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1. Introduction

The labor wedge—the gap between the marginal product of labor (MPL)

and the marginal rate of substitution between leisure and consumption (MRS)—

explains a significant portion of output fluctuations. In the U.S., Chari et al.

(2002, 2007) find that the labor wedge played an important role in accounting

for output fluctuations during the Great Depression and from 1959 to 2004. In

Japan, Kobayashi and Inaba (2006) show that the labor wedge was a major

contributor to the recession in the 1920s and the lost decade of the 1990s. Several

studies recognize the role of taxes in labor supply decisions and the labor wedge

(e.g., Prescott 2004; Chari et al. 2007), but taxes alone cannot explain the rising

labor wedge at the business cycle frequency, as pointed out by Shimer (2009) and

Ohanian (2010).

Like unemployment, the U.S. labor wedge is volatile and countercyclical.

Accordingly to Chari et al. (2007) and Karabarbounis (2014), the labor wedge

exhibits pronounced fluctuations over the business cycle, sometimes even more

than output. Figure 1 plots unemployment, the labor wedge, and real GDP from

1959 to 2023 (see Appendix A for the data description). Unemployment and the

labor wedge move in the opposite direction of real GDP. Karabarbounis (2014)

shows that fluctuations in the labor wedge are largely driven by the household-side

gap between the real wage and the MRS, rather than the firm-side gap between

the MPL and the real wage. In this paper, we show that the standard Dia-

mond–Mortensen–Pissarides (DMP; Diamond 1982; Mortensen 1982; Pissarides

1985) model fails to replicate both the observed volatility of the labor wedge and

the empirical finding of Karabarbounis (2014) that its countercyclical movements

are primarily driven by the gap between the real wage and the MRS. To over-

come this deficiency, we then incorporate wage rigidity into the DMP framework

and demonstrate that the resulting job rationing mechanism enables the model

to capture the observed cyclicality of the labor wedge, as highlighted above.

Our analysis, following Hagedorn and Manovskii (2008), begins by examining

the roles of bargaining power and the value of leisure (i.e., the steady-state MRS)
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Figure 1. Labor Wedge, Unemployment and Real GDP:
1959–2023. The labor wedge is the ratio of MPL to MRS, calcu-
lated using the baseline model in Section 2. The left (right) y-axis
shows the percent deviation from the trend paths of real GDP per
capita and the labor wedge (the unemployment rate).

in accounting for the observed cyclical properties of the labor wedge: the volatility

and fluctuations that are mainly driven by the wage–MRS gap. Hagedorn and

Manovskii (2008) demonstrate that by adjusting these two factors, the DMP

model can generate the observed high volatility of labor market variables without

the need for wage rigidity. Instead, we find that the DMP model inherently

embodies a trade-off in capturing the cyclicality of the labor wedge. Capturing the

volatility of the labor wedge requires substantially low bargaining power and a low

MRS for workers. By contrast, replicating the labor wedge fluctuations that are

primarily driven by the wage–MRS gap necessitates substantially high bargaining

power and a high MRS. This trade-off arises because, given the observed volatility

of the labor wedge, lower worker bargaining power causes the equilibrium wage to

track the MRS more closely, thereby narrowing the wage–MRS gap. In addition,
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a lower initial MRS reduces its procyclicality and thus also renders the wage–MRS

gap largely acyclical.

To address the deficiency of the DMP model, we highlight the pivotal role of

wage rigidity and develop a job-rationing framework following Michaillat (2012).

Unlike Michaillat’s (2012) simplified specification of a fixed degree of wage rigidity,

we adopt a generalized specification as in Leduc and Liu (2020), which enables us

to examine how varying degrees of wage rigidity influence the magnitude of job

rationing and, in turn, govern the cyclicality of the labor wedge. We analytically

and numerically show that the job-rationing mechanism enables the model to

capture both the observed volatility of the labor wedge and its countercyclical

fluctuations, which are primarily driven by the household-side wage-MRS gap.

Analytically, we establish the procyclical nature of both the MRS and the

MPL in the job rationing model. A decrease in technology leads to increased

unemployment and, consequently, more leisure time. Given convex indifference

curves between consumption and leisure, households value leisure less, reducing

the MRS of leisure for consumption. A decrease in technology also lowers fac-

tor productivity, reducing the MPL. Importantly, sticky real wages induce labor

rationing, pushing households off their labor supply curves, while on the firm

side the MPL continues to equal the wage in the absence of matching frictions

during recessions. This generates a substantial deviation between the wage and

the MRS on the household side. As a result, a higher degree of wage rigidity

amplifies the procyclicality of the MRS relative to that of the MPL, rendering

the labor wedge strongly countercyclical over the business cycle. Simply put,

during downturns, intensified job rationing —–arising from real wage rigidity—–

decreases the MRS relative to the MPL, leading to a countercyclical labor wedge

that is predominantly driven by the wage–MRS gap.1

In our numerical analysis, labor rationing provides an explanation for the

U.S. evidence in Karabarbounis’s (2014) decomposition. In a standard DMP

1Alternative explanations have also been proposed for a countercyclical labor wedge. For
example, Gourio and Rudanko (2014) argue that intangible capital contributes to a counter-
cyclical and volatile labor wedge. Atesagaoglu and Elgin (2015) argue that the presence of an
informal sector is crucial for a countercyclical and volatile labor wedge.
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model with flexible wages, fluctuations in the labor wedge are attributed solely to

matching frictions, which exert only limited influence on the household-side MRS.

Consequently, given the volatility of the labor wedge, the model fails to replicate

the markedly high procyclicality of the MRS, resulting in a countercyclical labor

wedge that is primarily driven by the gap between the real wage and the MRS.

As emphasized by Karabarbounis (2014), “business cycle theories of the labor

wedge must focus on improving the household side of the neoclassical growth

model.” Our analysis demonstrates that when the real wage is sticky enough,

then during downturns, intensified job rationing amplifies the procyclicality of

the MRS, constituting a primary driver of the countercyclical labor wedge (the

household-side wage–MRS gap accounts for 89% of labor wedge fluctuations).

In the U.S., the countercyclical movements of both unemployment and the

labor wedge during downturns are largely accounted for by job rationing. In

the Great Recession, the job rationing-related shock (technology) accounts for

65.72% of unemployment fluctuations and 66.67% of labor-wedge fluctuations.

In contrast, the matching friction-related shock (job separation and matching

efficiency) plays a relatively minor role: separation contributes 12.87% to unem-

ployment and 17.63% to the labor wedge, while matching efficiency contributes

only 21.41% and 15.70%, respectively. These results contradict those in Chere-

mukhin and Restrepo-Echavarria (2014a). They argue that theories emphasiz-

ing wage rigidity and bargaining processes—commonly considered in the search

literature—are not helpful in explaining the behavior of the labor wedge. Instead,

they conclude that the labor wedge is largely explained by matching efficiency,

and unemployment is mainly accounted for by job separation, both related to

matching frictions. In their model, job rationing is overlooked, and matching fric-

tions exclusively account for fluctuations in unemployment and the labor wedge.

In the absence of job rationing, time-varying separation and matching efficiency

drive most fluctuations in unemployment and the labor wedge.

This paper is also related to other studies of the labor wedge at business

cycle frequency. In addition to the aforementioned papers, Hall (2009) studies

the cyclical fluctuations in the marginal value of time (related to MRS) and
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MPL and finds that rising inefficiency during recessions is mainly the result of

an employment adjustment failure. Motivated by Shimer’s (2009) conclusion

that, “...by arguing for a more promising, if still preliminary, explanation—search

frictions, combined with real wage rigidities, create an endogenous cyclical wedge

between the MRS and MPL (p.281),” we highlight the relative importance of job

rationing in the labor wedge, compared to matching frictions as inCheremukhin

and Restrepo-Echavarria (2014b). Our analysis also aligns with the findings of

Shimer (2010), which emphasize that the positive correlation between the labor

wedge and unemployment is central to generating labor wedge fluctuations and to

understanding cyclical labor market dynamics. We also confirm its importance

in generating cyclical unemployment, as emphasized in Shimer (2009), Shimer

(2010), and Blanchard and Gaĺı (2010).

2. The Model

To thoroughly examine the cyclicality of the labor wedge, we build a standard

DMP model with constant marginal returns and flexible wages, following Hage-

dorn and Manovskii (2008), and then extend it into a job-rationing framework

by incorporating diminishing marginal returns and wage rigidity, as in Michaillat

(2012). To highlight its role, wage rigidity is modeled following Leduc and Liu

(2020).

2.1. The Labor Market. We normalize the labor force to unity, with workers

moving only between employment and unemployment. Thus, unemployment is

determined according to

ut = 1− nt, (1)

where ut denotes unemployment (which, under labor force normalization, can also

be interpreted as the unemployment rate) and nt is the employment level.

The representative firm posts vacancies, vt, to hire workers. The number of

hires, ht, is determined by the following Cobb-Douglas matching function:

ht(ut, vt) = µt · u
ξ
t · v

1−ξ
t , (2)
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where µt represents the matching efficiency in period t. Moreover, 0 < ξ < 1 is

the matching elasticity with respect to unemployment.

Let st denote the separation rate in period t. As in Fujita and Ramey (2007),

newly hired workers in period t − 1 remain productive if they do not experience

separation, joining the existing workforce (1 − st−1)nt−1. Hence, employment

evolves according to

nt = (1− st−1) · (nt−1 + ht−1). (3)

Drawing from equation (2), we define the job finding rate as ft ≡
ht
ut

and the

vacancy filling rate as qt ≡
ht
vt
. The labor market condition can be summarized by

the job market tightness, θt ≡
vt
ut
. A higher θt indicates a tighter labor market,

that is, more vacancies (a bigger vt) or less unemployment (a smaller ut). This

makes it easier for job seekers to find jobs and more difficult for firms to fill

vacancies than under a smaller θt.

2.2. Firms. The production function is given by

yt = at · n
α
t , (4)

where yt is output, at is technology (or total factor productivity, TFP), and α is

the output elasticity with respect to labor. Thus, the marginal product of labor

is

MPLt =
αyt
nt
. (5)

When α = 1, the production function exhibits constant returns to labor, con-

sistent with the standard DMP model (Hagedorn and Manovskii 2008). When

0 < α < 1, the production function features diminishing marginal returns to

labor, giving rise to a downward-sloping labor demand curve, as in Michaillat

(2012).

The present value of the representative firm’s life-time profit is
∞∑

t=0

β0,t (yt − wtnt − νtvt)
︸ ︷︷ ︸

≡dt

, (6)

where β0,t denotes the stochastic discount factor (defined in the household prob-

lem), wt the real wage, dt instantaneous profit, and νt = cat the unit vacancy
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posting cost, with c representing the vacancy cost parameter. As in Pissarides

(2000) and Michaillat (2012), the unit vacancy cost is positively and linearly

related to technology at.

The firm maximizes life-time profit, subject to equations (1)–(3). Let Jt be

the marginal asset value when the firm hires one additional worker. The optimal

hiring condition is

Jt =MPLt − wt + (1− st)Et[βt,t+1Jt+1]. (7)

At time t, the firm’s marginal asset value of filling a vacancy (Jt) equals the

marginal benefit,MPLt−wt, plus the discounted continuation value when a hired

worker does not separate from the job at t+1: (1− st)Et[βt,t+1Jt+1]. Conditional

on the vacancy filling rate, qt, the free entry condition is

qt(1− st)Et[βt,t+1Jt+1] = cat, (8)

which implies that the expected marginal value of vacancy filling equals the unit

cost of vacancy posting.

2.3. Households. The representative household’s utility depends on consump-

tion, ct, and labor supply, nt. Following Karabarbounis (2014) and Cheremukhin

and Restrepo-Echavarria (2014a), the household’s life-time utility takes the form

of
∞∑

t=0

βt

(

ln ct − χ
n1+φ
t

1 + φ

)

︸ ︷︷ ︸

≡Ut

,
(9)

where β > 0 is a constant discount factor, φ > 0 is the inverse of the Frisch

elasticity of labor supply, and χ > 0 is the disutility weight of labor.

Following Merz (1995) and Andolfatoo (1996), all workers, employed and

unemployed, belong to the same family. The “big family” assumption implies

that each household has a unified preference capturing the utility of all household

members and faces the pooled budget constraint:

ct = wtnt + dt. (10)
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The representative household maximizes lifetime utility, equation (9), by choosing

consumption (ct) and labor supply (nt), subject to equations (1)–(3), and (10).

Let Vt be the net asset value when an unemployed worker finds a job and λt be

the Lagrange multiplier associated with the budget constraint. The household’s

optimality conditions are given by:

λt =
1

ct
(11)

and

Vt = wt −MRSt
︸ ︷︷ ︸

net return of working

+ Etβt,t+1 [(1− st)(1− ft+1)Vt+1]
︸ ︷︷ ︸

expected continuation value of being employed

, (12)

where βt,t+1 ≡ β λt+1

λt
is the stochastic discount factor.

In equilibrium, the net asset value of finding a job is equal to the sum of

the net return from working at time t and the expected value of continuing to be

employed at time t+1. The net return of working consists of the real wage received

minus the disutility from working, captured by the marginal rate of substitution

between leisure and consumption, calculated as

MRSt = −
∂Ut/∂nt
∂Ut/∂ct

= χ · ctn
φ
t , (13)

where Ut is defined in equation (9). Moreover, the goods market clearing condition

is given by yt = ct + cat · vt.

2.4. Labor Wedge. Following Leduc and Liu (2020), the real wage, wt, is de-

termined by

wt = (1− ϕ)wNt + ϕwt−1, (14)

where wNt denotes the Nash bargaining wage, and ϕ captures the degree of wage

rigidity. As in the standard DMP model, the bargaining wage is derived by solving

the Nash bargaining problem

max
wN

t

(Vt)
η · (Jt)

1−η, (15)

where η represents the bargaining power of workers. Solving equation (16) yields

the bargaining wage wNt as follows:

wNt = η · (MPLt + θtcat) + (1− η) ·MRSt. (16)
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This expression shows that the bargained wage is a weighted average of (MPLt+

θtcat) andMRSt, with the weights determined by the bargaining power parameter

η.

In line with Karabarbounis (2014), with the real wage level, the labor wedge,

τt, is given by

τt =
MPLt
MRSt

=
MPLt
wt

︸ ︷︷ ︸

τFt

·
wt

MRSt
︸ ︷︷ ︸

τWt

. (17)

Henceforth, we use τFt to denote the firm-side component: MPLt

wt
, the gap between

the MPL and the real wage. Moreover, we use τWt to denote the household-side

component: wt

MRSt
, the gap between the real wage and the MRS.

2.5. Shocks. There are three shocks: technology, at, separation rates, st, and

matching efficiency, µt in the model. These shocks following the AR(1) process

specified as

ln at = (1− φa) · a+ φa · ln at−1 + eat ,

ln st = (1− φs) · s+ φs · ln st−1 + est , and

lnµt = (1− φµ) · µ+ φµ · lnµt−1 + eµt .

(18)

where φi denotes the AR(1) coefficient, eit the corresponding innovation, given i ∈

{a, s, µ}. Moreover, a, s, and µ represent the corresponding initial steady-state

values. The innovations (eat , e
s
t , e

µ
t ) are drawn from the joint normal distribution

N(0,Σ), where Σ represents the covariance matrix.

3. The Cyclicality of Labor Wedge in the DMP Model

3.1. Limits of the DMP model in Capturing Labor Wedge Cyclicality.

The labor wedge is characterized by two salient cyclical features: volatility and

fluctuations that are mainly driven by the wage–MRS gap. In this section, we

show both numerically and analytically that the standard DMP model—with

constant marginal returns (α = 1) and flexible wages (ϕ = 0)—cannot simultane-

ously replicate the two empirical features of the labor wedge. Instead, the DMP

model inherently entails a trade-off in capturing its cyclicality.
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3.2. Numerical Analysis. For clarity, we first present the numerical analysis.

3.2.1. Calibration. To maintain the standard characteristics of the DMP model,

we adopt a conventional calibration strategy, following Coles and Kelishomi (2018)

and Leduc and Liu (2020). The model frequency is monthly. We set β = 0.9967 to

match an annual discount rate of 4 percent. Following Fujita and Ramey (2007),

we set the matching function elasticity, ξ, to 0.6. Based on the average unem-

ployment rate from January 1959 to December 2019 (Bureau of Labor Statistics,

2024, (BLS)), the steady-state unemployment rate is u = 0.06. The steady-state

vacancy-filling rate is q = 0.6415, consistent with Davis et al. (2013). Steady-

state technology is normalized to a = 1, and the steady-state job separation rate

is set to s = 0.036, based on Job Openings and Labor Turnover Survey (Bureau

of labor Statistics, 2024, JOLTS,) data from December 2000 to December 2019.

Following Cheremukhin and Restrepo-Echavarria (2014a), we set the labor supply

elasticity to φ = 0.5. In the DMP framework, the parameterization α = 1 and

ϕ = 0 entails constant returns to scale in production and fully flexible wages, as

in Hagedorn and Manovskii (2008).

The analysis accounts for three primary sources of shocks: technology, job

separation, and matching efficiency. Their AR(1) coefficients and innovations are

identified using the following data. First, we take output per worker from the Non-

farm Business Sector (BLS) as the quarterly technology shock series from January

1959 to December 2019. Second, following Shimer (2005), we construct monthly

job separation and job-finding rates and take their quarterly averages. Third,

using the job-finding rate equation, ft = µt · θ
1−ξ
t , we derive the observed match-

ing efficiency, µt, from the observed job-finding rate and labor market tightness,

measured as the ratio of job vacancies to unemployment. To proxy job vacancies,

we use the composite Help-Wanted Index from Barnichon (2010) and job post-

ings from JOLTS. We also use the quarterly average of the seasonally adjusted

monthly unemployment level from the BLS.
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Table 1. Calibration

Parameters Value Source

β: Discount Factor 0.9967 4 Percent Annual Rate
ξ: Matching Elasticity on Unemployment 0.5 Fujita and Ramey (2007)
u: Steady-State Unemployment Rate 0.06 BLS, 1959 – 2019
q: Steady-State Vacancy Filling Rate 0.6415 Leduc and Liu (2020)
a: Technology 1 Normalization
s: Job Separation Rate 0.036 JOLTS, 2001–2019
φ: Labor Supply Elasticity 0.5 Cheremukhin and Restrepo-Echavarria (2014a)

φa : Technology Autocorrelation 0.965 BLS, 1959 – 2019
φs: Separation Autocorrelation 0.924 BLS, 1959 – 2019
φµ: Matching Autocorrelation 0.854 BLS, 1959 – 2019
σa: Technology Standard deviation 0.0052 BLS, 1959 – 2019
σs: Separation Standard deviation 0.031 BLS, 1959 – 2019
σµ: Separation Standard deviation 0.041 BLS, 1959 – 2019

Parameters: Specific to DMP Value Source

α: Labor Elasticity 1 Constant Marginal Returns
ϕ: Degree of Wage Rigidity 0 No Wage Rigidity

Parameters: Specific to Job Rationing Value Source

α: Labor Elasticity 2
3 Michaillat (2014)

Finally, we use the Hodrick-Prescott (HP) filter with a smoothing parameter

of 105 to detrend the log of quarterly technology, job separation rates, and match-

ing efficiency.2 Using the quarterly detrended shock series, we derive φa = 0.965,

φs = 0.924, and φµ = 0.854; and σa = 0.0052, σs = 0.031, and σµ = 0.041, at a

monthly frequency. The calibration is summarized in Table 1.

3.2.2. The Trade-Off in Capturing the Labor Wedge Cyclicality. Hagedorn and

Manovskii (2008) demonstrate that variations in bargaining power, η, and the

worker’s outside option (captured by the MRS in our model) enable the DMP

model to replicate the observed standard deviations of labor market variables

without relying on wage rigidity. Drawing on equation (19), we extend their anal-

ysis to further investigate the roles of these two parameters in shaping the cyclical-

ity of the labor wedge. Specifically, we assess whether the standard DMP model

2The smoothing parameter is set to 105, in line with Michaillat (2012) and Coles and Kel-
ishomi (2018).
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can reproduce a volatile labor wedge over the business cycle (standard deviation

of 0.022), and whether its fluctuations are primarily driven by the household-side

wage–MRS gap (with a contribution of τW = 79.6%).

We begin by constructing the observed labor wedge for the subsequent quan-

titative analysis.3 First, we use observed real GDP and employment to construct

MPLt from equation (5) and use observed real consumption and employment to

constructMRSt from equation (13). To compute the contribution of the firm-side

component, τFt , and the household-side component, τWt , to labor wedge fluctua-

tion, we use (17) and log-linearize τt, τ
F
t , and τ

W
t around their HP-filter trends.4

We thus have

τ̂t = τ̂Ft + τ̂Wt . (19)

Here, τ̂t = ln τt − ln τTrt , τ̂Ft = ln τFt − ln τF,Trt , and τ̂Wt = ln τWt − ln τW,Trt , where

τTrt represents the HP-filter trend. Equation (19) indicates that fluctuations in

the labor wedge, τ̂t, are the sum of fluctuations from the firm-side component,

τ̂Ft , and the household-side component, τ̂Wt . Given the constructed MRSt and

MPLt, along with the observed wage wt, we derive τ̂t, τ̂
F
t , and τ̂

W
t .

Accordingly, we can compute the contributions of τFt and τWt to labor wedge

fluctuations by using the following formulas:

Contribution of τFt :
cov(τ̂Ft , τ̂t)

V (τ̂t)
,

Contribution of τWt :
cov(τ̂Wt , τ̂t)

V (τ̂t)
.

(20)

Here, cov(x, y) is the covariance of x and y, and V (x) is the variance of x.

In Table 2, the upper panel presents the simulated standard deviation of

the labor wedge, while the lower panel shows the contribution of the household-

side component to fluctuations in the labor wedge for various values of η and

3The data used to construct the labor wedge is seasonally adjusted and quarterly. Appendix
A provides details on these data sources.

4We use the HP filter with smoothing parameter 105 to obtain these trend series.
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Table 2. Simulation Results: the DMP Model

στ : Standard Deviation of τ η = 0.25 η = 0.5 η = 0.75 η = 0.9
(Data: στ = 0.022)

MRS/MPL = 0.1 0.025 0.016 0.012 0.011
MRS/MPL = 0.3 0.022 0.015 0.012 0.011
MRS/MPL = 0.5 0.019 0.013 0.011 0.011
MRS/MPL = 0.7 0.015 0.012 0.010 0.010
MRS/MPL = 0.9 0.010 0.008 0.008 0.007

Contribution: τW (Household Component) η = 0.25 η = 0.5 η = 0.75 η = 0.9
(Data: Contribution of τW = 79.6%)

MRS/MPL = 0.1 −30.2% 17.0% 61.4% 85.3%
MRS/MPL = 0.3 −17.8% 28.1% 68.0% 88.0%
MRS/MPL = 0.5 −2.8% 41.0% 75.0% 90.9%
MRS/MPL = 0.7 16.6% 56.1% 82.5% 93.8%
MRS/MPL = 0.9 44.2% 74.3% 90.5% 96.8%

the (initial) steady-state ratio of MRS to MPL, MRS/MPL.5 As shown in the

upper panel, a reduction in either η or the ratio MRS/MPL is associated with

an increase in the standard deviation of the labor wedge. When η = 0.25 and

MRS/MPL = 0.3, the DMP model replicates the observed standard deviation of

the labor wedge (0.022). This finding is generally consistent with the literature:

Hagedorn and Manovskii (2008) show that a smaller bargaining power η amplifies

the standard deviation of labor market variables. Moreover, the result that a lower

MRS/MPL raises the standard deviations of labor market variables is consistent

with Chodorow-Reich and Karabarbounis (2016), who show that a lower steady-

state outside option increases the model-generated standard deviation when the

outside option is procyclical, as in our model.

However, the combination of lower values of η and MRS/MPL does not

capture the empirical fact that labor wedge fluctuations are primarily driven

by the household-side wage–MRS gap. The lower panel of Table 2 shows that

when η = 0.25 and MRS/MPL = 0.3, the DMP model reproduces the observed

standard deviation of 0.022, but with a contribution of τW equal to −17.8%,

5We convert monthly data to quarterly series using quarterly averages. We then detrend
both the observed and simulated quarterly series with the HP filter (smoothing parameter 105)
and compute the moments.
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Figure 2. Values of η and MRS/MPL for the DMP Model
to Match the Observed στ and τW Contribution

indicating that labor wedge fluctuations are accounted for entirely by the firm-

side MPL–wage gap rather than the household-side wage–MRS gap.

In contrast to the result for the standard deviation, a greater contribution of

the household-side component to labor wedge fluctuations requires a higher value

of either η or MRS/MPL. Equations (12) and (16) imply that stronger worker

bargaining power η amplifies the gap between the bargained wage and the MRS,

thereby rendering τW more countercyclical. Moreover, equations (7), (8), and

(16) imply that a higher value of MRS/MPL increases the weight of lnMRSt

in τW , likewise enhancing its countercyclicality. In both cases, fluctuations in

the overall labor wedge τ , which is countercyclical, are primarily driven by the

household-side wage–MRS gap, τW . The underlying intuition is elaborated in the

analytical interpretation of the next subsection.

Table 2 highlights the trade-off of the standard DMP framework in accounting

for the cyclicality of the labor wedge. Capturing the observed volatility of the

labor wedge requires a substantially low bargaining power parameter η and a low

steady-state ratio MRS/MPL. In contrast, replicating labor wedge fluctuations
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that are predominantly driven by the wage–MRS gap requires a significantly high

η and a high MRS/MPL.

Figure 2 illustrates our argument with greater clarity. The line with circles

depicts the combinations of η and MRS/MPL that allow the model to replicate

the observed standard deviation of the labor wedge (στ = 0.022), while the line

with squares depicts the combinations that reproduce the observed contribution

of τW to labor wedge fluctuations (79.6%). Given the feasible ranges of 0 < η <

1 and 0 < MRS/MPL < 1, the absence of an intersection between the two

lines underscores the failure of the standard DMP model in reproducing the two

empirical observations under consideration.

3.3. Analytical Interpretation. The DMP model discussed above entails an

inherent trade-off in replicating two empirical regularities: the volatility of the

labor wedge and the dominant role of the wage–MRS gap in driving its fluctua-

tions. This subsection provides an analytical interpretation based on steady-state

analysis.

In the steady state, dropping the time subscript and applying equations (7),

(8), and (16) yields the following relationship:

MPL−MRS =
1

1− η

[
1− β(1− s)

β(1− s)µ
θξ + ηθ

]

· ca. (21)

Assume a set of steady-state values θ, a,MRS, and MPL satisfy equation

(21). We log-linearize (21) around these values and obtain:

τ̂ = ˆMPL− ˆMRS =
1

(1− η)MPL
·G(θ̂, â)− (1−

MRS

MPL
) · ˆMRS(ĉ, n̂). (22)

Here, x̂ ≡ ln x − ln x represents the log-deviation of x from x and it measures

the fluctuations in variable x. The term G(θ̂, â) = ac{
[
1−β(1−s)
β(1−s)µ

ξθ
ξ
+ ηθ

]
· θ̂ +

[
1−β(1−s)
β(1−s)µ

θ
ξ
+ ηθ

]
· â} is monotonically increasing in labor market tightness θ̂

and technology â. Moreover, ˆMRS = ĉ + φn̂ is monotonically increasing in

consumption ĉ and employment n̂.
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Equation (22) indicates that labor-wedge fluctuations, τ̂ , are driven by two

components: 1
(1−η)MPL

·G(θ̂, â) and −(1 − MRS

MPL
) · ˆMRS(ĉ, n̂). The first compo-

nent is positively related to fluctuations in tightness θ̂ and technology â. When

labor market tightness and technology display procyclical behavior (i.e., both θ̂

and â increase during expansions) as observed in the data, this channel generates

a corresponding procyclicality in the labor wedge. By contrast, the second com-

ponent is negatively related to fluctuations in the marginal rate of substitution
ˆMRS. Since ˆMRS is monotonically increasing in both ĉ and n̂, and given that

consumption and employment are procyclical over the business cycle, as docu-

mented in the data, ˆMRS also exhibits procyclical behavior. Consequently, this

second channel induces countercyclical movements in the labor wedge. As the

labor wedge is empirically countercyclical (as shown in Figure 1), it follows that

the second channel is likely to dominate in practice.

Following Hagedorn and Manovskii (2008), we examine how bargaining power

η and the initial steady-state ratio MRS/MPL affect labor wedge fluctuations.

It is clear from equation (22) that a smaller η attenuates the effect of the first

channel, while a lower MRS/MPL amplifies the effect of the second channel.

Both make the model-implied labor wedge more countercyclical and increase its

volatility, as shown in the upper panel of Table 2.

To further evaluate the contribution of the household-side MRS to the labor

wedge, we employ equation (22) to derive the covariance between the MRS and

the labor wedge:

cov(τ̂ , ˆMRS) =
1

(1− η)MPL
·cov(G(θ̂, â), ˆMRS)−(1−

MRS

MPL
)·V ( ˆMRS), (23)

where V ( ˆMRS) is the variance of ˆMRS. Note that since the model generates

procyclical θ̂, â, and ˆMRS, cov(G(θ̂, â), ˆMRS) > 0 is true. From (23), it follows

that a smaller η reduces the weight on the positive first term, while a lower

MRS/MPL increases the weight on the negative second term. Thus, both a

small η and a small MRS/MPL reduce the covariance between the MRS and

the labor wedge cov(τ̂ , ˆMRS). As reported in the lower panel of Table 2, this
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Table 3. Simulation Results: the Job Rationing Model
(η = 0.25 and MRS/MPL = 0.3)

Panel (A): Moments ϕ = 0.5 ϕ = 0.9 ϕ = 0.95 ϕ = 0.98 Observed

στ : Standard Deviation of τ 0.018 0.019 0.019 0.020 0.022

Panel (B): Contributions ϕ = 0.5 ϕ = 0.9 ϕ = 0.95 ϕ = 0.98 Observed

Firm Component: τF 127.3% 78.5% 57.2% 35.2% 20.4%
Household Component: τW −27.3% 21.5% 42.8% 64.8% 79.6%

result implies that fluctuations in the labor wedge are primarily driven by the firm-

side MPL–wage gap rather than the household-side wage–MRS gap. Building on

equations (22) and (23), we provide an analytical explanation for why the DMP

model entails an inherent trade-off in replicating two key empirical regularities of

the labor wedge.

The analytical results above do not rely on a specific value of α. It implies

that the DMP model’s limitation in accounting for the cyclicality of the labor

wedge persists even when the assumption of constant marginal returns (α = 1) is

relaxed to allow for diminishing returns (0 < α < 1), as in previous labor wedge

studies such as Cheremukhin and Restrepo-Echavarria (2014a).6 This inability of

the traditional DMP model appears to echoe Karabarbounis’s (2014) argument,

“business cycle theories of the labor wedge must focus on improving the household

side of the neoclassical growth model.”

4. The Cyclicality of Labor Wedge in the Job Rationing Model

In this section, we underscore the pivotal role of wage rigidity in explain-

ing labor wedge cyclicality by incorporating a job-rationing framework into our

analysis. To isolate the role of wage rigidity, we follow Cheremukhin and Restrepo-

Echavarria (2014a) and impose decreasing marginal returns, setting α = 2/3.

4.1. The Significance of Wage Rigidity. Table 2 indicates that under η =

0.25 and MRS/MPL = 0.3, the DMP model replicates the observed standard

6In Appendix B, we show that the results in Table 2 still hold under α = 2/3.
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deviation of 0.022, but attributes labor wedge fluctuations exclusively to the firm-

side MPL–wage gap, at odds with the decomposition of Karabarbounis (2014).

Table 3 indicates that when η = 0.25 and MRS/MPL = 0.3, greater wage

rigidity ϕ increases both the standard deviation of τ and the contribution of

τW to labor wedge fluctuations, thereby aligning the job-rationing model with

the empirical observations. Specifically, when ϕ = 0.98—the value employed by

Shimer (2010)—the job-rationing model yields a standard deviation of τ equal to

0.020 and a τW contribution of 64.8%, both of which are close to the empirical

observations.

Figure 3 provides further support for our argument. As in Figure 2, the

line with circles depicts the combinations of η and MRS/MPL that allow the

model to replicate the observed standard deviation of the labor wedge (στ =

0.022), while the line with squares depicts the combinations that reproduce the

observed contribution of τW to labor wedge fluctuations (79.6%). Accordingly, the

upper panel of Figure 3 reproduces the findings of Figure 2. With fully flexible

wages (ϕ = 0), the two lines never intersect, implying that the DMP model

cannot replicate the observed standard deviation of the labor wedge together with

the dominant contribution of the household-side component to its fluctuations.

However, the bottom panel of Figure 3 shows that as wage rigidity ϕ increases,

the two lines converge, and at ϕ = 0.98 they intersect when both η is low and

MRS/MPL is high enough. In other words, the job-rationing model is capable

of simultaneously reproducing both empirical observations.

4.2. Insights from the Analytical Steady State. This subsection extends

Michaillat’s (2012) approach to examine the role of job rationing, under variable

degrees of wage rigidity, in shaping the labor wedge within a steady-state frame-

work. The steady-state analysis provides a transparent framework for interpreting

the empirical evidence.

4.2.1. Job Rationing and Unemployment. First, from equation (2), we use ft ≡
ht
ut

and θt ≡
vt
ut

to write the steady-state job finding rate as a function of job tightness:

f(θ) = µ · θ1−ξ. (24)
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Figure 3. Values of η and MRS/MPL for the Job Ra-
tioning Model to Match the Observed στ and τW Contri-
bution

Thus, combining equations (1) and (3), the steady-state level of employment can

be expressed as a function of the job-finding rate,

n =
(1− s)f(θ)

(1− s)f(θ) + s
, (25)
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which mirrors the Beveridge curve, linking unemployment to job vacancies. Equa-

tion (25) further implies that an increase in market tightness (θ) raises employ-

ment, since a higher θ enhances the job-finding rate, as indicated by ∂f(θ)
∂θ

=

(1− ξ)f(θ)
θ
> 0 in equation (24).

From equations (7), and (8), (14), and (16), the steady-state job creation

condition can be derived as

αnα−1 −
(1− ϕ)wN + ϕw

a
=

1− β(1− s)

β(1− s)

c

q(θ)
, (26)

where q(θ) = µθ−ξ is the vacancy filling rate and wN = η(MPL + θac) + (1 −

η)MRS is the bargained wage in the steady state.7 To simplify the analytical

derivation, we impose two conditions in the following discussion. First, since the

proportion of vacancy costs in aggregate output is negligible (1% in the baseline

calibration), the goods market clearing condition simplifies to y = c. Second, in

the steady-state analysis, the lagged wage wt−1 is treated as a constant, fixed at

the initial steady-state level w = w. These restrictions are adopted solely for the

analytical derivation in this section and are not applied in the numerical analyses

throughout the paper.

Accordingly, using equations (24) and the steady-state bargained wage wN =

η(MPL+ θac) + (1− η)MRS, we can rewrite equation (26) as

[
α(1− (1− ϕ)η)− (1− ϕ)(1− η)ψn1+φ

]
(nα−1)− ϕ

w

a
︸ ︷︷ ︸

MGP

= Φ(n)c
︸ ︷︷ ︸

MRC

, (27)

where Φ(n) = 1−β(1−s)
β(1−s)

1

µ
1−2ξ
1−ξ

( s
1−s

n
1−n

)
ξ

1−ξ + (1 − ϕ)η( 1
µ

s
1−s

n
1−n

)
1

1−ξ . Analogous to

Michaillat (2012), the left-hand side represents the firm’s marginal gross prof-

its (MGP ), derived from the MPL minus the wage cost. The right-hand side

represents the marginal recruiting costs (MRC), which are used to measure the

firm’s amortized recruiting costs. It is straightforward to show that marginal

gross profits decrease with n (i.e., MGP ′(n) < 0), whereas marginal recruiting

costs increase with n (i.e., MRC ′(n) = cΦ′(n) > 0). Equation (27) determines

the steady-state level of employment n, which plays a central role in the analysis.

7Equation (26) is normalized by a.
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Following Michaillat (2012), rationing employment, nR, is the employment

level when matching frictions vanish (i.e., c = 0). Setting c = 0 in (27) yields

[
α(1− (1− ϕ)η)− (1− ϕ)(1− η)ψ(nR)1+φ

]
(nR)α−1) = ϕ

w

a
, (28)

which determines nR. Thus, the gap between 1 (representing the total labor force)

and nR is the rationing unemployment, denoted as uR = 1 − nR. Moreover,

frictional unemployment, uF , is defined as the residual arising from matching

frictions: uF = u − uR. Given that u = 1 − n and uR = 1 − nR, it follows that

uF = nR − n.

Michaillat (2012) indicates that job rationing primarily drives unemployment

in recessions. Intuitively, in bad times, lower employment makes matching eas-

ier for firms, reducing marginal recruiting costs and, in turn, lowering frictional

unemployment. In addition, firms are less willing to hire, increasing the severity

of job rationing in downturns. Combining these two factors, rationing unem-

ployment dominates in bad times. It is worth noting that this result holds even

though, unlike Michaillat’s (2012) specification of fixed wage rigidity, our model

incorporates a more generalized specification of wage rigidity. The corresponding

proof is provided in Appendix C.

4.2.2. Job Rationing and Labor Wedge. In the steady state, the labor wedge is

given by

τ =
MPL

MRS
, (29)

where the steady-state MPL and MRS are computed using equations (5) and

(13). In the following analysis, we denote the elasticity of variable x with respect

to variable z as εxz ≡
∂ lnx
∂ ln z

.

LEMMA 1. Given equations (4)–(16) and (9), MPL and MRS are increasing

functions in technology; i.e., εMPL
a > 0 and εMRS

a > 0.

Proof. All proofs are relegated to Appendix C. �

Lemma 1 implies that both the marginal product of labor and the marginal

rate of substitution between consumption and labor are procyclical. In bad times,
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a decline in technology a lowers the MPL and output, and it also decreases em-

ployment and consumption. Lower employment decreases the marginal disutility

of labor, −Un, and lower consumption increases the marginal utility for consump-

tion, Uc, resulting in a decline in the MRS.

With Lemma 1, Proposition 1 further describes the cyclical nature of the

labor wedge.

PROPOSITION 1. The labor wedge, τ , is decreasing in technology; i.e., ετa < 0.

Despite the procyclical MRS and MPL, Proposition 1 states that the labor

wedge is countercyclical. This implies that the degree of procyclicality of the

MRS in response to a technology change is greater than that of the MPL. Thus,

the effect of the MRS on the labor wedge dominates that of the MPL, as shown in

Appendix C. This result is consistent with the empirical findings in Karabarbounis

(2014): for many countries, and most notably for the U.S., fluctuations in the

labor wedge predominantly reflect fluctuations in the gap between the real wage

and the MRS, rather than the gap between the real wage and the MPL.

Intuitively, sticky real wages lead to labor rationing, pushing households off

their labor supply curves. This creates an additional deviation between the MRS

and the wage on the household side, while on the firm side, the MPL still equals

the wage in the absence of matching frictions. Consequently, labor rationing

widens the gap between the MRS and the wage. Thus, labor rationing provides

a compelling explanation for Karabarbounis’s (2014) decomposition. This also

provides the theoretical foundation underlying the findings in Figure 2 and Table

3.

4.3. Rationing and Frictional Labor wedge. To further examine the roles of

job rationing and matching frictions in the labor wedge, we define the portion of

the labor wedge attributed to job rationing as the rationing labor wedge, denoted

by τR, defined as the ratio of the MPL to the MRS evaluated at the rationing

employment, nR (see equation (28)). The rationing labor wedge is then calculated
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as

τR =
MPL(nR)

MRS(nR)
. (30)

Also, the frictional labor wedge is τF = τ − τR.

Proposition 2 states the cyclical properties of the rationing labor wedge:

PROPOSITION 2. A lower technology level increases the rationing labor wedge

(ετ
R

a < 0) and its proportion in the overall labor wedge (
∂
(

τR

τ

)

∂a
< 0).

Proposition 2 indicates that the rationing labor wedge is countercyclical. More-

over, job rationing contributes more to the rising overall labor wedge than match-

ing frictions in bad times, captured by a lower a.

4.3.1. Graphical Analysis. Figure 4 graphically illustrates the result established

in Proposition 2. Although Proposition 2 holds whenever wage rigidity exists,

for ease of exposition we conduct the graphical analysis under the simplifying

assumption that ϕ = 1, which mirrors the setting of Michaillat (2012).

As rationing and fractional labor wedges fluctuate over the cycle, Figure

4 shows the expansion case with higher a in Panel (A) and the recession case

with lower a in Panel (B). To develop the intuition, consider equation (26) in

logarithmic form:

ln
(
αnα−1
︸ ︷︷ ︸

MPL
a

−
1− β(1− s)

β(1− s)

c

µ(
1−2ξ
1−ξ )

[
sn

(1− s)(1− n)

] ξ
1−ξ

︸ ︷︷ ︸

MRC

)
= ln

(w

a

)
. (31)

Because of the diminishing marginal product of labor and increasing marginal

recruiting cost with respect to employment, MPL
a

−MRC on the left-hand side is

a decreasing function of n, thus the dashed line, ln
(
MPL
a

−MRC
)
, is downward

sloping.8 On the right-hand side, w
a
is independent of employment so its logarithm

does not change when n moves.

8From equation (31), we have
∂(MPL

a
−MRC)

∂n
= −

{

α(1− α)nα−2 + MRC
n(1−n)

}

< 0.
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Figure 4. Labor Wedge Decomposition: Rationing vs.
Frictional Labor Wedge
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With a positive unit vacancy cost (c > 0), the equilibrium employment, n, is

determined by the intersection of ln
(
MPL
a

−MRC
)
and ln(w

a
). With no vacancy

cost (c = 0), equation (31) reduces to ln(MPL
a

) = ln(w
a
), which determines the

rationing employment and unemployment (nR and uR). As shown in Figure 4,

the distance between n and nR is frictional unemployment (uF).

Next, we derive the MRS between consumption and leisure. From equations

(11)–(13), we have MRS
a

= χ · n(φ+α), implying that

ln

(
MRS

a

)

= lnχ+ (φ+ α) lnn, (32)

which is an increasing function of n. Using equation (32), we depict the rationing

labor wedge (ln τR), the overall labor wedge (ln τ), and ln
(
τR

τ

)
in Figure 4. Under

normalization (scaled by a), the definition of the labor wedge remains the same:

τ = MPL
MRS

=
MPL

a
MRS

a

.

From equations (31) and (32), it can be seen that technology, a, has no impact

on either MPL
a

= αnα−1 or MRS
a

= χnφ+α, while it has a negative effect on w
a
in the

presence of wage rigidity (ϕ = 1). Thus, relative to the high technology scenario,

low technology causes the locus of ln(w
a
) to shift upwards, while leaving the loci

of ln(MPL
a

) and ln(MPL
a

−MRC) unchanged, as shown in Panel (B) of Figure

4. As a result, lower technology decreases frictional unemployment, increases

rationing unemployment, and raises the proportion of the rationing labor wedge

in the overall labor wedge, ln
(
τR

τ

)

.

4.3.2. Wage Rigidity and the Countercyclical Labor Wedge. The results of Propo-

sition 2 contradict those in Cheremukhin and Restrepo-Echavarria (2014a). They

argue that theories emphasizing wage rigidity and bargaining processes—commonly

considered in the search literature—are not helpful in explaining the behavior of

the labor wedge. Instead, they conclude that the labor wedge is largely ex-

plained by matching efficiency, and unemployment is mainly accounted for by job

separation, both related to matching frictions. In contrast, we find that wage

rigidity is crucial for generating countercyclical fluctuations in the labor wedge.

More importantly, labor wedge fluctuations are largely driven by technology, with
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job rationing, rather than matching frictions, serving as the central explanatory

mechanism, as will be elaborated in the subsequent section.

One pitfall of neglecting wage rigidity is that technological changes no longer

affect labor wedge fluctuations. This contradicts the countercyclical property of

the labor wedge observed in the data, as previously discussed. With wage rigidity,

the labor wedge exhibits cyclicality that parallels unemployment. To see this, note

that equations (1), (5), and (13) imply that

τ =
MPL

MRS
=
α

χ
· n−(1+φ), (33)

which suggests that the labor wedge is a decreasing function of employment (n),

or an increasing function of unemployment (u) as shown by equation (1). Once

equation (27) determines employment, the labor wedge (τ) and unemployment

can also be determined accordingly. It can then be seen that any disturbance

affecting unemployment must simultaneously affect the labor wedge in our model.

Instead, when wage rigidity is missing (ϕ = 0), equations (27) and (33), tell

us that technology fluctuations do not matter for employment, unemployment,

and the labor wedge. In other words, the cyclical property of the labor wedge

vanishes without wage rigidity.

Our results align with Shimer (2010) (see Chapters 1 and 4) on two points.

First, the positive correlation between the labor wedge and unemployment is

central to generating labor wedge fluctuations and understanding cyclical labor-

market dynamics. Second, wage rigidity is essential for labor-search models to

reproduce the observed countercyclical behavior of the labor wedge.

5. Unemployment and Labor Wedge: Contribution of Job

rationing vs. Matching Friction

This section calibrates the job-rationing model to the U.S. economy to val-

idate our theoretical results and to assess, via numerical analysis, the roles of

job-rationing shocks (technology) and matching-friction shocks (job separation
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and matching efficiency) in shaping unemployment and the labor wedge. As in

Sections 3 and 4, the analysis is conducted within the log-linearized framework.

For the U.S. calibration, we adopt standard parameter values from the liter-

ature: ϕ = 0.95 for wage rigidity (Leduc and Liu, 2020), η = 0.5 for bargaining

power (Fujita and Ramey, 2007), and MRS/MPL = 0.7 for the outside option

(Coles and Kelishomi, 2018). All remaining parameters are set as reported in Ta-

ble 1. Accordingly, the household-side wage–MRS gap accounts for 89% of labor

wedge fluctuations. This share exceeds our estimate of 76.9% but is appropri-

ately aligned with the range documented in the decomposition of Karabarbounis

(2014). The job rationing model yields a labor wedge standard deviation of 0.013,

which is below the observed value of 0.022. Moreover, the model yields a standard

deviation of unemployment of 0.127, which is comparable to the observed value

of 0.194.

5.1. Job Rationing as a Driver of Unemployment and Labor Wedge. We

begin by examining the role of job rationing in shaping unemployment and the

labor wedge during recessions. To this end, we feed the observed unemployment

series back into the model and, following the definitions in Section 4, compute

rationing unemployment uRt , frictional unemployment uFt , the rationing labor

wedge τR, and the frictional labor wedge τF .

Figure 5 depicts the decomposition results. The left panel reproduces result

similar to Michaillat (2012): increased unemployment in bad times is primarily

driven by job rationing, with rationing unemployment rising and frictional unem-

ployment declining. The core argument of Michaillat (2012) remains valid, even

under a more generalized specification of wage rigidity. The right panel illus-

trates the main messages of the paper: first, the labor wedge is countercyclical;

second, job rationing accounts for most of its fluctuations, mirroring unemploy-

ment. These results are consistent with the qualitative implications of Proposition

2.
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Figure 5. Rationing v.s. Frictions: Unemployment and
Labor Wedge

5.2. Job Rationing-related vs. matching friction-related fluctuations.

We next quantify the effects of job rationing- and matching friction-related fluc-

tuations on unemployment and the labor wedge by classifying the three shocks

considered in the model. As shown in equation (28), rationing employment de-

pends exclusively on technology and is unaffected by either the separation rate or

matching efficiency. Accordingly, technology at is identified as the job-rationing

driver, whereas separation st and matching efficiency µt are classified as matching-

friction drivers. To account for the three model shocks, we feed the observed

unemployment series, along with the observed separation and tightness series,

back into the job-rationing model and evaluate the respective contributions of

technology, separation, and matching efficiency to fluctuations in unemployment

and the labor wedge.

We assess the contributions of technology at, separation st, and matching effi-

ciency µt during the Great Recession, via shock-isolation counterfactuals. Specif-

ically, for each shock in turn, we fix the remaining shocks at their pre-recession

levels and simulate the implied trajectories of unemployment and the labor wedge.

The proximity of each counterfactual to the full-shock benchmark provides a mea-

sure of that shock’s contribution. Thus, we can construct counterfactual series
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Figure 6. Counterfactual Decomposition of technology,
Separation, and Matching Efficiency – Great Recession

for technology, separation, and matching efficiency. Moreover, counterfactual

unemployment and labor wedge series are constructed by shutting down each

fluctuation in turn, fixing the corresponding process at its pre-recession levels.

Figure 6 compares the baseline series (with all fluctuations active) to the

corresponding counterfactuals. Quantitative results are summarized in Table 4.

Figure 6 demonstrated that the counterfactual path with technology as the sole

varying shock tracks the observed series closely, whereas the counterfactuals with

only separation or only matching efficiency deviate substantially from the data.

These results identify technology at as the primary source of variation in both

unemployment and the labor wedge. Table 4 reports the numerical contributions

of technology, separation, and matching to unemployment and the labor wedge.

Technology (at) accounts for 65.72% of unemployment fluctuations and 66.67% of

labor-wedge fluctuations. By contrast, fluctuations in separation (st) and match-

ing efficiency (µt) play relatively minor roles: separation contributes 12.87% to

unemployment and 17.63% to the labor wedge, while matching efficiency con-

tributes 21.41% and 15.70%, respectively.

These counterfactual experiments indicate that during downturns, the job

rationing-related shock, rather than the matching friction-related shock, is the
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primary driver of fluctuations in unemployment and the labor wedge. This evi-

dence not only corroborates Michaillat’s (2012) argument concerning unemploy-

ment but also reinforces our theoretical result regarding the labor wedge. This

finding—that job rationing plays a central role in both unemployment and the la-

bor wedge, underscoring the critical importance of wage rigidity—stands in sharp

contrast to Cheremukhin and Restrepo-Echavarria (2014a), who ignores the role

of job rationing during downturns.

Table 4. Contribution of Technology, Separa-
tion, and Matching Efficiency–Great Recession

Unemployment Labor Wedge

Technology fluctuations: at 65.72% 66.67%
Separation fluctuations: st 12.87% 17.63%
Matching fluctuations: µt 21.41% 15.70%

While Cheremukhin and Restrepo-Echavarria (2014a) emphasize matching

frictions as the primary source of unemployment and the labor wedge, our results

offer a contrasting perspective. In their model, job rationing is overlooked, and

matching frictions exclusively account for fluctuations in unemployment and the

labor wedge in the absence of job rationing. Consequently, the time-varying sepa-

ration rate drives the unemployment fluctuations, and the time-varying matching

efficiency explains the labor wedge fluctuations. Moreover, they argue that wage

rigidity and bargaining processes commonly considered in the search literature

are not useful for explaining the labor wedge. By contrast, when wage rigidity

is incorporated and job rationing arises, technology —the job rationing-related

shock— becomes the primary driver of fluctuations in both unemployment and

the labor wedge, overshadowing separation and matching efficiency.

5.3. Time-Varying Labor Force Participation. The preceding analysis as-

sumes a fixed labor force participation rate, whereas in reality, labor force partic-

ipation is procyclical. We now relax this assumption to examine the robustness

of the main results presented in this section.
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Figure 7. Rationing v.s. Frictions: Unemployment and
Labor Wedge in the Model with Time-Varying Labor Force

Let LFt denote the labor force at time t. Unemployment in equation (1) is

thus redefined as

ut = LFt − nt. (34)

With a time-varying labor force participation rate, rationing unemployment is

modified as

uRt = max

{

0, 1−
nR

t

LFt

}

, (35)

and frictional unemployment is uFt = ut−u
R

t . The definitions of employment and

the labor wedge remain unchanged.

To account for time-varying labor force participation, we follow Clymo (2020)

and match the model’s participation rate to its empirical counterpart. For com-

parability with the benchmark model with a fixed unitary labor force, we employ

the same parameterization as in the preceding analysis.

Figure 7 presents the decomposition results, which are consistent with the

benchmark findings in Figure 5. Job rationing continues to be the primary driver

of the increase in unemployment and the labor wedge during recessions. This con-

clusion remains robust when allowing for time-varying labor force participation.
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Table 5. Contribution of Technology, Separa-
tion, and Matching Efficiency in the Model
with Time-Varying Labor Force – Great
Recession-

Unemployment Labor Wedge

Technology fluctuations: at 58.08% 53.67%
Separation fluctuations: st 17.34% 23.29%
Matching fluctuations: µt 24.58% 23.04%

The relative contributions of job rationing and matching friction shocks re-

main consistent across the fixed and time-varying labor force models. Table 5

shows that although the contribution of technology declines, it remains the pri-

mary driver, accounting for more than half of the fluctuations in both unemploy-

ment and the labor wedge. Interestingly, the role of matching efficiency becomes

more pronounced when labor force participation varies over the business cycle.

6. Conclusion

To thoroughly examine the cyclicality of the labor wedge, we construct a

standard DMP model with constant marginal returns and flexible wages, fol-

lowing Hagedorn and Manovskii (2008), and then extend it into a job-rationing

framework by incorporating diminishing marginal returns and wage rigidity, as

in Michaillat (2012). We show that the standard DMP model fails to simulta-

neously replicate the observed volatility of the labor wedge and the empirical

finding of Karabarbounis (2014) that its countercyclical movements are primarily

driven by the gap between the real wage and the MRS. By contrast, the extended

job-rationing model is able to successfully capture the two cyclical features of the

labor wedge.

In the job rationing model, sticky real wages induce labor rationing, pushing

households off their labor supply curves, while on the firm side the MPL con-

tinues to equal the wage in the absence of matching frictions during downturns.

This creates a pronounced gap between the wage and the MRS on the household

side. A higher degree of wage rigidity amplifies the procyclicality of the MRS
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relative to the MPL, rendering the labor wedge strongly countercyclical over the

business cycle. By contrast, in the standard DMP model with flexible wages,

fluctuations in the labor wedge stem solely from matching frictions, which exert

only limited influence on the household-side MRS. As a result, the model fails

to replicate the observed high procyclicality of the MRS, and the countercyclical

labor wedge is primarily driven by the wage–MRS gap. Since fluctuations in the

labor wedge primarily reflect variations in the gap between the real wage and

the MRS, Karabarbounis (2014) argues that business cycle theories of the labor

wedge should concentrate on the household side of the labor market. Our analy-

sis, in both analytical and numerical respects, provides a theoretical foundation

for this perspective.

We also show that job rationing accounts for most of the fluctuations not

only in unemployment but also in the labor wedge. Our finding that job ra-

tioning is a dominant driver of countercyclical labor wedge fluctuations is at odds

with the existing literature that emphasizes the importance of matching frictions

in explaining labor wedge fluctuations. However, it aligns with studies highlight-

ing the role of wage rigidity in generating countercyclical movements in both

unemployment and the labor wedge, as observed in the data.
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Appendix A. Data Description and Some Parameter Calibration

This appendix describes the data plotted in Figure 1 and the data series used

in the steady-state approximation of Section 3.

• Unemployment, ut: The unemployment rate is the seasonally adjusted

series (LNS14000000) from the U.S. Bureau of Labor Statistics. We con-

vert the monthly unemployment rate to quarterly data by averaging the

monthly figures. The quarterly unemployment rate is detrended using the

HP filter with a smoothing parameter of 105, following Michaillat (2012).

• Real GDP per capita, yt: Real GDP is the seasonally adjusted quarterly

series of real GDP in 2017 chain dollars, line 1 of the NIPA Table 1.1.6

from the U.S. Bureau of Economic Analysis. The quarterly population

level is the quarterly average of series LNS10000000 from the U.S. Bureau

of Labor Statistics. The quarterly series is detrended using the HP filter

with a smoothing parameter of 105.

• Marginal Product of Labor,MPLt, Marginal Rate of Substitution,MRSt,

and Labor wedge, τt: We use equations (4) and (5) to construct the mar-

ginal product of labor and equation (13) to construct the marginal rate

of substitution. Following equation (17), the labor wedge is computed as

τt =
MPLt

MRSt
.

• Technology, at: We follow Fujita and Ramey (2007) and use Nonfarm

Business Sector: Output per Worker for All Workers from the U.S. Bu-

reau of Labor Statistics as the measure of technology.

• Job Separation Rate, st: We construct the monthly separation rate follow-

ing Shimer (2005) using data on the seasonally adjusted employment level

(LNS12000000), the unemployment level (LNS13000000), and the number

unemployed for less than 5 weeks (LNS13008396) from the U.S. Bureau
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of Labor Statistics.

• Matching Efficiency, µt: Equation (24) implies that matching efficiency is

given by µt =
ft

θ
1−ξ
t

. We construct tightness θt = vt/ut using the observed

unemployment ut and vacancies vt. We construct the monthly job-finding

rate, ft, following Shimer (2005) using the same data in constructing st.

Thus, given ξ = 0.6 based on our calibration, we derive matching efficiency,

µt.

Appendix B. Diminishing Marginal Returns

We repeat the numerical exercise in Table 2 under diminishing marginal

returns (α = 2/3). As in the DMP model, the wage is the bargaining wage given

by (16). From Table B.1, the DMP continues to exhibit a trade-off in capturing

the volatility of the labor wedge and it fluctuations that are mainly driven by the

wage–MRS gap.

Table B.1. Simulation Results: α = 2/3

στ : Standard Deviation of τ η = 0.25 η = 0.5 η = 0.75 η = 0.9
(Data: στ = 0.022)

MRS/MPL = 0.1 0.018 0.013 0.0106 0.0098
MRS/MPL = 0.3 0.016 0.012 0.0102 0.0096
MRS/MPL = 0.5 0.014 0.011 0.0098 0.0093
MRS/MPL = 0.7 0.012 0.010 0.0091 0.0088
MRS/MPL = 0.9 0.009 0.008 0.0070 0.0068

Contribution: τW (Household Component) η = 0.25 η = 0.5 η = 0.75 η = 0.9
(Data: Contribution of τW = 79.6%)

MRS/MPL = 0.1 −65.76% 0.57% 56.19% 83.71%
MRS/MPL = 0.3 −44.38% 16.66% 64.33% 86.92%
MRS/MPL = 0.5 −19.91% 34.24% 72.78% 90.17%
MRS/MPL = 0.7 9.14% 53.56% 81.56% 93.46%
MRS/MPL = 0.9 44.76% 74.86% 90.67% 96.79%
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Appendix C. Proofs of Lemmas and Propositions

Proof. LEMMA 1

To prove that εMPL
a > 0 and εMRS

a > 0, we first need to establish εna > 0.

Using equation (26), we derive that

εna =
ϕw
a

(1− α)(MRC + ϕw
a
) + (1 + φ)(1− ϕ)(1− η)ψnα+φ + Φ′(n)nc

. (C.1)

Because n/(1 − n) increases in n, Φ(n) = 1−β(1−s)
β(1−s)

1

µ
1−2ξ
1−ξ

( s
1−s

n
1−n

)
ξ

1−ξ + (1 −

ϕ)η( 1
µ

s
1−s

n
1−n

)
1

1−ξ is an increasing function of n and Φ′(n). Thus, we have εna > 0.

Due to MPL = αanα−1, we rewrite equation (26) as follows:

Ψ(n)MPL− ϕw = Φ(n)ca, (C.2)

where Ψ(n) = (1− (1−ϕ)η)− (1−ϕ)(1− η)ψ
α
n1+φ = (Φ(n)ca+ϕw)/MPL > 0.

Thus, using equation (C.2), we derive that

εMPL
a =

[
Φ′(n)nc−Ψ′(n)MPLn

a

]
εna + Φ(n)c

MPL
a

Φ(n)
. (C.3)

Because Ψ′(n) = −(1− ϕ)(1− η)(1 + φ)ψ
α
nφ < 0, we have εMPL

a > 0.

To prove εMRS
a > 0, we need to show that εya > 0 first. Because MPL =

αy/n, we have that

εya = εMPL
a + εna > 0. (C.4)

Then, we derive MRS = −Un

Uc
= χnφc from U(c, n) = ln c−χn

1+φ

1+φ
. The elasticity

of MRS with respect to technology is

εMRS
a =

∂ lnMRS

∂ ln a
= φ · εna + εca.

Since the goods market-clearing condition implies y = c, we have εca = εya. With

φ > 0, equations (C.1) and (C.4) imply

εMRS
a = φ · εna + εya > 0. (C.5)

�
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Proof. PROPOSITION 1

Lemma 1 immediately yields Proposition 1. Given equation (C.1) and φ > 0,

εMPL
a = εya − εna and εMRS

a = φεna + εya, the elasticity of labor wedge with respect

to technology is

ετa = εMPL
a − εMRS

a = εya − εna − (φ · εna + εya) = −
(
1 + φ

)
· εna < 0. (C.6)

�

Proof. PROPOSITION 2

To prove ετ,Ra < 0, we first need to show that εn,Ra > 0. From Proposition

1, we have ετa = εMPL
a − εMRS

a = − (1 + φ) εna < 0. With the definition of the

rationing labor wedge, equation (30), ετ,Ra = −(1 + φ)εn,Ra . From equation (28),

we derive that

εn,Ra =
ϕw
a

(1− α)ϕw
a
+ (1 + φ)(1− η)ψ(nR)1+φ

> 0. (C.7)

Thus, we have ετ,Ra = −(1 + φ)εn,Ra > 0.

To prove
∂(n

R

n
)

∂a
> 0, we use z to denote nR

n
and obtain the following expression

from equations (27) and (28):

A 1
n1+φ − B

A 1
n1+φ − Bz1+φ

z1−α = 1 +
Φ(n)c

Λ(nR)
. (C.8)

Here, A = α(1 − (1 − ϕ)η) and B = (1 − ϕ)(1 − η)ψ. Moreover, Λ(nR) =
[
A−B(nR)1+φ

]
(nR)α−1 > 0 is a decreasing function in nR, i.e., Λ′(nR) < 0.

Using equation (C.8), we derive that

∂(n
R

n
)

∂a
=
∂z

∂a
=

Φ′(n)c
Λ(nR)

− Φ(n)c
Λ(nR)2

Λ′(nR) + Ξ∂n
∂a

(1− α)

[
A 1

n1+φ−B

A 1

n1+φ−Bz1+φ

]

z−α
. (C.9)

Here, Ξ =
(1+φ)A

n2+φ B(1−z1+φ)

(A 1

n1+φ−Bz1+φ)2
. Because z = nR

n
≤ 1, we know that Ξ ≥ 0. From the

proof of Proposition 1, we know that ∂n
∂a
> 0. In addition, equation (27) implies

that A 1
n1+φ −B =

Φ(n)c+ϕw
a

nα+φ > 0 and equation (28) implies that A 1
n1+φ −Bz1+φ =

ϕw
a

(nR)α−1n1+φ > 0. Thus, equation (C.9) indicates that
∂(n

R

n
)

∂a
> 0.
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Thus, we immediately have

∂( τ
R

τ
)

∂a
= −(1 + φ)

(
nR

n

)−(2+φ) ∂(n
R

n
)

∂a
< 0.

�
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