as long as the set of Lindahl price vec-

tors remains nonempty and compact, a relationship remains between each agent’s smallest

Lindahl price and their VCG transfer in the form of an inequality; the same holds for the

firm’s largest Lindahl revenue and its VCG transfer. The reason is that the set of Lindahl

price vectors becomes smaller as restrictions are imposed on it. The key as to whether or

not an agent’s smallest Lindahl price (or the firm’s largest Lindahl revenue) changes as a

result of a price restriction is whether or not the price restriction takes away the agent’s (or

the firm’s) most favorable Lindahl price vectors.

5.2 Price Restrictions with Private Goods

We now formalize how, in the private good setting, the set of Walrasian price vectors obtains

from the set of Lindahl price vectors by keeping only anonymous and linear price vectors.

10To see that Λ(P) = Λ∩P, note that whether or not a price vector satisfies (1) and (2) does not depend
on P. Therefore, the set of restricted Lindahl price vectors consist of those price vectors that are allowed
and satisfy (1) and (2).

11Λ(P) may not be compact if P is not compact.
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In the private goods setting, there is a set of objects O with typical element o and

cardinality O = |O|. Each alternative a represents a partition ((Ba
i )i∈N , B

a
f ) of the set O,

where Ba
i is the bundle of objects that each agent i receives at alternative a and Ba

f is the

bundle of objects that is not allocated to any agents (hence not produced by the firm). Each

possible partition of O is represented by an alternative; hence, there are as many alternatives

as there are partitions of O. The null alternative represents the partition in which no object

is produced: Ba0
i = ∅ for every i ∈ N and Ba0

f = O.

An object price vector p = (po)o∈O ∈ RO
≥0 specifies a price for each object. From any

object price vector p, it is possible to infer an (agent-alternative) price vector µ(p) ∈ {0}N×

RN ·(A−1)
≥0 by setting, for each i ∈ N and each a ∈ A, µai (p) =

∑
o∈Ba

i
po. The set of (agent-

alternative) price vectors that can be inferred from an object price vector is

W = {µ ∈ {0}N × RN ·(A−1)
≥0 : µ = µ(p) for some p ∈ RO

≥0}.

The set of Walrasian price vectors is the set of Lindahl price vectors that satisfy this re-

striction: Λ(W) = Λ ∩ W .12 Understanding that Walrasian prices, in the private goods

setting, constitute a restriction of Lindahl prices establishes by Theorem 2 that if the set

of Walrasian prices is nonempty, then each agent’s smallest Walrasian price is weakly larger

than the VCG transfer he pays and the firm’s largest Walrasian revenue is weakly smaller

than the VCG transfer it receives.

We next verify that the restrictions imposed by Walrasian prices are precisely anonymity

and linearity. Anonymity requires that all agents pay the same price for the same bundle.

Formally, a price vector µ ∈ {0}N × RN ·(A−1)
≥0 is anonymous if, for any i, j ∈ N and any

a, a′ ∈ A such that Ba
i = Ba′

j , we have µai = µa
′
j . Linearity requires that the price that an

agent pays for a bundle be the sum of what he pays for the individual objects in that bundle.

In order to formally define linearity, it is useful, for each i ∈ N and any o ∈ O, to denote

by aoi the alternative in which i is allocated o (and no other objects) and no other agent is

allocated anything; that is, B
aoi
i = {o} and B

aoj
j = ∅ for every j ∈ N \ {i}. A price vector

µ ∈ {0}N × RN ·(A−1)
≥0 is linear if, for any i ∈ N and any a ∈ A, µai =

∑
o∈Ba

i
µ
aoi
i .

12Walrasian prices are typically defined as object price vectors. We use here the (agent-alternative) price
vectors that can be inferred from them to facilitate the comparison with Lindahl prices. Note that W and
hence Λ(W) are compact sets.
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Proposition 2. For any price vector µ ∈ {0}N × RN ·(A−1)
≥0 , µ ∈ W if and only if µ is

anonymous and linear.

Since the set of Walrasian price vectors Λ(W) is equal to Λ∩W , a direct consequence of

Proposition 2 is that the Walrasian price vectors are the Lindahl price vectors that are anony-

mous and linear. Because of those restrictions, each participant’s most favorable Walrasian

price may be strictly less favorable than their VCG transfer.

Two special cases where Theorem 1 extends to Walrasian prices are when all agents have

single-unit demand and the firm has single-unit supply, and when all agents have additive

values and the firm has additive costs. In the former case, linearity has no bite because each

agent receives at most one unit and anonymity has no bite because at most one agent receives

a unit. With additive values and costs, efficiency dictates that either nothing be produced or

that all produced units be assigned to the agent with the largest value; hence, the problem is

equivalent to one with single-unit demand and supply. Theorem 1 also “partially” extends to

Walrasian prices in the case of a homogeneous good market in which each agent has single-

unit demand and the firm has weakly increasing marginal costs. It extends for the agents,

as each agent’s smallest Walrasian price is equal to the agent’s VCG transfer. The VCG

transfer of each agent who is assigned a unit equals either the highest value of the agents

who are not assigned a unit – as first shown for environments without production costs by

Demange (1982), Leonard (1983), and Gul and Stacchetti (1999) – or the firm’s marginal

cost of producing the last unit, whichever is larger.13 Therefore, all agents who buy a unit

have the same VCG transfer and anonymity has no bite.14 As linearity has no bite either in

this single-unit demand environment, Theorem 1 holds for the agents. However, it does not

hold for the firm. As nothing is produced without the firm, its VCG transfer is the sum of

the values of the agents who are assigned a unit. Anonymity restricts the Walrasian price to

be the same for all agents; hence, the firm can only charge the smallest value of the agents

who purchase a unit. Unless all of them have the same value, the firm’s VCG transfer is

13To see this, note that the agent’s externality on others is that his presence either prevents the next
highest-value agent from getting a unit or forces the firm to produce one more unit.

14As Example 1 shows, that result can break down when the firm has decreasing marginal cost because
removing an agent may reduce production by more than one unit, and therefore the agents may no longer
have the same VCG transfers while anonymity continues to require they face the same smallest Walrasian
price.
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therefore larger than its largest Walrasian revenue.

We end this section with two examples, which show that either one of those restrictions

can on its own cause this strict inequality. The first example shows that an agent’s small-

est anonymous Lindahl price may be larger than his VCG transfer and the firm’s largest

anonymous Lindahl revenue may be smaller than its VCG transfer.

Example 1. There are two agents 1 and 2 and two (identical) objects o1 and o2. Agent 1

gets a value of 8 for either object and agent 2 gets a value of 6 from either object. Both

agents have unit demand (i.e., adding the other object does not increase the value). The firm

incurs a cost of 10 for producing either object and a cost of 11 for producing both.

In Example 1, there are two efficient allocations: a∗ assigns o1 to agent 1 and o2 to agent

2 (Ba∗
1 = {o1} and Ba∗

2 = {o2}) while a] assigns o1 to agent 2 and o2 to agent 1 (Ba∗
1 = {o2}

and Ba∗
2 = {o1}). The efficient level of welfare is 8 + 6− 11 = 3. If either agent is removed,

it is no longer efficient to produce anything so the efficient level of welfare in that case is 0.

The VCG transfers are

τa
∗

1 = τa
]

1 = 0− (3− 8) = 5, τa
∗

2 = τa
]

2 = 0− (3− 6) = 3, τa
∗

f = τa
]

f = 8 + 6 = 14.

Let λ be an anonymous Lindahl price vector. By anonymity, λa
∗

1 = λa
]

2 (as Ba∗
1 = Ba]

2 = {o1})

and λa
]

1 = λa
∗

2 (as Ba]

1 = Ba∗
2 = {o2}). By Proposition 1, λ supports both a∗ and a] so each

agent must be indifferent between the two alternatives: va
∗
i −λa

∗
i = va

]

i −λa
]

i for i = 1, 2. As

va
∗
i = va

]

i , it follows that λa
∗
i = λa

]

i for i = 1, 2. Then, the price of both alternatives must be

the same for both agents. Let p = λa
∗

1 = λa
]

1 = λa
∗

2 = λa
]

2 . As p must be small enough for

agent 2 to buy an object but large enough for the firm to produce both objects, we have that

5.5 ≤ p ≤ 6. Each agent’s smallest anonymous Lindahl price is then obtained by setting p

to its lower bound, hence:15

λa
∗

i = λa
]

i = 5.5 > 5 ≥ τa
∗

i = τa
]

i for i = 1, 2.

The firm’s largest anonymous Lindahl revenue is obtained by setting p to its upper bound,

hence

λ
a∗

f = λ
a]

f = 2 · 6 = 12 < 14 = τa
∗

f = τa
]

f .

15For notational simplicity, we keep the anonymity restriction implicit, denoting agent i’s smallest anony-
mous Lindahl price at allocation a∗ by λa

∗

i .

18



Therefore, anonymity alone can make every participant’s most favorable Lindahl price vector

less favorable than the VCG transfer.16

We now turn to linearity and show that an agent’s smallest linear Lindahl price may be

larger than his VCG transfer and the firm’s largest linear Lindahl revenue may be smaller

than its VCG transfer.

Example 2. There is one agent i and two (identical) objects o1 and o2. The agent’s value

for consuming either object is 4 and his value for consuming both is 7. The firm’s cost for

producing either object is 1 and its cost for producing both objects is 3.

In Example 2, the (unique) efficient allocation a∗ is the one in which both objects are

produced (Ba∗
i = {o1, o2}) and the efficient level of welfare is 4 (= 7− 3). If the agent or the

firm is removed, nothing is produced and the efficient level of welfare in that case is 0. The

VCG transfers are

τa
∗

i = 0− (4− 7) = 3 and τa
∗

f = 7.

Let λ be a linear Lindahl price vector and, for each k = 1, 2, denote by ak the alternative

where only object ok is produced (Bak
i = {ok}). Linearity dictates that λa

∗
i = λa1i + λa2i . As

λ must incentivize the agent to purchase both objects instead of just one of them, we have

that

7− λa1i − λ
a2
i = 7− λa∗i ≥ 4− λaki for every i = 1, 2,

which implies that λa1i , λ
a2
i ≤ 3. It follows that

λa
∗

i = λa1i + λa2i ≤ 6 < 7 = τa
∗

f ;

therefore, the firm’s largest linear Lindahl revenue is smaller than its VCG transfer. As λ

must incentivize the firm to produce both objects instead of just one of them, we have that

λa1i + λa2i − 3 = λa
∗

i − 3 ≥ λaki − 1 for every i = 1, 2,

16To construct an example in which the set of anonymous Lindahl prices is empty, simply subtract 2 from
each value and cost. The price for each agent and each of the two efficient alternatives is again the same;
letting it be p, we need p ≤ 4 to incentivize agent 2 to buy an object and p ≥ 4.5 to incentivize the firm to
produce both objects.
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which implies that λa1i , λ
a2
i ≥ 2. It follows that

λa
∗

i = λa1i + λa2i ≥ 4 > 3 = τa
∗

i ;

therefore, the agent’s smallest linear Lindahl price is larger than his VCG transfer.17

An application where linearity may be imposed on its own is the provision of a public

good in multiple discrete units. One may set a price per unit and require that the price

of each alternative be equal to the number of units produced multiplied by the unit price.

Example 2 shows that Theorem 1 fails under that restriction. The general reason for this

failure is that the VCG transfer of the firm must be equal to the total agents’ welfare; as

if the firm engaged in first-degree price discrimination, charging each agent the marginal

value of each unit produced. To induce each agent to demand the efficient quantity, the

highest unit price that each agent can be charged is his marginal value for the last unit

produced. Hence, if the Lindahl price paid by the agents must be linear, then the maximum

revenue of the firm is the sum over each agent of the product of the units produced and the

agent’s marginal value for the last unit. This is less than the firm’s VCG transfer, as long as

the marginal values of the units of the public good are decreasing (strictly for at least one

agent for at least one produced unit) and so Theorem 1 fails but, as shown by Theorem 2,

the relationship between extremal, linear Lindahl prices and VCG transfers persists as an

inequality.

6 VCG Deficit and Cost Recovery

Two classic questions are of considerable theoretical and practical interest: When does

implementing an efficient allocation require running a deficit if both the firm and the agents

must be incentivized to reveal their private information and to participate? Relatedly, if

only the agents have private information (e.g., because the firm is the designer, say, a social

planner interested in efficiency), when can the production costs be recovered? In the next two

subsections, we use properties of Lindahl price vectors to shed new light on these questions.

17To construct an example in which the set of linear Lindahl price vectors is empty, set the agent’s values
to 4 for consuming either object and 6 for consuming both, and set the firm’s costs to 4 for producing either
object and 5 for producing both. Incentivizing the agent to purchase both objects rather than one requires
setting the price of each object to at most 2 (= 6 − 4) but incentivizing the firm to produce both objects
rather than none requires setting the price of each object to at least 2.5 (= 5/2).
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Recall that, in general, λi is an A-dimensional vector. Because for a fixed efficient

allocation a∗, any agent i only pays the scalar λa
∗
i . What matters for cost recovery and the

deficit under the VCG mechanism are the effective Lindahl prices λa
∗
i introduced at the end

of Section 3.1. Formally, for any efficient alternative a∗ ∈ A∗, we let La
∗

= {` ∈ RN
≥0 : ` =

(λa
∗
i )i∈N for some λ ∈ Λ} be the set of effective Lindahl price vectors under alternative a∗.

An effective Lindahl price vector is constructed from any Lindahl price vector by only taking,

for each agent, the price that the agent pays for the efficient alternative, i.e., the price that

the agent effectively pays under that price vector. Each Lindahl price vector generates an

effective Lindahl price vector but distinct Lindahl price vectors generate the same effective

price vector if their entries associated with the efficient alternative a∗ are the same.

6.1 No VCG deficit

The deficit of the VCG mechanism is:

DV CG = τa
∗

f −
∑
i∈N

τa
∗

i .

Note that, by (3) and (4),

DV CG =
∑
i∈N

va
∗

i −
∑
i∈N

W−i +
∑
i∈N

(
W − va∗i

)
=
∑
i∈N

(W −W−i) ≥ 0. (5)

Therefore, the VCG deficit is nonnegative and does not depend on which efficient allocation

is selected. We show that whether or not the VCG mechanism runs a (non-zero) deficit

depends on whether or not the set of effective Lindahl price vectors is multi-valued.

Proposition 3. For every efficient alternative a∗ ∈ A∗, DV CG = 0 if and only if |La∗| = 1.

Recall that the set of Lindahl price vectors Λ is nonempty, which directly implies that, for

any a∗ ∈ A, La
∗

is nonempty. Since the VCG deficit is nonnegative (equation (5)), it follows

that Proposition 3 can be equivalently formulated as DV CG > 0 if and only if |La∗| > 1.

Moreover, as the VCG deficit does not depend on the efficient alternative picked, a direct

implication of Proposition 3 is that, for any two efficient alternatives a∗, a] ∈ A∗, |La∗| = 1 if

and only if |La]| = 1 (and |La∗| > 1 if and only if |La] | > 1). Therefore, even though the set
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of effective Lindahl prices depends on which efficient allocation is picked, the relationship

between VCG deficit and effective Lindahl prices outlined in Proposition 3 does not.18

Proposition 3 connects the property of whether La
∗

is multi- or single-valued to whether

or not the VCG mechanism runs a deficit. As such, it relates to the result, in a different

setting, of Segal and Whinston (2016) that the marginal core19 being multi-valued is sufficient

for the VCG mechanism to run a deficit. In Appendix B we show that, in our setting, the

marginal core being multi-valued is also necessary for the VCG mechanism to run a deficit.

This is because each effective Lindahl price vector generates payoffs that are in the marginal

core and the set of effective Lindahl price vectors contains a unique element if and only if

the marginal core does (Proposition 5 in Appendix B).

If there is a unique Lindahl price vector, then there is also, by definition, a unique effective

Lindahl price vector. Therefore, a direct consequence of Proposition 3 is that if there is a

unique Lindahl price vector, then the VCG deficit is zero. As the next example shows, the

converse does not hold: The set of Lindahl price vectors may be multi-valued when the set

of effective Lindahl price vectors is not; hence, the VCG deficit may be zero even though the

set of Lindahl price vectors is multi-valued.

Example 3. There are one agent and three alternatives. The values and costs are

( a0 a1 a2

v 0 1 0
c 0 1 1

)
In Example 3, there are two efficient alternatives: a0 and a1. The set of Lindahl price

vectors contains all vectors (λa0 , λa1 , λa2) = (0, 1, x) with x ∈ [0, 1]; hence, the set of Lindahl

price vectors is multi-valued. However, the set of effective Lindahl price vectors corresponding

to either efficient allocation contains a unique element: La0 = {0} and La1 = {1}. As

Proposition 3 predicts, the VCG deficit is 0 since τa0 = τa0 = 0 and τa1 = τa1 = 1.

18Note that, since the price of the null alternative a0 is zero for all agents, whenever a0 is efficient there
can only be one effective Lindahl price vector and hence the VCG mechanism does not run a deficit.

19They defined the marginal core as the set of payoffs that ensures no coalition of all but one participant
gains from deviating.
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6.2 Cost Recovery under VCG

If the revenue that can be extracted from the agents under the VCG mechanism does not

cover the firm’s cost, then allocating efficiently generates a monetary loss even if the firm does

not have to be incentivized to reveal its private information (e.g., because the planner runs

the firm). We say that the VCG mechanism achieves cost recovery at an efficient allocation

a∗ ∈ A if
∑

i∈N τ
a∗
i ≥ ca

∗
. Note that∑

i∈N

τa
∗

i − ca
∗

=
∑
i∈N

(
W−i − (W − va∗i )

)
− ca∗

=
∑
i∈N

W−i −NW +
∑
i∈N

va
∗

i − ca
∗

=
∑
i∈N

W−i − (N − 1)W,

(6)

which does not depend on a∗. Therefore, whether or not the VCG mechanism achieves cost

recovery is independent of which efficient allocation is picked.

For each efficient allocation a∗ ∈ A∗, define the set Λa∗
C of cost-recovery Lindahl – or

C-Lindahl – price vectors as the set containing all price vectors that satisfy condition (1)

and, instead of (2), ∑
i∈N

λa
∗

i − ca
∗ ≥ 0. (7)

We then define the set of effective C-Lindahl price vectors to be La
∗
C = {` ∈ RN

≥0 : ` =

(λa
∗
i )i∈N for some λ ∈ Λa∗

C }. That is, each effective C-Lindahl price vector contains the

price that each agent pays for a∗ in some C-Lindahl price vector. Finally, we denote by

λa
∗

= (λa
∗

i )i∈N the vector of smallest Lindahl prices. We next show that these concepts are

key to cost recovery as the VCG mechanism achieves cost recovery if and only if the vector

of smallest Lindahl prices is an effective C-Lindahl price vector.

Proposition 4. For every efficient allocation a∗ ∈ A∗, λa∗ ∈ La∗C if and only if
∑

i∈N τ
a∗
i ≥

ca
∗
.

While each of the set of effective C-Lindahl price vectors, the VCG transfers, and the

cost of producing depends on which efficient allocation is picked, equation (6) ensures that

Proposition 4 does not. That is, either the vector of smallest Lindahl prices belongs to the

set of effective C-Lindahl price vectors and the VCG mechanism achieves cost recovery for
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all efficient allocations, or the vector of smallest Lindahl prices does not belong to the set

of effective C-Lindahl price vectors and the VCG mechanism does not achieve cost recovery

for any efficient allocation.

Note that, for every a∗ ∈ A∗, La∗ ⊆ La
∗
C because condition (7) is less demanding than

condition (2). It follows from Proposition 4 that λa
∗ ∈ La∗ is a sufficient condition for cost

recovery. Moreover, λa
∗ ∈ La∗ is also necessary when there are only two alternatives (one of

which is the null) because in that case, La
∗

= La
∗
C .20

Our example from Section 2 illustrates Proposition 4. Recall that the VCG transfers are

2 for Paul and 1 for William but the cost to Erik is 4, hence the VCG mechanism does not

achieve cost recovery. The set of effective C-Lindahl price vectors is represented in Figure 1

by the shaded triangle and does not contain the vector (2,1) of smallest Lindahl prices. A

key intuition as to why this is the case lies in the free-riding problem that is inherent to a

public good: The more one agent pays, the less the other has to pay to recover the cost,

and therefore the cost is not recovered if each agent pays his smallest possible Lindahl price.

It is easy to see that the result generalizes to any single-unit public good setting in which

production is efficient because each agent’s smallest Lindahl price occurs when the other

agents are paying as much of the production cost as their values allow.

The free-riding problem disappears with private goods. Consider an economy with a

homogeneous private good in which the agents have single-unit demands and the firm’s

marginal cost is nondecreasing. Each agent who is efficiently allocated a unit must pay at

least the marginal cost of the last unit produced. The vector of smallest Lindahl prices (and

by Theorem 1 the vector of VCG transfers) therefore assigns to each agent who is allocated a

unit the marginal cost of the last unit produced. That vector is an effective C-Lindahl price

vector because, at that price, (i) every agent who is efficiently allocated a unit is incentivized

to purchase one, (ii) every agent who is efficiently not allocated a unit is incentivized not

to purchase one, and (iii) the firm is incentivized to produce the number of units required

to serve all agents who are efficiently allocated a unit. As Proposition 4 predicts, the VCG

mechanism recovers the cost of production since nondecreasing marginal costs guarantee the

20If the null alternative is efficient, then La∗
= La∗

C = {0} and if the non-null alternative is not efficient,
then conditions (2) and (7) are identical.
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sum of the VCG transfers is greater than or equal to the total cost of producing.

`P

`W

0 1 2 3 4
0

1

2

3

4

(λa
∗

P , λ
a∗

W )

Figure 2: The set of effective C-Lindahl prices (shaded area), the vector of smallest Lindahl
prices (red dot) and the set Walrasian price vectors (solid blue line).

As an illustration, consider a private good variant of the example in Section 2, in which

Erik’s marginal cost of producing the first and second copies of the book are c ≤ 2 and 2,

respectively (i.e., producing one copy costs c and producing two copies costs c + 2). Paul’s

valuation for a copy is 3 and William’s is 4. Since each agent’s valuation exceeds Erik’s

(i.e., the firm’s) marginal cost of production for the second copy, the efficient allocation

a∗ is to allocate a unit of the book to each agent.21 An effective C-Lindahl price vector

must incentivize both agents to purchase a unit and the firm to produce the second unit.

Therefore, the set of effective C-Lindahl price vectors contains all price vectors such that

each agent’s price is (i) larger than or equal to the marginal cost of producing the second

unit (which is 2) and (ii) smaller than or equal to the agent’s value (3 for Paul and 4 for

William). The set is depicted in Figure 2.22 Geometrically, the set of effective C-Lindahl

price vectors in Figure 2 forms a rectangle whose bottom-left corner is the vector of smallest

Lindahl prices. In contrast, the set of effective C-Lindahl price vectors in Figure 1 forms

a triangle that does not contain a bottom-left corner. As our results show, that geometric

difference drives the VCG mechanism’s ability to recover the cost of production in one case

21Apart from the null and the efficient allocation, there are two allocations: produce the good for Paul only,
a1, and produce the good for William only, a2. We have ca1 = ca2 = c, va1

P = va
∗

P = 3 and va2

W = va
∗

W = 4.
22Linearity does not restrict prices since agents have unit demand, but anonymity dictates that both agents

face the same price. Therefore, the set of Walrasian price vectors is the intersection of the set of effective
C-Lindahl price vectors and the 45-degree line, which is the solid blue line in Figure 2.

25



but not in the other.

7 Conclusions

Studying a general collective choice problem with quasilinear utility, this paper bridges the

gap between the classic pricing concept for public goods, Lindahl prices, with the transfers of

the VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) that resolve the incentive

problem arising from private information. It shows that any agent’s preferred, that is,

smallest, Lindahl price is equal to his VCG transfer, while the firm’s VCG transfer consists

of the largest sum of Lindahl prices.

With private goods, the agents’ preferred Lindahl prices, and thus their VCG transfers,

differ in general from the payments associated with the smallest Walrasian prices because

the latter impose the additional restrictions of linearity and anonymity. For the same reason,

Walrasian prices may fail to exist whereas Lindahl prices always exist and always support

all efficient allocations.
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Appendix A: Proofs

Proof of Proposition 1

1. Toward a contradiction, suppose that there are a Lindahl price vector λ ∈ Λ and an

efficient allocation a] ∈ A∗ such that λ does not support a]; that is, either

a] /∈ arg max
a∈A

vai − λai for some i ∈ N or a] /∈ arg max
a∈A

∑
i∈N

λai − ca.

Then, there exists an allocation ã ∈ A such that either

vãi − λãi > va
]

i − λa
]

i for some i ∈ N or
∑
i∈N

λãi − cã >
∑
i∈N

λa
]

i − ca
]

.

As λ is a Lindahl price vector, it supports an efficient allocation a∗ ∈ A∗; which implies

that va
∗
i − λa

∗
i ≥ vãi − λãi for every i ∈ N and

∑
i∈N λ

a∗
i − ca

∗ ≥
∑

i∈N λ
ã
i − cã. We

therefore have that either

va
∗

i − λa
∗

i > va
]

i − λa
]

i for some i ∈ N or
∑
i∈N

λa
∗

i − ca
∗
>
∑
i∈N

λa
]

i − ca
]

. (8)

Moreover, as λ supports a∗, we have that va
∗
i − λa

∗
i ≥ va]i − λa]i for every i ∈ N

and
∑

i∈N λ
a∗
i − ca

∗ ≥
∑

i∈N λ
a]
i − ca]. Summing over all agents and using the strict

inequality from (8) yields∑
i∈N

va
∗

i −
∑
i∈N

λa
∗

i +
∑
i∈N

λa
∗

i − ca
∗
>
∑
i∈N

va
]

i −
∑
i∈N

λa
]

i +
∑
i∈N

λa
]

i − ca
]

⇔
∑
i∈N

va
∗

i − ca
∗
>
∑
i∈N

va
]

i − ca
]

,

which contradicts the assumption that a] is an efficient allocation.

2. We show in turn that Λ is nonempty, closed and bounded.

Nonempty. We construct a price vector λ such that λai = vai for each i ∈ N and each

a ∈ A. Note that, by assumption, this vector satisfies the requirement that λa0i = 0

for every i ∈ N . We show that λ is a Lindahl price vector by showing that it satisfies

(1) and (2). The price vector λ satisfies (1) since, for any agent i ∈ N , any efficient

allocation a∗ ∈ A, and any allocation a ∈ A, we have that

va
∗

i − λa
∗

i = 0 = vai − λai .
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The price λ satisfies (2) since, for any efficient allocation a∗ ∈ A and any allocation

a ∈ A, we have that∑
i∈N

λa
∗

i − ca
∗

=
∑
i∈N

va
∗

i − ca
∗

= W ≥
∑
i∈N

vai − ca =
∑
i∈N

λai − ca,

where the inequality stems from the fact that no allocation can create a larger level of

social welfare than the efficient level. We conclude that λ is a Lindahl price vector,

hence such a vector exists and Λ 6= ∅.

Closed. Consider any convergent sequence of Lindahl price vectors (λ(n))n∈N and

let λ = limn→∞ λ(n). Towards a contradiction, suppose that λ /∈ Λ. Then, for any

efficient alternative a∗ ∈ A∗, there exists an alternative a ∈ A such that

either va
∗

i − λa
∗

i < vai − λai for some i ∈ N or
∑
i∈N

λa
∗

i − ca
∗
<
∑
i∈N

λai − ca.

As the sequence converges to λ, λn is arbitrarily close to λ for a large enough n.

Therefore, there exists n ∈ N such that

either va
∗

i − λa
∗

i (n) < vai − λai (n) for some i ∈ N or
∑
i∈N

λa
∗

i (n)− ca∗ <
∑
i∈N

λai (n)− ca.

It follows that λ(n) /∈ Λ, a contradiction. We conclude that every convergent sequence

of Lindahl price vector converges to a Lindahl price vector, hence Λ is closed.

Bounded. For any Lindahl price vector λ, any alternative a ∈ A∗ and any efficient

alternative a∗ ∈ A∗, we have that∑
i∈N

λa
∗

i − ca
∗ ≥

∑
i∈N

λai − ca ⇔
∑
i∈N

λai ≤
∑
i∈N

λa
∗

i − ca
∗

+ ca

since the firm must pick a∗ over a. Moreover, λa
∗
i ≤ va

∗
i for every i ∈ N since each

agent must pick a∗ over the null. Combining our two inequalities and defining cmax =

maxa∈A c
a yields ∑

i∈N

λai ≤
∑
i∈N

va
∗

i − ca
∗

+ ca = W + ca ≤ W + cmax.
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As Lindahl prices are nonnegative, no term can exceed the sum so we have that λai ≤

W + cmax for every agent i ∈ N and every alternative a ∈ A. It follows that the length

of every Lindahl price vector λ is bounded by√∑
i∈N

∑
a∈A

(W + cmax)2 =
√
NA(W + cmax)2 =

√
NA(W + cmax).

By definition, Λ is bounded since there is an upper bound on the length of all of its

elements.

Proof of Theorem 1

Agents. (λa
∗

i ≥ τa
∗
i ) Consider any agent i ∈ N and any Lindahl price vector λ ∈ Λ. We

need to show that λa
∗
i ≥ τa

∗
i . By (1), for every j ∈ N \ {i}, we have that

va
∗

j − λa
∗

j ≥ v
a∗−i

j − λa
∗
−i

j

⇔ λa
∗

j ≤ va
∗

j − v
a∗−i

j + λ
a∗−i

j .

Summing over all agents other than i yields:∑
j∈N\{i}

λa
∗

j ≤
∑

j∈N\{i}

va
∗

j −
∑

j∈N\{i}

v
a∗−i

j +
∑

j∈N\{i}

λ
a∗−i

j . (9)

By (2), we have that∑
j∈N

λa
∗

j − ca
∗ ≥

∑
j∈N

λ
a∗−i

j − ca∗−i

⇔ λa
∗

i ≥
∑
j∈N

λ
a∗−i

j − ca∗−i + ca
∗ −

∑
j∈N\{i}

λa
∗

j . (10)

Combining (9) with (10) yields

λa
∗

i ≥
∑
j∈N

λ
a∗−i

i − ca∗−i + ca
∗ −

∑
j∈N\{i}

va
∗

j +
∑

j∈N\{i}

v
a∗−i

j −
∑

j∈N\{i}

λ
a∗−i

j

=
∑

j∈N\{i}

v
a∗−i

j − ca∗−i −

 ∑
j∈N\{i}

va
∗

j − ca
∗


︸ ︷︷ ︸

=τa
∗

i

+

(∑
j∈N

λ
a∗−i

i

)
︸ ︷︷ ︸

≥0

≥ τa
∗

i .

(λa
∗

i ≤ τa
∗
i ) Consider any agent i ∈ N . We need to show that there exists a Lindahl price

vector λ ∈ Λ such that λa
∗
i = τa

∗
i . We construct λ as follows:
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• Set λa
∗
i = τa

∗
i

• For every a ∈ A \ {a∗}, set λai = max{vai − (W −W−i), 0}.

• For every j ∈ N \ {i} and every a ∈ A, set λaj = vaj .

We need to show that λ satisfies (1) and (2). For any agent j ∈ N \ {i} and any

alternative a ∈ A \ {a∗}, we have that

va
∗

j − λa
∗

j = 0 = vaj − λaj ,

hence λ satisfies (1) for all agents other than i. For agent i, we have that

va
∗

i − λa
∗

i = va
∗

i − τa
∗

i = va
∗

i −W−i +W − va∗i = W −W−i.

Moreover, for any alternative a ∈ A \ {a∗}, we have that

vai − λai = vai −max{vai − (W −W−i), 0} ≤ vai − vai + (W −W−i) = W −W−i.

We conclude that va
∗
i − λa

∗
i ≥ vai − λai for every a ∈ A \ {a∗}, hence λ satisfies (1) for i as

well.

Turning to the firm and to condition (2), we need to show that, for every allocation

a ∈ A \ {a∗}, ∑
j∈N

λa
∗

j − ca
∗ ≥

∑
j∈N

λaj − ca

⇔ τa
∗

i +
∑

j∈N\{i}

λa
∗

j − ca
∗ ≥ λai +

∑
j∈N\{i}

λaj − ca

⇔ W−i −W + va
∗

i +
∑

j∈N\{i}

va
∗

j − ca
∗

︸ ︷︷ ︸
=W

≥ max{vai − (W −W−i), 0}+
∑

j∈N\{i}

vaj − ca

⇔ W−i ≥ max{vai − (W −W−i), 0}+
∑

j∈N\{i}

vaj − ca.

We separately consider two cases depending on whether vai ≥ W −W−i or vai < W −W−i.

Case 1 : vai ≥ W −W−i. In that case, λai = vai − (W −W−i) so we need to show that

W−i ≥ vai − (W −W−i) +
∑

j∈N\{i}

vaj − ca

⇔ W ≥
∑
j∈N

vaj − ca,
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which is satisfied since, in the economy where i is present, no alternative can provide a larger

social welfare than the efficient level.

Case 2 : vai < W −W−i. In that case, λai = 0 so we need to show that

W−i ≥
∑

j∈N\{i}

vaj − ca,

which is satisfied since, in the economy where i is absent, no alternative can provide a larger

social welfare than the efficient level.

Firm. (λ
a∗

f ≤ τa
∗

f ) Consider any Lindahl price vector λ ∈ Λ. We need to show that∑
i∈N λ

a∗
i ≤ τa

∗

f . By (1), λ incentivizes each agent to pick a∗ over the null; hence, va
∗
i −λa

∗
i ≥

0, which is equivalent to λa
∗
i ≤ va

∗
i and implies that∑
i∈N

λa
∗

i ≤
∑
i∈N

va
∗

i = τa
∗

f .

(λ
a∗

f ≥ τa
∗

f ) We need to show that there exists a Lindahl price vector λ ∈ Λ such that∑
i∈N λ

a∗
i = τa

∗

f . We construct λ as follows: For every i ∈ N and every a ∈ A, set λai = vai . It

is immediate that
∑

i∈N λ
a∗
i =

∑
i∈N v

a∗
i = τa

∗

f ; therefore, it remains to show that λ satisfies

(1) and (2). For every i ∈ N and every a ∈ A\{a∗}, we have that va
∗
i −λa

∗
i = 0 = vai −λai so

λ satisfies (1). Turning to the firm and condition (2), for every a ∈ A \ {a∗}, we have that∑
i∈N

λa
∗

i − ca
∗

=
∑
i∈N

va
∗

i − ca
∗ ≥

∑
i∈N

vai − ca =
∑
i∈N

λai − ca,

where each equality follows from the construction of λ and the inequality follows from the

efficiency of a∗. We conclude that λ satisfies (2).

Proof of Theorem 2

Agents. Consider any agent i ∈ N . Since Λ(P) = Λ ∩ P , it is Λ(P) ⊆ Λ so λa
∗

i (P) =

minλ∈Λ(P) λ
a∗
i ≥ minλ∈Λ λ

a∗
i = λa

∗

i . Combining this result with Theorem 1 yields λa
∗

i (P) ≥

λa
∗

i = τa
∗
i . If (arg minλ∈Λ λ

a∗
i )∩P 6= ∅, then λa

∗

i (P) = minλ∈Λ(P) λ
a∗
i = minλ∈Λ λ

a∗
i = λa

∗

i and

Theorem 1 yields λa
∗

i (P) = λa
∗

i = τa
∗
i . If (arg minλ∈Λ λ

a∗
i )∩P = ∅, then either Λ(P) = ∅ and

λa
∗

i is not defined or (arg minλ∈Λ λ
a∗
i ) ∩ P 6= ∅ and λa

∗

i (P) = minλ∈Λ(P) λ
a∗
i > minλ∈Λ λ

a∗
i =

λa
∗

i and Theorem 1 yields λa
∗

i (P) > λa
∗

i = τa
∗
i .
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Firm. Λ(P) = Λ∩P implies that λ
a∗

f (P) = maxλ∈Λ(P)

∑
i∈N λ

a∗
i ≤ maxλ∈Λ

∑
i∈N λ

a∗
i = λ

a∗

f ,

which combined with Theorem 1 yields λ
a∗

f (P) ≤ λ
a∗

f = τa
∗

f . If (arg maxλ∈Λ

∑
i∈N λ

a∗
i )∩P 6=

∅, then λ
a∗

f (P) = maxλ∈Λ(P)

∑
i∈N λ

a∗
i = maxλ∈Λ

∑
i∈N λ

a∗
i = λ

a∗

f and Theorem 1 yields

λ
a∗

f (P) = λ
a∗

f = τa
∗

f . If (arg maxλ∈Λ

∑
i∈N λ

a∗
i ) ∩ P = ∅, then either Λ(P) = ∅ and λ

a∗

f

is not defined or (arg maxλ∈Λ

∑
i∈N λ

a∗
i ) ∩ P 6= ∅ and λ

a∗

f (P) = maxλ∈Λ(P)

∑
i∈N λ

a∗
i <

maxλ∈Λ

∑
i∈N λ

a∗
i = λ

a∗

f and Theorem 1 yields λ
a∗

f (P) < λ
a∗

f = τa
∗

f .

Proof of Proposition 2

If. Suppose that µ is anonymous and linear. Pick any agent j ∈ N and construct the

object price vector p ∈ RO
≥0 by setting po = µ

aoj
j for each o ∈ O. Consider next any agent

i ∈ N and any alternative a ∈ A. As µ is anonymous, we have that µ
aoi
i = µ

aoj
j = po (since

B
aoi
i = B

aoj
j = {o}). As µ is linear, we have that µai =

∑
o∈Ba

i
µ
aoi
i =

∑
o∈Ba

i
po. As this holds

for all agents and all alternatives, we conclude that µ = µ(p), and therefore µ ∈ W .

Only if. Suppose that µ ∈ W . Then, there exists an object price vector p ∈ RO

such that µai =
∑

o∈Bo
i
po for every i ∈ N and every a ∈ A. For any i, j ∈ N and any

a, a′ ∈ A such that Ba
i = Ba′

j , we have that µai =
∑

o∈Ba
i
po =

∑
o∈Ba′

j
po = µa

′
j ; therefore,

µ is anonymous. For any i ∈ N and any o ∈ O, µ
aoi
i =

∑
o′∈B

ao
i

i

p′o = po; therefore, for any

a ∈ A, µai =
∑

o∈Ba
i
po =

∑
o∈Ba

i
µa

o
i and µ is linear.

Proof of Proposition 3

If. Suppose that |La∗| = 1 and denote by `a
∗

the unique effective Lindahl price vector,

i.e., La
∗

= {`a∗}. For each agent i ∈ N , we have that

τa
∗

i = λa
∗

i︸ ︷︷ ︸
By Theorem 1

= min
λ∈Λ

λa
∗

i︸ ︷︷ ︸
By definition

= min
`∈La∗

`i︸ ︷︷ ︸
By definition

= `a
∗

i︸ ︷︷ ︸
As La∗={`a∗}

.

For the firm, we have that

τa
∗

f = λ
a∗

f︸ ︷︷ ︸
By Theorem 1

= max
λ∈Λ

∑
i∈N

λa
∗

i︸ ︷︷ ︸
By definition

= max
`∈La∗

∑
i∈N

`i︸ ︷︷ ︸
By definition

=
∑
i∈N

`a
∗

i︸ ︷︷ ︸
As La∗={`a∗}

.

We conclude that the VCG deficit is

DV CG = τa
∗

f −
∑
i∈N

τa
∗

i =
∑
i∈N

`a
∗

i −
∑
i∈N

`a
∗

i = 0.
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Only If. We need to show that DV CG = 0 implies |La∗ | = 1. We prove the contrapositive:

|La∗ | 6= 1 implies DV CG 6= 0. As the set of Lindahl price vectors is nonempty (Proposition 1),

so is the set of effective Lindahl price vectors, hence |La∗| 6= 1 is equivalent to |La∗ | > 1.

Moreover, as by (5) the VCG deficit is nonnegative, DV CG 6= 0 is equivalent to DV CG > 0.

We therefore assume that |La∗| > 1 and show that DV CG > 0. We consider two cases

separately depending on whether or not there exists a vector that is most favorable to all

agents.

Case 1 : There exists ˜̀ ∈ La∗ such that, for every i ∈ N and every ` ∈ La∗ , ˜̀
i ≤ `i. Each

agent i’s VCG transfer is

τa
∗

i = λa
∗

i︸ ︷︷ ︸
By Theorem 1

= min
λ∈Λ

λa
∗

i︸ ︷︷ ︸
By definition

= min
`∈La∗

`i︸ ︷︷ ︸
By definition

= ˜̀
i︸ ︷︷ ︸

By case assumption

.

As |La∗| > 1, there exists an effective Lindahl price vector `′ 6= ˜̀. Then, the case

assumption implies that `′i ≥ ˜̀
i for all i ∈ N and `′j >

˜̀
j for some j ∈ N ; hence,∑

i∈N

`′i >
∑
i∈N

˜̀
i. (11)

It follows that

τa
∗

f = λ
a∗

f︸ ︷︷ ︸
By Theorem 1

= max
λ∈Λ

∑
i∈N

λa
∗

i︸ ︷︷ ︸
By definition

= max
`∈La∗

∑
i∈N

`i︸ ︷︷ ︸
By definition

≥
∑
i∈N

`′i︸ ︷︷ ︸
By definition

>
∑
i∈N

˜̀
i︸ ︷︷ ︸

By (11)

.

We conclude that the VCG deficit is

DV CG = τa
∗

f −
∑
i∈N

τa
∗

i >
∑
i∈N

˜̀
i −
∑
i∈N

˜̀
i = 0.

Case 2 : For every ` ∈ La∗ , there exists j ∈ N and `′ ∈ La∗ such that `′j < `j. Denote by

ˆ̀ the effective Lindahl price vector that maximizes the firm’s revenue. We have that

τa
∗

f = λ
a∗

f︸ ︷︷ ︸
By Theorem 1

= max
λ∈Λ

∑
i∈N

λa
∗

i︸ ︷︷ ︸
By definition

= max
`∈La∗

∑
i∈N

`i︸ ︷︷ ︸
By definition

=
∑
i∈N

ˆ̀
i︸ ︷︷ ︸

By definition

.

By definition, for every i ∈ N , min`∈La∗ `i ≤ ˆ̀
i. Moreover, by the case assumption, there

exists an agent j ∈ N such that min`∈La∗ `j < ˆ̀
j. It follows that∑

i∈N

min
`∈La∗

`i <
∑
i∈N

ˆ̀
i. (12)
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It follows that∑
i∈N

τa
∗

i =
∑
i∈N

λa
∗

i︸ ︷︷ ︸
By Theorem 1

=
∑
i∈N

min
λ∈Λ

λa
∗

i︸ ︷︷ ︸
By definition

=
∑
i∈N

min
`∈La∗

`i︸ ︷︷ ︸
By definition

<
∑
i∈N

ˆ̀
i︸ ︷︷ ︸

By (12)

.

We conclude that the VCG deficit is

DV CG = τa
∗

f −
∑
i∈N

τa
∗

i >
∑
i∈N

ˆ̀
i −
∑
i∈N

ˆ̀
i = 0.

Proof of Proposition 4

Only if. Suppose λa
∗ ∈ La∗C , then we have that:∑

i∈N

τa
∗

i =
∑
i∈N

λa
∗

i︸ ︷︷ ︸
By Theorem 1

≥ ca
∗

︸ ︷︷ ︸
As λa∗∈La∗

C

.

If. Suppose λa
∗
/∈ La∗C . We consider two cases.

Case 1: a∗ = a0. Then, La
∗
C = La0C = {(0)i∈N} since the price of the null is zero for all

agents. It follows that λa
∗

= (λa
∗

i )i∈N = (0)i∈N ∈ La
∗
C , which contradicts our assumption.

Case 2: a∗ 6= a0. Construct a price vector λ such that:

• λa∗i = λa
∗

i for every i ∈ N ; and

• λai = vai for every i ∈ N and every a ∈ A \ {a∗}.

Consider any agent i. By definition, there exists a Lindahl price vector in which i’s price

for a∗ is λa
∗

i ; therefore, va
∗
i − λa

∗

i ≥ 0 (as a Lindahl price vector incentivizes i to pick a∗ over

the null). By construction, for every a ∈ A \ {a∗}, vai − λai = 0 so va
∗
i − λa

∗

i ≥ vai − λai .

Therefore, λ satisfies condition (1) for every agent.

Note that if the constructed price vector λ satisfied λ ∈ Λa∗
C , then it would be λa

∗ ∈ La∗C .

Since, by assumption, λa
∗
/∈ La∗C , it must be λ /∈ Λa∗

C . Then, by definition, λ must violate

(7); that is, we have that
∑

i∈N λ
a∗

i =
∑

i∈N λ
a∗
i < ca

∗
, which by Theorem 1 implies that∑

i∈N τ
a∗
i < ca

∗
.
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Appendix B: Effective Lindahl Prices and Marginal Core

In this appendix, we connect effective Lindahl price vectors with the marginal core defined

by Segal and Whinston (2016). Translated to our setting, Segal and Whinston’s (2016)

Proposition 1 states that if the set of effective marginal core price vectors is nonempty for

all type profiles and multi-valued for at least one type profile that is drawn with positive

probability, then the expected VCG deficit is positive. In our setting, the set of effective

marginal core price vectors is nonempty for all types. We show that the VCG deficit is

positive for a type profile if and only if that type profile yields a multi-valued set of effective

marginal core price vectors.

Define an effective price vector to be a nonnegative N -dimensional vector that specifies

a price for each agent (i.e., the set of all effective price vectors is RN
≥0). Recall from Section 6

that, for each efficient allocation a∗ ∈ A∗, the set of effective Lindahl price vectors La
∗

contains all effective Lindahl price vectors whose prices for a∗ are the same as those of a

Lindahl price vector: La
∗

= {` ∈ RN
≥0 : ` = (λa

∗
i )i∈N for some λ ∈ Λ}.

Expressing Segal and Whinston’s (2016) definition in our terminology and notation, an

effective price vector m ∈ RN
≥0 is an effective marginal core price vector for efficient allocation

a∗ ∈ A∗ if the payoffs generated by m at a∗ are such that no coalition of all but one

participants can gain by deviating. Formally, denoting the set of effective marginal core

price vector for efficient allocation a∗ ∈ A∗ by Ma∗ , we have that m ∈Ma∗ if∑
j∈N\{i}

(
va
∗

j −mj

)
+
∑
j∈N

mj − ca
∗ ≥ W−i for every i ∈ N and (13)

∑
j∈N

(
va
∗

j −mj

)
≥ W−f = 0 (14)

For each i ∈ N , condition (13) specifies that the coalition including the firm and all

agents except i cannot gain by deviating. Condition (14) specifies the same condition for

37



the coalition formed of all agents (without the firm). We can rearrange (13) as follows:∑
j∈N\{i}

(
va
∗

j −mj

)
+
∑
j∈N

mj − ca
∗ ≥ W−i

⇔
∑

j∈N\{i}

va
∗

j − ca
∗

︸ ︷︷ ︸
=W−va∗i

+
∑
j∈N

mj −
∑

j∈N\{i}

mj︸ ︷︷ ︸
=mi

≥ W−i

⇔ mi ≥ W−i − (W − va∗i ) = τa
∗

i .

Therefore, condition (13) requires that each agent’s price be greater than or equal to his

VCG transfer. Meanwhile, condition (14) requires that the prices be small enough so that

the sum of the agents’ payoffs under those prices is nonnegative.

An effective Lindahl price vector satisfies (13) since, by Theorem 1, each agent’s effective

Lindahl price cannot be smaller than his VCG transfer and (14) since each agent’s effective

Lindahl price cannot exceed his value for the efficient allocation, else the agent’s payoff for

that allocation would be negative (hence less than the payoff of the null allocation). It

follows that every effective Lindahl price vector is an effective marginal core price vector:

La
∗ ⊆Ma∗ for every a∗ ∈ A∗. We next present the main result from this appendix.

Proposition 5. For every efficient alternative a∗ ∈ A∗, |La∗| = 1 if and only if |Ma∗| = 1.

Combining Proposition 5 with Proposition 3, we obtain that DV CG = 0 if and only if

|Ma∗| = 1. As La
∗

is nonempty, we have that Ma∗ is nonempty (since La
∗ ⊆Ma∗); therefore,

since the VCG deficit is nonnegative (equation (5)), Propositions 3 and 5 imply that the

following three statements are equivalent: (i) DV CG > 0; (ii) |La∗| > 1; (iii) |Ma∗| > 1.

Finally, Proposition 5 and the property that La
∗ ⊆Ma∗ imply the following corollary.

Corollary 1 (to Proposition 5). If |Ma∗| = 1 (or, equivalently, |La∗| = 1, or DV CG = 0),

then La
∗

= Ma∗.

Proof of Proposition 5

If. Suppose that |Ma∗| = 1. As La
∗ 6= ∅ (by Proposition 1) and La

∗ ⊆ Ma∗ , we have

that |La∗ | = 1.

Only if. Suppose that |La∗| = 1 and consider any m ∈ Ma∗ (such a vector exists since

∅ 6= La
∗ ⊆ Ma∗). By (14),

∑
i∈N

(
va
∗
i −mi

)
≥ 0 so

∑
i∈N mi ≤

∑
i∈N v

a∗
i . As |La∗| = 1,
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DV CG = 0 by Proposition 3; hence,
∑

i∈N (W −W−i) = 0 by (5). It follows that∑
i∈N

mi ≤
∑
i∈N

va
∗

i −
∑
i∈N

(W −W−i) =
∑
i∈N

(
W−i − (W − va∗i )

)
=
∑
i∈N

τa
∗

i . (15)

By (13), mi ≥ τa
∗
i for every i ∈ N . If mi > τa

∗
i for some i ∈ N , we therefore have that∑

i∈N mi >
∑

i∈N τ
a∗
i , which contradicts (15). We conclude that mi = τa

∗
i for every i ∈ N ,

hence (τa
∗
i ) is the unique effective marginal core price vector.
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